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We show that the vacuum (zero-point) energy of a low-temperature quantum liquid is a variable
property which changes with the state of the system, in notable contrast to the static vacuum
energy in solids commonly considered. We further show that this energy is inherently anomalous:
it decreases with temperature and gives negative contribution to system’s heat capacity. This effect
operates in an equilibrium and macroscopic system, in marked contrast to small or out-of-equilibrium
configurations discussed previously. We find that the negative contribution is over-compensated by
the positive term from the excitation of longitudinal fluctuations and demonstrate how the overall
positive heat capacity is related to the stability of a condensed phase at the microscopic level.

The concept of zero-point (vacuum) energy arises in
several fields of research and is related to notable funda-
mental effects as well as profound open problems, includ-
ing in quantum mechanics, field theory and cosmology.
Effects of zero-point fluctuations are also of interest in
condensed matter physics and can be related to instabil-
ities against forming new phases with interesting proper-
ties. For example, large energy of zero-point fluctuations
de-stabilizes solidification of liquid He at room pressure,
enabling the superfluidity to set in at low temperature
[1]. Similarly, zero-point fluctuations are thought to pre-
vent ordering in quantum spin liquids, potentially new
quantum states of matter discussed more recently [2–8].

The zero-point energy, E0, is:

E0 =

n∑
i=1

h̄ωi
2

(1)

where ωi is the mode frequency and n is the number
modes at operation.

In commonly discussed physical systems including in
condensed matter and solid state theory, the vacuum en-
ergy is considered to be a constant, static, quantity. For
example, in solids n is fixed, resulting in constant E0.
For this reason, the vacuum energy does not affect mea-
surable properties such as specific heat [9].

Here, we show that the vacuum energy in quantum
liquids is not a constant property. Instead, E0 varies
with the state of the system (temperature and pressure)
due to the variation of the spectrum of transverse modes.
This changes the general outlook on the vacuum energy.

More specifically, we show that E0 decreases with tem-
perature, resulting in the anomalous negative contribu-
tion to the specific heat. We note that negative specific
heat often signals the onset of an instability, hence our
finding represents another way in which zero-point fluctu-
ations can have a de-stabilizing effect in addition to those
mentioned earlier. We further show that the negative
heat capacity term is over-compensated by the positive
term due to longitudinal fluctuations, and demonstrate
that the over-compensation is related to the stability of
a condensed phase as such.

Interestingly, negative specific heat has been found to
operate in small or out-of-equilibrium systems [10–14].
In marked contrast to this, we show that the negative
heat capacity component in a low-temperature quantum
liquid is essentially a macroscopic and equilibrium effect
related to the decrease of the vacuum energy of transverse
fluctuations with temperature.

The development of general theory of liquids has been
complicated by the combination of strong interactions
and dynamic disorder, with the result that the liquid en-
ergy strongly depends on the type of interactions and
therefore is system-specific, in contrast to solids and
gases for which general expressions for the energy can
be derived [9]. Perhaps surprisingly, considering low-
temperature quantum liquids turns out to be simplifying
feature for the theoretical description. As Landau ar-
gued, any weakly perturbed state of the quantum system
is a set of elementary excitations, or quasi-particles. In
the quantum liquid close to zero temperature, the quasi-
particles are phonons, and are the lowest energy states
in the system [9]. Consequently, theories of liquid helium
and superfluidity involve phonons.

Notably, Landau considered longitudinal modes only
because it was believed that a liquid does not support
transverse modes. However, Frenkel earlier proposed
that this is not the case: any liquid can also support
transverse modes, albeit with frequencies above ωF:

ω > ωF =
1

τ
(2)

where τ is liquid relaxation time, the time between two
consecutive particle jumps at one point in space [15] (see
Figure 1).

This prediction was based on a simple observation that
at time shorter than τ , the system does not flow, is
a solid, and therefore supports all three modes includ-
ing two transverse modes. Hence, a liquid supports two
solid-like transverse modes with frequency above 1

τ . At
frequency smaller than ωF, transverse modes are non-
propagating, and the liquid supports the hydrodynamic
longitudinal mode only [15].
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FIG. 1: Colour online. Illustration of a particle jump between
two quasi-equilibrium positions in a liquid. These jumps take
place with a period of τ on average.

