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The Method of Images in Cosmology

Timothy Clifton

School of Physics and Astronomy, Queen Mary University of London, UK.

Abstract.

We apply the method of images to the exact initial data for cosmological models

that contain a number of regularly arranged discrete masses. This allows us to join

cosmological regions together by throats, and to construct wormholes in the initial data.

These wormholes allow for the removal of the asymptotically flat “flange” regions that

would otherwise exist on the far side of black holes. The method of images also provides

us with a way to investigate the definition of mass is cosmology, and the cosmological

consequences of the gravitational interaction energies between massive objects. We

find evidence that the interaction energies within clusters of massive objects do indeed

appear to contribute to the total energy budget in the cosmological regions of the

space-time.

1. Introduction

A recent development in the field of relativistic cosmology is a renewed interest in the

study of models that contain discrete masses. These models do not assume a matter

content that takes the form of a fluid, but instead take the mass in the universe to be

contained within a number of (usually) regularly distributed black holes. The primary

motivation for these studies has often been stated as the desire to remove the need for

averaging from cosmological modelling, and hence to allow for the exploration of ideas

about the influence of structure formation on the large-scale evolution of the Universe

[1, 2]. They also, however, allow one to consider problems such as the behaviour of

black holes in an evolving universe, and the definition of mass in cosmology.

One of the first papers on this subject was the pioneering work of Lindquist

and Wheeler, who discussed how time-symmetric initial data could be constructed for

just such a universe, as well as providing an aproximate framework for calculating its

evolution [3]. These ideas were recently revived in [4, 5], where the optical properties

of the approximate models were studied in detail. This was followed by an in depth

investigation of the exact initial data, including a precise numerical calculations of the

scale of such solutions [6]. For small numbers of black holes (. 10) it was found that

deviations on the order∼ 10% exist from comparable dust-dominated Friedmann models

with the same total mass. This difference, however, was shown to decrease to . 1%

as the number of masses becomes large (& 100). In suitable limits, it has also now
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been shown that the scale of these discrete models converges on that of their Friedmann

counterparts as the number of masses in the space-time diverges [7].

Further recent studies in this area have considered the numerical evolution of a

universe with 8 regularly spaced black holes on a topological 3-sphere [8], the exact

evolution of curves that are equidistant from all nearby masses [9], and the behaviour

of the geometry of space-time near surfaces that exhibit a reflection symmetry [10].

Numerical studies have also been performed for the case of infinitely many masses

arranged on a cubic lattice [11, 12, 13, 14, 15]. This work has all contributed to a

deeper understanding of the problem of the relativistic modelling of a Universe with

matter that is clumped into largely isolated masses, but there remain a number of

issues that are still not properly understood.

In this paper we use the method of images to construct new sets of time-symmetric

initial data. Much of this work proceeds along the same lines as that of Misner, who

studied the application of the method of images to asymptotically flat time-symmetric

initial data [16]. By developing these methods for cosmological initia data we are able

to create multiple cosmological regions that are images of each other, and that are

connected by throats. This allows us to consider the cosmological consequences of the

interaction energies between black holes, and can be used to construct initial data that

contains wormholes (i.e. is non-simply connected). These wormholes remove the need

to have causally disconnect regions when considering time-symmetric initial data for

cosmological models, and can result in compact vacuum universes.

In Section 2 we recap the use of geometrostatics to construct time-symmetric initial

data in cosmology. In Section 3 we discuss the definitions of mass and energy in these

models. In this section we also introduce a two scale problem which we believe to clarify

at least some of the cosmological consequences of interaction energies in cosmology.

Section 4 contains the derivation of reflection operators and maps that can be used to

implement the method of images in cosmology. We then proceed to explicitly calculate

the geometries that result from applying this method to a cosmological model containing

8 black holes regularly arranged on a 3-sphere. These geometries allow us to investigate

the effects of interaction energies in explicit geometries, and to construct wormholes

that connect antipodal black holes. In Section 6 we then construct a compact universe

in which all antipodal black holes are connected by wormholes. Finally, we summarize

with a discussion of our results in Section 7.

2. Time-Symmetric Cosmological Solutions

In general relativity the geometry of a 3-dimensional space cannot be specified

arbitrarily, but must be chosen to satisfy the constraint equations, G 0
i = 8πGT 0

i . In

vacuum these equations can be written

R+K2 −KijK
ij = 0 (1)

(K j
i − δ

j
i K)|j = 0, (2)
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where i, j run over spatial indices, R is the scalar curvature of the spatial metric gij, and

Kij is the extrinsic curvature of this 3-dimensional hypersurface in the full 4-dimensional

space-time. For an appropriate choice of time coordinate this extrinsic curvature can

be written as Kij = −1
2
∂gij/∂t.

Eqs. (1) and (2) are in general extremely complicated to solve. The

situation is dramatically simplified, however, if we restrict ourselves to considered 3-

dimensional geometries that are instantaneously static. In this case the geometry

of the 4-dimensional space-time is time-reversal symmetric around the 3-dimensional

hypersurface, and we say that the surface itself is “time-symmetric”. This symmetry

leads to the vanishing of the hypersurface’s extrinsic curvature, such that Kij = 0. It

can then be seen that Eqs. (1) and (2) are satisfied if and only if

R = 0. (3)

Any 3-geometry that satisfies this equation is a solution to the vacuum Einstein

equations on a time-symmetric hypersurface, and can be used as initial data for the

evolution that will constitute the full space-time.

It can be shown that Eq. (3) is satisfied by the following 3-geometry [6]:

dl2 = ψ4dσ2 , (4)

where dσ2 is the line-element of a unit 3-sphere with metric hij, such that

dσ2 = hijdx
idxj = dχ2 + sin2 χdθ2 + sin2 χ sin2 θdφ2 . (5)

In what follows, we will refer to this 3-sphere as our “reference hypersphere”. This

sphere will be useful for marking the positions of points in our 3-dimensional geometry,

although the reader should remember that it is only conformally related to the geometry

of space through Eq. (4). In order for the geometry in Eq. (4) to be a solutions of Eq.

(3), the conformal factor must satisfy the following equation:

∇2ψ ≡ 1√
|h|
∂i

(√
|h|hij∂jψ

)
=

3

4
ψ. (6)

This is the Helmholtz equation, and is linear in ψ. It is remarkable that a linear

equation of this type can be found, and it should be noted that this is not due to

any approximation or linearisation that we have performed. It is simply that the full

constraint equations happen to be linear when time-symmetry is imposed [16]. This

property means that solutions to Eq. (6) can be superposed, and the result will also be

a solution to Eq. (3).

