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The Parameterised Post-Newtonian Limit of Fourth-Order Theories of Gravity

Timothy Clifton∗

Department of Astrophysics, University of Oxford, Oxford OX1 3RH, UK
(Dated: February 23, 2013)

We determine the full post-Newtonian limit of theories of gravity that extend general relativity
by replacing the Ricci scalar, R, in the generating Lagrangian by some analytic function, f(R). We
restrict ourselves to theories that admit Minkowski space as a suitable background, and perform a
perturbative expansion in the manner prescribed by the parameterised post-Newtonian formalism.
Extra potentials are found to be present that are not accounted for in the usual treatment, and a
discussion is provided on how they may be used to observationally distinguished these theories from
general relativity at the post-Newtonian level.

PACS numbers: 04.25.Nx, 04.50.Kd, 04.80.Cc

I. INTRODUCTION

There exists an extensive literature on relativistic theories that generalise Einstein’s theory of general relativity
(GR), and that reduce to GR in the appropriate limits. A particularly appealing class of these generalisations are the
fourth-order theories. These are theories derived from a Lagrangian density that is a scalar function of contractions
of the Riemann tensor only. Considerations of fourth-order theories of gravity have a long history, having been first
considered by Eddington in as early as the 1920’s [1]. One frequently considered generalisation is to replace the Ricci
curvature scalar, R, in the Einstein-Hilbert action with some analytic function, f(R) (see e.g. [2, 3, 4, 5]). It is the
post-Newtonian limit of such theories that we will be interested in here.

There are a variety of reasons why one may wish to consider these generalised theories. Strong motivation comes
the from their renormalization properties in the presence of matter fields [6]. Other motivation can be found from
cosmological considerations where it has been found that generalising the Einstein-Hilbert action can be of use for
better understanding the late-time acceleration of the universe [7, 8], early universe inflation [9, 10, 11] and the nature
of the initial singularity [12, 13, 14, 15]. Whatever the motivation for considering generalised fourth-order theories,
it is essential that we sufficiently understand their weak-field limit, and that they conform with the ever increasing
body of observational data.

The usual frame-work for considering the weak-field effects of modified theories is the parameterised post-Newtonian
(PPN) formalism. The first steps towards this formalism were again made by Eddington [1], together with Robertson
[16] and Schiff [17], who treated the planets as test bodies moving in the gravitational field of the sun. In their
formalism they introduced the test metric

ds2 = −
(

1 − 2m

r
+

2βm2

r2

)

dt2 +

(

1 +
2γm

r

)

dx2

where dx2 is the three dimensional Euclidean line-element, r is a radial coordinate and m is the mass of the central
gravitating object. The parameters β and γ are to be determined by experiment. By constraining them it is possible
to verify, or potentially disprove, GR and its alternatives. For example, GR predicts β = γ = 1, whilst Brans-Dicke
theory [18] predicts β = 1 and γ = (1 + ω)/(2 + ω), where ω is the Brans-Dicke coupling constant. Using radio
communications from the Cassini spacecraft the constraint γ = 1 + (2.1± 2.3)× 10−5 has been obtained [19]. This is
evidently in good agreement with GR, and can be used to constrain the Brans-Dicke parameter to be ω & 40 000, to
2σ.

Our goal here is to calculate the post-Newtonian limit of fourth-order theories, so that they can be the subject of
observation in a similar manner. To achieve this we will consider them in the context of the full PPN formalism.
This formalism is a generalisation of the Eddington, Robertson, Schiff parameterisation outlined above, and allows
for more general configurations of matter fields than a single point-like gravitating source. The PPN approach was
developed primarily by Nordvedt and Will [20], and is explained in detail in [21]. We will give a brief explanation of
the PPN approach below, in so far as will be required for coherence of this work. For a more complete exposition the
reader is referred to [21].
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Absent in previous studies is a rigorous exemplification of how fourth-order theories fit into the PPN formalism.
Here we will remedy this by extending the PPN formalism to include fourth-order f(R) theories. In doing so we will
attempt to maintain, to the highest degree possible, the principles and spirit of the PPN formalism, as expounded in
[21]. Previous attempts have been made in this direction by Capozziello and Troisi [22] and Olmo [23]. These authors
attempt to derive the post-Newtonian limit of f(R) theories by appealing to their equivalence with scalar-tensor
theories [24]. Here we work directly with the fourth-order theory, and by direct integration of the field equations
find results that explicity state their post-Newtonian limit. In doing so we restrict our attention to the subset of
theories that admit Minkowski space as a suitable background, and find that it is necessary to introduce a number
of new post-Newtonian potentials. Theories with other backgrounds will be investigated elsewhere. We note that the
post-Newtonian limit of Gauss-Bonnet gravity has been found by Sotiriou and Barausse [25].