It has taken long time to verify this prediction exper-
imentally [16, 17]. Observed in viscous liquids consider-
ably above the melting point (see, e.g., Refs. [18, 19]),
the propagation of transverse modes was later studied
in low-viscosity liquids on the basis of widely measured
positive dispersion [20, 21]. These studies included water
[22], where it was found that the onset of transverse exci-
tations coincides with the inverse of liquid relaxation time
[23], as predicted by Frenkel. More recently, transverse
modes were directly measured in the form of distinct dis-
persion branches and verified on the basis of computer
modeling [24–28]. It is now well established that liquids
sustain propagating solid-like modes, both longitudinal
and transverse, extending to wavelengths comparable to
interatomic separations.

We are therefore compelled to include transverse
modes in the consideration of excitations in a quantum
liquid on par with the longitudinal mode, and it is here
where we find interesting and unexpected insights.

We consider the most general case of a low-
temperature liquid where all modes are operative includ-
ing the transverse ones. In a specific liquid system, the
presence of transverse modes depends on temperature
and pressure because τ in (2) depends on both parame-
ters [16, 29]. In commonly discussed liquid helium, trans-
verse modes were not seen at ambient pressure but indi-
rect evidence suggests their presence at elevated pressure
[30]. Our main result (the variable vacuum energy) ap-
plies to any liquid although, as discussed below, it is most
pronounced at low temperature where competing phonon
excitations of transverse modes can be neglected.

As discussed earlier, liquid collective modes include
one longitudinal mode and two transverse modes with
frequency above ωF (the longitudinal mode is considered
unmodified in this approach apart from its different prop-
agation length in the hydrodynamic regime ωτ < 1 and
solid-like elastic regime ωτ > 1 [15]). The mode (Planck)
energy is Em = h̄ω

2 + h̄ω
exp h̄ω

T −1
(here and below, kB = 1).

In the zero-temperature limit, the system’s energy is the
sum of the first terms of Em, or E0 in (1). At a finite
temperature, the system’s energy receives a contribution
from the energy of mode excitations, ET . ET is equal
to the sum of the second terms of Em and explicitly de-

pends on temperature. Then, the energy of the quantum
liquid is

E = E0 + ET

E0 = El0 + Et0(ω > ωF)

ET = ElT + EtT (ω > ωF)

(3)

In (3), E0 is the vacuum (zero-point) energy of the
liquid and includes the vacuum energy of the longitudi-
nal mode, El0, and the vacuum energy of two transverse
modes with frequency above ωF, Et0(ω > ωF). ET is
the energy of mode excitations and includes the energy
of excited longitudinal mode, ElT , and the energy of two
excited transverse modes with ω > ωF, EtT (ω > ωF).
E0 and ET can be calculated as the sums of the first

and second term of Em. Note that ET explicitly depend
on temperature, whereas E0 depends on temperature via
ωF as discussed below.

We start with the vacuum energy in (1) and (3),
E0 = El0 + Et0(ω > ωF). The two terms can be cal-

culated as El0 =
ωD∫
0

h̄ω
2 gl(ω)dω and Et0 =

ωD∫
ωF

h̄ω
2 gt(ω)dω,

where N is the number of particles, gl(ω) = 3N
ω3

D
ω2 and

gt(ω) = 6N
ω3

D
ω2 are longitudinal and transverse phonon

density of states, respectively, and where we assumed,
without the loss of generality, that the maximal frequency
of longitudinal and transverse modes is approximately
the same and given by Debye frequency ωD. The lower
integration limit in Et0, ωF, signifies that the spectrum
of transverse modes starts with ωF as discussed above
(ωF < ωD). Integrating gives the vacuum energy as

E0 =
3

8
Nh̄ωD +

3

4
Nh̄ωD

(
1−

(
ωF

ωD

)4
)

(4)

ωF = 1
τ in (4) depends on pressure and temperature:

relaxation time τ decreases with temperature and in-
creases with pressure. Therefore, the vacuum energy of
liquids is a variable property which changes with the state
of the system.