2.1. The Schwarzschild Solution

The Schwarzschild solution to Einstein’s equations admits a time-symmetric initial value

problem, with an intrinsic geometry given by Eq. (4) with

ψ =

√
m

2 sin χ
2

+

√
m

2 cos χ
2

, (7)
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Figure 1. An embedding diagram for the θ = π/2 section of the time-symmetric

initial data of the Schwarzschild solution, as given by Eqs. (4) and (7). The poles at

χ = 0 and χ = π occur at asymptotic distances in the upper and lower parts of the

plot. The thick band corresponds to a slice through the MOTS at χ = π/2.

where m =constant is the usual Schwarzschild mass parameter. This form of the

conformal factor can be seen to satisfy Eq. (6), and appears to suggest that the

time-symmetric Schwarzschild solution can be considered as two masses positioned at

antipodes on our reference hypersphere (one at χ = 0, and the other at χ = π). The

position of the Marginally Outer Trapped Surfaces (MOTS) corresponding to these two

masses are coincident, and occur at χ = π/2. One can then consider the region χ < 0 to

be the region exterior to the horizon of the mass at χ = π, or the region interior to the

horizon of the mass at χ = 0. Likewise for the region χ > π/2, mutatis mutandis. The

embedding diagram for the surface θ = π/2 is shown in Fig. 1, and is asymptotically

flat in the limits χ→ 0 and χ→ π.

2.2. A Solution With N-Bodies

As described in [6], it is possible arrange arbitrarily many point-like masses on our

reference hypersphere, at arbitrary locations, by adding extra terms of the form that

appear in Eq. (7). The conformal factor for this situation is given by

ψ =
N∑
i=1

√
m̃i

2fi(χ, θ, φ)
, (8)
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where m̃i are a set of constant mass parameters, and where fi(χ, θ, φ) = sin(χi/2). The

χi in this expression refers to a set of new coordinates (χi, θi, φi) that are obtained by

rotating (χ, θ, φ) until the i’th term in Eq. (8) appears at χi = 0.

Although less obvious than in the Schwarzschild case, the geometry described by

Eqs. (4) and (8) is non-singular everywhere. In the limit that χi → 0 the geometry of

space approaches that of the Schwarzschild geometry at the location of the mass point,

and is therefore asymptotically flat. The MOTS of each of these masses corresponds

to the topological 2-sphere of smallest possible area that encompasses the mass [17].

If the mass points are positioned far enough apart, and subject to suitable conditions,

the region exterior to the set of all MOTS of all masses then approaches the geometry

of a 3-sphere as the number of masses is increased [7]. We therefore have a geometry

of the type that is illustrated in Fig. 2. Each mass point corresponds to a bridge

that connects the cosmological space filled with N-black holes to an asymptotically flat

“flange” region. The MOTS of each black hole is the minimal surface that can be found

along each bridge.

This is a somewhat peculiar situation, as for each black hole that we wish to

include in our cosmological model we are forced to include a causally disconnected

asymptotically flat region. As the evolution of the space proceeds each of the bridges

is expected to collapse [9], and N separate asymptotically flat black hole spaces are

expected to result, along with our single cosmological space containing N black holes.

This is a very wasteful way to construct a cosmological model, and means, for example,

that volume averages cannot be constructed for the initial data, as the volume of space is

formally divergent. We will find below that the method of images can be applied to this

situation to remove the asymptotically flat flanges, and to leave a single cosmological

region with finite volume.

3. Interpretation of Mass and Energy

Interaction energy in geometrostatics has been well studied, starting with the work of

Brill and Lindquist [18]. The focus of these previous studies has often been to calculate

the gravitational consequences of the interaction energy between multiple black holes in

an asymptotically flat space. In such circumstances the total interaction energy between

all black holes can be shown to be equal to the difference between the mass inferred

at infinity for the entire system of all black holes, and the sum total of the individual

masses that would be inferred in each of their respective flange regions, in some suitable

limits. That is, one finds that the interaction energy between black holes is itself a

source for the gravitational field. Hence, gravity gravitates.

The consequences of interaction energies in cosmology (i.e. in spaces that are not

asymptotically flat) has not yet received much attention. In fact, the dust approximation

that is commonly used in cosmology explicitly neglects all interactions, and so implicitly

neglects any cosmological consequences of the gravitational effects of interaction energies

before, during, and after the formation of structure. Some attempt was made in [6] to
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Figure 2. An illustration of the embedding diagram for a two-dimensional slice

through the initial data of a cosmology, containing 6 black holes. The central sphere

is the cosmological region that contains the black holes, and the asymptotically flat

regions are the flanges that occur on the other side of the black hole’s MOTS (again

shown as thick black bands). Only 2 of the flange regions are displayed in this

illustration, for ease of presentation.

proceed by analogy to the asymptotically flat case, and led to surprisingly large effects.

Whether or not this analogy is justifiable remains to be seen, but it certainly motivates

the further study of the possible consequences of interaction energies in cosmology. The

present study offers some scope to shed light on this subject, and so we will elaborate

on it further here.

3.1. Effective Mass and Proper Mass

To proceed with this discussion we first need to define what is meant by “mass”. As in

[6], we make the following two definitions:

(i) The effective mass of a gravitational source is defined to be equal to the mass
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parameter m̃i in Eq. (8).

(ii) The proper mass of a gravitational source is defined as being equal to the mass of

the Schwarzschild solution that is approached as χi → 0. It will be denoted by mi.

We will also define:

(iii) The charge‡ of a pole in ψ is said to be equal to
√
m̃i, as this is the quantity that

appears in the numerator of each term in Eq. (8).

In the asymptotically flat case there is no distinction between the “effective mass”

and the “charge” of the poles in the conformal factor. In that case the total effective

mass of a system of N -black holes (or, equivalently, the total charge) can be shown to be

equal to the total proper mass of each of the individual black holes, and the sum of all

of the interaction energies between them (for a suitable definition of interaction energy).

In the present case, the effective mass of a gravitational source is equal to the square of

its charge. In what follows we will investigate the connection between these quantities

and the proper masses and interaction energies of the other black holes present in a

cosmological region.

The “proper mass” of each of the black holes can be thought of as the mass that

would be inferred by an observer who is asymptotically far away in one of the flange

regions. In [6] and [7] it was shown that it is the sum total of the proper masses

of all black holes in the cosmological region that best approximates the mass of a

dust-dominated Friedmann-Lemâıtre-Robertson-Walker (FLRW) solution (when they

are regularly arranged, at least). This is not too suprising, as the dust approximation

itself neglects all interaction energies, as does taking the sum of all proper masses.

This situation is somewhat troubling for two reasons. Firstly, we want to build

a cosmological model that represents the real universe (which contains interactions),

rather than a dust-filled Friedmann universe (which does not). The statement that the

sum of proper masses approaches the mass of a dust filled Friedmann universe does

not necessarily help with this problem. Secondly, the mass of each black hole is being

calculated using the geometry of regions of space that no observer in the cosmological

region will ever have access to. This makes it impossible for an actual observer in the

cosmological region to operationally determine the proper mass of any of the black holes

around them. The study that follows will shed some light on both of these problems.

3.2. Interaction Energy

Let us first find an explicit expression for the proper mass of a black hole. To do this,

we note that in the limit χi → 0 the conformal factor from Eq. (4) takes the following

form:

ψ → Ai +

√
m̃i

χi
, where Ai =

∑
j 6=i

√
m̃j

2 sin
(χij

2

) , (9)

‡ No connection to electromagnetism is implied by this name. Our masses are all taken to have no

electromagnetic charge.
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and where χij is the coordinate distance in χi between the mass points labelled by i and

j. If we now define a new coordinate χ̂i ≡ A2
iχi, then the line-element for the geometry

of space around the point χi = 0 can be written

ds2 →

(
1 +

Ai
√
m̃i

χ̂i

)4 (
dχ̂2

i + χ̂2
i dΩ2

i

)
. (10)

This can be compared to the r → 0 limit of the Schwarzschild solution,

ds2 →
(

1 +
m

2r

)4 (
dr2 + r2dΩ2

i

)
, (11)

to find

mi = 2Ai
√
m̃i =

∑
j 6=i

√
m̃im̃j

sin
(χij

2

) . (12)

This expression shows that the proper mass of each black hole is a sum of N − 1

terms, one for each of the other black holes present in the solution. Each of these

terms is proportional to charge of the black hole in question, and each of them is also

proportional to the charge of one of the other black holes. Changing the charge on any

one pole therefore changes the proper mass of every black hole in the entire universe.

