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Abstract

We find the general behaviour of homogeneous and isotropic cosmological models in
some fourth-order theories of gravity. Explicit, exact, general solutions are given for both
empty universes and those filled with a perfect fluid. For the vacuum case, solutions
are found with closed, open and flat geometries, whilst the perfect fluid solutions are all
spatially flat. Both early and late-time limits are studied, and attractor behaviour towards
simple power-law expansion is identified. Multiple solutions to the same theories, with
the same matter content and topology are found. It is shown that these solutions exhibit
great variety in their evolution.
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1 Introduction

Generalisations of the usual Einstein-Hilbert action of general relativity (GR) have been ex-
tensively studied in the literature. One frequently considered modification is to replace the
Ricci scalar, R, by some analytic function, f(R) (see e.g [1, 2, 3, 4]). Theories of this type are
referred to as fourth-order, as the field equations generated from them are generically fourth-
order in derivatives of the metric. Motivations for such studies are found from various different
sources. One often cited reason is that early attempts to create a perturbatively renormalizable
quantum field theory of gravity found success by adding extra terms, quadratic in the Ricci
curvature, to the action [5]. More recently, the effective actions of some string theories have
been shown to include higher-order curvature terms [6, 7]. Studies of f(R) theories have also
been performed in cosmological settings, often in attempts to better understand the late-time
accelerating expansion of the universe [8, 9], cosmological inflation [10, 11, 12] or the nature of
an initial singularity [13, 14, 15].

Difficulty can arise, in studies of fourth-order theories, as the field equations involved are
considerably more complex than their counterparts in GR. This extra complexity brings new
and interesting behaviour, such as violations of Birkhoff’s theorem [16] or violations of the no
hair theorems of de Sitter space, [12]. However, this extra complexity also makes it even more
difficult to find exact solutions of the field equations. Whilst some exact solutions have been
found in the spherically symmetric [16, 17] and cosmological [17, 18, 19, 20, 21, 25] situations,
these are all particular solutions. To date, there have been no general solutions published in
the literature, for any set of non-maximal symmetries. Exact solutions, and particularly exact
general solutions, are of great importance for understanding a theory. In this paper we will
present homogeneous and isotropic exact general solutions, obtained through direct integration
of the field equations, to some fourth-order theories of gravity. We expect these solutions to
be of use for helping to understand fourth-order theories of gravity, and the evolution of the
universes they govern.

Investigations of fourth-order theories usually follow one of two approaches: Either they
take the full-theory and look for approximate solutions, or they approximate the theory and
look for exact solutions. We will take the later approach and consider theories that have a
Lagrangian proportional to Rn. Such theories are scale invariant, and reduce to GR in the
limit n → 1. These theories may be considered as the limit of a more general Lagrangian
that has a power of R dominating in some particular regime, or as a simple deviation from the
standard theory in their own right. We find that for homogeneous and isotropic cosmologies
the field equations of these theories can often be integrated directly. For spatially flat vacuum
cosmologies the general solution can be found for any n, for spatially curved vacuum cosmologies
we find the general solutions when n = 3/2, and for spatially flat perfect fluid cosmologies (with
equation of state p = (γ − 1)ρ) we find the general solutions when n = 3γ/(3γ − 1) and when
n = (10 − 3γ)/(2(7 − 3γ)). These dependences are shown graphically in figure 1, below.

Investigations of homogeneous and isotropic cosmologies in Rn theories have been performed
before in [17, 21]. In these papers the authors find power-law exact, particular solutions and
perform a dynamical systems analysis of the phase space of more general solutions. These
studies show that the general solutions are often attracted to simple power-law solutions, at
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Figure 1: A plot of n = 3γ/(3γ − 1) (solid line) and n = (10 − 3γ)/(2(7 − 3γ)) (dashed line).
For these values of n the field equations for homogeneous and isotropic perfect fluid cosmologies
can be integrated directly.

both late and early times. We will confirm this behaviour here, and add to the previous work
by finding explicit expressions for the general evolution of these universes.

We will now comment on the extent to which the solutions found in this paper can be
considered candidates for the description of our universe. It has been shown in [16] and [17] that
gravitational theories derived from a Lagrangian of the form Rn are constrained by observations
in our local universe to have n very close to 1. It has also been suggested (see e.g. [22], [23]) that
it may not be possible for general f(R) theories of gravity to transition between eras dominated
by different fluids in the same way that occurs in the usual general relativistic description.
These results suggest that our neighbourhood of space-time should be well described by a
theory that is very close to the Einstein-Hilbert one. However, with these constraints in mind,
there are still good reasons to be interested in deviations of the Rn form. Firstly, even if n is
very tightly constrained by local observations, any small deviation from n = 1 may produce
significant deviations at early times in the universe’s history. This will be shown explicitly
below. Secondly, theories of the type R + αRn are often considered in the literature. If n > 1
then we may expect the effective gravitational theory in the early universe to be well described
by a Lagrangian of the form Rn. In such cases a more appropriate description of the evolution
of the early universe would be given by an Rn theory, even though observations from our local
universe show strong agreement with an effective theory of the Einstein-Hilbert type.

This paper will proceed as follows. In section 2 we will give the field equations for the
theory, and show how they can be simplified by recasting them in terms of new variables and
transforming time coordinates. Simple power-law exact, particular solutions to these equations
are given. In section 3 we show how the field equations for vacuum cosmologies can be decoupled
by a further transformation of variables. These equations are then integrated directly, and the
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solutions given explicitly in terms of the metric. Section 4 follows a similar prescription, this
time solving the field equations in the presence of a perfect fluid. In section 5 we perform a
brief analysis of the vacuum solutions, and in section 6 we analyse the perfect fluid solutions.
Section 7 provides a closing discussion. For readers interested in the solutions, but not the
derivations, the solutions in sections 3 and 4 are boxed to make them easily identifiable.

