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Collective modes and thermodynamics of the liquid state

K. Trachenko1 and V. V. Brazhkin2

1 School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London, E1 4NS, UK and
2 Institute for High Pressure Physics, RAS, 142190, Moscow, Russia

Strongly interacting, dynamically disordered and with no small parameter, liquids took a theo-
retical status between gases and solids, with the historical tradition of hydrodynamic description
as the starting point. We review different approaches to liquids as well as recent experimental and
theoretical work, and propose that liquids do not need classifying in terms of their proximity to
gases and solids or any categorizing for that matter. Instead, they are a unique system in their own
class with a notably mixed dynamical state in contrast to pure dynamical states of solids and gases.
We start with explaining how the first-principles approach to liquids is an intractable, exponentially
complex problem of coupled non-linear oscillators with bifurcations. This is followed by a reduc-
tion of the problem based on liquid relaxation time τ representing non-perturbative treatment of
strong interactions. On the basis of τ , solid-like high-frequency modes are predicted and we review
related recent experiments. We demonstrate how the propagation of these modes can be derived
by generalizing either hydrodynamic or elasticity equations. We comment on the historical trend
to approach liquids using hydrodynamics and compare it to an alternative solid-like approach. We
subsequently discuss how collective modes evolve with temperature and how this evolution affects
liquid energy and heat capacity as well as other properties such as fast sound. Here, our emphasis is
on understanding experimental data in real, rather than model, liquids. Highlighting the dominant
role of solid-like high-frequency modes for liquid energy and heat capacity, we review a wide range
of liquids: subcritical low-viscous liquids, supercritical state with two different dynamical and ther-
modynamic regimes separated by the Frenkel line, highly-viscous liquids in the glass transformation
range and liquid-glass transition. We subsequently discuss the fairly recent area of liquid-liquid
phase transitions, the area where the solid-like properties of liquids have become further apparent.
We then discuss gas-like and solid-like approaches to quantum liquids and theoretical issues that
are similar to the classical case. Finally, we summarize the emergent view of liquids as a unique
system in a mixed dynamical state, and list several areas where interesting insights may appear and
continue the extraordinary liquid story.
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INTRODUCTION

Condensed matter physics as a term originated from
adding liquids to the then-existing field of solid state
physics. Proposals to do so precede what is often
thought, and date back to the 1930s when J. Frenkel
proposed to develop liquid theory as a generalization of
solid state theory and unify the two states under the term
“condensed bodies” [1]. At the same time, the seeming
similarity of liquids and gases in terms of their ability
to flow has led to the unified term “fluids”. Such a dual
classification of liquids is more than just semantics: it has
given rise to two fundamentally different ways of describ-
ing liquids theoretically in hydrodynamic and solid-like
approaches. The phase diagram of matter in Figure 1
highlights the intermediate location of liquids between
solids and gases and hints at the duality of their physical
properties that will come out in our detailed analysis.

It is the intermediate state of liquids which has ulti-
mately resulted in great difficulties when developing liq-
uid theory because well-developed theoretical tools for
the two limiting states of gases and solids failed. It is
also the intermediate state of liquids and the combina-

tion of solid-like and gas-like properties which continues
to be remarkably intriguing for theorists. According to
Figure 1, one can start in the gas state above the critical
point, move to the liquid state and end up in the solid
glass state (if crystallization is avoided) in a seemingly
continuous way and without any qualitative changes of
physical properties. This is a surprising observation from
a theoretical point of view and signifies the intermediate
state of liquids and the duality of their physical proper-
ties.

At the end of this review, we will see that liquids need
not be thought of in terms of their proximity to solids or
gases and do not require any other categorization: they
are self-contained systems with interesting, unique and
rich dynamical and thermodynamic properties. In fact,
understanding this richness helps better understand the
properties of gases and solids by delineating them as two
limiting states of matter in terms of dynamics and ther-
modynamics.

The long and extraordinary history of liquid research
includes several notable discouraging assertions. One of
the most important properties crucial to properly under-
standing liquids is that they are strongly-interacting sys-
tems. Particles in liquids are close enough to be within
the reach of interatomic forces as in solids, resulting in
the condensed liquid state. The energy of a system with
N particles and pair-wise interaction energy U(r) can be
written as

E =
3

2
NkBT +

Nρ

2

∫
U(r)g(r)dV (1)

where ρ is number density and g(r) is pair distribution
function.
U(r) is strong and system-dependent; consequently,

E or other thermodynamic properties of the liquid are
strongly system-dependent. For this reason, Landau and
Lifshitz assert [2] (twice, in paragraphs 66 and 74) that
it is impossible to derive any general equation describ-
ing liquid properties or their temperature dependence.
Whatever approximation scheme or method used, any
approach aimed at deriving a generally applicable result
using Eq. (1), or evaluating the configurational part of
the partition function, is destined to fail.

The above problem does not originate in strongly-
interacting solids because the smallness of atomic vi-
brations around the fixed reference lattice, crystalline or
amorphous, enables expansion of the potential energy in
Taylor series. The harmonic term in this expansion, com-
bined with the kinetic term, gives the phonon energy of
the solid consistent with experimental heat capacities.
These can be corrected by the next-order terms in the
Taylor series for potential energy. Traditionally, this ap-
proach is deemed inapplicable to liquids due to the ab-
sence of fixed reference points around which an expan-
sion can be made. The problem also does not originate
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in weakly-interacting gases: they have no fixed reference
points but interactions are small so that the perturbation
theory is warranted.

Liquids have neither the small displacements of solids
nor the small interactions of gases. Summarized aptly by
Landau, liquids have no small parameter.

For this reason, we are seemingly compelled to treat
liquids as general strongly-interacting disordered sys-
tems, where disorder is both static and dynamic, with
no simplifying assumptions. In this spirit, large amount
of work was aimed at elucidating the structure and dy-
namics of liquids. In comparison, the discussion of liquid
thermodynamic properties such as heat capacity is nearly
non-existent. Indeed, physics textbooks have very lit-
tle, if anything, to say about liquid specific heat, includ-
ing textbooks dedicated to liquids [2–12]. In an amusing
story about his teaching experience in the University of
Illinois (UIUC), Granato recalls living in fear about a po-
tential student question about liquid heat capacity [13].
Observing that the question was never asked by a total of
10000 students, Granato proposes that “...an important
deficiency in our standard teaching method is a failure
to mention sufficiently the unsolved problems in physics.
Indeed, there is nothing said about liquids [heat capac-
ity] in the standard introductory textbooks, and little or
nothing in advanced texts as well. In fact, there is little
general awareness even of what the basic experimental
facts to be explained are.” It is probably fair to say that
the question of liquid heat capacity would be out of the
comfort zone not only for general condensed matter prac-
titioners but also for many working in the area related to
the liquid state such as soft matter.

Historically, thermodynamic properties of liquids have
been approached from the gas state, a seemingly appro-
priate approach in view of liquid fluidity. For example,
common approaches start with the kinetic energy of the
gas and aim to calculate the potential energy using the
perturbation theory. The dynamical properties of liquids
are discussed on the basis of hydrodynamic theory where
the elements of solid-like behaviour are introduced as a
subsequent correction [4–12, 14]. This is in interesting
contrast to experiments informing us that liquids not far
from melting points are close to solids in terms of density,
bulk moduli, heat capacity and other main properties,
but are very different from gases.

The focus of this review is on understanding liquid
thermodynamic properties such as heat capacity and
their relationship to collective modes. To be more spe-
cific and set the stage early, we show the experimental
specific heat of liquid mercury in Figure 2. We observe
that cv starts from around 3kB just above the melting
point and decreases to about 2kB at high temperature.
As discussed below, this effect is very common and op-
erates in over 20 different liquids we analyzed, includ-
ing metallic, noble, molecular and network liquids, and
is present in complex liquids. The decrease of cv inter-

1 2 3
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FIG. 2: Experimental specific heat of liquid mercury in kB
units [21, 22]. The x-axis is in the relative temperature units
where Tm is the melting temperature.

estingly contrasts the temperature dependence of cv in
solids which is either constant in the classical harmonic
case or increases due to anharmonicity or due to phonon
excitations at low temperature. We also observe that liq-
uid cv is significantly larger than the gas value of 3

2kB in
a wide temperature range in Figure 2.

Notably, the commonly discussed Van Der Waals
model of liquids gives cv = 3

2kB [2], the ideal gas value.
The same result holds for another commonly discussed
model of liquids, hard spheres, as well as for several other
more elaborate models. Clearly, real liquids have an im-
portant mechanism at operation that significantly affects
their cv and that is missed by several common liquid
models.

Notwithstanding the theoretical difficulties involved in
treating liquids, we rely on the known result that low-
energy states of a strongly-interacting system are collec-
tive excitations or modes (throughout this review, we use
terms “phonons”, “modes” and “collective excitations”
interchangeably depending on context and common us-
age). In solids, collective modes, phonons, play a central
role in the theory, including the theory of thermodynamic
properties. Can collective modes in liquids play the same
role? It is from this perspective that we review collective
modes in liquids. In our review, we emphasize the main
different approaches to collective modes in liquids and
list starting equations in each approach. We do not dis-
cuss details of how the field has branched out over time;
that formidable task is outside the scope of this paper.
To a large extent, this was done in earlier textbooks and
reviews [4–12, 14].

We focus on real rather than model liquids, measurable
effects and take a pragmatic approach to understand the
main experimental properties of liquids such as heat ca-
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pacity and provide relationships between different physi-
cal properties. Throughout this review, we seek to make
connections between different areas of physics that help
understand the problem. We are not trying to be com-
pletely comprehensive, focusing instead on providing a
pedagogical introduction, interpreting previous basic re-
sults and fundamental equations and explaining recent
advances. Our discussion includes original work not re-
ported previously as well as results from our published
work.

As already mentioned, the long and extraordinary his-
tory of liquid research is related to problems of theoret-
ical description. The fundamental problem of the first-
principles description of liquids is not generally discussed,
so we start with explaining that this problem is due to
the intractability of the exponential complexity of find-
ing bifurcations and stationary points in the system of
coupled non-linear oscillators. We then discuss how the
problem can be reduced using Frenkel’s idea of liquid re-
laxation time. On this basis, several important assertions
can be made regarding the continuity of liquid and solid
states and the propagation of solid-like collective modes
in liquids. We subsequently review how collective modes
can be studied by either incorporating elastic effects in
hydrodynamic equations or viscous effects in elasticity
equations. We find the same results in both approaches,
supporting the view that the historical hydrodynamic de-
scription of liquids is not unique and that a solid-like
description is equally justified. This assertion becomes
more specific when we review and comment on general-
ized hydrodynamics. As far as liquid thermodynamics is
concerned, it turns out that the solid-like elastic regime
is the relevant one because high-frequency solid-like col-
lective modes contribute most to the energy.

We then proceed to review recent experimental ev-
idence for high-frequency solid-like collective modes in
liquids and discuss their similarity to those in solids.

We subsequently discuss how the evolution of collective
modes in liquids can be related to liquid energy and heat
capacity in widely different liquid regimes: low-viscous
subcritical liquids; high-temperature supercritical gas-
like fluids; highly-viscous liquids in the glass transfor-
mation range; and systems at the liquid-glass transition.
In all cases, high-frequency modes govern the main ther-
modynamic properties of liquids such as energy and heat
capacity and affect other interesting effects such as fast
sound.

The solid-like properties of liquids have additionally
become apparent in the recently accumulated and re-
viewed data on liquid-liquid phase transitions. We finally
discuss the gas-like and solid-like approach in quantum
liquids and interesting issues regarding the operation of
Bose-Einstein condensates in real liquids.

At the end of this review we will see that most im-
portant properties of liquids and supercritical fluids can
be consistently understood in the picture in which these

systems are in notably mixed dynamical state. Therefore,
the emergent picture of liquids is that they do not need
classifying on the basis of their proximity to fluid gases or
solids, or any other compartmentalizing for that matter.
Instead, they should be considered as distinct systems
in the mixed state of particle dynamics, the state that
should serve as a starting point for liquid description.
Moreover, we will see that appreciating the mixed state
of particle dynamics in liquids helps understand gases
and solids better as two limiting and dynamically pure
states. This point is particularly useful for understand-
ing the supercritical matter.

We conclude with possible future work which may
bring new understanding and advance the remarkable liq-
uid story.

Before we start, we comment on several terms used in
this review. Traditionally, the term “liquids” is used for
subcritical conditions on the phase diagram. The systems
above the critical point are often referred to as “supercrit-
ical fluids”. We continue to use these terms in our review
where we also propose that the supercritical system in
fact consists of two states in terms of particle dynamics
and physical properties: a “rigid liquid-like” state be-
low the Frenkel line and a “non-rigid gas-like fluid” state
above the line. We use the term “glass” to commonly de-
note a very viscous liquid which stops flowing at the typ-
ical experimental time scale. The term “viscous liquid”
commonly refers to liquids in the glass transformation
range, implying viscosity considerably higher than that
in, for example, water at ambient conditions. The term
is quantitatively defined at the beginning of the section
“Viscous liquids”.

FIRST-PRINCIPLES APPROACH AND ITS
FAILURE

The absence of a small parameter in liquids pointed out
in the Introduction, is one perceived reason that makes
the theoretical description of liquids difficult. It tells us
why perturbation-based approaches that are successful
in solids and gases do not work in liquids. Yet it is in-
teresting to explore the actual reason for the difficulty
of constructing a first-principles theory of liquids using
the same microscopic approach as in the solid theory. As
far as we know, this point is not discussed in textbooks
[1–12].

Below we show that the challenge for the first-
principles description of liquids can be well formulated
in the language of non-linear theory where it acquires a
specific meaning. In this language, the challenge is re-
lated to the intractability of the exponentially complex
problem involved in solving a large number of coupled
non-linear equations.

First-principles treatment of collective modes in a solid
is based on solving coupled Newton equations of motion
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for N atoms. We assume that the atoms oscillate around
fixed lattice points qi0, and introduce atomic coordinates
qi and displacements xi = qi − qi0. The potential energy
is expanded in series as far as quadratic terms:

U = U0 +
1

2

∑
ij

kijxjxk (2)

Writing the equations of motion as

∑
i

miẍi + kjixi = 0 (3)

and seeking the solutions as xk = bk exp(iωt) gives the
characteristic equation for the eigenfrequencies

∣∣kij − ω2mi

∣∣ = 0 (4)

Eq. (4) gives most detailed information about collec-
tive modes in the system, and returns 3N eigenfrequen-
cies, ranging from the lowest frequency set by the sys-
tem size to the largest frequency in the system, often re-
ferred to as Debye frequency (note that Debye frequency
is the result of quadratic approximation to the energy
spectrum, and is somewhat lower than the maximal fre-
quency of the real spectrum). Each atomic coordinate
can be expressed as a superposition of normal coordi-
nates as

xk =
∑
α

∆kαΘα (5)

where Θα = Re (Cα exp(iωαt)) are normal coordinates,
Cα are arbitrary complex constants and ∆kα are minors
of the determinant (4) [15]. This result is central for the
development of many areas in the solid state theory.

Note that the above treatment does not assume a
crystalline lattice. Crystallinity, if present, is the next
step in the treatment enabling to write the solution as
a set of plane waves with x ∝ exp(ikan), where k is the
wavenumber and a is the shortest interatomic separation,
and derive dispersion curves for model systems.

To continue to use the first-principles description of
liquids, we need to account for particle rearrangements
in liquids. As discussed in the next section, particle dy-
namics in the liquid consists of small solid-like oscillations
around quasi-equilibrium positions and diffusive jumps
to new neighbouring locations. This corresponds to po-
tential energy of the double-well form shown in Figure
3 which endows particles with both oscillatory motion
and thermally-induced jumps between different minima.
Note that in an equilibrium liquid, each diffusing par-
ticle visits many minima, hence the potential energy is
multi-well, however the minima and energy profiles can

V

x

FIG. 3: Double-well potential describing the particle mo-
tion in liquids and involving jumps between different quasi-
equilibrium positions.

be assumed to be close to their averages in a homoge-
neous system so that the double-well potential in Figure
3 suffices.

To model the double-well energy, the harmonic expan-
sion (2) needs to be extended to include higher terms, at
which point the equations of motion become non-linear.
The simpler form often considered includes the third and
fourth powers of xi, “−x3 + x4”:

U = U0 +
1

2

∑
ij

kijxjxk+

∑
ijl

kijlxixjxl +
∑
ijlm

kijlxixjxlxm + ...
(6)

or, if a symmetric form of U is preferred, the higher-
order potential can be written in “−x4 +x6” or similarly
symmetric form as in Figure 3.