In order to write down an expression for interaction energies, let us consider a

situation in which we have a small cluster of n masses, such that the angular separation

of any two masses within that cluster is given by χij � 1, and such that all other masses

in the universe are far away. Let us now consider each of these masses individually, as

if we were going to place each of them down within the background space that results

from the other N − n black holes that exist in the universe. In this case, the proper

mass of each of these objects would be given by

mi = 2Bi

√
m̃i , where Bi ≡

N−n∑
j=1

√
m̃j

2 sin
(χij

2

) , (13)

where the index i now labels one of the masses in the cluster, and the index j has been

taken to run over all masses outside of the cluster. We can similarly calculate what the

proper distance would be between any two masses within the cluster, in the geometry

of the background space that results from all masses outside of the cluster. For χij � 1,

this will be given by

rij ' B2
i χij , (14)

where we have assumed that the background space is close to flat throughout the spatial

extent of the cluster, such that ψ ' Bi for any i. This approximation should be expected

to valid as long as the masses within the cluster are close together, compared to their

distance to all mass outside the cluster. A reasonable expression for the sum of all

interaction energies within the cluster is then given by

mint ≡ −
n∑
i

∑
j<i

mimj

rij
' −

n∑
i

n−1∑
j 6=i

√
m̃im̃j

sin
(χij

2

) , (15)
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where in deriving the last expression we have used Eqs. (13) and (14), and the

approximations already specified above. Finally, if we add this expression to the total

proper mass in the cluster, mT =
∑n

i mi, then we get

M = mT +mint '
n∑
i

N−1∑
j 6=i

√
m̃im̃j

sin
(χij

2

) − n∑
i

n−1∑
j 6=i

√
m̃im̃j

sin
(χij

2

) =
n∑
i

N−n∑
j

√
m̃im̃j

sin
(χij

2

) . (16)

In the last expression, the sum over i indicates the sum over all masses within the cluster,

while the sum over j indicates sum over all masses outside the cluster. Thus, if we expect

both the proper masses and the interaction energies within our cluster to gravitate, then

M should be a reasonable approximation to the cluster’s total gravitational mass. This

is interesting as it gives

M =
n∑
i

mi =
n∑
i

Bi

√
m̃i ' B

n∑
i

√
m̃i , (17)

where Bi ' B for every mass in the cluster. This shows that the total gravitational

mass of the cluster is proportional to the sum of the charges within it. That is, the sum

of the charges of a cluster of objects (multipled by B) appears to encode information

about both the proper mass and the interaction energies within that cluster, just as in

the asymptotically flat case [18].

There are a couple of peculiarities in this discussion that we should expand upon

here. Firstly, the mass M is not defined in the same way as in asymptotically flat

solutions. In those cases it is possible to expand the gravitational field of a cluster

of points in powers of 1/r, and to compare the results of this with the Schwarzschild

solution in the same limit. Here, however, there is no asymptotic region, so M does not

have such a clear interpretation. A reasonable course of action is therefore to consider

if the cosmological region that contains the cluster behaves as if it contains an object of

mass M , or whether the cosmology is better described by assigning some other notion

of mass to the cluster. We will investigate this in what follows.

The second peculiarity is that the mi used in Eq. (15), and given explicitly in Eq.

(13), is calculated by summing over the masses outside of the cluster only. Likewise,

the proper distance rij is calculated with reference to the masses outside of the cluster

only. If all of the masses in the cluster are separated by many Schwarzschild radii then

these should be good approximations to the actual proper mass, and the proper distance

between masses, respectively. Otherwise, one is left in the position of calculating the

interaction energy using quantities derived using the geometry of space that would exist

if the gravitational effects of the cluster were themselves neglected. This is also true of

the corresponding analysis in the asymptotically flat case [18].

The reader may note that the interaction energies considered here are those between

objects that are clustered into some small region of space only. The interaction energies

between masses separated by large distances, and the interaction energies between

separate clusters, have not been dealt with at all. The effects of these quantities on

cosmological behaviour is still an open problem. We will return to it in future studies.
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4. Reflection Operators

In this section we will introduce the idea of reflection maps and operators that act

on the positions of masses, and the geometry of space that results. Such operators are

known to exist in the asymptotically flat case [16], in which case the constraint equations

reduce to Laplace’s equation, and known results from electromagnetism can be applied.

They have also begun to be studied in the cosmological situations, where reflections in

great 2-spheres are possible [19]. Here we will be interested in reflections in arbitrary

2-spheres, in the cosmological models that consist of masses regularly arranged on a

reference hypersphere. We therefore need to derive new expressions.

4.1. The Schwarzschild Geometry

The well known isometry that exists in the time-symmetric formulation of the

Schwarzschild initial data corresponds in the current context to the mapping

χ→ π − χ. (18)

As the sphere at χ = π/2 is invariant under this mapping, and as the mapping is

involutive, one can think of it as a reflection of the geometry in the sphere χ = π/2.

The mass point that appears to exist at χ = 0 is then replaced by the one at χ = π,

and vice versa. This is, of course, the same reflection symmetry in the horizon that is

discussed by Misner in the asymptotically flat formulation of the same problem [16]. Just

as in that case, the reflection symmetry shows that the initial geometry is non-singular

everywhere, as indicated by the embedding diagram illustrated in Fig. 1.

4.2. The N-Body Problem

Now consider adding a non-gravitating reference 2-sphere into the geometry described

by Eqs. (4) and (8). The radius of this sphere is taken to be χs = a, where χs is a

coordinate that is obtained by rotating (χ, θ, φ) into (χs, θs, φs), such that the centre

of the sphere is located at χs = 0. One can then define a reflection operator J that

operates on χs to give

tan(χs/2)→ tan(Jχs/2) =
tan2(a/2)

tan(χs/2)
. (19)

The line-element (4) then transforms as

dl2 → ψ4 (Jχs, θs, φs)
(
d(Jχs)

2 + sin2(Jχs)dθ
2
s + sin2(Jχs) sin2 θsdφ

2
s

)
(20)

=

[√
sin2(a/2) cos2(a/2)

cos4(a/2) sin2(χs/2) + sin4(a/2) cos2(χs/2)
ψ (Jχs, θs, φs)

]4

dσ2
s ,

where dσ2
s = dχ2

s + sin2 χsdθ
2
s + sin2 χs sin2 θsdφ

2
s.

We therefore define an operator J that acts on functions f = f(χs, θs, φs) such that

f(χs, θs, φs)→ J [f ](χs, θs, φs) (21)
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where

J [f ](χs, θs, φs) =

√
sin2(a/2) cos2(a/2)

cos4(a/2) sin2(χs/2) + sin4(a/2) cos2(χs/2)
f(Jχs, θs, φs).