2 Field equations

We consider here a gravitational theory derived from the Lagrangian density

LG =
1

χ

√
−gR1+δ, (1)

where δ is a real number and χ is a constant. The limit δ → 0 gives the Einstein-Hilbert
Lagrangian of GR, and we are interested in isotropic and homogeneous cosmological solutions
with δ 6= 0. Theories of this kind are dynamically equivalent to scalar-tensor theories (see e.g.
[24]).

We denote the matter action as Sm and ignore the boundary term. Extremizing

S =

∫

LGd4x + Sm,

with respect to the metric gab, then gives [19]

δ(1 − δ2)Rδ R,aR,b

R2
− δ(1 + δ)Rδ R;ab

R
+ (1 + δ)RδRab −

1

2
gabRRδ

− gabδ(1 − δ2)Rδ
R,cR

c
,

R2
+ δ(1 + δ)gabR

δ �R

R
=

χ

2
Tab, (2)

where Tab is the energy–momentum tensor of the matter fields, and is defined in terms of Sm

and gab in the usual way. We take the quantity Rδ to be the positive real root of |R|.
We are concerned with idealised homogeneous and isotropic space-times described by the

Friedmann-Robertson-Walker metric with spatial curvature parameter κ:

ds2 = −dt2 + a2(t)

(

dr2

(1 − κr2)
+ r2dθ2 + r2 sin2 θdφ2

)

. (3)

Substituting this metric ansatz into the field equations (2), and assuming the universe to be
filled with a perfect fluid of pressure p and density ρ, gives the generalised version of the
Friedmann equations

(1 − δ)R1+δ + 3δ(1 + δ)Rδ

(

R̈

R
+ 3

ȧ

a

Ṙ

R

)

− 3δ(1 − δ2)Rδ Ṙ2

R2
=

χ

2
(ρ − 3p) (4)

−3
ä

a
(1 + δ)Rδ +

R1+δ

2
+ 3δ(1 + δ)

ȧ

a

Ṙ

R
Rδ =

χ

2
ρ (5)
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where, as usual,

R = 6
ä

a
+ 6

ȧ2

a2
+ 6

κ

a2
. (6)

It can be seen that in the limit δ → 0 these equations reduce to the standard Friedmann
equations of GR. A study of the vacuum solutions to these equations has been made by Schmidt,
see the review [20], and a study of the perfect-fluid evolution has been made by Carloni et al
[21]. In [17] Clifton and Barrow investigated solutions when κ = 0, and showed that attractor
power-law solutions exist. Various conclusions are also immediate from the general analysis
of f(R) Lagrangians made in [3] by specialising them to the case f = R1+δ. These previous
studies have focussed on the existence of particular exact solutions, or qualitative investigations
of the phase space of general solutions. In what follows we shall be interested in determining
the general evolution of a in terms of explicit, exact solutions. This should lead to fresh insights
into the evolution of universes described by these theories.

Assuming a perfect-fluid equation of state of the form p = (γ − 1)ρ, the usual conservation
equation gives ρ = ρ0a

−3γ . Substituting this into equations (4) and (5), with κ = 0, gives the
particular power-law exact Friedmann solution, for γ 6= 0,

a(t) = t
2(1+δ)

3γ . (7)

Alternatively, if γ = 0, there exists the de Sitter solution a(t) = emt. These power-law solutions
reduce to the usual general relativistic solutions in the limit δ → 0. Furthermore, the power-law
solutions

a(t) = t
δ(1+2δ)
(1−δ) (8)

and
a(t) = t

1
2 (9)

also exist. These solutions are independent of γ, and therefore of the matter content of the
universe. The δ = 0 limit of (8) clearly corresponds to Minkowski space. These three particular
solutions were both shown in [17] to be attractors of the spatially flat general solution, under
certain conditions. In what follows we will be able to show this attractor explicitly in terms of
exact general solutions.

The equations (4), (5) and (6) can be cast in a simpler form by defining the new variables

φ ≡
√

3 ln Rδ and ā ≡ eφ/2
√

3a.

Transforming to the time coordinate

dη ≡ eφ/2
√

3dt

and setting χ = 1 we then have two second-order evolution equations, for the two variables ā
and φ,

6
¨̄a

ā
= −φ̇2 + V0e

−λ +
(2 − 3γ)ρ0

2ā3γ
e
√

3(γ−4/3)φ/2 (10)

φ̈ + 3
˙̄a

ā
φ̇ = λV0e

−λφ −
√

3(γ − 4/3)ρ0

2ā3γ
e
√

3(γ−4/3)φ/2 (11)
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and the constraint equation

6
˙̄a2

ā2
=

φ̇2

2
+ V0e

−λφ − κ

ā2
+

ρ0

ā3γ
e
√

3(γ−4/3)φ/2 (12)

where

V0 =
δ

(1 + δ)
sign(R) and λ =

(δ − 1)√
3δ

.

Over-dots here denote differentiation with respect to η. In rescaling time in this way we must
remember that the more physically significant cosmological time coordinate t may diverge at
finite values of the new time coordinate. In such cases we will consider t as the more physically
meaningful time, and allow the new coordinate to take values only over an appropriate range.
This set of equations is similar to those obtained in GR, when considering homogeneous and
isotropic cosmologies with a scalar field in an exponential potential, and a perfect fluid. This
similarity is due to the conformal equivalence between f(R) theories of gravity and GR (see e.g.
[25, 26, 27]). One should notice, however, that the terms corresponding to the perfect fluid have
a more complicated form than may have otherwise been obtained in GR (except for the special
case of black-body radiation, γ = 4/3, which is conformally invariant). The corresponding set
of equations in GR has been solved in vacuum by Russo [28], and in the presence of a perfect
fluid by Dehnen, Gavrilov and Melnikov [29].