At small enough energy or temperature of particles
motion, Eq. (6) is used to describe the effects of anhar-
monicity of atomic motion in solids using the perturba-
tion theory. The main results include the correction to
the Dulong-Petit result of solids, thermal expansion and
modification of the phonon spectrum, phonon scattering
and so on. Unfortunately, the quantitative evaluation of
anharmonicity effects has remained a challenge, with the
frequent result that the accuracy of leading-order anhar-
monic perturbation theory is unknown and the magni-
tude of anharmonic terms is challenging to justify [23–
27]. Experimental data such as phonon lifetimes and
frequency shifts can provide quantitative estimates for
anharmonicity effects and expansion coefficients in par-
ticular, although this involves complications and limits
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the predictive power of the theory [23].
The real problem is at higher energy where the anhar-

monicity in Eq. (6) is not small and jumps between dif-
ferent minima in Fig. 3 become operative, as they do in
liquids. Here, the perturbation approach does not apply,
and we enter the realm of non-linear physics [28, 29]. The
illustrative example is the simplest system of two coupled
Duffing oscillators with the energy (see, e.g. [28]):

E =

2∑
i=1

(
1

2
ẋ2
i +

α

2
x2
i −

β

4
x4
i

)
+
ε2

2
(x1 − x2)2 (7)

and the equations of motion

ẍ1 + αx1 + ε2(x1 − x2)− βx3
1 = 0

ẍ2 + αx2 + ε2(x2 − x1)− βx3
2 = 0

(8)

where ε is the coupling strength.
This model is not integrable, and can not be solved

analytically but using approximations only. However, a
simpler model can written in terms of variables ψn =

1√
2ω0

(
ω0xn + idxndt

)
, where ω0 is the frequency of the un-

coupled oscillator:

i
dψ1

dt
= ω0ψ1 +

Ω

2
(ψ1 − ψ2)− α |ψ1|2 ψ1

i
dψ2

dt
= ω0ψ2 +

Ω

2
(ψ2 − ψ1)− α |ψ2|2 ψ2

(9)

where the last terms represent the non-linearity and Ω =
ε2

ω0
.
Eqs. (9) is known as the discrete self-trapping (DST)

model, and is one of the rare examples in non-linear
physics that are exactly solvable analytically. The im-
portant results can be summarized as follows. At low
energy, the stationary points on the map (x, ẋ) (or on
the map of two other independent dynamical variables)
do not change, and the motion remains oscillatory and
similar to the linear case. The character of oscillations
qualitatively changes at a certain energy that depends on
Ω
α : the old stationary point becomes an unstable saddle
point, and a new pair of stable stationary points emerge,
separated by the energy barrier [28]. This corresponds to
the bifurcation point, the emergence of new solutions as a
result of changes of parameters in the dynamical system.
This is illustrated in Figure 4.

An accompanying interesting insight is that contrary
to the linear harmonic case, the energy is not equally
partitioned between the oscillating points but can local-
ize at one point, reflecting the more general insight that
the superposition principle no longer works in non-linear
systems in general.

The importance of the above result is that it demon-
strates that the first-principles treatment of the non-
linear equations of motion gives rise, via the bifurcation

b

u

u

v

a

c

c

b

FIG. 4: Colour online. The phase portrait of the discrete
trapping model (9) at two different energies. Independent
variables u and v are functions of ψ1 and ψ2 in Eq. (9),
and describe the trajectories of two coupled non-linear oscil-
lators. At low energy (top), two stationary points “a” and
“b” remain unchanged as in the case of two coupled linear
oscillators, corresponding to weak non-linearity. At high en-
ergy (bottom), the bifurcation takes place: point “a” becomes
an unstable saddle point and two new stationary points “c”
appear. Schematic illustration, adapted from Ref. [28].

at high energy, a new qualitatively different solution: in-
stead of oscillating around a fixed position at low energy
as in a solid, a particle starts to move between two sta-
ble stationary points at high energy, corresponding to
the liquid-like motion of particles between two minima
in Figure 3. It proves that in the most simple non-linear
system, the liquid-like motion emerges as a bifurcation of
the solid-like solution.

The DST model (9) is not identical to the original
simple system of coupled Duffing oscillators (8). The
difference with the DST model is that, due to the non-
integrability of (8), islands of chaotic dynamics appear
on the phase map and grow with the system energy. The
excitations in the original model (8) can only be found
using approximate techniques. However, the DST model
is close to (8) for small oscillation amplitudes and small
couplings ε. This proximity between the two models is
used to assert the same qualitative result, the emergence
of the bifurcation of solutions.

We note the result from this discussion to which we
return below: the bifurcation in the original model (8)
emerges at energies E ∝ ε2 or amplitudes x ∝ ε, the
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result which is not unexpected: the energy of coupling
needs to be surmounted in order to break away from the
low-energy solid-like solution.

The real problem appears when the number of non-
linear oscillators, N , increases. The analysis of N = 3
non-linear coupled oscillators is complicated from the
outset by the fact that the corresponding DST model
is non-integrable to begin with. The approximations in-
volved in the increasingly complicated analysis of station-
ary states, new bifurcations emerging from these states
and corresponding collective modes become harder to
control. The results from computer modeling indicate
the emergence of many unanticipated modes and chaotic
behaviour at higher energy. The problem significantly
increases for N = 4, including finding new stationary
points and related collective modes, analyzing non-trivial
branching of next-generation bifurcations and so on. For
larger N , only approximate qualitative observations can
be made regarding the energy spectrum, energy localiza-
tion and emerging collective modes. This is done on the
basis of approximations and insights from N = 2−4 [28].

Importantly, the number of stationary states and bifur-
cations exponentially increases with N . The problem of
finding stationary states, bifurcations, collective modes
and their evolution with the system’s energy is exponen-
tially complex and intractable for arbitrary N [28].

Therefore, the failure of the first-principles treatment
of liquids at the same level as Eq. (3) for solids has its
origin in the intractability of the exponentially complex
problem of calculating bifurcations, stationary points and
collective modes in a large system of coupled non-linear
equations.

RELAXATION TIME AND PHONON STATES IN
LIQUIDS: FRENKEL’S REDUCTION

It is fitting to discuss terms such as “collective modes”,
“phonons” and other quasi-particles in relation to J.
Frenkel’s work because he was involved in coining and
disseminating these terms. For example, the term
“phonon”, attributed to Tamm, first appeared in print
in Frenkel’s 1932 publication [30].

Frenkel’s ideas occupy a significant part of our discus-
sion. This might appear unusual to the reader, in view
that this is not the case in other liquid textbooks [2–12].
Frenkel’s work is not unknown but why would we want
to delve into it in detail now? We find that many discus-
sions of liquids either do not mention Frenkel’s work (see,
e.g., Refs. [16–20]) or mention it in an irrelevant con-
text, yet they develop many ideas which, when stripped
of details, are essentially due to Frenkel to a large extent.
This will become apparent in this review. More impor-
tantly, we find that, combined with recent experimental
evidence, Frenkel’s work related to collective modes in
liquids gives a constructive tool to develop a predictive

thermodynamic theory of liquids.
Frenkel proposed a number of new ideas of how to un-

derstand liquids emphasizing their “gas-like” and “solid-
like” properties [1]. Some of the ideas such as the “hole
theory” of liquids were not followed or developed, per-
haps for the reason that the picture was qualitative and
without links to experimental data. It should be noted
that the experimental data on liquids at the time was
only very basic so Frenkel’s theoretical work was truly
pioneering. However, other ideas discussed in Frenkel
book and his earlier papers on liquids transformed the
field in a way which is not fully appreciated even today.

This transformation proceeded slowly and sporadically
over the last 80–90 years since Frenkel’s work, during
which alternative approaches to liquids were developing
and Frenkel’s ideas forgotten and surfaced anew more
than once (see, e.g., Refs. [16, 18, 20]). In our view,
Frenkel was too ahead of his time. A transformative idea,
proposed and experimentally confirmed within a gener-
ation of scientists has a larger chance of succeeding as
compared to the Frenkel’s case where the new idea was
proposed long before its confirmation. For example, his
proposal that liquids are able to support solid-like longi-
tudinal and transverse modes with frequencies extending
to the highest Debye frequency implies that liquids are
just like solids (solid glasses) in terms of their ability to
sustain collective modes. Therefore, main liquid proper-
ties such as energy and heat capacity can be described
using the same first-principles approach based on collec-
tive modes as solids - an assertion that is considered very
unusual. The evidence for this has come only recently be-
cause liquids turned out to be too hard to probe experi-
mentally. The evidence has started to mount only after
powerful X-ray synchrotrons were deployed, and more
than 80 years after Frenkel’s first published paper on the
subject.

Frenkel’s work on liquids is interestingly described by
Sir N. F. Mott [31]:

“Frenkel was a theoretical physicist. By this I am
stressing that he was primarily and most of all interested
in what is happening in real systems, and the mathe-
matics he used served his physics and not otherwise as is
sometimes the case for the modern generation of scien-
tists... He asks: ‘what is really happening and how can
this be explained?’ ”

Liquid relaxation time and phonon states

Throughout this paper, we are using terms such as
collective modes and phonons inter-changeably. Their
meaning will be clarified in the later sections where we
will also comment on the issue of dissipation of harmonic
waves in disordered systems including glasses and liquids.

Dating to 1926 [32] and developed in his later book [1],
main ideas of Frenkel on liquids preceded the advance of
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FIG. 5: Colour online. Illustration of a particle jump between
two quasi-equilibrium positions in a liquid. These jumps take
place with a period of τ on average.

the non-linear theory discussed earlier. Frenkel’s discus-
sion includes many important ideas, of which we review
only those relevant to understanding collective modes
and different regimes of wave propagation in liquids.

Frenkel was naturally led to liquid dynamics by his
work on defect migration in solids, and viewed the two
processes as sharing important qualitative properties.
The migration rate of defects in a solid (crystalline or
amorphous) is governed the potential energy barrier U
set by the surrounding atoms. At fixed volume of the
“cage” formed by the nearest neighbours, U is very large
for the diffusion event to occur in any reasonable time.
However, the cage thermally oscillates and periodically
opens up fast local diffusion pathways. If ∆r is the in-
crease of the cage radius required for the atom to jump
from its case (see Figure 5), U is [1]:

U = 8πGr∆r2 (10)

where r is the cage radius and G is shear modulus. Note
that when a sphere expands in a static elastic medium, no
compression takes place at any point. Instead, the system
expands by the amount equal to the increase of the sphere
volume [1], resulting in a pure shear deformation. The
strain components u from an expanding sphere (noting
that u →0 as r → ∞) are urr = −2b/r3, uθθ = uφφ =
b/r3 [33], giving pure shear uii = 0. As a result, the
energy to statically expand the sphere depends on shear
modulus G only.

Frenkel considered the above picture applicable to liq-
uids as well as solids, and introduced liquid relaxation
time τ as the average time between particle jumps at one
point in space in a liquid.

The range of τ is bound by two important values. If
crystallization is avoided, τ increases at low tempera-
ture until it reaches the value at which the liquid stops
flowing at the experimental time scale, corresponding to
τ = 102−103 s and the liquid-glass transition [34, 35]. At
high temperature, τ approaches its minimal value given
by Debye vibration period, τD ≈ 0.1 ps, when the time
between the jumps becomes comparable to the shortest
vibrational period. Frenkel’s picture has been confirmed
in numerous molecular dynamics simulations of liquids

which, since early days of computer modeling [36], ob-
served and studied particle jumps and transitions be-
tween different minima. The operation of particle jumps
in liquids is often referred to as “relaxation process”.

With a remarkable physical insight, Frenkel proposed
the following simple picture of vibrational states in the
liquid. At times significantly shorter than τ , no parti-
cle rearrangements take place. Hence, the system is a
solid glass describable by Eqs. (3,4) and supports one
longitudinal mode and two transverse modes. At times
longer than τ , the system is a flowing liquid, and hence
does not support shear stress or shear modes but one lon-
gitudinal mode only as any elastic medium (in a dense
liquid, the wavelength of this mode extends to the short-
est wavelength comparable to interatomic separations as
discussed below). This is equivalent to asserting that the
only difference between a liquid and a solid glass is that
the liquid does not support all transverse modes as the
solid, but only those above the Frenkel frequency ωF:

ω > ωF =
1

τ
(11)

where we omit the factor of 2π in ω = 2π
τ for brevity

and for the reason that in liquids the range of τ spans
16 orders of magnitude, making a small constant factor
unimportant.

Eq. (11) implies that liquids have solid-like ability to
support shear stress, with the only difference that this
ability exists not at zero frequency as in solids but at
frequency larger than ωF (below we often use the term
“solid-like” to denote the property in (11)). This was an
unexpected insight at the time, and took many decades to
prove experimentally as discussed below. It also posed a
fundamental question about the difference between solids
and liquids: liquids are different from solids by the value
of ωF only which is a quantitative difference rather than
a qualitative one. In Frenkel’s view, this reflected the
continuity of liquid and solid states, the question that is
still debated in the context of the problem of liquid-glass
transition. We will discuss this in the next sections.

The longitudinal mode remains propagating in the
Frenkel’s picture based on τ : density fluctuations exist
in any interacting system. We will see below that in
real dense liquids, experiments have ascertained that the
longitudinal vibrations extend to the largest Debye fre-
quency as in solids. However, the presence of relaxation
process and τ differently affects the propagation of the
longitudinal collective modes in different regimes ω > 1

τ
and ω < 1

τ , as discussed in the next sections.
We note that the separation of particle motion in the

liquid into oscillatory and diffusive jump motion works
well for liquids with large τ (or viscosity, see next sec-
tion). For smaller τ at high temperature, jumps can
become less pronounced and oscillations increasingly an-
harmonic. The disappearance of oscillatory component
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of particle motion can be related to the Frenkel line dis-
cussed in the later section.

We also note that the concept of τ implies average
relaxation time. In real liquids, there is a distribution of
relaxation times as is widely established in experiments
such as dielectric spectroscopy (see, e.g., Ref. [37]).

Relationship to Maxwell relaxation theory

Here, we discuss the important relationship between
the analysis of Frenkel and Maxwell. Maxwell proposed
that a body is generally capable of both elastic and vis-
cous deformation and, under external perturbation such
as shear stress, the total strain is the sum of viscous and
elastic strains [38]. The y−gradient of horizontal velocity

vx due to viscous deformation is ∂vx
∂y =

Pxy
η , where Pxy

is shear stress and η is viscosity. The gradient of velocity
due to elastic deformation is ∂vx

∂y = 1
G
dPxy
dt where G is

shear modulus. When both viscous and elastic deforma-
tions are present, the velocity of a layer vx is the sum of
the two velocities, giving:

∂vx
∂y

=
1

G

dPxy
dt

+
Pxy
η

(12)

The presence of both viscous and elastic response has
been subsequently called “viscoelastic” response, and is
commonly used at present.

When external perturbation stops and vx = 0, Eq.
(12) gives

Pxy = P0 exp

(
− t

τM

)
τM =

η

G

(13)

where τM is Maxwell relaxation time.
Frenkel has proposed that the time constant in Eq.

(13), τM, is related to liquid relaxation time τ he intro-
duced (the time between particle rearrangements), and
concluded that τM ≈ τ . Then, relaxation of shear stress
in a viscoelastic liquid is exponential with Frenkel’s liquid
relaxation time τ :

Pxy = P0 exp

(
− t
τ

)
(14)

The second equation in (13) where τ is used instead of
τM is often called the Maxwell relationship:

η = G∞τ (15)

Here, G∞ is the “instantaneous” shear modulus. G∞
is understood to be the shear modulus at high frequency

at which the liquid supports shear stress. In practice,
this frequency can be taken as the maximal frequency of
shear waves present in the liquid, comparable to Debye
frequency [39].

The activation energy for particle jumps in the liquid
can be calculated using Eq. (10), but with the proviso
that G is the shear modulus at high-frequency.

Experimentally, shear stress and various correlations
in viscous liquids (liquids where τ � τD; see Section
“Viscous liquids” for more detailed discussion below) and
glasses decay according to the stretched-exponential re-
laxation (SER) law rather than pure exponential as in
Eq. (14):

f ∝ exp

(
−
(
t

τ

)β)
(16)

where f is a decaying function such as Pxy in (14) and β
is the stretching parameter conforming to 0 < β < 1.