It is clear that as both a mapping (19) and an operator (21) that J satisfies the involution

condition J2 = 11, and that Ja = a. The effect of J is therefore to produce an image of

the region χs > a in the region χs < a, and/or and image of the region χs < a in the

region χs > a. These images automatically satisfy the constraint equation (3), as J has

been defined such that ∇2f = 3
4
f implies ∇2J [f ] = 3

4
J [f ], and as Eq. (6) is linear.

Let us now consider the effect of J on the each of the terms in Eq. (8). For a mass

at χs = χ0 it gives

J

[ √
m̃i

2 sin(χi/2)

]
=

sin a√
2− sin2 a− 2 cos a cosχ0

√
m̃i

2 sin(Jχi/2)
, (22)

where Jχi represents the χ coordinate after a rotation of the set (χ, θ, φ) so that χ = 0

at the the point Jχ0 (i.e. after rotating so that the reflection of the point at χs = χ0 is

located at χ = 0). We can interpret Eq. (22) as J acting as the following operator on

the effective mass parameter:

m̃i → Jm̃i =
sin2 a

(2− sin2 a− 2 cos a cosχ0)
m̃i. (23)

The new parameter Jm̃i should be considered to be the effective mass of the image point

at Jχ0. Any mass point originally located in the region χs > a can now be assigned an

image mass in the region χs < a, and any mass point originally in the region χs < a

can be assigned an image mass in the region χs > a. Any mass located on the sphere

χs = a is invariant under the reflections discussed above, and so is its own image.

After taking an image of each of the masses in the space in this way one ends up

with a geometry that is invariant under the reflections described above. The conformal

factor can then be seen to satisfy the following equation:

J [ψ] = ψ. (24)

This means that the 2-sphere at χs = a is a reflection symmetric surface. As such it is

totally geodesic, and an extremal surface in the initial data [20]. It therefore corresponds

to a MOTS, as time-reflection symmetry implies that all extremal surfaces in the initial

data are marginally outer trapped [17]. Such a surface is not necessarily the MOTS

of any single mass point, but can instead encompass any number of masses (each of

which will have its own MOTS). In this sense it appears as an outer horizon, which are

known to occur when two or more mass points cluster close enough together. Due to the

reflection symmetry, however, it must simultaneously be the outer horizon of all of the

masses in the region χs < a as well as the outer horizon of all the points in the region

χs > a. This is reminiscent of the reflection symmetric surface in the time-symmetric

initial data for the Schwarzschild solution, which is simultaneously the horizon for each

of the two antipodal masses.
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Figure 3. A dimensionally reduced illustration of the application of the method of

images to mass points on a reference sphere. The red dots are unreflected mases,

the black circle denotes the position of a reflective sphere, and the blue dots denote

the images of the red dots. The image points are clustered around the centre of the

reflecting sphere.

A dimensionally-reduced version of this type of reflection is shown in Fig. 3. Here

the red dots correspond to the original mass points, which are regularly spaced on the

reference sphere. A reflective sphere is added, and the positions of blue image points are

calculated using Eq. (19). There is one image for each original mass point, and, when

viewed as points on the reference sphere, the images points can be seen to be clustered

around the centre of the reflective sphere. After performing a reflection of this kind

there is no longer a single cosmological region and N flange regions, there is instead

two cosmological regions and 2N flange regions (assuming there are originally no mass

points inside, or on, the reflective sphere). This situation is illustrated in Fig. 4. A

further reflection in a different reflective sphere will then give four cosmological regions

and 4N flange regions (under the same assumption). This can continue indefinitely, and

can potentially be used to construct wormholes by alternately reflecting in the same two

spheres. Such structures will be used below to remove pairs of flange regions.
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Figure 4. The dark bands in this plot represent MOTS. The mass points in the upper

sphere can be considered the images of those in the lower sphere (or vice versa). In

this case the reflecting sphere is at the MOTS in the central throat. The position and

mass of these image points are given by Eqs. (19) and (23).
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5. Reflecting an 8-Black-Hole Universe

As a concrete application of the ideas discussed in the previous section, we will now

perform some reflections in the 8- black-hole universe studied in [6, 8, 9]. This structure

corresponds, in some sense, to the simplest of the six possible regular lattices that can

be constructed on a 3-sphere with regular polyhedra. It can be realised by using either a

lattice constructed from eight cubic lattice cells with a point-like mass positioned at the

centre of each, or equivalently by using a lattice constructed from sixteen tetrahedral

lattice cells and placing a point-like mass at each of the eight vertices. The coordinates

of these eight points can be chosen as in Table 1, and result in a geometry given by Eq.

(8) with the fi also in Table 1. To maintain the regularity of the resultant geometry,

we choose m̃i = m̃ =constant for each of the 8 masses.

Point (χ, θ, φ) fi(χ, θ, φ)

(i)
(
0, π

2
, π

2

)
f1 = sin

[
χ
2

]
(ii)

(
π, π

2
, π

2

)
f2 = cos

[
χ
2

]
(iii)

(
π
2
, 0, π

2

)
f3 = sin

[
1
2

cos−1 (cos θ sinχ)
]

(iv)
(
π
2
, π, π

2

)
f4 = cos

[
1
2

cos−1 (cos θ sinχ)
]

(v)
(
π
2
, π

2
, 0
)

f5 = sin
[

1
2

cos−1 (cosφ sin θ sinχ)
]

(vi)
(
π
2
, π

2
, π
)

f6 = cos
[

1
2

cos−1 (cosφ sin θ sinχ)
]

(vii)
(
π
2
, π

2
, π

2

)
f7 = sin

[
1
2

cos−1 (sinφ sin θ sinχ)
]

(viii)
(
π
2
, π

2
, 3π

2

)
f8 = cos

[
1
2

cos−1 (sinφ sin θ sinχ)
]

Table 1. Coordinates of the eight masses in the 8-black hole universe, written in

hyperspherical polar coordinates. These coordinates are chosen such that point (i)

appears at χ = 0, point (iii) appears at θ = 0, and point (v) appears at φ = 0. Also

displayed are the functions from Eq. (8) for these eight mass points, in the same

coordinate system. Note that cos−1 denotes the inverse of the cosine, and not its

reciprocal.

5.1. One Reflection

The first application of the method of images we wish to consider is a single set of

reflections in a sphere that is centred around the point χ = 0, and that has its surface

at χ = a. This central point is coincident with the position of mass (i), as described in

Table 1. Our method is then given by the following: Firstly, we discard the point (i), so

that there are initially no masses inside the sphere. We then calculate the locations and

masses of the images of the 7 masses that remain in the space. This is done using Eqs.

(19) and (23). We then determine the geometry of this new space using Eq. (8), and

hence calculate the proper masses and horizon areas of the black holes after the reflection

(recall that these will be different to those before the reflection, as they are functions
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Figure 5. The proper mass of the black hole located at position (ii) in Table 1, as a

proportion of the proper mass of any of the 6 black holes at positions (iii)-(viii). The

critical value of a is given when this ratio is equal to 1.

of all of the masses in the universe). The embedding diagram for a 2-dimensional slice

through this geometry will look like that displayed in Fig. 4.

