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What the small angle CMB really tells us about the curvature of the Universe

Timothy Clifton, Pedro G. Ferreira, and Joe Zuntz
Oxford Astrophysics, Physics, DWB, Keble Road, Oxford, OX1 3RH, UK

It is well known that observations of the cosmic microwave background (CMB) are highly sensitive
to the spatial curvature of the Universe, k. Here we find that what is in fact being tightly constrained
by small angle fluctuations is spatial curvature near the surface of last scattering, and that if we allow
k to be a function of position, rather than taking a constant value everywhere, then considerable
spatial curvature is permissible within our own locale. This result is of interest for the giant void
models that attempt to explain the supernovae observations without Dark Energy. We find voids
models with a homogeneous big bang can be compatible with the observed small angle CMB, but
only if they exist in a positively curved universe. To be compatible with local measurements of H0,
however, we find that a radially varying bang time is required.

One of the great successes of modern cosmology
has been the ability of Cosmic Microwave Background
(CMB) anisotropies to constrain the spatial geometry of
the Universe. A succession of ground, sub-orbital and
space-based experiments [1] have led to increasingly tight
constraints on the curvature of space, k, when it is as-
sumed to be a universal constant. However, in an inho-
mogeneous universe k will not be constant everywhere,
but will vary from place to place. Here we address the
question of what CMB results imply if we allow k to vary
with position. As a result, we place constraints on mod-
els of the Universe in which we live near the centre of a
large under-density, or void. Observables in such models
have been considered previously in [2], and have recently
been used to explain the supernovae observations without
recourse to Dark Energy [3]-[15].

Of primary importance for constraining cosmological
models are the Cℓs of the CMB angular power spectrum.
These quantities are defined by an expansion in Legen-
dre polynomials, Pℓ(x), of the form 〈δT (n)δT (n′)〉 =
1
4π

∑

ℓ(2ℓ+1)CℓPℓ(n ·n′), where δT (n) is the CMB tem-
perature anisotropy in the direction n, and angled brack-
ets indicate an ensemble average. Here we will focus on
the properties of the Cℓs on small angular scales. They
are then a result of two processes: The imprint of cos-
mological perturbations onto the last scattering surface,
and the projection of that surface onto our sky.

The first of these processes occurs early enough in the
Universe’s history that it is relatively insensitive to the
effects of any spatial curvature. It can then be accu-
rately described by linear perturbation theory about a
flat background. The familiar set of peaks and troughs
in the Cℓs are then determined by cosmological parame-
ters such as the expansion rate up to last scattering, and
the relative densities of the different constituents of the
Universe [16].

The second process involves relating length scales at
last scattering to angles on the sky today, and is highly
sensitive to the geometry of the intervening space-time.
Indeed, it is well known that non-zero k results in a shift
of the acoustic power spectrum of small scale fluctuations
in the CMB [17], and that it is this effect that is responsi-
ble for the stringent constraints on spatial curvature that

usually imply k ∼ 0. Such constraints, however, assume
that k is a constant, throughout the Universe. Here we
relax this condition, and allow k to vary with position, by
considering the spherically symmetric Lemâıtre-Tolman-
Bondi (LTB) space-time. We find that k(x) is only well
constrained in the vicinity of the surface of last scatter-
ing, and that even large local fluctuations in k will only
produce moderate contributions to the shift.
On small angular scales, the relative temperature of

the CMB seen on an observer’s sky in different directions,
n̂, is given by δT (n̂) = ∆(n̂DLS), where DLS is some
measure of the distance to the last scattering surface and
∆ is a solution of the Einstein-Boltzmann equations at
the time of last scattering. In conformally static space-
times, such as those with k =constant, DLS can unam-
biguously be taken to be the conformal distance to last
scattering r = sinh

(√
−k

∫

dη
)

/
√
−k, where dη ≡ dt/a

is conformal time. For more general space-times, how-
ever, we will need to be more careful.
Assuming that the radius of curvature is much greater

than the scale of any perturbations, we have that the
variance in temperature fluctuations is 〈δT (n̂)δT (n̂′)〉 =
∫

d3kP∆(k)e
ik·(n̂−n̂′)DLS , where we have defined the

power spectrum to be P∆(|k|)δ3(k−k′) ≡ 〈∆∗(k)∆(k′)〉.
What we are ultimately interested in is the angle between
vectors n̂ and n̂′ at the observer, dθ = cos−1(n̂ · n̂′) ≃
|n̂−n̂′|, hence, if dp = |n̂−n̂′|DLS is the distance between
two points at last scattering, then DLS = dp/dθ ≡ dA,LS,
where dA,LS is the angular diameter distance to last scat-
tering. This is a generic result valid for any curvature,
constant or not. We will now approximate the Cℓs as
a Fourier decomposition of 〈δT (n̂)δT (n̂′)〉 over the sky.
Defining the two dimensional wave number, q, such that
q ≡ |q| = ℓ, we then have Cℓ ≃ Cq, where