3 Vacuum solutions

3.1 Spatially flat solutions

In the absence of any matter fields the equations (10) and (11) are identical to homogeneous
and isotropic general relativistic cosmologies, with a scalar field in an exponential potential.
The spatially flat general solutions to these equations have already been found by Russo [28].
Here we will briefly reiterate the method of solving these equations, and use the results to find
the general solution to spatially flat vacuum cosmologies in Rn gravity.

Firstly, making the transformation of variables {a, φ} → {u, v} by the definitions

ā3 ≡ ev+u and φ ≡
√

4

3
(v − u)

and defining the new time coordinate

dη ≡ e
λ
2
φdτ

allows the evolution equations (10) and (11) to be written as

v̈ +

(

1 − λ√
3

)

v̇2 − 3V0

8

(

1 +
λ√
3

)

= 0 (13)

ü +

(

1 +
λ√
3

)

u̇2 − 3V0

8

(

1 − λ√
3

)

= 0 (14)

6



where over-dots now denote differentiation with respect to τ . In terms of these new variables,
the constraint equation (12) reads

u̇v̇ =
3V0

8
. (15)

We will first solve for two special cases, and then give the solutions for more general cases.

3.1.1 δ = −1/2

The special case λ =
√

3 (corresponding to δ = −1/2) gives the solutions to equations (13) and
(14), under the constraint (15), as

u = c1 +
1

2
ln(τ + c2) and v = c3 +

3V0

8
(τ + c2)

2

where the ci are constants. Transforming these results back, and absorbing constants into
redefinitions of the coordinates, gives the metric

ds2 = −e±τ2

τ 2/3
dτ 2 + τ 2/3dx2 (16)

where dx2 is the line-element of flat three dimensional Euclidean space. The ± sign here is due
to the dependence of V0 on the sign of the Ricci scalar.

3.1.2 δ = 1/4

The case λ = −
√

3 (corresponding to δ = 1/4) is also special and gives the solutions

u = c4 +
3V0

8
(τ + c5)

2 and v = c6 +
1

2
ln(τ + c5)

i.e. the same as the solutions in the previous case, under the exchange of u and v. Now,
transforming variables back to the originals and absorbing constants into coordinate freedoms,
we have

ds2 = −e±2τ2

τ 2/3dτ 2 + e±τ2

dx2. (17)

Here the two ± signs must be chosen together.
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3.1.3 δ 6= −1/2 or 1/4

Under the conditions V0(λ
2 − 3) > 0 and δ 6= −1/2 or 1/4, the solutions to equations (13), (14)

and (15) are

u = c7 +

√
3√

3 + λ
ln

[

cos

{

√

3V0

8

(

λ2

3
− 1

)

(τ + c8)

}]

v = c9 +

√
3√

3 − λ
ln

[

sin

{
√

3V0

8

(

λ2

3
− 1

)

(τ + c8)

}]

.

Transforming back to the original variables, and again absorbing constants, gives

ds2 = −cos
2

4δ−1 τ

sin
2

2δ+1 τ
dτ 2 + cos

4δ
4δ−1 τdx2. (18)

In the limit δ → 0 this solution can be seen to approach Minkowski space.

Alternatively, when V0(λ
2 − 3) < 0 the solutions are

u = c10 +

√
3√

3 + λ
ln

[

e

r

3V0
8

“

1−λ2

3

”

τ − c11e
−

r

3V0
8

“

1−λ2

3

”

τ

]

v = c12 +

√
3√

3 − λ
ln

[

e

r

3V0
8

“

1−λ2

3

”

τ
+ c11e

−
r

3V0
8

“

1−λ2

3

”

τ

]

which in terms of the original quantities corresponds to the metric

ds2 = −(eτ − c11e
−τ )

2
4δ−1

(eτ + c11e−τ )
2

2δ+1

dτ 2 +
(

eτ − c11e
−τ
)

4δ
4δ−1 dx2. (19)

Here we have absorbed the constants c10 and c12 into coordinate redefinitions whilst retaining
c11. It should be noticed that whilst the magnitude of c11 could have been absorbed, it has
been left as the special case c11 = 0 corresponds to the attractor solution. Again, this solution
approaches Minkowski space as δ → 0.

The conditions imposed upon V0 and λ here do not imply any restriction on δ. This is not
immediately obvious as the sign of V0 depends on the sign of R, and hence on the solution.
However, calculating the Ricci scalar for solutions (18) and (19), and substituting this into the
definition of V0, shows that both of these solutions exist for any given δ ( 6= −1/2 or 1/4).
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3.2 Spatially curved solutions

3.2.1 δ = 1/2

We will now present the general solution for a spatially curved vacuum universe, when δ = 1/2.
When ρ0 = 0 the change of variables

ā ≡ (uv)1/4 and φ ≡
√

3

4
ln
(u

v

)

,

and the new time coordinate dτ ≡ ādη, allow the field equations (10), (11) and (12) to be recast
in the simple form

ü = 0

v̈ =
2

3
V0

u̇v̇ =
2

3
(V0u − κ) .

Solving these equations yields

u = c13(τ − c14) and v =
1

3
(τ − c14)

2V0 −
2

3

κ

c13
(τ − c15)

which on transformation back to the original variables gives

ds2 = −dτ 2

τ
+

{

c16 − κτ +
V0

2
τ 2

}(

dr2

1 − κr2
+ r2dΩ2

)

where c16 = κc13(c15 − c14) and all other constants have been absorbed into coordinate redefi-
nitions. In this case we can transform time coordinates back to proper time t, giving

ds2 = −dt2 +
{

c17 − κt2 ± t4
}

(

dr2

1 − κr2
+ r2dΩ2

)

. (20)

As well as this solution there exists a second with

u =
κ

V0
and v = c18 + c19τ +

V0

3
τ 2.

Transforming this solution back gives Milne space.