First observed by Kohlrausch around the time of de-
velopment of Maxwell relaxation theory [40], the physi-
cal origin of SER has been widely discussed [34, 41, 42].
It is believed that SER is as a result of cooperativity
of molecular relaxation emerging in the viscous regime.
Here, “cooperativity” is not well-defined but can be iden-
tified with the elastic interaction between particle rear-
rangement events via high-frequency waves they induce
[43, 44]. Regardless of whether the relaxation is expo-
nential or stretched-exponential, the decay of shear stress
and other correlation function takes place with a charac-
teristic time τ in both (14) and (16).

Frenkel reduction

It is interesting to discuss the meaning of Frenkel’s the-
ory from the point of view of a first-principles description
of liquids. This theory is not a first-principles description
at level (3) and (4) but, as discussed in the earlier section,
the first-principles treatment of liquid collective modes is
exponentially complex and not tractable. Instead, this
approach singles out the main physical property of liq-
uids (τ , or viscosity, see Eq. (15)) which governs the
relative contributions of oscillatory and diffusive motion
and which ultimately controls the phonon states in the
liquid. This reduces the exponentially large problem to
one physically relevant parameter. We call it the “Frenkel
reduction” [45].

Implicit in this reduction is a physically reasonable
assumption that quasi-equilibrium states and the local
particle surroundings of jumping atoms in a homoge-
neous liquid are equivalent, and that fluctuations in a
statistically large system can be ignored [2]. In the lan-
guage of non-linear theory, the reduction lies in assuming
that emerging new bifurcations and stationary states at
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all generations produce physically equivalent states on
average. This implies that as temperature (or energy)
increases, the conditions governing particle jumps can
be considered approximately the same everywhere in the
system. Therefore, particle dynamics is governed by the
temperature-activated jumps as the dynamics of point
defects in solids:

τ = τD exp

(
U

T

)
(17)

where U is given by (10).
It is generally agreed that τ and viscosity in liq-

uids are indeed governed by the temperature-activated
process, with a caveat that U can include an addi-
tional temperature-dependent term due to cooperativity
of molecular relaxation, in which case τ grows faster-than
Arrhenius (“super-Arrhenius”) as discussed below. This
cooperative process is of the same nature as the one gov-
erning the non-exponentiality of relaxation in (16).

We recall the result from the non-linear theory that a
bifurcation emerges when the energy of the particle be-
comes comparable to the coupling energy between two
non-linear oscillators. Noting that this result is derived
approximately, we can relate the coupling energy to the
activation energy given in (10). Indeed, the coupling en-
ergy in the system of non-linear equations is the energy
that a particle needs to escape a bound state with an-
other particle. This energy is of the same nature and
order of magnitude as that needed to break the atomic
cage shown in Figure 5. Therefore, the approximation in
the Frenkel theory is of the same nature as the one in the
non-linear theory.

In our discussion of generalized hydrodynamics below,
we will see that the introduction of relaxation process and
solid-like features in the hydrodynamic equations is done
at the same level as in Eq. (14) in the Frenkel theory, by
assuming the exponential decay of different correlation
functions with the decay time τ .

We emphasize that τ is readily measured using sev-
eral well-established experiments including dielectric re-
laxation experiments, NMR, positron annihilation spec-
troscopy and so on. τ can also be derived from viscosity
measurements using Eq. (15) using widely available tech-
niques including the classic Stokes experiments applica-
ble to many types of liquids including at high pressure
and temperature [47]. τ can also be calculated in molec-
ular dynamics simulations as, for example, time decay
of various correlation functions. In Figure 6 we show τ
measured in salol over many orders of magnitude as an
example, and comment on it in the next section.

In essence, Frenkel reduction introduces a cutoff fre-
quency ωF (see 11) above which the liquid can be de-
scribed by the same first-principles equations of motion
as the solid in Eqs. (3) and (4). Therefore, liquid col-
lective modes include both longitudinal and transverse

2 3 4
- 1 2
- 1 0

- 8
- 6
- 4
- 2
0
2
4

1 0 0 0 / T  ( K - 1 )

log
[τ(s

)]

FIG. 6: Relaxation time of salol measured in dielectric relax-
ation experiments [56].

modes with frequency above ωF in the solid-like elastic
regime and one longitudinal hydrodynamic mode with
frequency below ωF (shear mode is non-propagating be-
low frequency ωF as discussed below).

Recall Landau’s assertion that a thermodynamic the-
ory of liquids can not be developed because liquids have
no small parameter. How is this fundamental problem
addressed here? According to Frenkel reduction, liquids
behave like solids with small oscillating particle displace-
ments serving as a small parameter. Large-amplitude dif-
fusive particle jumps continue to play an important role,
but do not destroy the existence of the small parame-
ter. Instead, the jumps serve to modify the phonon spec-
trum: their frequency, ωF, sets the minimal frequency
above which the small-parameter description applies and
solid-like modes propagate.

This approach is therefore a method of non-
perturbative treatment of strong interactions, the central
problem in field theories and other areas of physics [45].
It is markedly different from any other method of treat-
ing strong interactions contemplated in areas outside of
liquids.

CONTINUITY OF SOLID AND LIQUID STATES
AND LIQUID-GLASS TRANSITION

The picture of liquid based on relaxation time τ has a
notable consequence for liquid-solid transitions. In 1935,
Frenkel published an article in Nature entitled, “Conti-
nuity of the solid and the liquid states”, [48] where he
proposed and later developed [1] an argument that liq-
uids and solids are qualitatively the same. This follows
from the concept of τ : as τ increases on lowering the tem-
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perature beyond the experimental time frame, the liquid
becomes frozen glass, and supports shear modes at all
frequencies including at zero frequency. Hence, liquids
and solids are different in terms of τ only, i.e. quantita-
tively, but not qualitatively. Frenkel subsequently stated
that “classification of condensed bodied into solids and
liquids [has] a relative meaning convenient for practical
purposes but devoid of scientific value” [1], an assertion
that many would find unusual today let alone then.

This idea was quickly criticized by Landau [49, 50]
on the basis that the liquid-crystal transition involves
symmetry changes and therefore can not be continu-
ous according to the phase transitions theory. This de-
bate unfortunately reflected a misunderstanding because
Frenkel was emphasizing supercooled liquids that be-
comes glasses on cooling, rather than crystals [1].

Remarkably, essentially the same debate is still contin-
uing in the area of liquid-glass transition where one of the
main discussed questions is whether a phase transition is
involved [34, 35, 51–55]? According to the large set of ex-
perimental data, liquids and glasses are structurally iden-
tical, and liquid-glass transition does not involve struc-
tural changes. Yet at the glass transition temperature Tg
the heat capacity changes with a jump, seemingly provid-
ing support to the thermodynamic signature of the glass
transition. Here, Tg is defined as temperature at which
τ exceeds the experimental time frame, τ = 102 − 103

s, corresponding to liquid becoming frozen in terms of
particle rearrangements during the observation period.

We will return to the question of heat capacity jump
at Tg when we discuss thermodynamic properties of vis-
cous liquids. Here we note that although few consider
the jump of heat capacity at Tg as a phase transition,
versatile proposals were related to a possible phase tran-
sition at lower temperature T0 < Tg [34, 35, 51–55]. The
possibility of this was suggested by the Vogel-Fulcher-
Tammann (VFT) temperature dependence of τ :

τ ∝ exp

(
A

T − T0

)
(18)

where A and T0 are constants.
τ in the VFT law diverges at T0, and the same applies

to viscosity η according to Eq. (15). This led to pro-
posals that the “ideal” glass transition takes place at T0

to the ideal glass state. The transition and the state are
ostensibly not seen because its observation is suppressed
by very slow relaxation process below Tg, and remain to
be of unknown nature [34, 35, 51–55].

An example of the super-Arrhenius behaviour is shown
in Figure 6 for a commonly measured glass-forming sys-
tem, salol [56]. Here and in other cases, τ is described by
the VFT dependence fairly well, although a more careful
experimental analysis revealed that on lowering the tem-
perature, τ crosses over from the VFT to Arrhenius (or
nearly Arrhenius) behavior [57–62]. This takes place at

about midway of the glass transformation range where
τ ≈ 10−6 s, i.e. above Tg and hence well above T0.
Known more widely in the experimental community as
compared to theorists, the crossover removes the basis for
considering divergences and a possible thermodynamic
phase transition at T0.

An interesting question is what causes the crossover
from the VFT law at high temperature to nearly Ar-
rhenius at low. A useful insight comes from the obser-
vation that a sudden local jump event such as the one
shown in Figure 5 induces an elastic wave with a wave-
length comparable to interatomic separation and cage
size. This wave propagates in the system and affects
relaxation of other events, setting the cooperativity of
molecular relaxation. As discussed in the next section,
being a high-frequency wave, it propagates in the solid-
like elastic regime with the propagation length given by
Eq. (26):

d = λωτ ≈ cτ (19)

where c is the speed of sound, ω is frequency and λ is
wavelength. As discussed in the next section, d increases
with τ in this regime, in contrast to the propagation
length of the commonly considered hydrodynamic waves
[3].

At high temperature when τ ≈ τD, d = cτD ≈ a,
where a is interatomic separation. This means that the
wave does not propagate beyond the nearest neighbors
and that the relaxation is non-cooperative (independent)
and is Arrhenius and exponential as a result. Impor-
tantly, d increases on lowering the temperature because
τ increases. This increases the cooperativity of molecu-
lar relaxation [41] but only until d reaches system size L.
Therefore, the crossover from the VFT law to Arrhenius
takes place at τ = L

c , in quantitative agreement with
experiments [44].

HYDRODYNAMIC AND SOLID-LIKE ELASTIC
REGIMES OF WAVE PROPAGATION

As discussed above, liquids behave differently depend-
ing on observation time or frequency. Frequencies ω > ωF

and ω < ωF correspond to solid-like elastic regime (ωτ >
1) and hydrodynamic regime (ωτ < 1), respectively. The
two regimes are described by different equations, those
of elasticity [33] and hydrodynamics [3]. The transition
between the two regimes can be most easily seen by con-
sidering the response of the right-hand side of Eq. (12)
to a periodic force P = A exp(iωt), giving

(
1

G

dPxy
dt

+
Pxy
η

)
exp(iωt) =

1

η
(1 + iωτ)P (20)

where we used η = Gτ .
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For ωτ > 1, (20) gives 1
η (iωτ)P = P

G iω = 1
G
dP
dt , or

purely elastic response. For ωτ < 1, (20) returns purely
viscous response, P

η .
To discuss liquid’s ability to operate in both regimes

depending on ωF, we can either start with hydrodynamic
equations and introduce the solid-like elastic response or
start with elasticity equations and introduce the hydro-
dynamic response. The first method has received most
attention in the history of liquid research, and generally
forms the basis for a variety of approaches collectively
known as “Generalized Hydrodynamics” discussed in the
later section. The second method is not commonly dis-
cussed and its implications are less understood.

Below we consider important examples of the difference
in which collective modes operate in the hydrodynamic
and solid-like elastic regimes, and start with the second
method.

Modifying elasticity: including hydrodynamics in
elasticity equations

Condition (11), ωτ > 1 (sometimes written as ωτ � 1)
corresponds to wave propagation in the liquid with frozen
structure (as in a solid), where the microscopic equations
are Newton equations for all particles (3,4). This is the
solid-like elastic regime of wave propagation. Modifying
elasticity equations by including hydrodynamics enables
us to address our first case study, the difference of wave
propagation in regimes ωτ > 1 and ωτ < 1. We will
see that dissipation length, the length over which an in-
duced wave is dissipated due to viscous effects, behaves
qualitatively differently in the two regimes.

We consider both elastic and viscous response in the
form equivalent to Eq. (12)

ds

dt
=
P

2η
+

1

2G

dP

dt
(21)

where s is shear strain and introduce the operator

A = 1 + τ
d

dt
(22)

where τ = η
G from (15). Then, Eq. (21) can be written

as

ds

dt
=

1

2η
AP (23)

If A−1 is the reciprocal operator to A, P = 2ηA−1 ds
dt .

Because d
dt = A−1

τ from Eq. (22), P = 2G(1 − A−1)s.
Comparing this with P = 2Gs, we find that the presence
of relaxation process is equivalent to the substitution of
G by the operator M = G(1−A−1).

The above constitutes the modification of the con-
stituent elasticity equations by introducing the relaxation
process in the liquid and τ , i.e. approach to liquids from
the solid elastic state:

P = 2Gs→ P = 2G(1−A−1)s (24)

Let us now consider the propagation of the wave of
P and s with time dependence exp(iωt). Differentiation
gives multiplication by iω. Then, A = 1 + iωτ , and M
is:

M =
G

1 + 1
iωτ

(25)

If M = R exp(iφ), the inverse complex velocity is
1
v =

√
ρ
M =

√
ρ
R (cos φ2 − i sin φ

2 ), where ρ is den-
sity. P and s depend on time and position x as
f = exp(iω(t − x/v)). Using the above expression
for 1

v , f = exp(iωt) exp(−ikx) exp(−βx), where k =

ω
√

ρ
R cos φ2 and absorbtion coefficient β = ω

√
ρ
R sin φ

2 .
Combining the last two expressions for k and β, we write

β =
2π tan φ

2

λ , where λ = 2π
k is the wavelength.

From Eq. (25), tanφ = 1
ωτ . For high-frequency waves

ωτ � 1, tanφ ≈ φ = 1
ωτ , giving β = π

λωτ . Lets introduce
the propagation length d = 1/β so that f ∝ exp(−x/d).
Then, d = λωτ

π . Therefore, this theory gives propagating
shear waves in the solid-like elastic regime ωτ � 1, with
the propagation length

d ≈ λ · ωτ
(ωτ � 1)

(26)

We note that this result is derived for plane waves, and
it approximately holds in disordered systems for wave-
lengths that are large enough. At smaller wavelengths
comparable to structural inhomogeneities, d is reduced
due to the dissipation of plane waves in the disordered
medium. The dissipation is related to how well the eigen-
states of the disordered system can be approximated by
plane waves (for more detailed discussion, see Ref. ([46]).

In the hydrodynamic regime ωτ � 1, we find φ = π
2

and d = λ
2π . Different from the high-frequency case, this

means that low-frequency shear waves are not propagat-
ing (because they are dissipated over the distance com-
parable to the wavelength), a result that is also known
from hydrodynamics [3].

The consideration of the propagation velocity of lon-
gitudinal waves involves the bulk modulus which can be
written in the form L = K1 + K2

1+ 1
iωτ

containing the non-

zero static part as well as the frequency-dependent part
as in (25). Repeating the same steps as above, the prop-
agation length in the solid-like elastic regime ωτ � 1 is
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the same as in Eq. (26). In the hydrodynamic regime
ωτ � 1, the propagation length becomes

d ≈ λ

ωτ
(ωτ � 1)

(27)

Comparing Eqs. (26) and (27), we see that the two
different regimes give qualitatively different character of
waves dissipation: the propagation length increases with
τ and viscosity in the former, but decreases with τ and
viscosity in the latter.

The decrease of the propagation length with liquid vis-
cosity in the commonly discussed hydrodynamic regime
is a familiar result from fluid mechanics [3]. On the other
hand, the increase of propagation length in the solid-like
elastic regime is less known.

An important insight from this discussion is that the
two regimes of waves propagation are different from the
physical point of view and yield qualitatively different
results, including directly opposite results for the propa-
gation length. This implies that essential physics in the
hydrodynamic regime and its underlying equations can
not be extrapolated to the solid-like elastic regime (and
vice versa). By extrapolating here we mean extending
the hydrodynamic regime to large k and ω while keeping
the underlying physics and associated equations qualita-
tively the same. We will return to this point below when
we discuss the approach to liquids based on generalized
hydrodynamics.

Our second case study is related to the crossover be-
tween two regimes of propagation. In the solid-like elastic
regime, the propagation velocity in the isotropic medium

is v =
√

B+ 4
3G

ρ [33], where B and G are bulk and shear

moduli, respectively. This is the case for solids as well as
liquids in the solid-like elastic regime where shear waves
above ωF are propagating. In the hydrodynamic regime
where no shear waves propagate as discussed above, the

propagation speed is v =
√

B
ρ , corresponding to G = 0.

Therefore, Frenkel argued, the transition between the two
regimes results in the noticeable increase of the propaga-

tion speed by a factor
√

1 + 4
3
G
B . The transition can be

achieved by either changing τ at a given frequency by al-
tering temperature or pressure, or by changing frequency
at fixed temperature and pressure.

In the later section, “Fast sound”, we will revisit this
effect on the basis of recent experimental results.