Cq =

∫

dΩ2 〈δT (n̂)δT (n̂′)〉 e−iq·θ =
1

d2A,LS

P∆

( |q|
dA,LS

)

.

On small enough scales, of a few degrees and below, we
expect this expression to be good enough for accurate
parameter estimation [18].
Now consider two different space-times. Although it

can be arranged that observers in each of these will wit-
ness identical last scattering surfaces at identical red-
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FIG. 1: Upper panel: The shift parameter, S, as a function of
z1 for ΩK = 0.3 (solid), 0.5 (dotted) and 0.7 (dashed). Lower
panel: S as a function of cosmic time, t1 = t(z1), for the same
models (t0 is time today).

shifts, the geometries between those observers and that
surface will be different in each. Let us write dA,LS for
the angular diameter distance in the first space-time, and

d̂A,LS for the angular diameter distance in the second.
We can then relate the angular power spectrum in the
first space-time, Cℓ, to that in the second space-time,

Ĉℓ, via Cℓ = S2Ĉℓ/S , where S ≡ d̂A,LS/dA,LS is known
as the shift parameter. This situation (of identical last
scattering surfaces but different geometries) is often en-
visaged when considering the effect of a non-zero, and
constant, k. In that case both space-times are confor-
mally static, and so it suffices to use the conformal (or
optical) metric. The effect of k 6= 0 is then to alter the
conformal distance to the last scattering surface, and the
Cℓs of each observer can be related by a shift parameter
that is the ratio of these conformal distances [19].

Now consider a toy model with a region of curved FRW
extending out to some redshift, z1, in a universe that is
otherwise flat. We have in Friedmann-Robertson-Walker
(FRW) cosmology that the angular diameter distance is
given by dA = ar, where r is conformal distance (de-
fined above) and a is the scale factor of the universe. A
dust-filled FRW universe can be shown to have dA, as a
function of the redshift z ≡ a0/a− 1, given by

dA =
sinh(2r̂)

(1 + z)H0

√
Ωk

, (1)

where r̂ ≡ sinh−1
√

Ωk

(1−Ωk)
− sinh−1

√

1
(1+z)

Ωk

(1−Ωk)
, H is

the Hubble rate, subscript 0 denotes a quantity measured
by the observer at z = 0, and Ωk ≡ −k/a20H

2
0 . The shift

in CMB peaks from a globally flat universe is now given
by the ratio dcurvedA /dflatA at z1, when H has been matched
at last scattering (and so is also matched at z1). In a flat
universe we have H2

0,flat = H2
z/(1 + z)3, where Hz is the

value ofH at redshift z, and in a spatially curved universe
we have H2

0,curved(1−Ωkz/(1 + z)) = H2
z/(1 + z)3. This

then gives the shift parameter as

S(z1) =

√

(1 + z1)− z1Ωk

2
√
Ωk(

√
1 + z1 − 1)

sinh(2r̂1). (2)

In Fig. 1 we plot this shift as a function of z1 and the
corresponding cosmic time for three choices of curvature,
Ωk = 0.3, 0.5 and 0.7. At large z1 we recover the famil-
iar result that k < 0 leads to S > 1, so that the acoustic
peaks of the CMB are shifted to smaller angular scales.
However, if we consider curved regions out to lower red-
shift, then this result is no longer true: At z1 <∼ 4 nega-
tive curvature causes S < 1. This is ultimately due to the
presence of H0 in Eq. (1). Measuring dA in units of h−1,
S would increase monotonically with z. The requirement
that HLS is the same in both space-times, however, leads
to different values of H0 in each. At low redshifts the ra-
tio of these Hubble rates is great enough to cancel what
would otherwise be a positive S − 1.
In the lower panel of Fig. 1 we plot S all the way out