In section II we introduce theories that are derivable from a Lagrangian density of the form L = f(R). The field
equations are derived, and a discussion is given of the condition that Minkowski space be an appropriate background.
Section III gives a brief introduction to the PPN formalism, in as much as is required for the self-consistency of this
article. In sections IV and V we find the Newtonian and post-Newtonian limits, respectively. These calculations are
performed in the presence of a perfect fluid, and result in many new potentials that are not usually present. In section
VI the results found in the previous two sections are transformed into the standard post-Newtonian gauge, in which
the spatial part of the metric is diagonal and derivatives of quantities associated with the matter fields are removed.
Section VII gives a discussion of the results obtained, and in particular gives the relevant post-Newtonian limit if the
usual Newtonian potential is to dominate at the Newtonian level of approximation. In section VIII we conclude, and
indicate the principle ways in which the f(R) theories we are considering may be observationally distinguishable from
GR at the post-Newtonian level. The appendices give some details of the more lengthy calculations.

II. FOURTH-ORDER THEORIES

The Lagrangian density for the theories we will be considering is

L = f(R). (1)

The action associated with this density is then given by

S =

∫ √−gL + Sm, (2)

where Sm denotes the action associated with the matter fields. Extremizing this action with respect to the metric
results in the field equations

f ′Rµν − 1

2
fgµν + f ′

;
σρ

(gµνgσρ − gµσgνρ) = 8πTµν (3)

where primes denote differentiation with respect to R and Tµν is the energy-momentum tensor, defined in terms of Sm

and gµν in the usual way. Throughout we us Greek letters to run over all space-time indices and choose units so that
c = G = 1. The Lagrangian formulation of these theories guarantees the covariant conservation of energy-momentum.

In order to define a perturbative expansion we must first decide the appropriate background to expand about. In
the usual PPN treatment this background is taken to be Minkowski space, and the metric is then expanded as

gµν = ηµν + hµν (4)

where hµν ≪ 1. Such an expansion is well motivated in GR where it is known that in the absence of any matter
fields Birkhoff’s theorem ensures staticity of spherically symmetric space-times, and that these space-times will be
asymptotically flat. Adding small amounts of matter to such a background is then well modelled by the perturbative
expansion given by (4), and one need only be concerned with the effects of matching this region to a suitable
cosmological solution at large distances.

More care is required with fourth-order theories, where staticity and asymptotic flatness cannot be so easily assumed.
Birkhoff’s theorem is not valid in these theories, and so staticity, if it is required, must be imposed as an extra condition
on spherically symmetric vacua. However, the imposition of this extra symmetry does not, in general, result in
Minkowski space as a suitable background. It was shown explicitly in [26] that if any single power of the gravitational
Lagrangian dominates, other than the Einstein-Hilbert one, then spherically symmetric vacuum space-times are not
asymptotically attracted to Minkowski form. Instead, the line-element asymptotically approaches

ds2 → −rndt2 + dr2 + r2dΩ2
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as r → ∞, where n = 0 only if the Einstein-Hilbert term dominates. Such asymptotic behaviour can be readily shown
to be incompatible with observations, unless n is very small [26].

An alternative prescription to the imposition of a static background was investigated in [27]. Here the method of
imposing time independence, as outlined above, was contrasted with the method of assuming asymptotic homogeneity
and isotropy of the background vacuum. The assumption of homogeneity and isotropy removes the need for r
dependence in the asymptotic form of the metric, but at the expense of introducing time dependence. It was shown
in [27], using exact solutions as well as perturbative expansions, that the choice of symmetries for the background has
a demonstrable effect on the weak-field expansions that are performed within them.

In short, one must make a choice of background to expand about, and this choice can have important consequences
for the expansion itself. If any single power of the gravitational Lagrangian other than the Einstein-Hilbert one
dominates at asymptotically large distances, then Minkowski space may not be an appropriate, stable choice of
background. One is then forced to recant either the time independence or the homogeneity of the background metric,
with non-trivial consequences.

Here we will avoid these difficulties by considering only theories in which the Einstein-Hilbert term dominates in the
low curvature regime. We are then justified in performing a perturbative expansion about Minkowski space, which
allows a more direct comparison with the usual PPN approach. The post-Newtonian limit of other f(R) theories
will be dealt with in a future study. Fourth-order theories that admit a Minkowski background, and are an analytic
functions of R, can then be written as

f(R) =

∞
∑

i=1

ciR
i (5)

where the ci are a set of real, positive valued constants. The post-Newtonian analysis that is to follow will show
how the ci are manifest in the weak-field limit, and hence how they can be potentially observed with gravitational
experiments and observations.

III. THE PPN APPROACH

This section is a recapitulation of the PPN formalism, as propounded in [21], and as is necessary for coherence of
this article. The PPN formalism is a perturbative treatment of weak-field gravity. Such an expansion requires a small
parameter to expand in. An “order of smallness” is therefore defined by

U ∼ v2 ∼ p

ρ
∼ Π ∼ O(2)

where U is the Newtonian potential, v is the velocity a fluid element, p is the pressure of the fluid, ρ is its rest-mass
density and Π is the ratio of energy density to rest-mass density. Time derivatives are also taken to have an order of
smallness associated with them, relative to spatial derivatives:

|∂/∂t|
|∂/∂x| ∼ O(1).