4 Perfect fluid solutions

Perfect fluid dominated solutions to equations (10), (11) and (12) will now be presented. These
solutions are for spatially flat (κ = 0) cosmologies.
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4.1 δ = 1/(3γ − 1)

For the case δ = 1/(3γ − 1) we can integrate the field equations exactly, to find the general
solution. Notable exceptions are given by γ = 0 and γ = 1/3. For γ = 0, often associated with
vacuum energy, the corresponding value of δ is −1, which gives a gravitational theory derived
from a Lagrangian of the form R0 =constant. Clearly this is of little interest. For γ → 1/3 the
value of δ → ∞, and we have a theory that is not clearly defined. Having excluded these cases
we continue by changing the time coordinate to

dτ ≡ dηā3e−λφ,

and considering the variables u and v defined by the transformations

ā ≡ u
1

2(3+
√

3λ) v
1

2(3−
√

3λ) and φ ≡ ln v

(
√

3 − λ)
− ln u

(
√

3 + λ)
.

These definitions force us to exclude λ = ±
√

3 (corresponding to γ = −1/3 and γ = 5/3).
When λ = 2/

√
3−

√
3γ (corresponding to δ = 1/(3γ−1)) we can then write the field equations

(10), (11) and (12) as

ü = −1

2
γ(5 − 3γ)ρ0v

− 1+6γ
1+3γ (21)

v̈ = 0

u̇v̇ =
1

6
(5 − 3γ)(1 + 3γ)

(

V0 + ρ0v
− 3γ

1+3γ

)

.

Solutions to these equations are

u =
1

6
(5 − 3γ)(1 + 3γ)2ρ0(τ − c20)

2(c21(τ − c20))
− 1+6γ

1+3γ +
(5 − 3γ)(1 + 3γ)V0

6c21
(τ − c22)

v = c21(τ − c20).

Transforming back to the original variables, and absorbing constants into coordinate redefini-
tions, gives the metric

ds2 = −τ− 6γ
(1+3γ)

(

(1 + 3γ)ρ0τ
1

(1+3γ) + V0(τ + c23)
)− 6(1−γ)

5−3γ

dτ 2

+
(

(1 + 3γ)ρ0τ
1

(1+3γ) + V0(τ + c23)
)

2
5−3γ

dx2

(22)

where c23 = c21(c20 − c22). This solution is valid for all γ 6= −1/3, 0, 1/3 or 5/3.

A second solution to the equations (21) also exists, when V0 < 0. This solution is given by

u = c24 + c25τ − 1

4
γ(5 − 3γ)ρ0

(

−V0

ρ0

)
1+6γ
3γ

τ 2

v =

(

−V0

ρ0

)− 1+3γ
3γ

.

10



Which corresponds to the metric

ds2 = −
(

(c24 + c25τ) − 1

4
γ(5 − 3γ)ρ0τ

2

)− 6(1−γ)
5−3γ

dτ 2

+

(

(c24 + c25τ) − 1

4
γ(5 − 3γ)ρ0τ

2

)
2

5−3γ

dx2.

(23)

Again, this solution is valid for all γ 6= −1/3, 0, 1/3 or 5/3.

4.2 δ = −(4 − 3γ)/(2(7 − 3γ))

For the theories δ = −(4 − 3γ)/(2(7 − 3γ)) we can also integrate the field equations directly,
to obtain general solutions for spatially flat cosmologies. We should note that the particular
cases γ = 4/3, γ = 7/3 and γ = 10/3 are not usefully solved for here. Unfortunately, these
exceptional cases include the physically interesting case of γ = 4/3, a fluid of black-body
radiation. Here γ = 4/3 corresponds to δ = 0, which is GR. The case γ → 7/3 corresponds
to the limit δ → ∞, and γ = 10/3 corresponds to δ = −1. Neither of these values of δ are of
physical interest.

Making the transformation to the variables u and v via the definitions

a ≡ e

“

λ
√

3
u+v

”

and φ ≡
√

12

(

λ√
3
v + u

)

and redefining time as dη ≡ a3dτ allows the field equations (10), (11) and (12) to be written as

ü =
(4 − 3γ)

12
ρ0e

4(5−3γ)
(4−3γ)

u

v̈ =
1

2
V0e

− 24(5−3γ)

(4−3γ)2
v

u̇2 − v̇2 =
(4 − 3γ)2

24(5 − 3γ)
ρ0e

4(5−3γ)
(4−3γ)

u +
(4 − 3γ)2

24(5 − 3γ)
V0e

− 24(5−3γ)

(4−3γ)2
v

where we have taken
λ√
3

= −3(2 − γ)

(4 − 3γ)
,

which corresponds to δ = −(4 − 3γ)/(2(7 − 3γ)). The case γ = 5/3 does not give a sensible
limit, and so we will exclude it from consideration. When γ 6= 5/3 solutions to these equations
are given by

u = − (4 − 3γ)

4(5 − 3γ)
ln

[

(5 − 3γ)ρ0

6c2
26

sin2 (c26(τ − c27))

]

v =
(4 − 3γ)2

24(5 − 3γ)
ln

[

−(5 − 3γ)V0

6c2
26

sin2

(

6c26

(4 − 3γ)
(τ − c28)

)]

.
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The two sin functions here can be transformed to cos functions by suitably redefining the
constants c27 and c28. These sin or cos functions can then be transformed to sinh or cosh
function by the transformation c26 → ic26. It is, of course, important that solutions remain
real for at least some range of τ . This restricts which functions should be taken as physically
interesting (assuming ρ0 > 0), so that the form of the corresponding metric depends upon the
sign of 5 − 3γ. We will treat the different cases separately below.