According to (4), the vacuum energy E0 decreases with
temperature because ωF = 1

τ increases (τ decreases with
temperature). This reflects the decrease of the number
of transverse modes because they propagate only above
frequency ωF = 1

τ (see Eq. (2)). From (4), the constant-

volume specific heat c0 = 1
N
dE0

dT due to the vacuum en-
ergy is

c0 = −3h̄

(
ωF

ωD

)3
dωF

dT
(5)

We observe that c0 in (5) is negative because dωF

dT > 0
as noted above.
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We make two observations regarding the unusual nega-
tive sign of c0. First, this is a purely quantum effect, and
is absent in the classical case. Indeed, the mode energy is
Em = T in the classical case. Consequently, the decrease
of the number of two transverse modes with tempera-
ture according to (2) leads to their energy changing from
2NT at low temperature to NT at high, corresponding
to the potential energy of transverse modes becoming
zero [16, 17, 31]. Adding the energy of the longitudinal
mode, NT , we find that the liquid specific heat changes
from 3 to 2, in agreement with the experimental results
[16, 17, 31]. Hence, the energy of the classical liquid
always increases with temperature, although the energy
slope and specific heat decreases from 3 to 2. In contrast,
the vacuum energy of the quantum liquid does not con-
tain the ∝ T term as in the classical case, and decreases
with temperature in (4) as a result.

Second, previous discussions have attributed negative
heat capacity to the non-equilibrium state of the system
or its smallness in terms of the number of atoms [10–14].
In marked contrast to this, negative c0 due to the vac-
uum energy operates in a macroscopic and equilibrium
quantum liquid: the decrease of the vacuum energy op-
erates in an equilibrium gas of phonon excitations in an
arbitrarily large system.

We now show that the total specific heat of the quan-
tum liquid is necessarily positive. This follows from
the calculation of the remaining energy term related
to phonon excitations in (3), ET = ElT + EtT (ω >
ωF). We consider the low-temperature regime T �
h̄ωD. ElT at low temperature can be calculated as

ElT =
ωD∫
0

h̄ω

exp( h̄ωT )−1
gl(ω)dω = NTD

(
h̄ωD

T

)
, where

D(x) = 3
x3

x∫
0

z3dz
exp(z)−1 is Debye function. Taking the low-

temperature limit T � h̄ωD where D(x) = π4

5x3 [9] gives

ElT = Nπ4T 4

5(h̄ωD)3 . The same result follows from the exact

calculation not relying on the Debye model and from not-
ing that at low temperature, the upper integration limit
can be extended to infinity due to the fast convergence of
the integral [9]. Then, clv due to the longitudinal phonon
excitations is

clv =
4π4

5

(
T

h̄ωD

)3

(6)

The last term in (3), EtT (ω > ωF), representing the
excitations of two transverse modes, is EtT (ω > ωF) =
ωD∫
ωF

h̄ω
exp h̄ω

T −1
gt(ω)dω, and turns out to be zero at low tem-

perature. This can be seen by writing EtT (ω > ωF) as

EtT (ω > ωF) =

ωD∫
0

h̄ωgt(ω)dω

exp h̄ω
T − 1

−
ωF∫
0

h̄ωgt(ω)dω

exp h̄ω
T − 1

(7)

Integrating (7) gives EtT (ω > ωF) = 2NTD
(
h̄ωD

T

)
−

2NT
(
ωF

ωD

)3

D
(
h̄ωF

T

)
. In the low-temperature limit T �

h̄ωD where D(x) = π4

5x3 , the two terms cancel exactly,
giving EtT (ω > ωF) = 0. The same result follows without
relying on the Debye model and from observing that in
the low-temperature limit, the upper integration limits
in both terms in (7) can be extended to infinity due to
fast convergence of integrals. Then, EtT (ω > ωF) in (7)
is the difference between two identical terms and is zero.

Physically, the reason for EtT (ω > ωF) = 0 is that
only high-frequency transverse modes exist in a liquid
according to (2), but these high-energy modes are not
excited at low temperature.