(Recall that we have chosen to set c = 1). The PPN formalism now proceeds as an expansion in this order of smallness.
The equations of motion show that for time-like particles propagating along geodesics the level of approximation

required to recover the Newtonian limit is g00 to O(2), with no other knowledge of the metric components beyond
the background level being necessary. The post-Newtonian limit for time-like particles requires a knowledge of

g00 to O(4)

g0i to O(3)

gij to O(2).

Latin letters are used to denote spatial indices. To obtain the Newtonian limit of null particles we only need to know
the metric to background order: Light follows straight lines, to Newtonian accuracy. The post-Newtonian limit of
null particles requires a knowledge of g00 and gij both to O(2).

Using the expansion (4) we can now calculate the Ricci and energy-momentum tensors to the appropriate orders.
However, before doing so it is worth recognising that we have four gauge freedoms, associated with four coordinate
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choices. Specifying the four gauge conditions

hi0,i =
1

2
hii,0 +O(5) (6)

hij,j =
1

2
hjj,i −

1

2
h00,j +O(4) (7)

allows the components of the Ricci tensor to be written

R00 = −1

2
∇2h00 −

1

2
|∇h00|2 +

1

2
hjkh00,jk +O(6) (8)

R0i = −1

2
∇2h0i −

1

4
h00,i0 +O(5) (9)

Rij = −1

2
∇2hij +O(4) (10)

where ∇2 = ∂i∂i is the Laplacian on three dimensional Euclidean space. We still have the freedom to make gauge
transformations of the form

xµ → xµ + ξµ

and we will use this freedom in the following analysis to transform to a “standard post-Newtonian gauge” in which
the spatial part of the metric is diagonal, and terms containing time derivatives are removed. The components of the
stress-energy tensor, to the relevant order, are

T00 = ρ(1 + Π + v2 − h00) (11)

T0i = −ρvi (12)

Tij = ρvivj + pδij . (13)

We can now substitute these expressions for Rµν and Tµν into the field equations (3), together with (5), and solve
the equations order by order in perturbations. Transforming to an appropriate gauge will then yield the PPN limit
of these fourth-order theories.

IV. THE NEWTONIAN LIMIT

The Newtonian limit of these theories will now be investigated. This limit has been found before for a point-like
mass at the origin, originally by [28], and again several times since. Here we find the general solution for a space-time
containing a perfect fluid.

Beginning with the trace of the field equations (3), we have to O(2)

∇2R(2) − c1
6c2

R(2) = − 4π

3c2
ρ (14)

where R(2) denotes the Ricci scalar to O(2). This is an inhomogeneous Helmholtz equation which has the solution

R(2) =
1

3c2

∫

ρ(x′)

|x − x
′|e

−
q

c1

6c2
|x−x

′|
d3x′. (15)

We have ignored here the other possible root in the exponential, which is an equally valid solution of the Helmholtz
equation, but does not give an appropriate limit at asymptotically large distances. It can be seen that (15) is an
exponentially decaying Yukawa potential if c1 and c2 have the same signs, and is a damped oscillatory function if they
have opposite signs.

The 0 − 0 and trace field equations, given by (3), can now be written to O(2) as

∇2

(

1

4
c1h

(2)
00 +

1

4
c1h

(2)
ii + 2c2R

(2)

)

= −8πρ.

and

∇2
(

h
(2)
ii + 5h

(2)
00

)

= −64π

c1
ρ
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where the O(2) parts of (8) and (11) have been used. Solving these two inhomogeneous Poisson equations simultane-
ously we find

h
(2)
00 =

2

c1
(U + c2R

(2)) (16)

where

U ≡
∫

ρ(x′)

|x − x
′|d

3x′ (17)

is the Newtonian potential. From (16) it can be seen that the Ricci scalar itself acts as a Newtonian level potential.

V. THE POST-NEWTONIAN LIMIT

In this section we investigate the Post-Newtonian limit of the these theories. Expressions for hij to O(2), h0i to
O(3) and h00 to O(4) are found. These expressions will not be in the standard post-Newtonian gauge, discussed
above. We perform a transformation into this gauge in the subsequent section.

A. The hij terms

We begin by evaluating the terms hij to O(2). These quantities, together with (16) above, are sufficient to determine
the post-Newtonian limit of null geodesics.

The i− j field equation (3) can now be written

∇2

(

c1
2
h

(2)
ij + c2δijR

(2) + 12
c22
c1
R

(2)
,ij − 4

c2
c1
U,ij

)

= −4πρδij

where we have made use of the expressions above for Rij and Tij , (10) and (13), the trace equation (14) and the
definition of U , (17). This equation can be integrated to give

h
(2)
ij =

2

c1

(

Uδij − c2δijR
(2) − 12

c22
c1
R

(2)
,ij + 4

c2
c1
U,ij

)

. (18)

Equation (18) is not diagonal, and so is not in the standard post-Newtonian gauge. In the next section will remove
the off-diagonal components with the appropriate transformation.