The proper mass of each of the new image black holes is guaranteed to be the same

as that of the black hole from which the image was taken. This follows immediately

from Eqs. (20) and (21), and has been verified explicitly for the example in hand. This

is not sufficient, however, to say that all black holes have the same proper mass after a

reflection has taken place, even if they had the same proper mass in the original 8-black

hole universe. In general, after a reflection, the black hole at point (ii) will not have the

same proper mass as any of the masses at points (iii)-(viii) (although all of the black

holes at points (iii)-(viii) will be the same, by symmetry). The difference in proper

mass between these objects is shown graphically in Fig. 5. It can be seen that if the

reflective sphere is smaller than a critical value of a then the proper mass at point (ii)

will be smaller than the proper mass of any of the 6 objects at points (iii)-(viii). This

critical value is given by

acrit ' 0.2100769668987814 . (25)

For a > acrit the opposite is true, and the proper mass at point (ii) is larger. If a = acrit

then all 14 masses that exist after the reflection have identical proper masses.

As well as the proper mass of each of the black holes, it is also of interest to calculate

the effective mass that results from the reflection described above. This information is

displayed in Fig. 6, below. This plot illustrates the total effective mass of all of the new

image black holes, as a function of the radius of the reflective sphere, a. One may naively

have expected this quantity to be close to 1, but it can be seen that total effective mass

inside the reflective sphere is in fact < 1/2 of the mass they replaced, for all a . 0.4.

Also displayed in this plot is the total of the charges of all of the images. This quantity
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Figure 6. The sum of effective masses in the region χ < a, after a reflection has taken

place (lower, blue line). Also displayed is the sum of the charges in the same region

(upper, red line).

can be seen to change rapidly, but at a = acrit it takes the value∑
i

√
m̃i|a=acrit ' 0.99994472

√
m̃χ=π . (26)

This is remarkably close to 1, and can be compared to the value of the total effective

mass of these points at the same point,
∑

i m̃i|a=acrit ' 0.14447522 m̃χ=π .

We can now calculate the proper area of our reflective sphere (which is a MOTS,

as described above). If we do this for a sphere of radius a = acrit, and compare it to

the area of a Schwarzschild black hole with the same proper mass of any of the 14 black

holes in the space, then we find that the fractional difference is

δarea

area
' 5.4738620× 10−8 .

We can similarly investigate the length of one of the edges of our cubic lattice cells. For

this we choose an edge that has constant θ and φ at every point along it. The fractional

difference in this quantity before and after the reflection, again for a reflective sphere of

radius a = acrit, is given by

δedge

edge
' −6.2648829× 10−9 .

We therefore find that, for a reflective sphere of critical radius, both the horizon size

and the scale of our cosmological region are very similar before and after the reflection

has taken place, with changes of only around 1 part in 108.

This result is interesting, as the positions of the 7 image masses on the reference

hypersphere all appear to be clustered into a relatively small space (i.e. are all separated

by χ � 1). They could therefore be considered a cluster of masses, as discussed in
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Section 3. The results we have found then show that the gravitational field of this

cluster is similar to the single mass they replace, if a ' acrit. They also show that the

total charge of this cluster of masses is very similar to the charge of the single mass

they have replaced (as shown in Eq. (26)). This suggests that the quantity M that we

introduced in Eq. (16) is indeed a good approximation to the gravitational mass of a

cluster, and that the interaction energies between the masses in this cluster do appear

to contribute to the scale of the cosmological region, at least in the present case. This

is true because B in Eq. (17) is not affected by the reflection.

5.2. n-Reflections of a Set of Identical Black Holes

In the previous section we discussed a single reflection in a sphere centred around point

(i) of Table 1. It was found that the proper mass of the resultant 14 black holes were

equal to each other only if the sphere was chosen to have a radius of a = acrit (given

numerically in Eq. (25)). In this section we will consider a series of reflections in two

spheres. The first of these spheres will be centred around point (i), as before. The

second sphere will be centred around point (ii), which is located at χ = π. These two

points are antipodal from each other, and we will now consider a series of reflection

operations that reflect in these two spheres alternately (i.e. first in a sphere centred on

χ = 0, then in a sphere centred on χ = π, then in a sphere centred at χ = 0, etc.).

Just as in the case of a single reflection, the creation of image points will in general

change the proper mass of all other black holes that exist in the space. Just as before,

however, there is a way that we can choose the size of each of the reflecting spheres

such that the proper mass of all black holes remain equal. That this is possible can be

seen by considering that after n reflections we will have a total of 12n + 2 black holes.

That is there will be 2n sets of 6 black holes, plus 1 black hole at χ = 0, plus 1 more at

χ = π. Each black hole in each set of 6 must have the same proper mass by symmetry,

as must the two black holes at χ = 0 and χ = π (as they are always images of each

other). This leaves 2n + 1 sets of black holes that can have different masses from each

other. However, after each reflection, half of the 2n sets of 6 black holes must contain

black holes that have the same proper mass as those in one of the sets in the other half,

as they are images. After n reflections we therefore have n+ 1 sets of black holes, each

of which can in principal contain black holes that have different masses from those in

each of the other sets. We therefore have enough freedom in the radii of our n reflective

spheres to set the proper masses of all of our black holes to be equal, while retaining

the freedom to set this single proper mass to any value we choose.

It can be noted that the method just described will require us to change the radius

of the each of the reflective spheres after every reflection in the series. That is, if we

want all of our black holes to have identical proper mass, we cannot simply place a single

sphere with radius χ = a1 at point (i), and a single sphere of radius χ = a2 at point

(ii), and then reflect alternately in these two spheres. We must instead allow ourselves

the freedom to choose the radius of each of the reflecting spheres of each reflection event
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Figure 7. The radius of the reflective spheres required to keep the proper mass of

every black hole the same after a series of 5 (dark blue), 10 (red), 15 (yellow), 20

(green), 25 (light blue), and 30 (pink) reflections. In each series the spheres centred at

χ = 0 are connected by solid lines, as are spheres centred at χ = π. Dashed lines show

the trend for the radius of the final sphere at each antipodal point, as the number of

reflections in the series is increased.

individually. The results of doing exactly this are displayed in Fig. 7. In this figure we

have plotted the results of considering six different series, that have 5, 10, 15, 20, 25

and 30 reflections in each of them, respectively. The y-axis shows the radius that the

reflecting sphere of each reflection event must have in order for every black hole in the

space to have the same proper mass after the entire series of reflections is complete. In

every case the first reflection in taken in a sphere centred at χ = 0.

It can be seen from Fig. 7 that, within each series, the trend for spheres centred

around χ = 0 is to increase as the reflections are performed. That is, to have identical

black holes after a series is complete, we need the reflecting spheres around χ = 0 to

be smaller for the first reflection than they are for every subsequent (even numbered)

reflection. A similar trend can be seen for the spheres centred around χ = π. It can

also be seen, however, that all of the reflecting spheres centred around χ = π must be

smaller than all of the spheres centred around χ = 0, in every series considered. This
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Figure 8. The difference in radii of the final two reflecting spheres, as a function of

the number of reflections in the series.