Therefore, the total constant-volume specific heat of
the low-temperature quantum liquid, cv, is cv = c0 + clv,
the sum of (5) and (6):

cv =
4π4

5

(
T

h̄ωD

)3

− 3h̄

(
ωF

ωD

)3
dωF

dT
(8)

We consider two common model temperature depen-
dencies of τ (ωF). The first is an exponential dependence
τ = τD exp

(
U
T

)
, where U is the activation energy barrier

for an atomic jump shown in Figure 1 [32] and τD is De-
bye vibration period. The exponential dependence is seen
in low-viscosity liquids [32] and low-temperature Bose
liquids including the normal flow component of liquid
4He [35]. The second dependence, the inverse power law,
τ ∝ 1

Tα , is discussed [36] and observed [37–39] in quan-
tum liquids with Fermi statistics, with typically α = 2
(below we consider α ≥ 1). Both models of τ operate
in the range T � U where the concept of τ applies and
where particle dynamics can be separated into oscilla-
tions around quasi-equilibrium positions and jumps be-
tween these positions with period τ [33, 34]. The two
models may not describe the experimental behavior of τ
in a wide temperature range, however they are convenient
for qualitative estimations.

For the exponential dependence, ωF = ωD exp
(
−UT

)
,

and the total specific heat in (8) becomes:

cv =
4π4

5

(
T

h̄ωD

)3

− 3h̄ωD exp

(
−4U

T

)
U

T 2
(9)

At first glance, cv of the low-temperature liquid in (9)
can attain both positive and negative values. In fact,
cv in (8) is always positive, and there is a fundamental
reason for it as discussed below.

To show that cv in (9) is always positive, we need to
demonstrate that the ratio of the absolute values of the
first and the second term, f , is always larger than 1.
From (9), f is

f =
4π4

15

1

U (h̄ωD)
4T

5 exp

(
4U

T

)
(10)
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T 5 exp
(

4U
T

)
in (10) increases to infinity at both small

and large T , and has a minimum at Tmin = 4U
5 . Then,

the minimal value of f , fmin, is

fmin = C

(
U

h̄ωD

)4

(11)

where C = 212π4e5

3·56 ≈ 1264.

We therefore find that fmin > 1 and hence f > 1 always
hold and ensure cv > 0, provided U

h̄ωD
> 1.

The inequality U
h̄ωD

> 1 is an inherent feature of a sta-

ble particle configuration (in fact, U
h̄ωD
� 1 as discussed

below). Indeed, a cohesive state of condensed matter is
related to the existence of a minimum of interatomic in-
teraction energy. In a stable condensed state, particles
oscillate around the potential minima. The energy of this
motion is governed by the energy of interatomic interac-
tions at small displacements, and is of the order of h̄ωD.
On the other hand, the energy needed to break the par-
ticle cage, U , is governed by the energy of interatomic
interactions but at much larger displacements compara-
ble to interatomic separations (see Figure 2). Therefore,
the inequality U � h̄ωD necessarily holds for any smooth
interatomic potential increasing away from the minimum.

Therefore, the presence of the potential minima and
related stability of any cohesive configuration implies
U > h̄ωD and ultimately leads to cv > 0. Reversing the
argument, cv < 0 implies that U > h̄ωD does not hold, in
which case the system becomes unstable as a condensed
phase and rearranges into a non-cohesive state such as,
for example, a gas phase with different properties.

Another insight into the origin of inequality U > h̄ωD

follows form the consideration of characteristic energy
scales in a stable condensed phase. A condensed phase
exists due to the stability of electronic configurations
between atoms, and any deformation of electronic den-
sity needed to break interatomic “bonds” to cause cage
rearrangement involves the energy U on the order of
characteristic electronic energy Eel: U ≈ Eel. Hence,
U
h̄ωD

≈ Eel

h̄ωD
. The last ratio, Eel

h̄ωD
, is known to be ap-

proximately equal to
(
Mion

mel

) 1
2

, where Mion and mel are

ionic and electronic masses. Hence, U
h̄ωD
� 1 (in numer-

ical terms, Eel is typically on the order of eV ≈ 104 K
whereas h̄ωD is in the range 100− 1000 K).