B. The h0i terms

As discussed above, the first non-zero contribution to the h0i terms is at O(3). The 0− i field equation (3) can now
be written

∇2

(

c1h
(3)
0i + 30

c22
c1
R

(2)
,0i − 10

c2
c1
U,0i −

1

2
Vi +

1

2
Wi

)

= 16πρvi

where we have used the expressions for R0i and T0i, (9) and (12), the expression for h00 to O(2), (16), the trace
equation, (14), and the two new potentials Vi and Wi, that are defined as

Vi ≡
∫

ρ(x′)vi(x
′)

|x − x
′| d3x′ (19)

Wi ≡
∫

ρ(x′)(v(x′) · (x − x
′))(x− x′)i

|x − x
′|3 d3x′ (20)

as in the usual PPN treatment, so that ∇2(Wi − Vi) = 2U,0i. Use has also been made of the conservation equation

∂ρ

∂t
+ ∇ · (ρv) = 0. (21)

Integrating the field equation above we now have

h
(3)
0i = − 7

2c1
Vi −

1

2c1
Wi + 10

c2
c21
U,0i − 30

c22
c21
R

(2)
,0i (22)

which, again, will be subject to a gauge transformation in the next section.
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C. The h00 term to O(4)

At this order of perturbation the equations become more unsightly, and so we choose to relegate the majority of
them to appendices, stating here only the results. Hence, in the gauge specified by (6) and (7), the h00 term to O(4)
is

h
(4)
00 = − 2

c21
U2 + 2

c22
c21
R2 − 16c2

3c21
UR− 36

c22
c21
R,00 + 12

c2
c21
U,00 + 8

c2
c31

|∇U |2 − 24
c32
c31

|∇R|2 − 16
c22
c31
∇U · ∇R

− 7

18πc1
V(UR) +

3c2
4πc1

V(R2) +
64

9c21
V(ρU) − 44c2

3c21
V(ρR) − 40c2

3c31
V(∇ρ · ∇U) +

40c22
c31

V(∇ρ · ∇R)

+
2

c1
V(ρΠ) +

4

c1
V(ρv2) +

6

c1
V(p) − 1

4π

(

c2
c1

− c3
2c2

)

X(R2) +
1

6πc1
X(UR) − 4

3c21
X(ρU) +

8c2
3c21

X(ρR)

+
8c2
3c31

X(∇ρ · ∇U) − 8c22
c31
X(∇ρ · ∇R) − 2

c1
X(p) +

2

3c1
X(ρΠ) −

√

2c2
3c31

χ̂,00. (23)

The derivation of this result can be found in appendix A, where it is given there as equations (A3) and (A4). The
new potentials V , X and χ̂ are defined as

V(Q) ≡
∫

Q′

|x − x
′|dx

′3 (24)

X(Q) ≡
∫

Q′e
−

q

c1

6c2
|x−x

′|

|x − x
′| d3x′ (25)

χ̂ ≡
∫

ρ′e
−

q

c1

6c2
|x−x

′|
d3x′. (26)

Primes here label quantities that are functions of x
′. It should be noted that this definition of V is degenerate with

some of the usual PPN parameters: For example, V(ρv2) is identical to the potential Φ2 of [21]. We use this definition
of V as it is convenient for expressing the new potentials.

Again, this result is not in the standard post-Newtonian gauge. In the following section we will transform it so that
the terms proportional to R,00, U,00, |∇U |2, |∇R|2, ∇U · ∇R and χ̂,00 are eliminated.

VI. GAUGE TRANSFORMING

In the preceding section we used the gauge specified by conditions (6) and (7). This has been a convenient choice,
and has allowed integration of the field equations to post-Newtonian accuracy. However, it is desirable to transform
the results found above to a gauge in which the spatial part of the metric is diagonal, and in which the metric takes it
simplest form. By making the coordinate transformation xµ → xµ + ξµ the metric is transformed in such a way that

hµν → hµν − ξµ;ν − ξν;µ +O(ξ2).

Then by making the choices

ξ0 = 6
c2
c21
U,0 − 18

c22
c21
R,0 −

√

c2
6c31

χ̂,0

ξi = 4
c2
c21
U,i − 12

c22
c21
R,i

the metric perturbations transform as

h
(2)
ij → h

(2)
ij + 24

c22
c21
R,ij − 8

c2
c21
U,ij

h
(3)
0i → h

(3)
0i − 10

c2
c21
U,0i + 30

c22
c21
R,0i +

√

c2
6c31

χ̂,0i

h
(4)
00 → h

(4)
00 − 12

c2
c21
U,00 + 36

c22
c21
R,00 +

√

2c2
3c31

χ̂,00 − 8
c2
c31
|∇U |2 + 24

c32
c31
|∇R|2 + 16

c22
c31
∇U · ∇R
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whilst h
(2)
00 is unchanged. These transformations are exactly what is required to diagonalize the spatial part of the

metric, and to remove unwanted terms from the other metric components. The final form of the perturbed metric
can now be written to the required order as

g00 = − 1 +
2

c1
(U + c2R) − 2

c21
U2 + 2

c22
c21
R2 − 16c2

3c21
UR− 7

18πc1
V(UR) +

3c2
4πc1

V(R2) +
64

9c21
V(ρU)