4.2.1 5 − 3γ > 0

The condition 5− 3γ > 0 includes the important cases of pressureless dust and vacuum energy
density, and leads to the metric

ds2 = −b2
i (τ)dτ 2 + a2

i (τ)dx2 (24)

where i = 1, 2 or 3. We then have

a1 = sin− 1
(5−3γ) {τ − c29} sin− (4−3γ)

6(5−3γ)

{

6

(4 − 3γ)
τ

}

b1 = sin
− (7−3γ)

(5−3γ) {τ − c29} sin
(1−γ)(4−3γ)

2(5−3γ)

{

6

(4 − 3γ)
τ

}

,

where constants have been absorbed into coordinate redefinitions, and c29 = c26(c27 − c28).
These sin functions can be transformed to cos functions through redefinitions of the origin of
the time coordinate τ , and the constant c29. A second solution also exists with

a2 = sinh− 1
(5−3γ) {τ − c29} sinh− (4−3γ)

6(5−3γ)

{

6

(4 − 3γ)
τ

}

b2 = sinh− (7−3γ)
(5−3γ) {τ − c29} sinh

(1−γ)(4−3γ)
2(5−3γ)

{

6

(4 − 3γ)
τ

}

,

and a third with

a3 = sinh− 1
(5−3γ) {τ − c30} cosh− (4−3γ)

6(5−3γ)

{

6

(4 − 3γ)
τ

}

b3 = sinh− (7−3γ)
(5−3γ) {τ − c30} cosh

(1−γ)(4−3γ)
2(5−3γ)

{

6

(4 − 3γ)
τ

}

.

These solutions are valid for all γ < 5/3 and 6= 4/3.

4.2.2 5 − 3γ < 0

The condition 5 − 3γ < 0 contains the important case of a scalar field, γ = 2, and gives the
metric

ds2 = −b2
j (τ)dτ 2 + a2

j (τ)dx2 (25)

12



where j = 4 or 5. Here

a4 = cosh− 1
(5−3γ) {τ − c31} sinh− (4−3γ)

6(5−3γ)

{

6

(4 − 3γ)
τ

}

b4 = cosh
− (7−3γ)

(5−3γ) {τ − c31} sinh
(1−γ)(4−3γ)

2(5−3γ)

{

6

(4 − 3γ)
τ

}

and a second solution is

a5 = cosh− 1
(5−3γ) {τ − c32} cosh− (4−3γ)

6(5−3γ)

{

6

(4 − 3γ)
τ

}

b5 = cosh− (7−3γ)
(5−3γ) {τ − c32} cosh

(1−γ)(4−3γ)
2(5−3γ)

{

6

(4 − 3γ)
τ

}

.

These solutions are valid for all γ > 5/3 and 6= 7/3 or 10/3.

5 Analysis of vacuum cosmologies

In this section we will perform an analysis of the solutions found in section 3. The special cases
of δ = −1/2 and δ = 1/4 will be investigated in the appendix. These solutions contain a number
of constants, as a result of integrating the field equations. The physical significance of these
constants varies: In some cases they can be absorbed into a rescaling of coordinates, in others
they cannot and must be specified by initial conditions2. If the latter is the case, then these
constants are physically meaningful quantities and their value is important for the evolution of
the space-time. We will describe the effect of taking different values for these constants in the
analysis below.

5.1 Spatially flat cosmologies

We begin with the spatially flat solution (19). In the case c11 = 0 the solution (19) can be
written as

ds2 = −e−
4(δ−1)

(4δ−1)(2δ+1)
τdτ 2 + e

4δ
(4δ−1)

τdx2

= −dt2 + t
2δ(1+2δ)

(1−δ) dx2,

which is simply the power-law solution (8). It can be seen directly from (19) that for all c11

this simple solution is the attractor as τ → ∞.

When c11 = 0 the power-law solution above describes the evolution of the universe all
the way back to the initial singularity, but for c11 6= 0 more general behaviour occurs as the
singularity is approached. The form of this early-time behaviour depends upon the sign of c11

(recall that the magnitude of c11 can be absorbed into coordinate redefinitions).

2This is not a new phenomenon, and can be shown to be the case in, for example, the general Friedmann
solutions of Brans-Dicke theory [30].
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For c11 > 0 a power series expansion of the metric gives

ds2 ≃ −τ
2

(4δ−1) dτ 2 + τ
4δ

(4δ−1) dx2

= −dt2 + tdx2

when τ − 1
2
log(c11) ≪ 1. This limit is the same as the power-law exact solution (9).

For c11 < 0 a similar expansion about 1
2
log(−c11) gives

ds2 ≃ −τ
−2

(1+2δ) dτ 2 +

(

1 +
δ

(4δ − 1)
τ 2

)2

dx2

= −dt2 +

(

1 +
δ

(4δ − 1)
t

(1+2δ)
δ

)2

dx2.

This solution is clearly quite different from the power-law limits that have been found so far. For
δ > 1/4 or < 0 it corresponds to a non-zero minimum of expansion, or bounce. For 0 < δ < 1/4
it is a maximum of expansion. It should be noted that when −1/2 < δ < 0 the power of t in the
scale factor diverges as t → 0. In this case there is no staticity, and the scale-factor diverges as
t → 0. Bounces occur here without any violation of energy conditions, as there are no matter
fields present to commit such violations. The bounce is entirely due to the vacuum dynamics
of the theory.

We have now shown both the early and late-time behaviour of the solution (19). At late-
times all solutions approach the power-law exact particular solution (8). At early-times the
evolution of the universe is qualitatively different depending upon the value of the constant
c11. For c11 = 0 the solution (8) is valid all the way back to the initial singularity. For
c11 > 0 the general solution has an early period of expansion of the form of (9), in the vicinity
of the singularity. The expansion then evolves into the late-time attractor. When c11 < 0
there is a non-zero minimum of expansion (or maximum if 0 < δ < 1/4, or divergence if
−1/2 < δ < 0). The universe then evolves from this static past towards the late-time attractor.
Some representative evolutions of the scale-factor, in terms of the proper time coordinate t, are
shown in figure 2.