Modifying hydrodynamics: including elasticity in
hydrodynamic equations

Eqs. (22)-(24) modify (generalize) elasticity equations
by including relaxation and viscous effects in the liq-
uid in the form of viscous flow at times longer than

τ . Equally, Frenkel argued [1], one can generalize hy-
drodynamic equations by endowing the system with the
solid-like property to sustain shear stress at times shorter
than τ . This idea is generally similar in its spirit to the
approach of Generalized Hydrodynamics that appeared
later (see “Generalized Hydrodynamics” section below),
although Frenkel implemented the idea differently. Apart
from the general interest, this implementation deserves
attention because it is not discussed in traditional gener-
alized hydrodynamics approaches [5, 7, 8].

Lets write the Navier-Stokes equation as

∇2v =
1

η

(
ρ
dv

dt
+∇p

)
(28)

where v is velocity, p is pressure, η is shear viscosity, ρ is
density and the full derivative is d

dt = ∂
∂t + v∇.

Eqs. (22)-(24) account for both long-time viscosity
and short-time elasticity. From (21)-(23), we see that
accounting for both effects is equivalent to making the
substitution 1

η →
1
η + 1

G
d
dt . Using η = Gτ from Eq. (15),

the substitution becomes:

1

η
→ 1

η

(
1 + τ

d

dt

)
(29)

Using (29) in Eq. (28) gives

η∇2v =

(
1 + τ

d

dt

)(
ρ
dv

dt
+∇p

)
(30)

Having proposed Eq. (30), Frenkel did not analyze it
or its solutions. We do it below.

We consider the absence of external forces, p = 0 and
the slowly-flowing fluid so that d

dt = ∂
∂t . Then, Eq. (30)

reads

η
∂2v

∂x2
= ρτ

∂2v

∂t2
+ ρ

∂v

∂t
(31)

where v can be y or z velocity components perpendicular
to x.

In contrast to the Navier-Stokes equation, the gener-
alized hydrodynamic equation Eq. (31) contains the sec-
ond time derivative of v and hence allows for propagating
waves. Indeed, Eq. (31) without the last term reduces
to the wave equation for propagating shear waves with

velocity cs =
√

η
τρ =

√
G
ρ . The last term represents dis-

sipation. Using η = Gτ = ρc2sτ , we re-write Eq. (31)
as

c2s
∂2v

∂x2
=
∂2v

∂t2
+

1

τ

∂v

∂t
(32)
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Seeking the solution of (32) as v = v0 exp (i(kx− Ωt))
gives the quadratic equation for Ω:

Ω2 + Ω
i

τ
− c2sk2 = 0 (33)

Equation (33) has purely imaginary roots if csk <
1
2τ , approximately corresponding to the hydrodynamic
regime ωτ < 1. Therefore, we find that shear waves are
not propagating in the hydrodynamic regime ωτ < 1,
which is the same result as the one derived in the pre-
vious section where elasticity equations were modified to
include viscous effects.

If csk > 1
2τ (corresponding to the solid-like elastic

regime ωτ > 1), Eq. (33) gives Ω = − i
2τ ±

√
c2sk

2 − 1
4τ2 ,

and we find

v ∝ exp

(
− t

2τ

)
exp(iωt)

ω =

√
c2sk

2 − 1

4τ2

(34)

Eq. (34) describes propagating shear waves, contrary
to the original Navier-Stokes equation. We therefore find
that shear waves are propagating in the solid-like elastic
regime ωτ > 1, the same result we derived in the previ-
ous section where elasticity equations were modified to
incorporate fluidity.

According to Eq. (34), the increase of τ or viscos-
ity gives smaller wave dissipation (larger lifetime) in the
solid-like elastic regime ωτ > 1, contrary to the hydro-
dynamic regime [3]. This is the same effect that we have
discussed in the previous section where we found the in-
crease of the propagation length of shear waves with τ
and viscosity (see Eq. (26)).

We note that for large τ or viscosity, ω in Eq. (34)
becomes ω = csk as in the case of shear waves with
no dissipation at all. These are solid-like elastic waves
with wavelengths extending to the shortest interatomic
separations and frequencies up to the highest Debye fre-
quency as predicted in the solid-like elastic approach by
Eq. (11).

We also note that ω of shear waves in Eq. (34) does
not increase from 0 to its linear branch ω = csk in a
jump-like manner as follows from (11). Instead, starting
from about ω = ωF = 1

τ , ω gradually increases from the
square-root dependence to the linear dependence ω =
csk at large τ . This is consistent with the experimental
result showing a gradual increase of the speed of sound
and shear rigidity with the wave frequency [85]. We will
revisit this point when we discuss the phonon approach
to liquid thermodynamics.

To derive the propagation of longitudinal waves, we
need to include the longitudinal viscosity in the Navier-
Stokes equations and modify it similarly to (29), remem-
bering that bulk viscosity is related to the bulk modulus

which, in addition to frequency-depending term, always
has non-zero static term [1]. This will give propagating
longitudinal waves in both solid-like elastic regime and
in the hydrodynamic regime, in agreement with the re-
sults in the previous section. We will not pursue this
derivation here.

Therefore, we find that as far as wave propagation is
concerned, equations of hydrodynamics modified (gener-
alized) to include solid-like elastic effects give the same
results as equations of elasticity modified to include vis-
cous effects.

Interestingly, it is the approach of “Generalized hydro-
dynamics” which historically received wide attention and
development and has become a distinct area of research
[5, 7, 8]. We will discuss this approach in the later sec-
tion. This reflects the historical trend we alluded to in
the introduction: the community largely viewed liquids
as systems conforming to the hydrodynamic equation at
the fundamental level, with possible solid-like elastic ef-
fects to be introduced, if needed, on top. To some ex-
tent, this view was consistent with existing experiments
at the time that mostly probed low-energy properties of
liquids. As discussed in the next Section, high-energy ex-
periments uncovering solid-like properties of liquids have
emerged relatively recently.

It can be argued that the approach to liquids start-
ing with the solid-like elastic description contains more
information about structure and dynamics and, there-
fore, is more suited to discuss high-frequency dynamics
of liquids. This becomes particularly important for con-
structing the phonon theory of liquid thermodynamics
where high-frequency modes govern system’s energy and
heat capacity as discussed in the later section.

EXPERIMENTAL EVIDENCE FOR
HIGH-FREQUENCY COLLECTIVE MODES IN

LIQUIDS

Low-frequency collective modes, including familiar
sound waves, are well understood in liquids. Yet these
modes make a negligible contribution to liquid energy
and heat capacity. Indeed, the liquid energy is almost
entirely governed by high-frequency modes due to the
approximately quadratic density of phonon states. How-
ever, the prediction of high-frequency solid-like modes in
liquids in the regime ωτ > 1 was non-trivial, and was
outside the commonly discussed hydrodynamic approach
where ωτ < 1 [2–12].

The experimental evidence supporting the propagation
of high-frequency modes in liquids includes inelastic X-
ray, neutron and Brillouin scattering experiments. Most
of the evidence is recent and follows the deployment of
powerful synchrotron sources of X-rays.

Early experiments detected the presence of high-
frequency propagating modes and mapped dispersion
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curves which were in striking resemblance to those in
solids [63]. This and similar results were generated at
temperature around melting. The measurements were
later extended to high temperatures considerably above
the melting point, confirming the same result. It is now
well established that liquids sustain propagating modes
extending to wavelengths comparable to interatomic sep-
arations [64–76]. More recently, the same result has been
asserted for supercritical fluids [67, 74, 75].

Importantly, the propagating modes in liquids include
transverse modes. Initially detected in highly viscous
liquids (see, e.g., Refs. [77, 78]), transverse modes have
been later studied in low-viscous liquids on the basis of
positive dispersion [64–66, 68] (recall our previous dis-
cussion that the presence of high-frequency transverse
modes increases sound velocity from the hydrodynamic
to the solid-like value). These studies included water
[79], where it was found that the onset of transverse ex-
citations coincides with the inverse of liquid relaxation
time [80], as predicted by (11). More recently, transverse
modes in liquids were directly measured in the form of
distinct dispersion branches and verified on the basis of
computer modeling [69–73].

In Figure 7, we show measured dispersion curves mea-
sured in liquid Na [70] and liquid Ga [71], together with
SiO2 glass [81, 82] for comparison. In Figure 8, we show
the dispersion curves recently measured in liquid Sn [72],
Fe, Cu and Zn using the experimental setup to study
liquids with high melting points [73].

In Figure 7, we observe a striking similarity between
liquids and their polycrystalline and crystalline coun-
terparts in terms of longitudinal and transverse disper-
sion curves. We further note the similarity of disper-
sion curves in liquids and solid glasses. Overall, Fig-
ures 7 and 8 present an important experimental evidence
regarding collective excitations in liquids. We observe
that despite topological and dynamical disorder, solid-
like quasi-linear dispersion curves exist in liquids in a
wide range of k and up to the largest k corresponding
to interatomic separations, as is the case in solids. No-
tably, this includes both high-frequency longitudinal and
transverse modes.

We comment on damping of collective modes in liquids.
A conservative system, crystalline or amorphous, has its
eigenmodes which are non-decaying. Indeed, Eq. (4)
does not require system’s crystallinity. For a disordered
structure, Eq. (4) gives eigenstates and eigenfrequen-
cies corresponding to collective non-decaying excitations.
For long wavelengths and small energies, these states are
similar to harmonic plane waves and their damping in
disordered systems is small. For short wavelengths, the
eigenstates of the disordered system are different from the
plane waves, and so damping of short-wavelength plane
waves becomes appreciable. Yet the experimental dis-
persion curves obtained by harmonic probes such as X-
rays or neutrons show that high-frequency plane waves
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FIG. 7: Colour online. Experimental dispersion curves. (a):
longitudinal (filled black bullets) and transverse (filled red
bullets) dispersion curves in SiO2 glass [81]. (b): longitudinal
(filled black bullets) and transverse (filled red bullets) excita-
tions in liquid Na. Open diamonds correspond to longitudi-
nal (black) and transverse (red) excitations in polycrystalline
Na, and dashed-dotted lines to longitudinal (black) and trans-
verse (red) branches along [111] direction in Na single crystal
[70]. (c): longitudinal (black bullets) and transverse (red bul-
lets) excitation in liquid Ga. The bullets are bracketed by
the highest and lowest frequency branches measured in bulk
crystalline β-Ga along high symmetry directions, with black
and red dashed-dotted lines corresponding to longitudinal and
transverse excitations, respectively [71]. Dispersion curves in
Na and Ga are reported in reduced zone units.
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FIG. 8: Colour online. Longitudinal (black and blue crosses)
and transverse (filled red bullets) dispersion curves in (a) liq-
uid Sn [72], (b) liquid Fe, (c) liquid Cu and (d) liquid Zn [73].
Red filled triangles in (a) are the results from ab initio simu-
lations [72]. Blue and black crosses correspond to recent and
earlier experiments, respectively. Dashed lines indicate the
slope corresponding to the hydrodynamic sound in the limit
of low k.

are propagating in liquids, as witnessed by the data in
Figures 7 and 8. From the physical point of view, this
follows from the fact that despite long-range disorder,
a well-defined short-range order exists in liquids, glasses
and other disordered systems, as is seen from the peaks of
pair distribution functions in the short as well as medium
range. Therefore, high-frequency harmonic plane waves,
even though damped, are able to propagate at least the
distance comparable to the typical length of the short-
range order. We will find below that this length, the
interatomic separation, which is also the fundamental
length of the system, plays a profound role in govern-
ing the thermodynamic properties of liquids.

We have noted the similarity of vibrational properties
between disordered liquids and their crystalline counter-
parts. Interestingly, similarity (and the lack thereof) be-
tween disordered glasses and their parent crystals have
also been widely discussed. The widely discussed “Bo-
son” peak in the low-frequency range has been long
thought to be present in glasses only but not in crys-
tals and to originate from disorder. However, later work
[83, 84] has demonstrated that similar vibrational fea-
tures are present in crystals as well, provided glasses and
crystals have similar density.

FAST SOUND

It is now good time to revisit the origin of fast sound
mentioned earlier using detailed experimental data dis-
cussed in the previous section.

Starting from larger k-values, the measured speed of
sound often exceeds the hydrodynamic value. This is
seen in Figure 8 where the hydrodynamic speed of sound
is shown as a dashed line. The increase of the measured
speed of sound over its hydrodynamic value is often called
as “fast sound” or “positive sound dispersion” (PSD).

We recall Frenkel prediction discussed earlier: at high
frequency where liquid’s shear modulus becomes non-
zero, the propagation velocity crosses over from its hy-

drodynamic value v =
√

B
ρ to the solid-like elastic value

v =
√

B+ 4
3G

ρ [33, 34], where B and G are bulk and shear

moduli, respectively.
The physical origin of the fast sound has remained con-

troversial, including understanding relative contributions
of the above mechanism and other effects such as dis-
order. Experimentally, the crossover of the longitudinal
sound velocity from its hydrodynamic to solid-like elastic
value has been been well-studied in viscous liquids where
the system starts sustaining rigidity at MHz frequencies
(see, e.g., Ref. [85], where fast sound is seen at fairly
large wavelengths at which the liquid can be considered
as a homogeneous medium). It is generally agreed that
in this range of frequencies, fast sound originates from
this mechanism [85].
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At smaller wavelengths approaching the length of
medium and short-range order, the wave feels structural
inhomogeneities, and disorder of liquids and glasses starts
to affect the dispersion relationship. PSD, with the rela-
tive magnitude of few per cent, was observed in a model
harmonic glass and attributed to the “instantaneous re-
laxation” due to fast decay and dissipation of short-
wavelength phonons in a disordered system [86]. Later
work demonstrated that starting from mesoscopic wave-
lengths, the effective speed of the longitudinal sound can
also decrease [87–89]. Different mechanisms and contri-
butions to PSD were subsequently discussed [76, 90]. The
instantaneous relaxation is likely to be significant close
to the zone boundary [81] (or the first Brillouin pseudo-
zone, related to the short-range order in disordered sys-
tems [76]), although large PSD in silica glass may be
related to the effect of mixing with the low-lying optic
modes. In water, fast sound was discussed on the basis
of coupling between the longitudinal and transverse ex-
citations, and it was found that the onset of transverse
excitations coincides with the inverse of liquid relaxation
time [79, 80], as predicted by (11).

Recent detailed experimental data discussed in the pre-
vious section enable us to directly address the origin of

the fast sound and its magnitude. Combining vh =
√

B
ρ ,

vt =
√

G
ρ and vl =

√
B+ 4

3G

ρ (see, e.g., Ref. [34]),

where vh is the velocity of the low-frequency hydrody-
namic sound, vt is the transverse sound velocity and vl
is the longitudinal velocity from the measured dispersion
curves, we write

v2
l = v2

h +
4

3
v2
t (35)

We note that the expression v2
l = B

ρ + 4
3v

2
t is the iden-

tity for isotropic solids, and also applies to liquids in
which the longitudinal speed of sound changes from the
hydrodynamic to solid-like elastic value due to the onset
of shear rigidity.

Using the data from Refs. [72] and [73], we have taken
vl and vt from the dispersion curves for Fe, Cu, Zn and
Sn shown in Figure 8 at k points where the observed PSD
is maximal and where ω(k) (E(k)) is in the quasi-linear
regime before starting to curve at large k. For Fe, Cu, Zn,
we use the new data shown in blue in Figure 8 and con-
sider the following k points: k = 7.7 nm−1 (first point on
the transverse branch in Figure 8), k = 7.8 nm−1 (second
point on the transverse branch) and k = 8 nm−1 (second
point on the transverse branch), respectively. For Sn,
large PSD is seen at about k = 3.3 nm−1 corresponding
to the second point on the longitudinal branch in Figure
8a. To find vt at this k, we extrapolated the higher-lying
transverse points to lower k while keeping them parallel
to the simulation points, yielding vt = 1220± 150 m/s.

Using experimental vh and vt, we have calculated vl
using Eq. (35). We show calculated and experimental vl
in Table I below.

vh vt vl (experimental) vl (calculated)

[m/s] [m/s] [m/s] [m/s]

Fe 3800 1870±50 4370±30 4370±50

Cu 3460 1510±50 3890±30 3875±50

Zn 2780 1620±50 3330±30 3350±50

Sn 2440 1220±150 2890±30 2820±150

TABLE I: Comparison of experimental vl and vl calculated
on the basis of vh and vt using Eq. (35) as discussed in the
text. The data for vl, vt and vh is from Refs. [72] and [73].