− 44c2
3c21

V(ρR) − 40c2
3c31

V(∇ρ · ∇U) +
40c22
c31

V(∇ρ · ∇R) +
2

c1
V(ρΠ) +

4

c1
V(ρv2) +

6

c1
V(p)

+
1

6πc1
X(UR) − 1

4π

(

c2
c1

− c3
2c2

)

X(R2) − 4

3c21
X(ρU) +

8c2
3c21

X(ρR) +
8c2
3c31

X(∇ρ · ∇U)

− 8c22
c31
X(∇ρ · ∇R) − 2

c1
X(p) +

2

3c1
X(ρΠ) (27)

g0i = − 7Vi

2c1
− Wi

2c1
+
X(ρvi)

6c1
− Yi

6c1
− Zi

6
√

6c1c2
(28)

gij =

(

1 +
2

c1
(U − c2R)

)

δij (29)

where we have introduced the new potentials Yi and Zi, which are defined as

Yi ≡
∫

ρ′v′ · (x − x
′)(x− x′)i

|x − x
′|3 e

−
q

c1

6c2
|x−x

′|
d3x′ (30)

Zi ≡
∫

ρ′v′ · (x − x
′)(x− x′)i

|x − x
′|2 e

−
q

c1

6c2
|x−x

′|
d3x′, (31)

and where use has again been made of the conservation equation (21). The reader will notice in equation (27)
potentials that are functions of gradients of ρ, U and R, such as V(∇ρ · ∇U). This type of term is not of the usual
PPN form, where the metric contains functionals of rest mass, energy, pressure and velocity, but not their gradients
[21]. In appendix B we re-express the offending terms in a more proper PPN form, where gradients are absent.

VII. DISCUSSION

We have found the PPN limit of analytic f(R) theories of gravity that allow an asymptotically Minkowski back-
ground. The weak-field metric for these theories, in the presence of a perfect fluid and in the standard post-Newtonian
gauge, is given by equations (27), (28) and (29). We shall now proceed to investigate their form.

Firstly, we will consider the limit where the higher order contributions to the action are vanishing, so that c3 →
c2 → 0. In such a limit it can be seen from the trace equation, (14), that R → 8πρ/c1, and that the metric specified
by (27), (28) and (29) then reduces to

g00 →− 1 + 2U − 2U2 + 4V(ρU) + 2V(ρΠ) + 4V(ρv2) + 6V(p)

g0i →− 7

2
Vi −

1

2
Wi

gij → (1 + 2U) δij

where the two terms V(ρU) and V(RU) in (27) have contributed to V(ρU) in the expression above. Here we have set
c1 = 1. This metric is the PPN limit of GR (see [21] for details).

In order to be considered viable for non-zero c2 and c3 it is necessary for these theories to reduce to Newtonian
gravity in the appropriate limit. From the O(2) term of the g00 component of the metric, (27), it can be seen that
this can occur iff either

(i) 3c2R ∼ U or (ii) 3c2R ∼ 0

on observable length scales. Condition (i) is met if

|
√

c1/6c2|L≪ 1
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for the largest length-scales on which Newtonian gravity has been observed, L. Alternatively, condition (ii) can be
met if R is a decaying exponential with

√

c1/6c2l ≫ 1,

where l is the smallest length scale on which Newtonian gravity has been observed. In both cases we can now find
simple expressions for the post-Newtonian limit, which will allow us to relate our results to the relevant observations.

Let us first consider case (i). This case can be easily dismissed by considering only the Newtonian limit of g00 and

the post-Newtonian limit of gij , equations (27) and (29) above. If
√

c1/6c2|x− x
′| ≪ 1 then 3c2R ≃ U , and we must

set c1 = 4/3 to obtain the appropriate Newtonian term

g00 = −1 + 2U +O(4).

However, substitution of this value of c1 into (29) in the same limit gives

gij = (1 + U)δij +O(4),

as previously found by Chiba, Smith and Erickcek [29]. This result is entirely incompatible with many observations
of null geodesics (see e.g. [19]) and so we will not consider this case any further.

Let us now consider case (ii). Here the potentials containing exponentials are expected to be sub-dominant to those

without, on observable length scales, so that the R potential in g
(2)
00 is only effective at very small distances. Setting

c1 = 1, and discarding potentials which are exponentially suppressed with regards to others, we then find that the
metric in this case is given to the appropriate order as

g00 ≃− 1 + 2U − 2U2 +
64

9
V(ρU) − 7

18π
V(UR) + 2V(ρΠ) + 4V(ρv2)

+ 6V(p) − 40c2
3

ψ1 +
40

3

√

c2
6
ψ2 +

c3
8πc2

X(R2) (32)

g0i ≃− 7

2
Vi −

1

2
Wi −

Zi

6
√

6c2
(33)

gij ≃ (1 + 2U) δij (34)

where ψ1 and ψ2 are defined, as in appendix B, by

ψ1 ≡
∫

ρ′ρ′′(x − x
′) · (x′ − x

′′)

|x − x
′|3|x′ − x

′′|3 d3x′d3x′′ (35)

ψ2 ≡
∫

ρ′ρ′′(x − x
′) · (x′ − x

′′)

|x − x
′|3|x′ − x

′′|2 e
−

q

c1

6c2
|x′−x

′′|
d3x′d3x′′. (36)

In the metric above we have retained the term proportional to Zi in the g0i components. Although this term contains
an exponential suppression factor, it is of a different form to Vi and Wi and so cannot necessarily be assumed to be
negligibly small in comparison to them.