We will now investigate the solution (18). Firstly, expanding around the point τ = 0 we get
the approximation

ds2 ≃ −τ− 1
(1+2δ) dτ 2 +

(

1 − 4δ

(4δ − 1)
τ 2

)2

dx2

= −dt2 +

(

1 − 4δ

(4δ − 1)
t

(1+2δ)
δ

)2

dx2,

when τ ≪ 1. This is remarkably similar to the form of the previous metric, (19), in the vicinity
of its minimum of expansion. A noticeable difference is the sign before the second term in the
brackets. This change in sign shows that when the previous solution was a minimum (δ > 1/4
or < −1/2) this solution is a maximum of expansion. Correspondingly, when the previous
solution was a maximum (0 < δ < 1/4), this solution is a minimum. Again, there is divergence
when −1/2 < δ < 0.

14
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Figure 2: The evolution of the scale factor of solution (19) in terms of proper time, t. The value
of δ chosen here is 1/2. The solid line corresponds to c11 = 0, or the power-law exact solution
(8). The dotted line corresponds to c11 > 0 and shows an early period of t1/2 expansion, that
is attracted towards (8) at later times. The dashed line corresponds to c11 < 0 and shows a
non-zero minimum of expansion, and subsequent evolution towards (8).

We will now investigate the form of (18) around τ = ±π/2. Performing a power series
expansion about either of these points gives

ds2 ≃ −τ
2

(4δ−1) dτ 2 − τ
4δ

(4δ−1) dx2

= −dt2 + tdx2,

when τ ∓ π/2 ≪ 1. In the vicinity of both of these points the evolution of (19) is therefore of
the form of the power-law exact solution (9).

We have shown that the evolution of the solution (18) depends upon the sign of δ. When
δ > 1/4 or < −1/2 the solution, in terms of proper time t, has a maximum of expansion with its

early and late-time evolution going as t
1
2 . When 0 < δ < 1/4 there is a minimum of expansion,

and late and early-time expansion again goes as t1/2. For −1/2 < δ < 0 the solution diverges
in the region which is static for all other values of δ. The form of some representative solutions
are shown in figure 3. The behaviour of these solutions are markedly different from those found
by Russo [28]. Although a late-time power-law attractor can still be seen to exist in one of the
solutions, very little else is comparable.

5.2 Spatially curved cosmologies

For spatially curved vacuum universes we found the general solutions (20) and Milne space,
when δ = 1/2. The existence of Milne space as a solution should not be surprising, as any Ricci
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Figure 3: The evolution of the scale factor of solution (18) in terms of proper time, t. The solid
line corresponds to δ = 1, the dashed line to δ = 1/8 and the dotted line to δ = −2.

flat solution of GR in a vacuum is also a solution of the field equations (2) in vacuum (at least
when δ > 0). We will now investigate the form of the solution (20).

When κ = 0 this solution reduces to

ds2 = −dt2 + t4dx2,

which corresponds to the power-law particular solution (8), when δ = 1/2. When κ 6= 0 we see
that this solution exhibits new behaviour, dependent on the value of κ and which branch of the
± sign is chosen.

When κ > 0 and c17 > 0, then in the vicinity of t = 0 this solution exhibits a maximum
of expansion. Subsequent evolution of the scale-factor, as t → ±∞, depends upon the chosen
branch. Taking the positive branch we see that the universe can start to expand again, as
|t| increases. The existence of this expansion phase depends upon the magnitude of c17. If
c17 6 κ2/4 then the effect of the second term in the scale-factor is too great and the universe
collapses to a singularity, before the t4 term can become dominant. When c17 > κ2/4 the
t4 term dominates the late-time evolution and the power-law solution (8) is approached, as
|t| → ∞. When the negative branch is taken then the maximum of expansion at t = 0 always
leads to collapse to a singularity, as t either increases or decreases.

When κ < 0 and c17 = 0 then there exists an initial singularity, with the evolution of the
scale factor in its immediate vicinity expanding proportionally to t. The late-time evolution of
such solutions will be attracted to either the power-law solution (8), if the positive branch is
chosen, or to eventual collapse to singularity, if the negative branch is chosen. The case c17 > 0
does not have a singularity at t = 0, but instead has a minimum of expansion, or bounce. The
evolution away from this minimum proceeds as in the c17 = 0 case. The c17 < 0 case again
features an initial singularity and displays approximately the same evolution as when c17 = 0
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(a notable deviation is that the period of a ∝ t expansion near the singularity is absent if c17

is sufficiently negative).

We have shown that when κ 6= 0 there exists a minimum of expansion when c17 > 0, and
an initial singularity when c17 6 0. Initial evolution away from an early minimum proceeds
as a ∝ t, either expanding or collapsing, depending on the sign of κ. If there is an initial
singularity, then evolution away from it proceeds as a ∝ t, unless c17 is sufficiently negative (in
which case the t4 term dominates right from the beginning). The late-time evolution of these
solutions is dominated by the t4 term in (20). The negative branch of this term causes collapse
to a singularity, and the positive branch leads to asymptotic expansion and approach towards
the power-law solution (8) (unless the term proportional to κ causes collapse to singularity
before the t4 becomes dominant). The form of some representative solutions are shown in
figure 4.

t

a

Figure 4: The evolution of the scale factor of solution (20) in terms of proper time, t. The
solid lines correspond to universes with κ > 0, dashed lines to those with κ < 0 and the dotted
line to κ = 0. Those solutions starting from the origin have c17 = 0, and those starting from
a non-zero minimum have c17 > 0. All solutions collapsing to singularity correspond to the
negative branch of t4, and all solutions expanding at late-times to the positive branch. See the
main body of text for an explanation of these different behaviours.

6 Analysis of perfect fluid cosmologies

We will now analyse the evolution of universes described by the perfect fluid solutions (22),
(23), (24) and (25). Again, these solutions contain a number of constants, some of which
can be absorbed into coordinate redefinitions and some of which cannot. We will explain the
significance of such constants below.
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6.1 δ = 1/(3γ − 1)

When δ = 1/(3γ−1) we found from direct integration of the field equations the general solutions
(22) and (23). We will first consider (22).