Figure 9. The total effective mass in the final reflecting sphere, as a function of the

number of reflections in the series, and as a fraction of the effective mass of one of the

black holes at χ = π/2.

broken symmetry is allowed, as the choice to start each series with a reflection in the

sphere centred on χ = 0 itself breaks symmetry. A further pattern can be seen as the

length of the series is increased. In this case, the radius of the spheres centred around

χ = 0 increase, while those centred around χ = π decrease. This phenomenon is further

illustrated in Fig. 8, where the difference in the radii of the final two reflective spheres is

plotted as a function of the number of reflections in the series. The difference increases

approximately linearly with the number of reflections.

Finally, we can calculate the total mass inside each of the spheres, for each of the

series we have so far considered. The total effective mass in the last sphere in each

series is displayed in Fig. 9. It can be seen from this figure that the total effective mass
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Figure 10. The total charge in the final reflecting sphere, as a function of the number

of reflections in the series, and as a fraction of the charge of one of the black holes at

χ = π/2.

increases if the total number of reflections is even, and decreases if the total number of

reflections is odd. This dependence on whether the number of reflections is even or odd

can be understood from the different behaviour of the spheres centred around χ = 0 and

χ = π in Fig. 7. Similarly, in Fig. 10 we show the total charge in the final sphere of each

of our series of reflections. The total charge can also be seen to increase or decrease,

depending on whether the number of reflections in the series is even or odd. It can also

be seen to diverge away from unity. The result from Eq. (26), that the numerical value

of the charge after one reflection is very close to 1, does not therefore appear to hold

if a large number of reflections are performed. Instead it can be seen that after ∼ 30

reflections the difference in charge is at the level of ∼ 1 or 2%. We will comment on the

significance of this, with regard to the cosmological consequences of interaction energies,

in Section 7.

It is clear from the above that if we insist that the proper mass of every black

hole should be identical to every other, then there is no sign of convergence of either

the effective mass, the charge, or the radii of the reflecting spheres (for series of up

to 30 reflections, at least). This means that the space itself is also not converging on

any particular geometry. In the next section we will discard the idea that all black

holes should have the same proper mass, and will find that it is then possible to find

convergence as the number of reflections in a series is increased. The existence of this

convergence will allow us to construct wormholes, and hence remove some of the flange

regions that exist in the original 8-black hole universe.
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5.3. A Convergent Series of Reflections

To find a series of reflections that converging, let us consider a sum of poles of the form

ψ =
∑
i

qi
2 sin(χi/2)

, (27)

where qi are a set of constant charges. Now consider a region R that is bounded away

from the poles, so that we have sin(χi/2) ≥ sin(ρ/2) > 0 for all i. This gives∑
i

qi
2 sin(χi/2)

≤
∑
i

|qi|
2 sin(χi/2)

≤ 1

2 sin(ρ/2)

∑
i

|qi| , (28)

which shows that ψ is finite in R if
∑

i |qi| is finite.

As before, let us consider putting a reflective sphere around χ = 0 and a second

sphere around χ = π. This time let us consider both of these spheres to have a constant

and fixed radius of χ = a. Once again, we will begin by reflecting in the sphere centred

on χ = 0, then reflecting in the sphere centred on χ = π. We will then reflect in the

sphere centred on χ = 0 again, and the sphere centred on χ = π again. This will be

continued ad infinitum.

Let us consider the series of images that are collected in the sphere centred on

χ = 0. The first images are all at χ = 2 tan−1 [tan2(a/2)], and there are six of them (one

for each of the mass points that is not enclosed by a sphere). The next set of images

in this sphere are all at χ = 2 tan−1 [tan4(a/2)], and are the images of the first set of

images collected in the sphere centred around χ = π. The third set of images are then

the images of the images of images. This series continues forever with the ith set of

images being located at

χi = 2 tan−1
[
tan2i(a/2)

]
. (29)

Likewise, the charge of each of these sets of images can be readily calculated, and is

given by

qi =
√
m̃

i∏
j=1

sin a√
2− sin2 a+ 2 cos a cos

(
2 tan−1

(
tan2(j−1)(a/2)

)) . (30)

The total charge in this sphere is therefore given by

6
∞∑
i=1

qi. (31)

To see if this series is convergent we can calculate the ratio of two successive terms to

find
qi+1

qi
=

sin a√
2− sin2 a+ 2 cos a cos (2 tan−1 (tan2i(a/2)))

. (32)

In the limit i→∞ we then have

lim
i→∞

∣∣∣∣qi+1

qi

∣∣∣∣ =
sin a√

2− sin2 a+ 2 cos a
. (33)
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Figure 11. The proper area of the last reflecting sphere as a fraction of the horizon

area of a Schwarzschild black hole with the same mass as one of the unreflected black

holes at χ = π/2, after a given number of reflections in alternating antipodal points.

The Blue line is with a = acrit, the red and yellow lines are with a = acrit − 0.01 and

a = acrit + 0.01, respectively.

This quantity is less than one if 0 < a < π/2, and so the series in Eq. (31) converges by

D’Alembert’s criterion. From Eq. (28) we then have that the contribution to ψ from

the images in the sphere centred on χ = 0 is convergent if 0 < a < π/2. The same is

true of the sphere centred on χ = π by symmetry, and so the series defined in Eq. (27)

is convergent if 0 < a < π/2.

First of all, let us consider the proper area of the final reflecting sphere, after n

reflections. This is shown graphically in Fig. 11 for spheres of radius χ = acrit, and

χ = acrit ± 0.01 (the numerical value of acrit is given in Eq. (25). It can be seen that in

all three of these cases the area of the horizon converges to a constant value after only a

small number of reflections. Such a convergence should be expected from the discussion

above, as it is a direct function of ψ, which has proven to be convergent. It can be seen

that spheres of critical radius, which are already known to correspond to MOTSs, have

an area that is very close to the area of a Schwarzschild black hole with a mass equal

to the effective mass of one of the unreflected black holes at χ = π/2. Increasing the

size of the reflecting sphere increases the area of the MOTS, and decreasing it does the

opposite.

We can also calculate the fractional difference in area between the last two reflecting

spheres, for a given series of reflections. In the previous section we showed that this

diverges if the proper mass of all black holes are forced to be equal (see Fig. 8). Here

this is not the case, as can be seen from Fig. 12. After a small amount of irregularity

for low numbers of reflections, it can be seen that the area of the sphere around χ = π

rapidly approaches that of the sphere around χ = 0. In fact, the fractional difference



The Method of Images in Cosmology 23

Figure 12. The logarithm of the fractional difference in area of the antipodal reflecting

spheres after a given number of reflections. Lines as in Fig. 11.

in area between these two spheres decreases exponentially as the number of reflections

increases. Again, this is not surprising, and follows from the convergence of ψ as the

number of reflections diverges.

Finally, let us consider the charge and proper mass of the image points in the final

reflecting sphere. The total charge is plotted in Fig. 13, for the same three values of a

considered in Figs. 11 and 12. As with the proper area of the spheres, it can be seen

that the total charge within the final reflective sphere rapidly converges as the number of

reflections is increased (this can be compared with the contrasting behaviour displayed

in Fig. 10). Increasing the radii of these spheres can be seen to correspondingly increase

the total charge of the image points within them. Decreasing the area does the opposite.

This explicitly demonstrates the convergence required in Eq. (28).