Another significant difference in the metric above is that the coefficient of the term V(ρU) is 64/9, instead of its
usual value of 4 in GR, and the inclusion of the new potential V(UR). We have already seen that in the limit c2 → 0
that the V(UR) term reduces to 8πV(ρU)/c1, which is exactly sufficient to recover the GR limit of 4V(ρU) in g00.
The fact that this potential is significant in the limit of small c2, even though it contains an exponential suppression
term, is due to the factor of c2 in its denominator, as R is present in the integrand. This causes it to approach a
finite value, instead of zero, when c2 is small. This potential cannot therefore be considered negligible, as it is not
necessarily exponentially smaller than any other.

There are three further potentials in g00 that are not present in GR: ψ1, ψ2 and X(R2). The ψ1 term contains
no exponential suppression factor, while the ψ2 and X(R2) terms do. However, as before, these potentials are
included none the less as they are not directly suppressed with respect to any other. The existence of ψ1 in the
post-Newtonian limit is of particular interest as it is the first new potential that is not exponentially suppressed, with
obvious significance for constraining the theory with observations. The X(R2) term is also of special interest as it is
the only term with a dependence on c3. In the limit c2 → 0 this term reduces to

c3
8πc2

X(R2) → 3c3ρ
2,
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which is non-zero when c3 and ρ 6= 0. This term therefore provides an opportunity to test for deviations from GR at
the level of R3 in the generating Lagrangian.

One may now wish to compare the metric obtained to the standard PPN metric, and to read off the relevant
parameters. The standard PPN metric is given in the present notation by

g
(PPN)
00 = −1 + 2U − 2βU2 + (2γ + 2 + ζ1)V(ρv2)

+ 2(3γ − 2β + 1 + ζ2)V(ρU) + 2(1 + ζ3)V(ρΠ) + 6(γ + ζ4)V(p) (37)

g
(PPN)
0i = −1

2
(4γ + 3 + ζ1)Vi −

1

2
(1 − ζ1)Wi (38)

g
(PPN)
ij = (1 + 2γU)δij (39)

where β, γ and ζi are the post-Newtonian parameters, to be set for a particular gravitational theory. We have excluded
here the preferred location and preferred frame terms, as they are of no relevance for the present study. Comparison
of the metric (32), (33) and (34) with the above allows one to read off the following values

β = 1, γ = 1, ζ1 = 0, ζ3 = 0 and ζ4 = 0,

as in GR. The value of ζ2 is not so straightforwardly determined, and a naive comparison would yield the result
ζ2 = 14/9 instead of the usual value of zero in GR. However, we have seen above that the V(UR) term approaches
V(ρU) for small c2, and gives the GR result in the limit. Care must therefore be taken with the value of this parameter,
and in the present case it seems more appropriate to consider two contributions towards ζ2 - one coming from the
usual V(ρU) term, and the other coming from V(UR). The terms in (32) and (33) proportional to ψ1, ψ2, X(R2) and
Zi are also inadequately accounted for in the PPN metric above. Clearly, new terms are required if these potentials
are to be included.

VIII. CONCLUSIONS

We have determined here the post-Newtonian limit of fourth-order theories of gravity that are analytic functions
of the Ricci tensor, and that admit Minkowski space as a background. In the Newtonian limit we have recovered the
well known result that an exponentially suppressed Yukawa potential is present. These deviations from Newton’s law
should be expected to be observed at small distance scales, and a number of experimental efforts have been made to
find them (see e.g. [30]). These searches have not yet detected any deviations from Newton’s law at small distances,
and so we must consider terms containing exponential factors to be heavily suppressed.

To determine the post-Newtonian limit of null geodesics we require knowledge of the gij components of the metric
to an accuracy of O(2), as is given in equation (29). We again find the well known result that the only correction
to this term at the post-Newtonian level of accuracy is in the form of a Yukawa potential, which must be heavily
suppressed. Comparison with the PPN metric (39) then gives us that we should expect γ = 1 for these theories, and
hence that experiments involving observations of null geodesics should be unable to distinguish them from GR.

We then proceeded to determine the full post-Newtonian limit to O(4) in the g00 component, (27), and to O(3) in
the g0i component, (28). It is found that there exists a large number of new potentials at this order of perturbations.
Using our knowledge that terms containing exponential factors are heavily suppressed it is possible to neglect a number
of these potentials, resulting in equations (32) and (33). A comparison of these results with (37) and (38) shows that
the PPN parameters β, ζ1, ζ3 and ζ4 all take the same values in these f(R) theories as they do in GR. Experiments
which are designed to determine these parameters will therefore be unable to distinguish between the two. However,
there are differences between (32) and (33), and the PPN limit of GR, that may be potentially observable.