The form of the scale factor in this solution depends upon which of the two terms in the
brackets is dominant. When the first term dominates the metric is approximately given by

ds2 ≃ −τ
− 6(1+4γ−3γ2)

(5−3γ)(1+3γ) dτ 2 + τ
2

(5−3γ)(1+3γ) dx2

= −dt2 + tdx2,

which corresponds to the power-law particular solution (9). When the second term in the
brackets dominates we have

ds2 ≃ −τ− 6(1+7γ−6γ2)
(5−3γ)(1+3γ) + τ

2
(5−3γ)(1+3γ) dx2

= −dt2 + t
2(1+3γ)

(2−3γ)(1−3γ) dx2,

which corresponds to the vacuum dominated, power-law particular solution (8). It now remains
to investigate the conditions under which each of these approximations dominates, at early and
late times.

When c23 = 0, and γ > 0, then the first term always dominates as τ → 0, and the universe
evolves like a ∼ t

1
2 . As τ → ∞ the second term dominates, and the evolution of the universe is

attracted towards the form of (8).

When c23 6= 0, and γ > 0, then this has the effect of offsetting the origin of the second term
relative to the first. The second term will then be the dominant one for most of the range of τ ,
with a contribution expected from the first term in the vicinity of τ = −c23.

Phantom fluids, with γ < 0, have the same behaviour as outlined above, but with the
dominance of the two terms reversed in each case.

We will now consider the solution (23). The evolution of this space-time again depends on
which of the two terms in the brackets is dominant. If the first term dominates then the metric
look like

ds2 ≃ −τ− 6(1−γ)
(5−3γ) dτ 2 + τ

2
(5−3γ) dx2

= −dt2 + tdx2,

which is again the power-law evolution (9). We will call this vacuum domination, as it cor-
responds to evolution being dominated by a term independent of ρ0. If the second term in
brackets dominates then we now have

ds2 ≃ −τ− 12(1−γ)
(5−3γ) dτ 2 + τ

4
(5−3γ) dx2

= −dt2 + t
4

(3γ−1) dx2,

which corresponds to the matter dominated power-law expansion (7). We must now investigate
the conditions under which each of these approximations dominates. This will depend upon
the value of the constants c24 and c25.
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When c24 = c25 = 0 we see that the matter dominated power-law expansion (7) holds all
the way back to the initial singularity. If c24 = 0 and c25 6= 0, then there is an initial period of
vacuum dominated expansion of the form a ∝ t

1
2 and a late-time evolution towards the matter

dominated power-law solution (7). If c24 6= 0 then this has the effect of offsetting the origin
of first term in the brackets, relative to the second. This can result in a non-zero minimum
of expansion (depending on the signs of c24 and c25), as in this case the first term can both
dominate and be non-zero at τ = 0. As |τ | → ∞ the matter dominated power-law solution (7)
is then approached.

6.2 δ = −(4 − 3γ)/(2(7 − 3γ))

We will now investigate the solutions (24) and (25), obtained by integrating the field equations
in the presence of a perfect fluid when δ = −(4 − 3γ)/(2(7 − 3γ)).

6.2.1 5 − 3γ > 0

We will first consider the solution {a1, b1}. Expanding this solution around the points τ = nπ
and τ = c29 + nπ, where n is an integer, gives the evolution of the scale factor in their vicinity.
To first order, an expansion about τ = nπ results in

ds2 ≃ −τ
(4−3γ)(1−γ)

(5−3γ) dτ 2 + τ− (4−3γ)
(5−3γ) dx2

= −dt2 + t
2(4−3γ)

3(7−3γ)(γ−2) dx2,

which corresponds to the vacuum dominated power-law expansion, (8). A similar expansion
about τ = c29 + nπ gives

ds2 ≃ −(τ − c29)
− 2(7−3γ)

(5−3γ) dτ 2 + (τ − c29)
− 2

(5−3γ) dx2

= −dt2 + tdx2,

which is the power-law evolution described by (9). Whether or not these points correspond to
a curvature singularity depends upon the value of γ, and can be read off from the Ricci scalar

R =
6(10 − 3γ)

(5 − 3γ)(4 − 3γ)
sin

2(7−3γ)
(5−3γ) {τ − c29} sin− (2−γ)(7−3γ)

(5−3γ)

{

6

(4 − 3γ)
τ

}

.

We see that when γ > 7/3 the Ricci scalar remains finite for all τ , whilst for 2 < γ < 7/3 or
γ < 5/3 the Ricci scalar diverges to infinity every time τ = (4 − 3γ)nπ/6. The evolution of
a(t) in the vicinity of these singularities goes like (8). Similarly, when 5/3 < γ < 7/3 there are

curvature singularities at τ = c29 + nπ. In the vicinity of these singularities a(t) ∼ t
1
2 . These

latter singularities correspond to a(t) → 0, whereas the former correspond to the divergence
a(t) → ∞ (except in the range 4/3 < γ < 5/3, in which case a(t) → 0).

An instructive special case to consider is that of pressureless dust, γ = 0. In this case the
coordinate transformation t = cot(τ − c29) allows the metric to be recast as

ds2 = −dt2 +

√
t2 + 1

sin
1
6{6(c29 + cot−1{t})}

dx2.
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It can now be seen directly that a(t) → t
1
2 as t → ∞ (or τ → c29 + nπ), and diverges to ∞ as

(8) when t → − cot{c29 − nπ/6} (or τ → nπ/6).

We will now consider the solution {a2, b2}. In the limit τ → ±∞ this solution approaches

ds2 ≃ −e−
8τ

(5−3γ) dτ 2 + e−
4τ

(5−3γ) dx2

= −dt2 + tdx2,

which is the power-law solution (9). When τ → 0 we see that we have the same limit as in the
previous solution, where the power-law evolution (8) is approached. Similarly, as τ → c29 we

approach the power-law evolution a ∼ t
1
2 , (9). The conditions for whether or not these limits

correspond to singularities, and if these singularities correspond to a(t) → 0 or a(t) → ∞, have
exactly the same dependence on γ as with the previous solution.