We observe in Table 1 that the calculated and experi-
mental vl agree with each other very well. We therefore
find that the mechanism of fast sound based on the onset
of shear rigidity quantitatively accounts for the experi-
mental data of real liquids in the wide range of k spanning
more than half of the first Brillouin pseudo-zone.

It is interesting to discuss pressure and temperature
conditions at which the fast sound operates in this pic-
ture. The above mechanism implies that the fast sound
disappears when the system loses shear resistance and
transverse modes at all available frequencies. As dis-
cussed later, this takes place above the Frenkel line which
demarcates liquid-like and gas-like properties at high
temperature including in the supercritical region.

As already mentioned, other effects contributing to
PSD can be operative, including the effects due to disor-
der at large k.

GENERALIZED HYDRODYNAMICS

In the earlier section, we have discussed modify-
ing (generalizing) hydrodynamic equations by including
solid-like elastic effects as one way to describe both elastic
and hydrodynamic response of the liquid. “Generalized
hydrodynamics” as a distinct term refers to a number of
proposals seeking to achieve essentially the same result by
using a number of different phenomenological approaches
[5, 7, 8]. One starts with hydrodynamic equations ini-
tially applicable to low ω and k, and introduces a way to
extend them to include the range of large ω and k.

From the point of view of thermodynamics, account-
ing for modes with high ω is important because these
modes make the largest contribution to the system en-
ergy. The contribution of hydrodynamic modes is negli-
gible by comparison.

Generalized hydrodynamics is a large field (see, e. g.,
[5, 7, 8, 12]) which we can only discuss briefly emphasiz-
ing key starting equations and schemes of their modifica-
tion to include higher-energy effects, with the aim to offer
readers a feel for methods used and physics discussed.
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The hydrodynamic description starts with viewing the
liquid as a continuous homogeneous medium and con-
straining it with continuity equation and conservation
laws such as energy and momentum conservation. Ac-
counting for thermal conductivity and viscous dissipation
using the Navier-Stokes equation, the system of equations
can be linearized and solved. This gives several dissipa-
tive modes, from which the evaluation of the density-
density correlation function gives the structure factor
S(k, ω) in the Landau-Placzek form which includes sev-
eral Lorentzians:

S(k, ω) ∝ γ − 1

γ

2χk2

ω2 + (χk2)
2 +

1

γ

(
Γk2

(ω + ck)2 + (Γk2)
2 +

Γk2

(ω − ck)2 + (Γk2)
2

) (36)

where χ is thermal diffusivity, γ =
Cp
Cv

and dissipation Γ
depends on χ, γ, viscosity and density.

The first term corresponds to the central Rayleigh peak
and thermal diffusivity mode. The second two terms cor-
respond to the Brillouin-Mandelstam peaks, and describe
acoustic modes with the adiabatic speed of sound c. The
ratio between the intensity of the Rayleigh peak, IR,
and the Brillouin-Mandelstam peak, IBM, is the Landau-
Placzek ratio: IR

IBM
= γ − 1. Applied originally to light

scattering experiments, Eq. (36) is also viewed as a
convenient fit to high-energy experiments probing non-
hydrodynamic processes where the fit that may include
several Lorentzians or their modifications.

Generalizing hydrodynamic equations and extending
them to large k and ω is often done in terms of cor-
relation functions. Solving the hydrodynamic Navier-
Stokes equation for the transverse current correlation
function Jt(k, t),

∂
∂tJt(k, t) = −νk2Jt(k, t), where ν

is kinematic viscosity, gives for the Fourier transform
Jt(k, ω) a Lorentzian form similar to (36):

Jt(k, ω) = 2v2
0

νk2

ω2 + (νk2)
2 (37)

where ν is kinematic viscosity and v2
0 = Jt(k, t = 0).

The generalization is done in terms of the memory
function Kt(k, t) defined in the equation for Jt(k, ω) as

∂

∂t
Jt(k, ω) = −k2

t∫
0

Kt(k, t− t′)Jt(k, t′)dt′ (38)

where Kt(k, t − t′) is the shear viscosity function or the
memory function for Jt(k, ω) which describes its time
dependence (“memory”).

Introducing J̃t(k, s) as the Laplace transform
Jt(k, ω) = 2Re[J̃t(k, s)]s=iω and taking the Laplace
transform of (38) gives

J̃t(k, s) = v2
0

1

s+ k2K̃t(k, s)
(39)

The generalization introduces the dependence k and
ω by writing K̃t(k, s) as the sum of real and imaginary
parts [K̃t(k, s)]s=iω = K ′t(k, ω) + iK ′′t (k, ω). Then,

Jt(k, ω) = 2v2
0

k2K ′t(k, ω)

(ω + k2K ′′t (k, ω))
2

+ (k2K ′t(k, ω))
2 (40)

giving the generalized hydrodynamic description of the
transverse current correlation function with a resonance
spectrum.

Further analysis depends on the form of Kt(k, t), which
is often postulated as

Kt(k, t) = Kt(k, 0) exp

(
− t

τ(k)

)
(41)

Eq. (41) decays with time relaxation time τ , and we
recognize that this is essentially the same behavior de-
scribed by earlier Eqs. (14) or (16), except the postulated
form also assumes k-dependence of τ . In generalized hy-
drodynamics, Eq. (41) is used not only for K but also for
several types of correlation and memory functions. These
often include modifications such as including more expo-
nentials with different decay times in order to improve
the fit to experimental or simulation data.

Mode-coupling schemes consider correlation functions
for density and current density, factorise higher-order
correlation functions by expressing them as the prod-
uct of two time correlation functions with coupling co-
efficients in the form of static correlation functions, and
give a better agreement for the relaxation function as
compared to the single exponential decay model.

Neglecting k-dependence of τ for the moment, tak-
ing the Laplace transforms of (41) to find K ′t(k, ω) and
K ′′t (k, ω) and using them in (40) gives Jt(k, ω) as [5]

Jt(k, ω) ∝ 1(
ω2 −

(
k2Kt(k, 0)− 1

2τ2

))2
+ f(τ,Kt(k, 0))

(42)

where f is the non-essential function of τ and Kt(k, 0).
The resonance frequency in (42) corresponds to the

propagation of shear modes provided k2Kt(k, 0) > 1
2τ2 .

This condition defines the high-frequency regime of wave
propagation in the solid-like elastic medium. Impor-
tantly, this condition is essentially the same as the one
we derived from the generalized hydrodynamic equation
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(32), as follows from the discussion between Eqs. (32)
and (34).

Similar expressions can be derived for the longitudinal
current correlation function which also includes a static
time-independent term which does not decay. This term
corresponds to non-zero bulk modulus which gives prop-
agating longitudinal waves in the hydrodynamic regime,
as discussed in the previous section.

An alternative approach to generalize hydrodynamics
is to make a phenomenological assumption that a dynam-
ical variable in the liquid is described by the generalized
Langevin equation:

∂a(t)

∂t
+ iΩa(t) +

t∫
0

a(t′)K(t− t′)dt′ = f(t) (43)

where the first two terms reflect the possibility of prop-
agating modes, the third term plays the role of friction
with the memory function K and f is the random force.

This approach proceeds by treating a(t) not as a single
variable but as a collection of variables of choice so that
a(t) becomes a vector including, in its simplest forms,
conserved density, current density and energy variables.
These variables are further generalized to include their
dependence on wavenumber k. This gives a set of cou-
pled equations solved in the matrix form. The set of dy-
namical variables can be extended to include the stress
tensor and heat currents. In this case, the generalized
viscosity is found to have the same exponential decay
as in (41) once the stress tensor is explicitly introduced
as a dynamical variable, the assumption is made regard-
ing stress correlation function and a number of approxi-
mations are made. Then, similar viscoelastic effects are
found as in the previous approach [5].

Propagation of shear and longitudinal modes is also
discussed in the mode-coupling theories mentioned
above. The theory seeks to take a more general ap-
proach in the following sense. Considering that corre-
lation functions are due to density and current density
correlators, the theory represents K̃t(k, s) in (39) by the
second-order memory functions Mt(k, t) and Ml(k, t) for
transverse and longitudinal currents, so that the trans-
verse function J̃t(k, s) and longitudinal function J̃l(k, s)
acquire the forms of damped oscillators. J̃l(k, s) differs
from J̃t(k, s) by the presence of non-zero static term,
giving a finite static restoring force for the longitudinal
mode. As in the previous considerations, this gives prop-
agating longitudinal modes in the hydrodynamic regime.
Rather than postulating the relaxation functions Mt(k, t)
and Ml(k, t) as in (41), the mode-coupling theory consid-
ers higher-order correlation functions and approximates
them by the products of two-time correlation functions.
Memory functions can then be calculated using the re-
sults from molecular dynamics simulations such as static
correlation functions and other parameters required as

the input. For simple systems, the onset of shear wave
propagation can be related to certain shoulder-like fea-
tures in the calculated memory function.

The amount of current research in generalized hydro-
dynamics has markedly decreased as compared to several
decades ago [5]. Interestingly, the steer towards going be-
yond the hydrodynamic description and generalized hy-
drodynamics came from the experimental, and not the-
oretical, community after the solid-like properties of liq-
uids were discovered and problems related to the hydro-
dynamic description of those properties became apparent
[66, 70]. Some of the more recent examples include ex-
ploring how hydrodynamic description gives rise to a sin-
gle underlying relaxation process and accounting for the
viscoelastic effects using several first frequency moments
(see [91–93] and references therein). Other approaches
assume ad hoc that more dynamical variables and their
second and third derivatives are involved in extrapolat-
ing the hydrodynamic regime to high k and ω [94] and,
following earlier proposals [95], use the generalized collec-
tive modes schemes where the sum of exponentials such
as (41) is assumed to describe the decay of correlations.
General disadvantages of this and similar schemes are
related to the phenomenological and empirical nature of
the method [66, 70].

Continuing interest in generalized hydrodynamics is
stimulated by fitting the experimental spectra where, for
example, the second-order memory function is assumed
to take the exponential form (41) [76] or as a sum of two
or more exponentials [96].

COMMENT ON THE HYDRODYNAMIC
APPROACH TO LIQUIDS

Challenges involved in generalized hydrodynamics
were appreciated by practitioners at the early stages of
development [5], including often phenomenological and
empirical ways involved in extrapolating hydrodynamic
description into the solid-like elastic regime. We do not
review these here, although we note the following. Gen-
eralized hydrodynamics introduces k and ω-dependencies
in the liquid properties such as diffusion, viscosity, ther-
mal conductivity, heat capacity and so on, with the
aim to calculate and discuss these functions in the non-
hydrodynamic regime. It is not entirely clear what is
the physical meaning of concepts such as diffusion or vis-
cosity at large ω where the system’s response is elastic
rather than viscous. Understanding physical effects at
these frequencies is important because short-wavelength
modes govern most important system properties such as
energy.

We question a more fundamental premise of the hy-
drodynamic description of liquids: “The advantage of
approaching the large (k,ω) region by generalizing the
hydrodynamic description is that one maintains contact
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with the long-wavelength, low-frequency region at all
stages of the development. This gives insight to the struc-
ture of the resulting equation” [5]. Although being able
to track the evolution of equations may be insightful in
some cases, it may not be advantageous in general. There
is no fundamental reason to designate the hydrodynamic
approach as the universally correct starting point. The
traditional reason for the hydrodynamic approach to liq-
uids is that they are flowing systems and therefore obey
hydrodynamic equations. As we have discussed above,
this applies to times t > τ (ω < ωF) only whereas for
t < τ (ω > ωF) the system is solid-like and can be de-
scribed by solid-like equations. Furthermore, we have
seen that the same properties of collective modes are ob-
tained by either starting with the hydrodynamic equa-
tions and incorporating solid-like elastic effects or start-
ing with the elasticity equations and incorporating the
hydrodynamic fluidity.

Instead, we propose that for the purposes of funda-
mental microscopic description, liquids should be consid-
ered for what they are: systems with molecular dynam-
ics of both types, solid-like oscillatory motion and diffu-
sive jumps, with relative weights of these motions chang-
ing with temperature. As discussed below, these rela-
tive weights govern most important system properties.
In this approach, the hydrodynamic regime (ωτ < 1)
and solid-like elastic regime (ωτ > 1) can, and in many
cases should, be considered separately and without nec-
essarily seeking to extrapolate one regime onto the other.
In addition to avoiding problems of ad-hoc extrapolation
assumptions often present in generalized hydrodynamics,
this approach has the added benefit of rigorously delin-
eating different regimes of liquid dynamics where impor-
tant properties are qualitatively different. This will be-
come particularly apparent when we discuss the change
of dynamics in the supercritical region at the Frenkel line,
the effect that the hydrodynamic description misses.

The hydrodynamic and solid-like elastic descriptions
of liquids apply in their respective domains. It turns out
that it is the solid-like description that is relevant for con-
structing the thermodynamic theory of liquids discussed
in the next section. This is because high-frequency modes
make the largest contribution to the system energy due
to quadratic density of states ∝ ω2, and propagate in the
solid-like elastic regime ωτ > 1. Importantly, this does
not require extrapolations involved in the generalized hy-
drodynamics approach.

PHONON THEORY OF LIQUID
THERMODYNAMICS

Harmonic theory

We have seen above that collective modes in liquids
include one longitudinal mode and two transverse modes

propagating at frequency ω > ωF = 1
τ in the solid-like

elastic regime. The energy of these modes is the liq-
uid vibrational energy. In addition to oscillating, parti-
cles in the liquids undergo diffusive jumps between quasi-
equilibrium positions as discussed above. We write the
total liquid energy as

E = K + Pl + Pt(ω > ωF) + Pd (44)

In Eq. (44), K is the sum of all kinetic terms including
vibrational and diffusional components. In the classical
case, K = 3

2NkBT , and does not depend on how the ki-
netic energy partitions into oscillating and diffusive com-
ponents. Pl and Pt(ω > ωF) are potential energies of
the longitudinal mode and transverse phonons with fre-
quency ω > ωF, respectively. For now, we tentatively
include in Eq. (44) the term Pd, related to the energy of
interaction of diffusing particles with other parts of the
system. Pd is understood to be part of system’s potential
energy which is not already contained in the potential en-
ergy of the phonon terms, Pl and Pt(ω > ωF). Pd is small
compared to other terms in (44) as discussed below.

The smallness of Pd can be discussed by approaching
the liquid from either gas or solid state. Lets consider a
dilute interacting gas where system’s potential energy is
entirely given by the potential energy of the longitudinal
mode, Pl, with the available wavelengths that depend on
pressure and temperature. The remaining energy in the
system is the kinetic energy corresponding to the free
particle motion, giving Pd = 0. Density increase (and
temperature decrease) result in decreasing wavelength of
the longitudinal mode until it reaches values compara-
ble to solid-like interatomic separation a (see the earlier
section “Experimental evidence for high-frequency col-
lective modes in liquids). In this dense gas regime, the
system’s potential energy is still given by Pl, which is
the energy of longitudinal mode but now with the full
solid-like spectrum of wavelengths ranging from the sys-
tem size to a. Further density increase or temperature
decrease result in the appearance of the solid-like oscilla-
tory component of motion. This process is most conve-
niently discussed above the critical point where no liquid-
gas phase transition intervenes and where the crossover
from purely diffusive motion to combined diffusive and
solid-like oscillatory motion takes place at the Frenkel
line discussed in later sections. The emergence of solid-
like oscillatory component of particle motion is related
to the emergence of transverse modes with frequency
ω > ωF in Eq. (44). The potential energy of transverse
modes now contributes to the system’s potential energy,
and the remaining energy corresponds to the free particle
motion (Pd = 0 in Eq. (44)) as in the dense gas.

We can also approach the liquid from the solid state.
In the solid, the potential energy is the sum of potential
components of longitudinal and transverse modes. The
emergence of diffusive motion in the liquid results in the
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disappearance of transverse modes with frequency ω <
ωF according to (11) and modifies the potential energy of
transverse modes to Pt(ω > ωF) in Eq. (44). This implies
smallness of low-frequency potential energy of transverse
modes: Pt(ω < ωF)� Pt(ω > ωF), where Pt(ω < ωF) is
the potential energy of low-frequency transverse modes.
Instead of low-frequency transverse vibrations with po-
tential energy Pt(ω < ωF) in a solid, atoms in a liquid
“slip” and undergo diffusive motions with frequency ωF

and associated potential energy Pd, hence Pd ≈ Pt(ω <
ωF). Combining this with Pt(ω < ωF) � Pt(ω > ωF),
Pd � Pt(ω > ωF) follows. Re-phrasing this, were Pd
large and comparable to Pt(ω > ωF), strong restoring
forces at low frequency would result, and lead to the ex-
istence of low-frequency vibrations instead of diffusion.
We also note that because Pl ≈ Pt, Pd � Pt(ω > ωF)
gives Pd � Pl, further implying that Pd can be omitted
in Eq. (44).