We now consider the inverse power law τ ∝ 1
Tα , which

we write as τ = τD
(
U
T

)α
. This reflects the property that

τ approaches its smallest value τD when T and U become
comparable and when particles spend approximately the
same time in intra- and inter-valley motions in Figure 2
[33]. Similarly to the exponential dependence considered
above, the power law applies in the range T � U . Then,

V

x

U

E v i b

FIG. 2: Interaction potential V in a condensed phase (liq-
uid or solid) along a reaction coordinate x, illustrating that
the activation energy U is larger than the energy of vibra-
tions Evib ≈ h̄ωD. Dashed line implies that the potential is
multi-well in the liquid leading to multiple diffusive jumps.
Schematic illustration.

writing ωF = ωD

(
T
U

)α
and using it in (8) gives

cv =
4π4

5

(
T

h̄ωD

)3

− 3αh̄ωD

T

(
T

U

)4α

(12)

As in the case of (9), cv > 0 is ensured by f > 1, where
from (12) f is

f =
4π4

15α

(
U

h̄ωD

)4(
U

T

)4α−4

(13)

We observe that U
h̄ωD

, the same factor as in (11), fea-
tures in (13), and is always larger than 1 as discussed
above. Then, with T � U and α ≥ 1 as discussed above,
f in (13) is larger than 1 for any reasonable α, ensuring
cv > 0.

We therefore find that transverse modes give negative
contribution to heat capacity of the quantum liquid, but
the longitudinal excitation prevents the net heat capac-
ity from becoming negative. Interestingly, no transverse
modes can exist without the longitudinal mode (the op-
posite is not the case: there are systems with the lon-
gitudinal mode only but no transverse modes such as
one-dimensional systems). Hence the longitudinal mode
always “protects” the system’s heat capacity from be-
coming negative.

We note that over-compensation of the negative term
in cv and the overall positivity of cv take place even in the
absence of additional contribution from exchange effects
that can set in the liquid at low temperature [40].
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As mentioned above, our analysis of positivity of cv
concerns the low-temperature regime T � h̄ωD where
transverse modes do not contribute to the liquid energy
(see Eq. 7 and accompanying discussion). At higher
temperature, one needs to consider the increasing contri-
bution of excited transverse modes and its competition
with the decrease of the number of transverse modes
according to (2) [16, 17]. One can consider the high-
temperature classical case where the decrease of cv due
to progressively disappearing transverse modes is most
pronounced because all phonons are excited. In this case,
cv is positive (larger than 2 as discussed above) as in the
low-temperature case due to dτ

dT tending to zero at high
temperature [31].

There is another fundamental reason why the anoma-
lous decrease of the vacuum energy operates at low tem-
perature only. As discussed above, this anomalous de-
crease is related to the reduction of the energy of trans-
verse modes with temperature. This process operates
in the regime where diffusive particle jumps between
quasi-equilibrium points can be defined. In this regime,
ωF < ωD, and the concept of τ (ωF) and Eq. 4 apply.
When ωF becomes comparable to ωD at higher temper-
ature, the liquid crosses the Frenkel line (FL) [16] where
the dynamical regime changes from combined oscillatory
and diffusive to purely diffusive as in a gas. At this
point, the evolution of collective modes in the system
changes qualitatively because two transverse modes dis-
appear completely [16] (on further temperature increase
above the FL, the remaining longitudinal mode disap-
pears starting from the shortest wavelength). In the gas-
like regime above the FL, T > U applies. Together with
U > h̄ωD as discussed above, this implies T > h̄ωD. This
is the condition for the classical regime where the anoma-
lous behavior of the vacuum energy is absent as discussed
earlier.

Before concluding, we note that the negative heat ca-
pacity component discussed here has temperature depen-
dence that is different from the longitudinal term. There-
fore, this component could be detectable experimentally
in principle. Although its relative weight is small in the
overall heat capacity of liquids, new types of systems cur-
rently explored and expanding experimental conditions
[1–8] may bring interesting results.

In summary, the vacuum energy of liquids emerges as
a variable property which changes with the state of the
system, in notable contrast to the static vacuum energy
in solids commonly considered. Moreover, this energy
anomalously decreases with temperature, contributing
negatively to system’s heat capacity. Interestingly dif-
ferent from the previously known examples, this effect
operates in an equilibrium and macroscopic system. The
net heat capacity of quantum liquids is necessarily pos-
itive, and is intimately related to the stability of a con-
densed phase itself.
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