to last scattering, now as a function of cosmic time, t1 =
t(z1), in the fiducial flat model. Here it can be seen that
most of the shift parameter is due to geometrical effects
shortly after the surface of last scattering, at z∗ ≃ 1100,
with any effects due to our local geometry contributing
significantly less. In fact, for Ωk ∼ 0.7 it can be seen that
there is only a ∼ 5% shift caused by all of the geometry
out until the Universe was ∼ 5% of its current age. The
rest of the ∼ 70% shift at last scattering is then primarily
due to the geometry experienced by the CMB photons in
the first ∼ 5% of the Universe’s history.
Now let us consider models in which k is a smoothly

varying function of position, as emerges in a universe with
large density fluctuations [5]. To achieve this consider the
LTB model, whose line-element is given by [20]

ds2 = −dt2 +
a22(t, r)dr

2

1− k(r)r2
+ a21(t, r)r

2dΩ2, (3)

where a2 = (ra1)
′, and primes denote partial derivatives

with respect to r. The FRW scale factor, a, has now been
replaced by two new scale factors, a1 and a2, describing
expansion in the directions tangential and normal to sur-
faces of spherical symmetry. These new scale factors are
functions of cosmic time, t, and distance, r, from the cen-
tre of symmetry, and obey a generalization of the usual
Friedmann equation such that

(

ȧ1
a1

)2

=
8πG

3

m(r)

a31
− k(r)

a21
, (4)

where over-dots are partial derivatives with respect to t.
The energy density is given here by ρ = (mr3)′/a2a

2
1r

2,
and redshifts by 1 + z = exp{

∫

(ȧ2/a2)dt}, where the
integral is along a past directed radial null geodesic.
The LTB space-time is fully determined by a choice

of the three free functions k(r), m(r) and t0(r). The
first two of these are specified above, and the third is the
‘bang time’, which in these models need not be the same
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FIG. 2: Upper panel: δH (see text for definition) as a function
of central void curvature, ΩK , for asymptotically flat voids
with FWHM at redshift of 0.4 (solid), 0.5 (dotted) and 0.6
(dashed). Lower panel: The shift parameter, S, as a function
of central void curvature, ΩK , for the same three voids.

at all points in space. Without loss of generality, we can
then make a coordinate choice such that m =constant.
We will also initially consider the situation of a simulta-
neous big bang, with t0 =constant. These models have
been much studied recently, as a space-time with local
negative curvature allows for the possibility of explain-
ing the supernova data without Dark Energy. A fit to
the data is often found to be a void with Ωk ∼ 0.7, and
a width of z ∼ 0.5. This is a significant amount of spa-
tial curvature, extending out to large distances, and one
may naively suspect that the sensitivity of the small an-
gle CMB to spatial curvature may be sufficient to impose
strong constraints on these models [9]-[13].

To investigate if this is indeed so, let us consider a
negative local curvature fluctuation in an otherwise flat
universe. An observer at the centre of such a void will see
a last scattering surface at z∗, and can straightforwardly
calculate H at this surface in terms of their locally mea-
sured value. We also require a fiducial observer in an
FRW universe who will witness an identical last scatter-
ing surface, with the same HLS . To ensure that these
observers use comparable measures of distance we will
enforce the conditions that they have the same local ge-
ometry [21]. This choice ensures that distances to nearby
co-moving objects are the same when measured in units
of h−1MPc. We also require that they both see last scat-
tering surfaces at the same z∗ so that effects due to the
redshifting of solid angle, for example, are automatically
included.

The shift between the open FRW universe and the void
model is then given by S1 = dLTB

A,LS/d
open
A,LS, where the

angular diameter distance in LTB is given by dLTB
A,LS =

a1,LSrLS , and in the FRW universe by Eq. (1). In the
case of the void model, the values of a1, r and H at last
scattering are found by integrating a radial null geodesic
out to z∗, using the solutions to Eq. (4). H0 in the
open FRW universe is then found by taking the same

Hubble rate at last scattering as in the LTB model, and
propagating it forward until today in the FRW geometry.
Of course, we know the shift parameter between open and
flat FRW universes, S2 = dopenA,LS/d

EdS
A,LS from (2), and so

we can calculate the acoustic spectrum witnessed by the
observer in the void in terms of a shift, S = S1S2 =
dLTB
A,LS/d

EdS
A,LS, from a spatially flat FRW model, and a

change in Hubble rate, δH ≡ HEdS
0 /HLTB

0 .