We note that in the regime τ � τD, the justification
for the smallness of Pd in the two previous paragraphs be-
comes unnecessary. Indeed, using a rigorous statistical-
mechanical argument it is easy to show that the total
energy of diffusing atoms (the sum of their kinetic and
potential energy) can be ignored to a very good approx-
imation if τ � τD. This is explained in the “Viscous liq-
uids” section below in detail (see Eqs. 69,70,73 and dis-
cussion around them), where we also remark that τ � τD
corresponds to almost entire range of τ in which liquids
exist as such.

Neglecting small Pd in Eq. (44) is the only approxima-
tion in the theory; subsequent transformations serve to
make the calculations convenient only. Eq. (44) becomes

E = K + Pl + Pt(ω > ωF) (45)

Eq. (45) can be re-written using the virial theorem

Pl = El
2 and Pt(ω > ωF) = Et(ω>ωF)

2 (here, P and E
refer to their average values) and by additionally noting
that the total kinetic energy K is equal to the value of
the kinetic energy of a solid and can therefore be written,
using the virial theorem, as the sum of kinetic terms re-
lated to longitudinal and transverse waves: K = El

2 + Et
2 ,

giving

E = El +
Et(ω > ωF)

2
+
Et
2

(46)

Noting that Et can be represented as Et = Et(ω <
ωF) + Et(ω > ωF), liquid energy reads

E = El + Et(ω > ωF) +
Et(ω < ωF)

2
(47)

The first two terms in (47) give the energy of propa-
gating phonon states in the liquid. The second term is

the energy of two transverse modes which decreases with
temperature. This decrease includes both kinetic and po-
tential parts, however the total kinetic energy of the sys-
tem stays the same as in Eq. (44). The last term ensures
that the decrease of the energy of transverse waves does
not change the total kinetic energy, rather than points
to the existence of low-frequency transverse waves (these
are non-propagating in liquids).

Either (46) or (47) can now be used to calculate the
liquid energy. Each term in Eqs. (46) or (47) can be
calculated as the phonon energy, Eph:

Eph =

∫
E(ω, T )g(ω)dω (48)

where g(ω) is the phonon density of states.
Lets consider Eq. (47) and let Z2 be the partition

function associated with the first two terms in Eq. (47).
Then, Z2 is:

Z2 = (2πh̄)−N
′
∫

exp

(
− 1

2T

N∑
i=1

(p2
i + ω2

liq
2
i )

)
dpdq

×
∫

exp

(
− 1

2T

2N∑
ωti>ωF

(p2
i + ω2

tiq
2
i )

)
dpdq

(49)

where ωF = 1
τ , ωli and ωti are frequencies of longitudinal

and transverse waves, N is the number of atoms and N ′

is the number of phonon states that include longitudinal
waves and transverse waves with frequency ω > ωF. Here
and below, kB = 1.

We recall our earlier discussion that the longitudinal
mode propagates in two different regimes: hydrodynamic
regime ωτ < 1 or solid-like elastic regime ωτ > 1. This
gives different dissipation laws in the two regimes, but
this circumstance is unimportant for calculating the en-
ergy. Indeed, (48) makes no reference to dissipation, and
includes the mode energy and the density of states only.
These are the same in the two regimes, and hence for the
purposes of calculating the energy, the longitudinal mode
can be considered as one single mode with Debye density
states. This statement is not entirely correct because
the mode is not well described in the regime ωτ ≈ 1,
however this circumstance is not essential because, as we
will see later, almost entire energy is due to the modes
with high frequency propagating in the solid-like elastic
regime anyway.

Integrating (49), we find

Z2 = TN

(
N∏
i=1

h̄ωli

)−1

TN1

(
2N∏

ωti>ω0

h̄ωsi

)−1

(50)

whereN1 is the number of transverse modes with ω > ωF.
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In the harmonic approximation, frequencies ωli and
ωti are considered to be temperature-independent, in
contrast to anharmonic case discussed in the next sec-
tion. Then, Eq. (50) gives the energy E = T 2 d

dT lnZ =
NT +N1T .
N1 can be calculated using the quadratic density of

states in the Debye model, as is done in solids [2]. Here
and below, the developed theory is at the same level
of approximation as Debye theory of solids. The den-
sity of states of transverse modes is gt(ω) = 6N

ω3
mt
ω2,

where ωmt is Debye frequency of transverse modes and
we have taken into account that the number of trans-
verse modes in the solid-like density of states is 2N . ωmt
can be somewhat different from the longitudinal Debye
frequency; for simplicity we assume ωmt ≈ ωD. Then,

N1 =
ωD∫
ωF

gt(ω)dω = 2N

(
1−

(
ωF

ωD

)3
)

.

To calculate the last term in Eq. (47), we note that
similarly to Et(ω > ωF) = N1T , Et(ω < ωF) can be
calculated to be Et(ω < ωF) = N2T , where N2 is the
number of shear modes with ω < ωF. Because N2 =

2N − N1, N2 = 2N
(
ωF

ωD

)3

. The total liquid energy is

E = (N + N1 + N2

2 )T according to Eq. (47), giving
finally [97]:

E = NT

(
3−

(
ωF

ωD

)3
)

(51)

At low temperature where τ � τD, or ωF � ωD, Eq.
(51) gives cv = 1

N
dE
dT = 3, the harmonic solid result.

At high temperature when τ → τD and ωF → ωD, Eq.
(51) gives cv = 2, consistent with the experimental re-
sult in Figure 2. As the number of transverse modes
with frequency above ωF decreases with temperature, cv
decreases from about 3 to 2. A quantitative agreement in
the entire temperature range can be studied by using Eq.
(15) or ωF = G∞

η , where η is taken from the independent

experiment. This way, E in Eq. (51) and cv have no
free fitting parameters. The agreement of Eq. (51) with
the experimental cv of liquid Hg is good at this level of
approximation already [97].

In this picture, the decrease of cv with temperature
is due to the evolution of collective modes in the liquid,
namely the reduction of the number of transverse modes
above the frequency ωF = 1

τ . We will discuss exper-
imental data of cv for several types of liquids in more
detail below, including metallic, noble and molecular liq-
uids, and will find that their cv similarly decreases with
temperature as Eq. (51) predicts. The same trend, the
decrease of cv with temperature, has been experimen-
tally found in complex liquids, including such systems
as toluene, propane, ether, chloroform, benzene, methyl
cyclohexane and cyclopentane, hexane, heptane, octane
and so on [106].

We have focused on calculating liquid energy and re-
sulting heat capacity that have contributions from collec-
tive modes and diffusing atoms. We have not discussed
liquid entropy which includes the configurational entropy
measuring the total phase space available to the system,
the phase space sampled by diffusive particle jumps. Un-
like entropy, the energy is not related to exploring the
phase space, and corresponds to the instantaneous state
of the system (in the microcanonical ensemble, or aver-
aged over fluctuations in the canonical ensemble). We
will return to this point below when we discuss thermo-
dynamic properties of viscous liquids.

We make two remarks related to using the Debye
model. First, the Debye model is particularly relevant
for disordered isotropic systems such as glasses [2], which
are known to be nearly identical to liquids from the struc-
tural point of view [34]. Furthermore, we have seen ear-
lier that the dispersion curves in liquids are very similar
to those in solids (including crystals, poly-crystals and
glasses). Therefore, the Debye model can be used in liq-
uids to the same extent as in solids. One important con-
sequence of this is that high-frequency modes in liquids
make the largest contribution to the energy, as they do
in solids including disordered solids. This is re-iterated
elsewhere in this paper.

Second, recall our earlier observation that ω gradually
increases from 0 to ω = ck around ωF with a square-
root dependence (see Eq. (34) and discussion below).

Writing
ωD∫
ωF

gt(ω)dω in the previous paragraph assumes a

sharp lower frequency cutoff at ωF, and is an approxima-
tion in this sense. The approximation is justified because
it is the highest frequency modes above ωF that make
the most contribution to the liquid energy, and because
Debye density of states we employ is already an approx-
imation to the frequency spectrum, the approximation
that may be larger than the one involved in substituting
the square-root crossover with a sharper cutoff.

Comment on the phonon theory of liquid
thermodynamics

We pause for the moment to make several comments
about Eq. (51) and its relationship to our starting Eq.
(1) in the Introduction. g(r) and U(r) featuring in Eq.
(1) are not generally available apart from simple systems
such as Lennard-Jones liquids. For simple liquids, g(r)
and U(r) can be determined from experiments or sim-
ulations and subsequently used in Eq. (1). Unfortu-
nately, neither g(r) nor U(r) are available for liquids with
any larger degree of complexity of structure or interac-
tions. For example, many-body correlations [98, 99] and
network effects can be strong in familiar liquid systems
such as olive oil, SiO2, Se, glycerol, or even water [101],
resulting in complicated structural correlation functions
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that cannot be reduced to the simple two- or even three-
body correlations that are often used. As discussed in
Ref. [6], approximations become difficult to control when
the order of correlation functions already exceeds three-
body correlations. Similarly, it is challenging to extract
multiple correlation functions from the experiment. The
same problems exist for interatomic interactions, which
can be equally multibody and complex, and consequently
not amenable to determination in experiments or simula-
tions. On the other hand, ωF (τ) is available much more
widely as discussed above, enabling us to calculate and
understand liquid cv readily.

Next, expressing the liquid energy in terms of ωF in
Eq. (51) represents a more general description of liquids
as compared to Eq. (1). In Eq. (1), the energy strongly
depends on interactions. It was for this reason that Lan-
dau and Lifshitz state that the liquid energy is strongly
system-dependent and therefore cannot be calculated in
general form [2]. Let us now consider liquids with very
different structural correlations and interatomic interac-
tions such as, for example, H2O, Hg, AsS, olive oil, and
glycerol. As long as ωF of the above liquids is the same
at a certain temperature, Eq. (51) predicts that their
energy is the same (in molecular liquids, we are referring
to the inter-molecular energy as discussed below in more
detail). In this sense, expressing the liquid energy as a
function of ωF only is a more general description because
ωF is a uniformly common property for all liquids.

Finally, Eq. (51), as well as its modifications below,
are simple. This makes it fairly easy to understand and
interpret experimental data as discussed in the later sec-
tion.

An objection could be raised that, although our ap-
proach explains the experimental cv of liquids as dis-
cussed below, the approach is based on ωF, the emer-
gent property rather than on the ostensibly lower-level
data such as g(r) and U(r) in Eq. (1). This brings us
to an important question of what we aim to achieve by
a physical theory. According to one view, “The point
of any physical theory is to make statements about the
outcomes of future experiments on the basis of results
from the previous experiment” [100]. This emphasizes
relationships between experimental properties. In this
sense, Eq. (51) provides a relationship between liquid
thermodynamic properties such as energy and cv on one
side and its dynamical and oscillatory properties such as
ωF on the other.

Including anharmonicity and thermal expansion

In calculating the energy E = T 2 d
dT lnZ, we have

assumed that the phonon frequencies are temperature-
independent. Generally, the phonon frequencies reduce
with temperature. This takes place at both constant
pressure and constant volume. At constant volume, re-

duction of frequencies is related to inherent anharmonic-
ity and increased vibration amplitudes. If frequencies are
temperature-dependent, applying E = T 2 d

dT lnZ to Eq.
(50) gives

E2 = NT−T 2
N∑
i=1

1

ωli

dωli
dT

+N1T−T 2
N1∑
i=1

1

ωti

dωti
dT

(52)

where the derivatives are at constant volume. Eq. (52)
gives the first two terms in Eq. (47).

Using Grüneisen approximation, it is possible to derive
a useful approximate relation: 1

ω

(
dωi
dT

)
v

= −α2 , where α
is the coefficient of thermal expansion [102, 103]. Using
this in (52) gives

E2 = (N +N1)T

(
1 +

αT

2

)
(53)

The last term in Eq. (47), Et(ω<1/τ)
2 , can be calcu-

lated in the same way, giving 1
2N2T

(
1 + αT

2

)
, where N2

is the number of shear modes with ω < ωF calculated
in the previous section. Adding this term to Eq. (53)
and using N1 and N2 from the previous section gives the
anharmonic liquid energy:

E = NT

(
1 +

αT

2

)(
3−

(
ωF

ωD

)3
)

(54)

which reduces to (51) when α = 0.
Eq. (54) has been found to quantitatively describe

cv of 5 commonly studied liquid metals in a wider tem-
perature range where cv decreases from about 3 around
the melting point to 2 at high temperature [104]. The
presence of the anharmonic term in Eq. (54),

(
1 + αT

2

)
,

explains why experimental cv of liquids may exceed the
Dulong-Petit value cv = 3 close to the melting point
[21, 22].

At low temperature when τ � τD, Eq. (54) gives

E = 3NT

(
1 +

αT

2

)
(55)

and cv is

cv = 3 (1 + αT ) (56)

Eq. (56) is equally applicable to solids and viscous
liquids where τ � τD, and has been found consistent
with several simulated crystalline and amorphous sys-
tems [102].

We note that Eqs. (55) and (56) don’t need to be
derived from Eq. (54), and also follow from considering
the solid as a starting point where all three modes are
present.
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Including quantum effects

If the temperature range includes low temperature
where h̄ωD

T � 1 does not hold, effects related to quan-
tum excitations become important. In this case, each
term in Eq. (47) can be calculated using the phonon free
energy [2] as

Fph = E0 + T
∑
i

ln

(
1− exp

(
− h̄ωi
T

))
(57)

where E0 is the energy of zero-point vibrations. In calcu-
lating the energy, Eph = Fph−T dFph

dT , we assume dωi
dT 6= 0

as in the previous section, giving for the phonon energy

Eph = E0 + h̄
∑
i

ωi − T dωi
dT

exp
(
h̄ωi
T

)
− 1

(58)

Using dωi
dT = −αωi2 as before gives

Eph = E0 +

(
1 +

αT

2

)∑
i

h̄ωi

exp
(
h̄ωi
T

)
− 1

(59)

In this form, Eq. (59) can be used to calculate each
of the three terms in (47). The energy of one longitudi-
nal mode, the first term in Eq. (47), can be calculated
by substituting the sum in Eq. (59),

∑
, with Debye

vibrational density of states for longitudinal phonons,
g(ω) = 3N

ω3
D
ω2, where ωD is Debye frequency. Inte-

grating from 0 to ωD gives
∑

= NTD
(
h̄ωD

T

)
, where

D(x) = 3
x3

x∫
0

z3dz
exp(z)−1 is Debye function [2]. The en-

ergy of two transverse modes with frequency ω > ωF,
the second term in Eq. (47), can be similarly calculated
by substituting

∑
with density of states g(ω) = 6N

ω3
D
ω2,

where the normalization accounts for the number of
transverse modes of 2N . Integrating from ωF to ωD

gives
∑

= 2NTD
(
h̄ωD

T

)
−2NT

(
ωF

ωD

)3

D
(
h̄ωF

T

)
. Finally,

Et(ω < ωF) in the last term in Eq. (47) is obtained by in-
tegrating

∑
from 0 to ωF with the same density of states,

giving
∑

= 2NT
(
ωF

ωD

)3

D
(
h̄ωF

T

)
. Putting all terms in

Eq. (59) and then Eq. (47) gives finally the liquid energy

E = E0 +NT

(
1 +

αT

2

)(
3D

(
h̄ωD

T

)
−
(
ωF

ωD

)3

D

(
h̄ωF

T

))
(60)

In general, E0 is temperature-dependent because it de-
pends on ωF and therefore T . However, this becomes im-
portant at temperatures of several K only, whereas be-
low we deal with significantly higher temperatures where

E0 and its derivative in (60) are small compared to the
second temperature-dependent term. In the subsequent
comparison of (60) with experimental cv, we therefore do
not include E0.

In the high-temperature classical limit where h̄ωD

T � 1

and, therefore, h̄ωF

T � 1 (ωF < ωD), Debye functions
become 1, and (60) reduces to the energy of the classical
liquid, Eq. (54).

For some of the liquids discussed in the next section,
the high-temperature classical approximation h̄ωD

T � 1
does not hold in the temperature range considered [105].
In this case, quantum effects at those temperatures be-
come significant, and Eq. (60) should be used to calculate
liquid cv.