The proper mass of each of the image points is shown graphically in Figs. 14 and

15, where we plot the fractional difference in proper mass of each of the image masses

when compared to the original masses. The x-axis in these plots corresponds to the

number of times a particular image point has been reflected. Fig. 14 shows that images

that have been reflected only once or twice have proper masses that are very similar to

the unreflected masses, while images that have been reflected many times can have quite

different values. This difference in proper mass increases with the number of reflections,

and is a function of the size of the reflecting sphere. For a sphere of critical radius, the

fractional difference in proper mass of images that have been reflected either 10 or 12

times is at the level of about 1%. For spheres of radius a = acrit ± 0.01 this difference

is about 1% after 10 reflections, and increases to more than 5% after 12 reflections (see

Fig. 15). This shows that while the charge in the reflective sphere converges, and hence

so does the value of ψ in the region bounded away from the singularities, the proper

mass of the black holes in the most distant cosmological regions becomes more and more
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Figure 13. The total charge in the last reflecting sphere after a given number of

reflections. Lines as in Fig. 11.

Figure 14. The fractional difference between the proper masses of points in the last

reflecting sphere, and the points that have never been reflected, after 12 reflections.

Lines as in Fig. 11.

different from the proper mass of the black holes in the original cosmological region.

5.4. Six Flanges, and One Wormhole

Let us now use this convergent series of reflections to construct a wormhole. To do this

we can write down the form of ψ as the number of reflections diverges:

ψ∞ ≡
6∑
j=1

√
m̃j

2 sin(χj/2)
+ lim

N→∞

N∑
n=1

6∑
j=1

Ji1Ji2 ...Jin

[ √
m̃j

2 sin(χj/2)

]
, (34)

where j runs from 1 to 6, and labels the 6 original black holes that lie outside of both

reflective spheres, and where the indices ik all run from 1 to 2, and label the two reflecting
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Figure 15. The same as in Fig. 14, but zoomed out so that all points are displayed.

Lines as in Fig. 11.

spheres. The ik indices are used here in such a way that ik+1 6= ik. It can be shown that

this expression satisfies

Jkψ∞ = ψ∞ , (35)

where k equals 1 or 2, and again labels the reflecting spheres. This equation states that

the contribution to ψ is unchanged by any further reflections of ψ∞. The proof of Eq.

(35) follows from considering the fact that reflecting any particular term in ψ∞ results

in a term that is already included in ψ∞, as ψ∞ is the sum of all possible reflections.

We now wish to show that the geometry given by Eqs. (4) and (34) can be used to

describe a manifold, M , of the type shown in Fig. 16. The discussion of how to do this

will follow that devised by Misner for the asymptotically flat case [16]. Firstly, we need

to show that each point in M exists in the interior of at least one coordinate patch, in an

set of overlapping coordinate systems that cover the entire space. Secondly, we need to

show that the convergent geometry discussed above can be used to describe this space.

This will be shown to be true if the two reflecting spheres about χ = 0 and χ = π are

identified.

Begin by considering the set of points U in a region of space outside of the sphere

centred at χ = 0, that contains the points on the sphere itself, but that does not

extend far enough to include any other MOTS. Let us label these points x, and define a

coordinate system χ(x), θ(x) and φ(x). These can be the coordinates used in Eq. (4).

Now consider a second set of points V in a region of space outside of the sphere centred

at χ = π, that does not extend far enough to reach any other MOTS, and that this time

does not include the points on the sphere itself. Let us label these points y, and define a

coordinate system χ̂(y), θ̂(y) and φ̂(y). These coordinates could be taken to be similar

to those given in Eq. (4), but rotated so that the centre of this second sphere appears

at χ̂ = 0, and parity transformed in θ̂ and φ̂ for later convenience. A set of points W
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that correspond to the wormhole in Fig. 16 can then be defined by

W = {z | either z = x ∈ U or z = y ∈ V } . (36)

Each point z can already be seen to lie inside at least one coordinate patch, in a system

of overlapping coordinates, at all points except those that exist on the sphere in U ,

which we will label ∂U .

To extend the coordinate systems defined on U and V , so that they overlap on ∂U ,

let us define a new coordinate system by

χ̂(x) ≡ Jχ(x) . (37)

These coordinates are regular, as the mapping defined by J is regular. On ∂U they

satisfy χ̂(x) = χ(x), and they can be used to extend χ(x) into a region interior to the

sphere centred at χ = 0. One can then use the expression χ̂(x) = χ̂(y) to identify

points x ∈ U with new points y that exist in or on the sphere centred at χ = π. This

provides us with overlapping coordinate systems on W that can be regularly related to

each other.

In the region covered by the χ, θ and φ coordinates we have

dl2 = ψ4(χ, θ, φ)
(
dχ2 + sin2 χdθ2 + sin2 χ sin2 θdφ2

)
, (38)

and in the region covered by the χ̂, θ̂ and φ̂ coordinates we have

dl2 = ψ4(χ̂, θ̂, φ̂)
(
dχ̂2 + sin2 χ̂dθ̂2 + sin2 χ̂ sin2 θ̂dφ̂2

)
. (39)

In the regions where these coordinate systems overlap we need these two line-elements to

be consistent. The coordinate transformations that relate these two sets of coordinates

are given by Eq. (19) and θ̂ = θ and φ̂ = φ, which on substitution gives Eq. (35) as the

consistency condition. The convergent geometry we discovered in the previous section

can therefore be used to describe the geometry of a wormhole of the type depicted in

Fig. 16.

6. A Compact Vacuum Universe

Having created a single wormhole between points (i) and (ii) (as listed in Table 1), we

can now consider making a space that contains four wormholes, each of which connects

a mass point with its antipodal counterpart. Such a space would have no flange regions,

and would consist solely of a single compact cosmological region. We will construct just

such a space in what follows.

6.1. Convergence of Reflecting Around Eight Masses Simultaneously

Consider the case of a reflective sphere being placed around each of the masses in the

8-black hole Universe. Each of these spheres is centred on each of the masses, and each

of them is of radius χi = a. These spheres can be used to determine an image of all the

masses exterior to each of them, and to then replace the mass points interior to each

of them with this image. If this is done simultaneously then one ends up with eight
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Figure 16. An illustration of the embedding diagram of a 2-dimensional space

containing four MOTS, and a wormhole that connects the North and South poles. Each

of the MOTS, which are denoted by thick bands, is connected to an asymptotically

flat region (not included in the illustration).

new cosmological regions attached to the original cosmological region by eight separate

bridges. Each of these new regions contains the end to one of these bridges, and seven

bridges to seven new flanges. Repeating this process n times results in 1 + 8
∑n

i=0 7i

cosmological regions, and 8 × 7n flanges. Our first concern is then whether or not this

is a convergent process in the limit n→∞.

Each reflection in each sphere contains an image of the collection of mass points

that are contained within the antipodal sphere, and also contains six images of the mass

points contained within the six spheres that are centred around points that are χi = π/2

away. Let us start by considering the mass points contained within the antipodal sphere.

These points are all more than π−a radians away from the centre of the sphere in which

they are to be reflected. Of the other six spheres, at least half of the mass points must

be more than π/2 radians or more away, and the rest of them must be more than π/2−a
away. After the first reflection we therefore have that the total charge within each sphere

must be given by the following inequality:

q1 ≤
√
m̃ sin a√

2− sin2 a+ 2 cos2 a
+ 3

√
m̃ sin a√

2− sin2 a
+ 3

√
m̃ sin a√

2− sin2 a− 2 cos a sin a
.