A potentially significant difference with GR is the value of the PPN parameter ζ2. A direct comparison of (32)
with (37) appears to yield the result ζ2 = 14/9, which is a significant difference from its value of zero in GR. However,
we know that in the limit that GR is approached the new potential V(UR) in g00 makes a contribution that is
exactly enough to cancel the value of 14/9 above. This strongly suggests that this potential should be included
when observational constraints are applied. The parameter ζ2 is usually associated with violations of momentum
conservation, and the (lack of) self-acceleration of the binary pulsar PSR 1913+16 has led to the bound ζ2 < 4×10−5

[31]. Furthermore, it appears likely that observations of the binary system PSR J1738+0333 will offer even tighter
constraints [32]. However, these previously obtained constraints may not be directly applicable to the current theory.
Firstly, we know that f(R) theories of gravity covariantly conserve four-momentum exactly (due to their Lagrangian
formulation). Secondly, these constraints have been imposed in the absence of the V(UR) potential. The extent to
which these systems are able to offer constraints on f(R) theories when the V(UR) term is included remains to be
determined.
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Further opportunity for observationally constraining these theories comes from the other extra potentials in (32)
and (33): ψ1, ψ2, X(R2) and Zi. These potentials are likely to be small, due to suppressing factors of c2/|x − x

′|2.
The ψ1 term is somewhat promising as its suppression is polynomial, and not exponential. The Zi term is also
interesting as it is has polynomial amplification, as well as exponential suppression. Such a term may be potentially
observable in experiments that measure vector perturbations, such as gravity probe B [33]. Finally, we will mention
that the term proportional to X(R2) allows for the possibility of constraining any R3 term that may exist in the
generating Lagrangian. Unlike the R2 term, the R3 term does not first appear in the perturbative expansion as a
Yukawa potential. In fact, in the limit that the R2 term vanishes the potential X(R2) reduces to ρ2, which could be
observable in high density environments.

APPENDIX A: SOLVING THE t − t EQUATION TO O(4)

In order to determine the h
(4)
00 term, it will first be necessary to determine the Ricci scalar to O(4). This will be

achieved by solving the trace equation to the appropriate order. In the gauge defined by equations (6) and (7), the
trace of the field equations (3) becomes

∇2R(4) − c1
6c2

R(4) −R,00 +
3c3
2c2

∇2R2 +
2

c1
U∇2R− 2

c2
c1
R∇2R− 24

c22
c21
R,ijR,ij + 8

c2
c21
U,ijR,ij =

4π

c2
p− 4π

3c2
ρΠ

where here we have dropped the superscript on R(2), so that the R above should be implicitly assumed to be of O(2)
(as can be recognised from the required order of each term). We now introduce the new potentials

χ̂ ≡
∫

ρ′e
−

q

c1

6c2
|x−x

′|
d3x′ (A1)

X(Q) ≡
∫

Q′e
−

q

c1

6c2
|x−x

′|

|x − x
′| d3x′, (A2)

where a prime now denotes a quantity that is a function of x′, so that
(

∇2 − c1
6c2

)

χ̂ = −
√

6c1c2R

(

∇2 − c1
6c2

)

X(Q) = −4πQ.

Recognising the relations

U,ijR,ij =
1

2

(

∇2 − c1
6c2

)

∇U · ∇R+
2π

3c2
∇ρ · ∇U + 2π∇ρ · ∇R

R,ijR,ij =

(

∇2 − c1
6c2

) ( |∇R|2
2

− c1R
2

24c2

)

+
4π

3c2
∇ρ · ∇R+

c21
144c22

R2 − πc1
9c22

ρR

then allows the trace equation above to be integrated, to give

R(4) = − χ̂,00√
6c1c2

−
(

3c3
2c2

+
c2
c1

)

R2 + 12
c22
c21
|∇R|2 − 4

c2
c21
∇U · ∇R +

X(UR)

12πc2
−

(

1 − c1c3
2c22

)

X(R2)

8π

− 2X(ρU)

3c1c2
+

4X(ρR)

3c1
+

4X(∇ρ · ∇U)

3c21
− 4c2X(∇ρ · ∇R)

c21
− X(p)

c2
+
X(ρΠ)

3c2
. (A3)

We are now sufficiently equipped to solve the t− t field equation to O(4), in order to obtain h
(4)
00 . Equations (3) give

this as

− c1
2
∇2h

(4)
00 − 1

c1
∇2U2 +

(

3

2
c3 − 2

c22
c1

)

∇2R2 − 3
c2
c1

∇2UR− 18
c22
c1
∇2R,00

+ 6
c2
c1

∇2U,00 + c2∇2R(4) + 8
c2
c21
U,ijU,ij − 8

c22
c21
U,ijR,ij − 48

c32
c21
R,ijR,ij

+
5

6
UR− c2

6
R2 − 44π

3c1
ρU +

52πc2
3c1

ρR = 4πρΠ + 8πρv2 + 12πp
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where the trace of (3) has been used to eliminate the term proportional to R(4). On recognising