Comparison with experimental data

The most straightforward comparison of the above the-
ory to experiments is to calculate the energy using Eqs.
(51), (54) or (60) and experimental ωF. This is often
done by fitting ωF to function such as the VFT law, us-
ing it to calculate the energy and differentiating it to find
cv and compare it to the experimental data. Eqs. (51),
(54) or (60) involve no free fitting parameters, and con-
tain parameters related to system properties only. If ωF

is calculated from experimental viscosity as ωF = G∞
η ,

Eq. (51) contains G∞ and τD which enter as the product
G∞τD. Eq. (54) contains parameters G∞τD and α. In
Eq. (60), G∞ and τD feature separately.

In the last few years, we have compared theoretical
and experimental cv of over 20 different systems, in-
cluding metallic, noble, molecular and network liquids
[97, 104, 105]. We aimed to check our theoretical pre-
dictions in the widest temperature range possible, and
therefore used the data at pressures exceeding the critical
pressures from the National Institute of Standards and
Technology (NIST) database [107]. As a result, many
studied liquids are supercritical. In Figure 9, we show
the comparison of theoretical and experimental data for
several representative liquids. We have included three
liquids in each class: metallic, noble and molecular liq-
uids.

We observe good agreement between experiments and
theoretical predictions in a wide temperature range of
about 50-1300 K in Figure 9. The agreement supports
the interpretation of the universal decrease of cv with
temperature: the decrease is due to the reduction of the
number of transverse modes propagating above frequency
1
τ .

We note that Debye model is not a good approxima-
tion in molecular and hydrogen-bonded systems where
the frequency of intra-molecular vibrations considerably
exceeds the rest of frequencies in the system (e.g. 3572 K
in CO and 2260 K in O2). However, the intra-molecular
modes are not excited in the temperature range of ex-



25

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0
1 . 5

2 . 0

2 . 5

3 . 0

3 . 5
c v 

(k B
)

T  ( K )

R b P b
C O A r

H gc v 
(k B

)

T  ( K )

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
1 . 5

2 . 0

2 . 5

3 . 0

3 . 5

O 2

X e
C H 4

K r

FIG. 9: Colour online. Experimental cv (black color) in
metallic, noble and molecular liquids (kB = 1). Experimental
cv are measured on isobars. Theoretical cv (red color) was
calculated using Eq. (60). The data are from Ref. [105]. The
data for molecular and noble liquids are taken at high pres-
sure to increase the temperature range where these systems
exist in the liquid form [107]. We show the data in two graphs
to avoid overlapping.

perimental cv (see Figure 9). Therefore, the contribution
of intra-molecular motion to cv is purely rotational, crot.
The rotational motion is excited in the considered tem-
perature range, and is classical, giving crot = R for linear
molecules such as CO and O2 and crot = 3R

2 for molecules
with three rotation axes such as CH4. Consequently, cv
for liquid CO shown in Figure (9) corresponds to the heat
capacity per molecule, with crot subtracted from the ex-
perimental data. In this case, N in Eqs. (51), (54) or
(60) refers to the number of molecules.

Phonon excitations at low temperature

The number of excited phonon states increases with
temperature. At low temperature, this results in the
well-known increase of cv: cv ∝ T 3. This increase can
compete with the decrease of cv to the progressive loss
of transverse modes discussed above. In practice, all liq-
uids solidify at low temperature and room pressure ex-
cept helium. In liquid helium under pressure, cv can first
increase with temperature due to the phonon excitation
effects. This is followed by the decrease of cv at higher

temperature, similar to the behavior of classical liquids
in Figure 9. As a result, cv can have a maximum [108].

An interesting assertion can be made about the op-
eration of transverse modes in a hypothetical liquid in
the limit of zero temperature: transverse modes do not
contribute to liquid’s energy and specific heat in this
limit [97]. Indeed, let us consider a liquid with a cer-
tain ωF and calculate the quantum energy of two trans-
verse modes with frequency above ωF as EtT (ω > ωF) =
ωD∫
ωF

h̄ω
exp h̄ω

T −1
gt(ω)dω. EtT (ω > ωF) can be written as

EtT (ω > ωF) =

ωD∫
0

h̄ωgt(ω)dω

exp h̄ω
T − 1

−
ωF∫
0

h̄ωgt(ω)dω

exp h̄ω
T − 1

(61)

Integrating (61) with Debye density of states gt(ω) =
6N
ω3

D
ω2 gives:

EtT (ω > ωF) = 2NTD

(
h̄ωD

T

)
−2NT

(
ωF

ωD

)3

D

(
h̄ωF

T

)
(62)

In the low-temperature limit where D(x) = π4

5x3 , the
two terms cancel exactly, giving EtT (ω > ωF) = 0. The
same result follows without relying on the Debye model
and from observing that in the low-temperature limit,
the upper integration limits in both terms in (61) can be
extended to infinity due to fast convergence of integrals.
Then, EtT (ω > ωF) in (61) is the difference between two
identical terms and is zero [97].

Physically, the reason for EtT (ω > ωF) = 0 is that only
high-frequency transverse modes exist in a liquid accord-
ing to (11), but these are not excited at low temperature.

We will re-visit this result in the later section dis-
cussing solid-like approaches to quantum liquids such as
liquid helium.

HEAT CAPACITY OF SUPERCRITICAL FLUIDS

In the above discussion, cv decreases from about 3 at
low temperature to 2 at high, corresponding to the com-
plete loss of solid-like transverse modes. It is interesting
to ask how cv changes on further temperature increase.
On general grounds, one expects to find the gas-like value
cv = 3

2 at high temperature where the kinetic energy
dominates.

If the system is below the critical point (see Figure
1), further temperature increase involves boiling and the
first-order transition, with cv discontinuously decreasing
to 3

2 in the gas phase. The intervening phase transition
excludes the state of the liquid where cv can gradually
change from 2 to 3

2 and where interesting physics oper-
ates. However, this becomes possible above the critical
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point. This brings us to the interesting discussion of the
supercritical state of matter.

Frenkel line

Supercritical fluids started to be widely deployed in
many important industrial processes [109, 110] once their
high dissolving and extracting properties were appreci-
ated. These properties are unique to supercritical fluids
and primarily result from the combination of high den-
sity and high particle mobility. Theoretically, little was
known about the supercritical state, apart from the gen-
eral assertion that supercritical fluids can be thought of
as high-density gases or high-temperature fluids whose
properties change smoothly with temperature or pres-
sure and without qualitative changes of properties. This
assertion followed from the known absence of a phase
transition above the critical point.

We have recently proposed that this picture should be
modified, and that a new line, the Frenkel line (FL), ex-
ists above the critical point and separates two states with
distinct properties (see Figure 10) [111–114]. The main
idea of the FL lies in considering how particle dynamics
changes in response to pressure and temperature. Recall
that particle dynamics in the liquid can be separated into
solid-like oscillatory and gas-like diffusive components.
This separation applies equally to supercritical fluids as
it does to subcritical liquids: increasing temperature re-
duces τ , and each particle spends less time oscillating and
more time jumping; increasing pressure reverses this and
results in the increase of time spent oscillating relative
to jumping. Increasing temperature at constant pressure
(or decreasing pressure at constant temperature) eventu-
ally results in the disappearance of the solid-like oscilla-
tory motion of particles; all that remains is the diffusive
gas-like motion. This disappearance represents the quali-
tative change in particle dynamics and gives the point on
the FL in Figure 10. Notably, the FL exists at arbitrarily
high pressure and temperature, as does the melting line.

Qualitatively, the FL corresponds to τ → τD (here,
τD refers to the minimal period of transverse modes),
implying that particle motion loses its oscillatory com-
ponent. Quantitatively, the FL can be rigorously defined
by pressure and temperature at which the minimum of
the velocity autocorrelation function (VAF) disappears
[113]. Above the line defined in such a way, velocities
of a large number of particles stop changing their sign
and particles lose the oscillatory component of motion.
Above the line, VAF is monotonically decaying as in a
gas [113].

Another criterion for the FL which is important for
our discussion of thermodynamic properties and which
coincides with the VAF criterion is cv = 2 [113]. Indeed,
τ = τD corresponds to the complete loss of two trans-
verse modes at all available frequencies (see Eq. (11)).
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FIG. 10: Colour online. The Frenkel line in the supercriti-
cal region. Particle dynamics includes both oscillatory and
diffusive components below the line, and is purely diffusive
above the line. Below the line, the system is able to sup-
port rigidity and transverse modes at high frequency. Above
the line, particle motion is purely diffusive, and the ability to
support rigidity and transverse modes is lost at all available
frequencies. Crossing the Frenkel line from below corresponds
to the transition between the “rigid” liquid to the “non-rigid”
gas-like fluid.

The ability to support transverse waves is associated with
solid-like rigidity. Therefore, τ = τD corresponds to the
crossover from the “rigid” liquid to the “non-rigid” gas-
like fluid where no transverse modes exist [111–114, 124],
corresponding to the qualitative change of the excitation
spectrum.

According to Eq. (51), ωF = ωD or τ = τD gives
cv = 2. This corresponds to the qualitative change of
the excitation spectrum in the liquid, the loss of trans-
verse modes. Therefore, we expect to find an interesting
behavior of cv around cv = 2 and its crossover to a new
regime. This is indeed the case as discussed in the next
section.

Due to the qualitative change of particle dynamics,
the FL separates the states with different macroscopic
properties, consistent with experimental data [107]. This
includes diffusion constant, viscosity, thermal conductiv-
ity, speed of sound and other properties [111, 113, 114].
For example, the fast sound discussed earlier disappears
above the FL due to the loss of shear resistance at all
available frequencies. Depending on the temperature and
pressure path on the phase diagram, the crossover of a
particular property may not take place on the FL directly
but close to it.

We note a different proposal to define a line above the
critical point, the Widom line. At the critical point, ther-
modynamic functions have divergent maxima. Above the
critical point, these maxima broaden and persist in the
limited range of pressure and temperature. This enables
one to define lines of maxima of different properties such
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as heat capacity, thermal expansion, compressibility and
so on. Close to the critical point, system properties can
be expressed in terms of the correlation length, the max-
ima of which is the Widom line [115].

The physical significance of the Widom line was origi-
nally attributed to the effect of persisting critical fluctu-
ations on system’s dynamical properties [115]. Following
the detection of PSD above the critical point [74, 116],
the Widom line was proposed to separate two supercrit-
ical states where PSD does and does not operate [75]
(see [111] for the discussion of extrapolating the line to
high pressure and temperature where no maxima exist).
The states with and without PSD were called “liquid-
like” and “gas-like” because they resemble the presence
and absence of PSD in subcritical liquids and gases. The
discussion of the effect of the Widom line on thermody-
namic, dynamical and transport properties followed (see,
e.g., [117, 118]).

Persisting critical anomalies and fluctuations related to
the Widom line certainly affect system properties close
to the critical point. At the same time, the physical ori-
gin of the Widom line and the FL is different, as evident
from the above discussion. A detailed discussion of this
point is outside the scope of this review. Here, we include
two brief remarks: (a) the FL is not physically related
to the critical point and critical fluctuations and exists
in systems where the boiling line and the critical point
are absent such as the soft-sphere system [113]; and (b)
the persisting maxima of thermodynamic functions and
the Widom line decay around (1.5-2)Tc and strongly de-
pend on the property (e.g. heat capacity, compressibility
and so on) and on the path on the phase diagram (i.e.
the location of the Widom line depends on whether the
property is calculated along isobars, isotherms and so
on) [119–122]. This is in contrast to the FL which ex-
ists at arbitrarily high temperature and pressure and is
property- and path-independent.

Heat capacity above the Frenkel line

A confirmation of the above theoretical proposal that
the specific heat undergoes a crossover around cv = 2
comes from molecular dynamics simulations in the su-
percritical state [111, 123]. cv of the model Lennard-
Jones liquid is shown in Figure 11. We first observe a
fairly sharp decrease of cv from about 3 to 2, similar to
the previously discussed behavior in Figure 9. This is
followed by the flattening and slower decrease at higher
temperature. The crossover takes place at around cv = 2
as predicted.

Understanding the slower decrease of cv above the FL
involves the discussion of how the remaining longitu-
dinal mode evolves with temperature (recall that two
transverse modes disappear at the FL). When the FL
is crossed from below, particles lose the oscillatory mo-
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FIG. 11: Colour online. cv (kB = 1) as a function of tempera-
ture from the molecular dynamics simulation of the Lennard-
Jones (LJ) liquid using the data from Ref. [111]. Temperature
is in LJ units. Density is ρ = 1 in LJ units. The region of
dynamical crossover at cv = 2 is highlighted in red and by the
arrow.

tion around their quasi-equilibrium positions, and start
undergoing purely diffusive jumps with distances compa-
rable with the interatomic distance a. Further increase
of particle energy at higher temperature increases the
mean free path of particles L, the average distance which
the particles travel before colliding. L sets the minimal
wavelength of the remaining longitudinal mode, λL: in-
deed, oscillation wavelength can only be larger than L.
Therefore, the propagating longitudinal mode above the
FL has the wavelengths satisfying

λ > L (63)

We observe that the oscillations of the longitudinal
mode in (63) disappear with temperature starting with
the highest frequency (smallest wavelength) above the
FL, in interesting contrast to the evolution of transverse
modes in (11) where transverse modes disappear starting
with the smallest frequency. The difference of tempera-
ture evolution of collective modes below and above the
FL is responsible for the crossover of cv at the FL dis-
cussed below.

The energy of the above longitudinal mode, El, can be
calculated using Eq. (48) as

El =

ωL∫
0

E(ω, T )g(ω)dω (64)

where ωL = 2π
λL
c = 2π

L c is the minimal frequency.
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Taking g(ω) = 3N
ω3

D
ω2 as before and E(ω, T ) = T in

the classical case gives El = NT
(
ωL
ωD

)3

, or NT
(
a
L

)3
.

The total energy of the system is the sum of the kinetic
energy, 3

2NT , and potential energy. Using the equiparti-

tion theorem, the potential energy can be written as El
2 .

This gives the total energy of the non-rigid gas-like fluid
above the FL as

E =
3

2
NT +

1

2
NT

( a
L

)3

(65)

Just above the FL, L ≈ a. According to Eq. (65),
this gives cv = 2, the result that also follows from the
Equation (51) describing the rigid liquid. When L � a
at high temperature, Eq. (65) gives cv = 3

2 as expected.
The crossover of cv seen in Figure 11 is therefore at-

tributed to two different mechanisms governing the de-
crease of cv. Below the FL, cv decreases from the solid
value of 3 to 2 due to the progressive disappearance of
two transverse modes with frequency ω > ωF. Above the
FL, cv decreases from 2 to the ideal-gas value of 3

2 due
to the disappearance of the remaining longitudinal mode
starting with the shortest wavelength governed by L. Re-
maining long-wavelength longitudinal oscillations, sound,
make only small contribution to the system energy and
heat capacity.

The softening of the phonon frequencies with temper-
ature can be accounted for in the same way as in the
case of subcritical fluids above (see Eqs. (52, 53)), giving
[123]:

E =
3

2
NT +

1

2
NT

(
1 +

αT

2

)( a
L

)3

(66)

The actual decrease of cv between cv = 2 and cv = 3
2

can be calculated if temperature dependence of L is
known. This dependence can be taken from the inde-
pendent measurement of the gas-like viscosity of the su-
percritical fluid:

η =
1

3
ρūL (67)

where ū is the average velocity defined by temperature.
Taking η from the experiment, calculating L using (67)

and using it in Eq. (65) or Eq. (66) enables us to cal-
culate E and cv. This gives good agreement with the
experimental cv for several supercritical systems, includ-
ing noble and molecular fluids [123]. In these systems, cv
slowly decreases with temperature as is seen in Figure 11
in the high-temperature range.

We note that in our discussion of liquid thermodynam-
ics throughout this paper, we assumed that the mode en-
ergy is T (in the classical case). This applies to harmonic
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FIG. 12: cv as a function of the characteristic wavelengths
λmax (maximal transverse wavelength in the system) and λmin

(minimal longitudinal wavelength in the system) illustrating
that most important changes of thermodynamics of the dis-
ordered system take place when both wavelengths become
comparable to the fundamental length a.

waves. In weakly-anharmonic cases, the anharmonicity
can be accounted for in the Grüneisen approximation (see
Eq. 54 and related discussion). If the anharmonicity is
strong, the mode energy can substantially differ from T .
This can include the case of very high temperature or
inherently anharmonic systems such as the hard-spheres
system as an extreme example where heat capacity is
equal to the ideal-gas value.