The pressureless dust case is again instructive, and can be written in terms of proper time,
by making the transformation t = coth{c29 − τ}, as

ds2 = −dt2 +

√
t2 − 1

sinh
1
6{6(c29 − coth−1{t})}

dx2.

This solution displays t
1
2 evolution as t → ∞, and divergence to ∞ as t → coth{c29}.

The solution {a3, b3} will now be considered. The late-time evolution of this solution is the
same as in the previous case. The evolution about τ = c is also the same. Now, however, we no
longer have the singular behaviour about τ = 0 that previously existed. Instead the scale-factor
evolves as a ∼ a0 + t

1
2 in the vicinity of this point, where a0 is some constant. The dust solution

in this case is then

ds2 = −dt2 +

√
t2 − 1

cosh
1
6{6(c30 − coth−1{t})}

dx2,

where t = coth{c30 − τ}. This metric has a scale factor that no longer diverges at any finite t.

6.2.2 5 − 3γ < 0

The late-time evolution of these two solutions is of the form a ∼ t
1
2 , as with the previous two

solutions. Now, the form of solution {a4, b4} about τ = 0 displays the same divergences as {a2,

b2}. Evolution towards the point τ = c is non-singular, and goes as a ∼ a0 + t
1
2 . The special

case of pressureless dust is given in this case, in terms of proper time t, by

ds2 = −dt2 +

√
1 − t2

sinh
1
6{6(c31 + tanh−1{t})}

dx2,

where t = tanh{τ − c31}. The scale-factor here can be seen to vanish at t = ±1 (corresponding
to τ → ±∞), and to diverge to ∞ at t = tanh{−c31}. The evolution of the scale factor follows
the late-time attractor towards the points at t = ±1.

We will now consider the remaining solution, {a5, b5}. This solution behaves as the solution
{a3, b3} in the vicinity of τ = 0, and as {a4, b4} in the vicinity of τ = c. That is, about both of
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these points the evolution of the scale factor goes as a ∼ a0 + t
1
2 and is non-singular. In fact,

at no finite τ does this solution become singular. The pressureless dust solution is given here,
in terms of proper time, as

ds2 = −dt2 +

√
1 − t2

cosh
1
6{6(c32 + tanh−1{t})}

dx2,

where t = tanh{τ − c32}. This solution describes a space-time that evolves from a = 0 at
t = −1 (corresponding to τ = −∞) to a = 0 at t = 1 (corresponding to τ = ∞). The evolution
between these two end points is at all times finite.

7 Discussion

We have investigated the homogeneous and isotropic cosmological solutions of Rn theories.
It has been shown that in a number of cases the field equations can be integrated directly,
allowing the general behaviour of these models to be found. For spatially flat vacuum universes
the solutions for any n can be found. For spatially curved vacuum universes, and flat perfect
fluid universes, the general solutions can be obtained for various particular values of n. These
solutions were given explicitly in sections 3 and 4. It is interesting to note that unlike the
general relativistic cosmologies, vacuum solutions can be either open, closed or flat. It was
also found that there is generically not one unique solution for any given n, matter content
and topology, as there usually is in GR. This was found previously in [17, 21], where a phase
plane analysis showed an invariant sub-manifold in the phase space of solutions which could
not be crossed by any trajectory. This result is reiterated here, where we find multiple ways
to integrate the field equations, yielding multiple solutions. It was also shown in [17, 21] that
the form of the general solution changes with n: Critical points in the phase space change their
attractor nature as n is varied. Again, we confirm this result by finding explicit solutions for
cosmologies with the same topology and matter content, but different n. These solutions have
clearly different forms. In sections 5 and 6 we performed a brief analysis of the vacuum and
perfect fluid solutions, respectively. The evolution of these universes, in terms of proper time,
were found in different regimes. The nature of the initial singularity was investigated, or its
lack thereof, as well as evolution at late-times. In summary, it was found that great variety is
present in the cosmologies of these theories. Behaviour at both late and early times can vary
wildly, depending on n, and even between different solutions with the same n, matter content
and topology. Solutions can manifest initially singular or non-singular behaviour, and late-time
evolution can either lead to a crunch or to monotonic expansion.
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A Vacuum δ = −1/2 cosmologies

We will now describe the evolution of universes described by the solution (16). Taking the
positive branch of (16) we see that as τ → ∞ we have dτ ≪ dt, so that in terms of proper
time the universe evolves very slowly at late-times. However, for the negative branch of (16)
we see that dτ ≫ dt in this limit. For the negative branch, therefore, we should expect
increasingly rapid evolution at late times, and for the positive branch an evolution towards an
asymptotic steady state. A power series expansion of (16) shows that the early-time behaviour
of both branches goes like the power-law particular solution (9). Figure 5 shows graphically
the evolution of the two branches of this solution.

t

a

Figure 5: The evolution of the scale factor of solution (16) in terms of proper time, t. The solid
lines correspond to the positive branch, and the dashed line to the negative branch.

B Vacuum δ = 1/4 cosmologies

We will now describe the evolution of universes described by the solution (17). A power series
expansion of this solution shows that the scale factors of both branches approach a stationary
state, in terms proper time t, as τ → 0. We can then see that as τ increases the positive
branch expands out of this stationary state, and the negative branch collapses out of it. The
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positive branch therefore corresponds to an expanding universe evolving out of a bounce, and
the negative universe to an initially expanding universe with a maximum of expansion and
subsequent collapse. Figure 6 shows the evolution of the two branches of this solution.

t

a

Figure 6: The evolution of the scale factor of solution (17) in terms of proper time, t. The solid
lines correspond to the positive branch, and the dashed line to the negative branch.
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