As each of the spheres must be identical after each of the reflections is performed, we

have the following recursion relation, which can be used to determine an upper bound

on every qi:

qi+1 ≤
qi sin a√

2− sin2 a+ 2 cos2 a
+ 3

qi sin a√
2− sin2 a

+ 3
qi sin a√

2− sin2 a− 2 cos a sin a
.

This expression can then be used to determine the following upper bound on the
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difference in the charge between two successive reflections:

qi+1 − qi ≤ 3
qi sin a√
2− sin2 a

+ 3
qi sin a√

2− sin2 a− 2 cos a sin a
.

The total charge in each sphere after i+1 reflections is therefore bounded by the following

expression:

qi+1 ≤
√
m̃

[
3

sin a√
2− sin2 a

+ 3
sin a√

2− sin2 a− 2 cos a sin a

]i
.

An infinite series of reflections therefore converges if

lim
i→∞

∣∣∣∣qi+1

qi

∣∣∣∣ = 3
sin a√

2− sin2 a
+ 3

sin a√
2− sin2 a− 2 cos a sin a

< 1 . (40)

This final inequality is satisfied if a < 0.220316, to six significant figures. As was the

case for the limit of an infinite number of reflections in two spheres, the convergence of

the total amount of charge in each sphere is enough to guarantee the convergence of ψ

in the same limit. This can be seen from Eq. (28). The process of reflecting all points

in eight separate spheres of radius χi = a therefore gives a convergent sum in Eq. (27)

if a < 0.220316.

To demonstrate this convergence explicitly we perform the reflection operation

described above. The result of this up to 6 reflection operations is displayed in Fig.

17. Here we have considered three different values for the radii of our reflecting spheres.

The first is a choice that has been made to ensure convergence happens as rapidly as

possible. This is given by:

aflat ' 0.2100769710834392 , (41)

which is about 2 × 10−8 times larger than acrit. The other two values are given by

a = aflat±0.01. All of these values are within the bound a < 0.220316, which guarantees

convergence. It can be seen from the figure, however, that the convergence must occur

much more slowly than was the case for alternate reflections in only two antipodal

spheres. Up to the six reflections displayed, the two curves with a = aflat±0.01 show no

signs of convergence, even though we have already shown that convergence must occur

in both of these cases in the limit n→∞.

In this case, due to the exponential increase in the number of mass points, it is not

possible to consider very large numbers of reflections. We have, however, been able to

consider what happens to the middle curve in Fig. 17 after 7 and 8 reflections. The

results of this are displayed in Fig. 18, together with an estimate of the numerical error

involved in the calculation. This error derives from using ∼ 16 digits of precision in the

numerical calculations. It can be seen the numerical results after 8 reflections are within

a few parts in 109 of each other, and that this small change is at the level estimated

for the numerical error in the calculation. Despite the difficulty in performing large

numbers of reflections, and despite the lack of any obvious convergence in the two of
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Figure 17. The total charge in one reflecting sphere after a given number of reflections

of all other points. The blue line is for a = aflat, the red and yellow lines are for

a = aflat − 0.01 and a = aflat + 0.01, respectively.

Figure 18. The extension of the flat curve from Fig. 17, extended to 8 reflections. The

grey area shows the estmated numerical error on this quantity (given by ±
√

7n×10−16,

where 10−16 is approximately the precision used in the calculations, and 7n is the

number of mass points in one sphere after n reflection operations). The scale on the

y−axis has been shifted and rescaled to give a fractional change in the total charge for

these larger numbers of reflections.

the curves in Fig. 17, it is therefore still possible to have confidence that we have seen

convergence of the total charge inside each reflecting sphere, and that further reflection

operations will not significantly change the geometry of the first cosmological region.
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6.2. Four Wormholes, and No Flanges

A space with four wormholes can be created by searching for overlapping coordinate

systems in each of the wormhole regions separately. This proceeds just as in the one

wormhole case discussed in Sec. 5.4. Each set of overlapping coordinates within each

wormhole is then easily related to each other using the coordinates that span the original

cosmological region. It only remains to prove that

Jkψ
(4)
∞ = ψ(4)

∞ , (42)

where in this case ψ
(4)
∞ is the conformal factor that results from a divergent number of

reflections in each of our eight spheres, and the index k runs from 1 to 8 and labels

each of these spheres. The result in Eq. (42) follows from the fact that ψ
(4)
∞ consists of

a series of terms that correspond to every possible series of reflections in every sphere,

in the limit that the number of reflections in each of these series diverges. Recalling

that JkJk = 1, it can then be seen that adding an extra reflection in every term cannot

create any new terms. The LHS of Eq. (42) must therefore be equal to ψ
(4)
∞ , as ψ

(4)
∞

already contains every possible series of reflections.

7. Discussion

In this paper we have applied the method of images to time-symmetric initial data for

vacuum cosmological models. This has allowed us to construct geometries in which

multiple cosmological regions are connected together by throats, and has allowed the

construction of wormholes that connect antipodal points in a cosmological region. We

have applied these methods to the 8-black hole universe [6, 8], but we could equally

well have applied to the other configurations with anti-podal masses, including the 4-

black hole universe studied in [21]. The scale of the cosmologies that result are similar

to those that contain only a single simply connected cosmological region, but allow

us to consider the consequences of clustered mass points, and the removal of causally

disconnected asymptotically flat regions that would otherwise be required to exist.

By considering a two-scale problem, we have devised a definition for the interaction

energy between clustered mass points in a cosmological model. The interpretation of

this energy is not as straightforward as in the asymptotically flat case, as there are no

distant regions within the cosmological region that one can go to in order to expand

the gravitational field about flat space. Nevertheless, we have been able to use the scale

of our cosmological region in order to investigate the gravitational consequences of our

interaction energy. We find that when the cluster is small, compared to the scale of the

cosmological region, then the total gravitational mass of the cluster appears to be well

modelled by the sum total of the proper mass of each of the constituent particles plus

the sum of the interaction energies between every pair of particles. If the scale of the

cluster is allowed to increase then we find that small inaccuracies are allowed to creep

into this simple picture. The consequences of interaction energies between masses that
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are separated by scales comparable to those of the cosmological region remains to be

seen.

We have discussed various different concepts of mass in these models, including

the “proper mass”, the “effective mass”, and the “charge” of each of the objects (see

Section 3 for definitions). It has already been shown in previous studies that, if the

black holes in such a space-time are sufficiently regularly distributed, that it is the

sum of the proper masses that best approximated the total mass in a comparable dust-

dominated Friedmann model [6, 8, 7]. Here we find that this is no longer true when

masses are clustered close together (in terms of their angular separation at the centre

of the 3-sphere). In this case it is a quantity proportional to the sum of the charges on

the poles of the masses that gives the best indication of the contribution of a cluster

to the scale of the cosmological model. This quantity also corresponds very closely to

the Schwarzschild mass that one would infer from the area of the horizon that encloses

the cluster of masses, and provides a way that an observer might operationally try and

determine the mass of this system in a given cosmological region. How an observer

might try and perform a similar operation when a set of masses are clustered, but not

contained within a single enveloping outer horizon remains an open question.
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