U,ijU,ij =
1

2
∇2|∇U |2 + 4π∇ρ · ∇U

U,ijR,ij =
1

2
∇2(∇U · ∇R) − c1

24c2
∇2UR+

2π

3c2
∇ρ · ∇U + 2π∇ρ · ∇R− πc1

6c2
ρR− πc1

18c22
ρU +

c21
144c22

UR

R,ijR,ij =
1

2
∇2|∇R|2 − c1

12c2
∇2R2 +

4π

3c2
∇ρ · ∇R +

c12

36c22
R2 − 2πc1

9c22
ρR

this can be integrated to

h
(4)
00 = − 2

c21
U2 +

(

3
c3
c1

+ 4
c22
c21

)

R2 − 16c2
3c21

UR− 36
c22
c21
R,00 + 12

c2
c21
U,00 + 8

c2
c31

|∇U |2 − 48
c32
c31
|∇R|2

− 8
c22
c31
∇U · ∇R− 7

18πc1
V(UR) +

3c2
4πc1

V(R2) +
64

9c21
V(ρU) − 44c2

3c21
V(ρR) − 40c2

3c31
V(∇ρ · ∇U)

+
40c22
c31

V(∇ρ · ∇R) +
2

c1
V(ρΠ) +

4

c1
V(ρv2) +

6

c1
V(p) + 2

c2
c1
R(4) (A4)

where

V(Q) ≡
∫

Q′

|x − x
′|dx

′3. (A5)

Equations (A3) and (A4) now specify h00 to O(4).

APPENDIX B: RE-EXPRESSING THE POTENTIALS

The potentials V(∇ρ · ∇U), V(∇ρ · ∇R), X(∇ρ · ∇U) and X(∇ρ · ∇R) in equation (27) are not in usual PPN form,
as they are written as functions of gradients of ρ, U and R. Here we re-express these terms, with the gradients absent,
as

V(∇ρ · ∇U) = 4πV(ρ2) + ψ1

V(∇ρ · ∇R) =
4π

3c2
V(ρ2) − c1

6c2
V(ρR) +

√

c1
6c2

ψ2

3c2
+
ψ3

3c2

X(∇ρ · ∇U) = 4πX(ρ2) +

√

c1
6c2

ψ4 + ψ5

X(∇ρ · ∇R) =
4π

3c2
X(ρ2) − c1

6c2
X(ρR) +

ψ6

3c2
+

√

c1
6c2

(ψ7 + ψ8)

3c2
+
c1ψ9

18c22
.

On substituting these expressions back into (27) the terms proportional to V(ρ2) and X(ρ2) cancel exactly. The new
potentials, ψi, are defined by

ψ1 ≡
∫

ρ′ρ′′(x − x
′) · (x′ − x

′′)

|x − x
′|3|x′ − x

′′|3 d3x′d3x′′

ψ2 ≡
∫

ρ′ρ′′(x − x
′) · (x′ − x

′′)

|x − x
′|3|x′ − x

′′|2 e
−

q

c1

6c2
|x′−x

′′|
d3x′d3x′′

ψ3 ≡
∫

ρ′ρ′′(x − x
′) · (x′ − x

′′)

|x − x
′|3|x′ − x

′′|3 e
−

q

c1

6c2
|x′−x

′′|
d3x′d3x′′

ψ4 ≡
∫

ρ′ρ′′(x − x
′) · (x′ − x

′′)

|x − x
′|2|x′ − x

′′|3 e
−

q

c1

6c2
|x−x

′|
d3x′d3x′′

ψ5 ≡
∫

ρ′ρ′′(x − x
′) · (x′ − x

′′)

|x − x
′|3|x′ − x

′′|3 e
−

q

c1

6c2
|x−x

′|
d3x′d3x′′

ψ6 ≡
∫

ρ′ρ′′(x − x
′) · (x′ − x

′′)

|x − x
′|3|x′ − x

′′|3 e
−

q

c1

6c2
|x−x

′|−
q

c1

6c2
|x′−x

′′|
d3x′d3x′′
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ψ7 ≡
∫

ρ′ρ′′(x − x
′) · (x′ − x

′′)

|x − x
′|3|x′ − x

′′|2 e
−

q

c1

6c2
|x−x

′|−
q

c1

6c2
|x′−x

′′|
d3x′d3x′′

ψ8 ≡
∫

ρ′ρ′′(x − x
′) · (x′ − x

′′)

|x − x
′|2|x′ − x

′′|3 e
−

q

c1

6c2
|x−x

′|−
q

c1

6c2
|x′−x

′′|
d3x′d3x′′

ψ9 ≡
∫

ρ′ρ′′(x − x
′) · (x′ − x

′′)

|x − x
′|2|x′ − x

′′|2 e
−

q

c1

6c2
|x−x

′|−
q

c1

6c2
|x′−x

′′|
d3x′d3x′′.
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