The shift, S, and change in Hubble rate, δH , for an
asymptotically flat void formed from a negative Gaus-
sian perturbation in k(r), are shown in Fig. 2. We find
that a good fit to the WMAP data requires S ∼ 0.9 and
δH ∼ 0.5, and so a void model will need to be capable of
achieving similar values if it is to be considered viable. It
can immediately be seen that for moderately deep voids,
with Ωk

<∼ 0.9 at the centre, both S and δH deviate
insufficiently from 1 [22]. It can also be seen that S is
not particularly sensitive to the width of the void. In
light of what we considered above, these results can be
easily understood: Most of the contribution to the shift
does not come from the local geometry, but from early
times when the CMB photons were well outside the void.
The discussion above also explains why the presence of
the void shifts the acoustic peaks to larger scales, rather
than smaller.

One may also wish to consider more extreme voids in
which we allow Ωk > 0.9 at the centre. In this case,
however, shell crossing singularities can occur [24], and
redshift as a function of local energy density can become
multi-valued [25]. The former of these should be consid-
ered as a break-down of the model, while the latter shows
that the effect of the inhomogeneity on null geodesics
in these cases can be highly non-trivial. However, even
if one is prepared to consider such extreme voids, and
even if they can be made compatible with the small an-
gle CMB, such voids are still highly unlikely to be able
to fit the supernova data without having their shape at
low z being highly fine-tuned. We will not consider them
further here.

Of course, one will still be interested in more general
void models. In particular, it is possible to conceive of a
void in a spatially curved FRW universe, instead of a flat
one. In this case one is subject to the familiar sensitivity
of the CMB to spatial curvature, and we have verified
that S can effectively be set to any value with a suitable
choice of asymptotic curvature [27]. In particular, a shift
parameter of S ≃ 0.9 can be achieved with Ωk ≃ −0.26
asymptotically. The value of δH , however, is not so sen-
sitive to k in the background space-time. To achieve
δH ∼ 0.5 one must therefore be prepared to abandon
the notion of the big bang happening at the same time at
all points in space. A larger contrast between local and
asymptotic Hubble rates can then be straightforwardly
achieved. To this end, we find that a Gaussian void em-
bedded in a spatially curved universe with Ωk = 0.10,
that has a FWHM in k at z = 0.34, in t0 at z = 0.80,
and with an age of the universe in the centre of the void
that is 13% more than that of the asymptotic regions,
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FIG. 3: Top panel: the Cℓs for the void in a non-flat back-
ground (blue) and for ΛCDM with ΩΛ = 0.7 (red) are essen-
tially indistinguishable. Bottom panel: the distance modulus
for the same two models. Data points are from the WMAP 5
year data [1] (top panel) and SNLS first year data [28] (bot-
tom panel); in the latter case, the position of the data points
move as they are fitted to the two models (see [14]).

we can fit the Cℓs just as well as ΛCDM with Ωm = 0.15
at the centre of the void. The CMB acoustic spectrum
and distance modulus plot for this void are shown in Fig.
3, together with the ΛCDM best fits. Changing the de-
tailed shape of the under-density will change the numbers
involved above, and, in particular, if one can find other
voids that allow δH ∼ 0.5 then these models will very
likely provide a good fit to the data too (with the appro-
priate choice of background curvature, to give the correct
shift).

In conclusion, we find that the observed acoustic spec-
trum of small angle CMB fluctuations is primarily only
sensitive to curvature at high redshifts. Local curvature
has much smaller, and even opposite, effects. By con-
sidering LTB models, in which k = k(r), we demon-
strate that large local fluctuations in spatial curvature
produce only moderate shifts in the CMB acoustic spec-
trum. As a result, the local void models that seek to
explain cosmological observations without Dark Energy
are not automatically ruled out. Fitting to the WMAP 5
year data shows, however, that the simplest voids (with
simultaneous big bang) are required to be have non-zero
asymptotic spatial curvature. By embedding the void in
a suitably curved background it is then possible to shift
the acoustic spectrum by any amount. Even in this case,
however, the locally observed Hubble rate in the void
model is anomalously low. Alternatively, we can give up
on the idea of a simultaneous big bang. In this case it
is found that the local Hubble rate (as well as the shift
parameter) is sensitive to the bang time function, and
by altering the age of the Universe in different spatial
locations we can increase H0. We therefore find void
models that can fit the WMAP 5 year data just as well
as ΛCDM, as well as local measurements of H0, and su-
pernova observations. However, if we really do live in a
large, local under-density in the Universe, it will have to
be considerably more complex than previously thought
in order to be observationally viable.
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