HEAT CAPACITY OF LIQUIDS AND SYSTEM’S
FUNDAMENTAL LENGTH

The behavior of liquid cv in its entire range from the
solid value, cv = 3, to the ideal-gas value, cv = 3

2 , can be
unified and generalized in terms of wavelengths.

Lets consider cv in the rigid liquid state, Eq. (51) and
in the non-rigid gas-like fluid, (65). We do not consider
anharmonic effects related to phonon softening: these
give small corrections (αT � 1) to the energy in Eqs.
(54), (66). An interesting insight comes from combining
Eqs. (51) and (65) and interpreting both of them in terms
of wavelengths [46] (see Figure 12).

The minimal frequency of transverse modes that a liq-
uid supports, ωF, corresponds to the maximal transverse
wavelength, λmax, λmax = aωD

ωF
= a τ

τD
, where a is the

interatomic separation, a ≈ 1 − 2 Å. According to Eq.
(51), cv remains close to its solid-state value of 3 in al-
most entire range of available wavelengths of transverse
modes until ωF starts to approach ωD, including in the
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viscous regime discussed below, or when λmax starts to
approach a. When λmax = a, cv becomes cv = 2 accord-
ing to Eq. (51) and undergoes a crossover to another
regime given by Eq. (65). In this regime, the minimal
wavelength of the longitudinal mode supported by the
system is λmin = L. According to Eq. (65), cv remains
close to the ideal gas value of 3

2 in almost entire range
of the wavelengths of the longitudinal mode until λmin

approaches a. When λmax = a, cv becomes cv = 2, and
matches its low-temperature value at the crossover as
schematically shown in Figure 12.

Consistent with the above discussion, Figure 12 shows
that cv remains constant at either 3 or 3

2 over many or-

ders of magnitude of λ
a , including the regime of viscous

liquids and glasses discussed below, except when λ
a be-

comes close to 1 by order of magnitude.
Figure 12 emphasizes a transparent physical point:

modes with the smallest wavelengths comparable to in-
teratomic separations a contribute most to the energy
and cv in the disordered systems (as they do in crystals)
because they are most numerous. Consequently, condi-
tions λmax ≈ a for two transverse modes and λmin ≈ a for
one longitudinal mode, corresponding to the disappear-
ance of modes with wavelengths comparable to a, give
the largest changes of cv as is seen in Figure 12.

The last result is tantamount to the following general
assertion: the most important changes in thermodynam-
ics of the disordered system are governed by its funda-
mental length a only. Because this length is not affected
by disorder, this assertion holds equally in ordered and
disordered systems.

Interestingly, the above assertion does not follow from
the hydrodynamic approach to liquids. The hydrody-
namic approach works well at large wavelengths, but may
not correctly describe effects at length scales compara-
ble to a. Yet, as we have seen, this scale which plays
an important role in governing system’s thermodynamic
properties.

EVOLUTION OF COLLECTIVE MODES IN
LIQUIDS: SUMMARY

We can now summarize the above discussion of how
collective modes change in liquids with temperature.
This is illustrated in Figure 13.

Figure 13 illustrates that at low temperature, liquids
have the same set of collective modes as in solids: one
longitudinal mode and two transverse modes. In the vis-
cous regime at low enough temperature where τ � τD or
ωF � ωD, the liquid energy is almost entirely given by
the vibrational energy due to these modes, as discussed in
the next section. On temperature increase, the number
of transverse modes propagating above the frequency ωF

decreases. At the FL where particles lose the oscillatory
component of motion and start moving diffusively as in

a gas, the two transverse modes disappear. This picture
is consistent with the results of molecular dynamics sim-
ulations where transverse modes are directly calculated
from the transverse current correlation functions [124].

Above the FL, the collective mode is the remaining
longitudinal mode with the wavelength larger than L,
and its energy progressively decreases with temperature
until it becomes close to the ideal gas.

The evolution of collective modes and related changes
of liquid energy and heat capacity are intimately related
to the change of microscopic dynamics of particles and
the relative weights of diffusive and oscillatory compo-
nents. We will return to this point below when we dis-
cuss the mixed state of liquid dynamics as contrasted to
pure dynamical states of solids and gases.

VISCOUS LIQUIDS

In this section, we discuss how energy and heat capac-
ity of viscous liquids can be understood on the basis of
collective modes. “Viscous” or “highly-viscous” liquids
are loosely defined as liquids where

τ � τD (68)

More generally, viscous liquids are discussed as systems
that avoid crystallization and enter the glass transforma-
tion range. When τ exceeds the experimental time scale
of 102 − 103 s and particle jumps stop operating during
the observation time (in the field of glass transition, par-
ticle jumps are often referred to as “alpha-relaxation”),
the system forms glass. This defines glass transition tem-
perature as τ(Tg) = 102 − 103 s [34].

Properties of viscous liquids have been widely dis-
cussed due to the interest in the problem of liquid-glass
transition, the problem which consists of several unusual
effects and includes persisting controversies (see, e.g.,
[34, 35, 41, 42, 51–55]). Understanding viscous liquids
above Tg is thought to facilitate explaining effects in-
volved in the actual liquid-glass transition at Tg and pos-
sibly effects below Tg [34, 35, 41, 51, 53–55].

We find that in some respects, the glass transition
problem is more controversial that it needs to be. This is
partly because the controversies emerged before good-
quality experimental data became available. For ex-
ample, the crossover from the VFT to the Arrhenius
(or nearly Arrhenius) behavior at low temperature [57–
59, 61, 62] removes the basis for discussing possible di-
vergence and associated ideal glass transition at the VFT
temperature T0, as discussed above.
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FIG. 13: Colour online. Evolution of transverse and longitudinal waves in disordered matter, from viscous liquids and glasses
at low temperature to gases at high. The variation of colour from deep blue at the bottom to light red at the top corresponds
to temperature increase. The Figure shows that the transverse waves (left) start disappearing with temperature starting with
long wavelength modes and completely disappear at the Frenkel line. The longitudinal waves (right) do not change up to the
Frenkel line but start disappearing above the line starting with the shortest wavelength, with only long-wavelength longitudinal
modes propagating at high temperature.

Energy and heat capacity

Perhaps unexpectedly, understanding basic thermody-
namic properties of viscous liquids such as energy and
heat capacity is easier than of low-viscous liquids. It does
not involve expanding the energy into the oscillatory and
diffusive parts as in Eq. (44) or integrating over the oper-
ating phonon states as in Eqs. (48-50). The main results
can be obtained on the basis of one parameter only, τD

τ
(or ωF

ωD
) using a simple yet rigorous statistical-mechanical

argument [125].

The jump probability for a particle is the ratio between
the time spent diffusing and oscillating. The jump event
lasts on the order of Debye vibration period τD ≈ 0.1 ps.
Recall that τ is the time between two consecutive particle
jumps, and therefore is the time that the particle spends
oscillating. Therefore, the jump probability is τD

τ . In
statistical equilibrium, this probability is equal to the

ratio of diffusing atoms, Ndif , and the total number of
atoms, N . Then, at any given moment of time:

Ndif

N
=
τD
τ

(69)

If Edif is the energy associated with diffusing particles,
Edif ∝ Ndif . Together with Etot ∝ N , Eq. (69) gives

Edif

Etot
=
τD
τ

(70)

Eq. (70) implies that under condition (68), the contri-
bution of Edif to the total energy at any moment of time
is negligible.

We note that Eq. (70) corresponds to the instanta-
neous value of Edif which, from the physical point of
view, is given by the smallest time scale of the system,
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τD. During time τD, the system is not in equilibrium.
The equilibrium state is reached when the observation
time exceeds system relaxation time, τ . After time τ ,
all particles in the system undergo jumps. Therefore, we
need to calculate Edif that is averaged over time τ .

Let us divide time τ into m time periods of duration
τD each, so that m = τ

τD
. Then, Edif , averaged over time

τ , Eav
dif , is

Eav
dif =

E1
dif + E2

dif + ...+ Emdif

m
(71)

where Eidif are instantaneous values of Edif featured in

Eq. (70).
Eav

dif

Etot
is

Eav
dif

Etot
=
E1

dif + E2
dif + ...+ Emdif

Etot ·m
(72)

Each of the terms
Eidif

Etot
in Eq. (72) is equal to τD

τ ,
according to Eq. (70). There are m terms in the sum in
Eq. (72). Therefore,

Eav
dif

Etot
=
τD
τ

(73)

We therefore find that under the condition (68), the
ratio of the average energy of diffusion motion to the
total energy is negligibly small, as in the instantaneous
case. Consequently, the energy of the liquid under the
condition (68) is, to a very good approximation, given
by the remaining vibrational part. Similarly, the liquid
constant-volume specific heat, cv,l = 1

N
dEl

dT is entirely
vibrational in the regime (68):

El = Evib
l

cv,l = cvib
v,l

(74)

The vibrational energy and specific heat of liquids in
the regime (68) is readily found. When regime (68) is
operative, Evib

l to a very good approximation is Evib
l =

3NT (here and below, kB = 1). Indeed, a solid supports
one longitudinal mode and two transverse waves in the
range 0 < ω < 1

τD
. The ability of liquids to support shear

modes with frequency ω > 1
τ , combined with τ � τD in

Eq. (68), implies that a viscous liquid supports most
of the shear modes present in a solid. Furthermore and
importantly, it is only the high-frequency shear modes
that make a significant contribution to the liquid vibra-
tional energy, because the vibrational density of states is
approximately proportional to ω2. Hence in the regime
(68), Evib

l = 3NT to a very good approximation, as in a
solid.

We now now consider Eqs. (74) in harmonic and an-
harmonic cases. In the harmonic case, Eqs. (74) give

the energy and specific heat of a liquid as 3NT and 3,
respectively, i.e. the same as in a harmonic solid:

Eh
l = Eh

s = 3NT

chv,l = chv,s = 3
(75)

where s corresponds to the solid and h to the harmonic
case.

In the anharmonic case, Eqs. (74) are modified by the
intrinsic anharmonicity related to softening of phonon
frequencies, and become Eqs. (55) and (56) as discussed
above.

Three pieces of evidence support the above picture.
First, experimental specific heat of liquid metals at low
temperature is close to 3, consistent with the above pre-
dictions [21, 22]. As experimental techniques advanced
and gave access to high pressure and temperature, spe-
cific heats of many noble, molecular and network liquids
were measured in a wide range of parameters including in
the supercritical region [107]. Similarly to liquid metals,
the experimental cv of these liquids was found to be close
to 3 at low temperature where Eq. (1) applies (see Ref.
[105] for a compilation of the NIST and other data of cv
for over 20 liquids of different types).

Second, condition τ � τD becomes particularly pro-
nounced in viscous liquids approaching liquid-glass tran-
sition where τD

τ becomes as small as τD
τ ≈ 10−15. Ex-

periments have shown that in the highly viscous regime
just above Tg, Cp measured at high frequency and rep-
resenting the vibrational part of heat capacity coincides
with the total low-frequency heat capacity usually mea-
sured [126, 127], consistent with Eq. (74). In the glass
transformation range close to Tg, the two heat capacities
start to differ due to non-equilibrium effects and freezing
of configurational entropy, and coincide again below Tg
in the solid glass.

Third, representing cv by its vibrational term in the
highly viscous regime above Tg gives the experimentally
observed change of heat capacity in viscous liquids above
Tg as compared to glasses below Tg. This is discussed in
the next section.

We recall that the only condition used to make the
above assertions is Eq. (68). For practical purposes, this
condition is satisfied for τ >∼ 10τD. Perhaps not widely
recognized, the condition τ ≈ 10τD holds even for low-
viscous liquids such as liquid metals (Hg, Na, Rb and
so on) and noble liquids such as Ar near their melting
points, let alone for more viscous liquids such as room-
temperature olive or motor oil, honey and so on.

Notably, the condition τ >∼ 10τD corresponds to almost
the entire range of τ at which liquids exist. This fact
was not fully appreciated in earlier theoretical work on
liquids. Indeed, on lowering the temperature, τ increases
from its smallest limiting value of τ = τD ≈ 0.1 ps to
τ ≈ 103 s where, by definition, the liquid forms glass
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at the glass transition temperature Tg. Here, τ changes
by 16 orders of magnitude. Consequently, the condition
τD
τ � 1, Eq. (68), or τ >∼ 10τD, applies in the range

103 − 10−12 s, spanning 15 orders of magnitude of τ .
This constitutes almost entire range of τ where liquids
exist as such.

Entropy

Although Eq. (73), combined with Eq. (68), implies
that the energy and cv of a liquid are entirely vibrational
as in a solid, this does not apply to entropy: the diffu-
sional component to entropy is substantial, and can not
be neglected [125].

Indeed, if Zvib and Zdif are the contributions to the
partition sum from vibrations and diffusion, respectively,
the total partition sum of the liquid is Z = Zvib · Zdif .
Then, the liquid energy is E = T 2 d

dT (ln(Zvib · Zdif)) =

T 2 d
dT lnZvib + T 2 d

dT lnZdif = Evib + Edif (here and be-
low, the derivatives are taken at constant volume). Next,
Eav

dif

Etot
� 1 from Eq. (73) also implies Edif

Evib
� 1, where,

for brevity, we dropped the subscript referring to the
average. Therefore, the smallness of diffusional energy,
Edif

Evib
� 1, gives

d
dT lnZdif

d
dT lnZvib

� 1 (76)

The liquid entropy, S = d
dT (T ln(Zvib · Zdif)), is:

S = T
d

dT
lnZvib +lnZvib +T

d

dT
lnZdif +lnZdif (77)

The condition (76) implies that the third term in Eq.
(77) is much smaller than the first one, and can be ne-
glected, giving

S = T
d

dT
lnZvib + lnZvib + lnZdif (78)

Eq. (78) implies that the smallness of Edif , expressed
by Eq. (76), does not lead to the disappearance of all
entropy terms that depend on diffusion because the term
lnZdif remains. This term is responsible for the excess
entropy of liquid over the solid. On the other hand, the
smallness of Edif does lead to the disappearance of terms
depending on Zdif in the specific heat. Indeed, cv,l =
T dS

dT (here, S refers to entropy per atom or molecule),
and from Eq. (78), we find:

cv,l = T
d

dT

(
T

d

dT
lnZvib

)
+T

d

dT
lnZvib+T

d

dT
lnZdif

(79)

Using Eq. (76) once again, we observe that the third
term in Eq. (79) is small compared to the second term,
and can be neglected, giving

cv,l = T
d

dT

(
T

d

dT
lnZvib

)
+ T

d

dT
lnZvib (80)

As a result, cv does not depend on Zdif , and is given
by the vibrational term that depends on Zvib only. As
expected, Eq. (80) is consistent with cv in Eq. (75).

Physically, the inequality of liquid and solid entropies,
Sl 6= Ss, is related to the fact that the entropy mea-
sures the total phase space available to the system, which
is larger in the liquid due to the diffusional component
present in Eq. (78). However, the diffusional component,
lnZdif , although large, is slowly varying with tempera-
ture according to Eq. (76), resulting in a small contribu-
tion to cv (see Eqs. (79) and (80)). On the other hand,
the energy corresponds to the instantaneous state of the
system (or averaged over τ), and is not related to explor-
ing the phase space. Consequently, El = Evib, yielding
Eq. (76) and the smallness of diffusional contribution to
cv despite Sl 6= Ss.

We note that the common thermodynamic description
of entropy does not involve time: it is assumed that the
observation time is long enough for the total phase space
to be explored. In a viscous liquid with large τ , this
exploration is due to particle jumps, and is complete at
long times t� τ only, at which point the system becomes
ergodic.

If extrapolated below Tg, configurational entropy of
viscous liquids reaches zero at a finite temperature, con-
stituting an apparent problem known as the widely dis-
cussed Kauzmann paradox. More recently, issues in-
volved in separating configurational and vibrational en-
tropy and interpreting experimental data became appar-
ent, affecting the way the Kauzmann paradox is viewed
and extent of the problem (see, e.g., Refs. [34], [128] and
references therein).

LIQUID-GLASS TRANSITION

In the previous section, we have ascertained that in the
viscous regime τ � τD, liquid energy and heat capacity
are essentially given by the vibrational terms. What hap-
pens to heat capacity when temperature drops below the
glass transition temperature Tg and we are dealing with
the solid glass, the non-equilibrium system where τ ex-
ceeds observation time?

Figure 14 gives a typical example of the change of the
constant-pressure specific heat, cp, in the glass transfor-
mation range around Tg. If clp and cgp correspond to the
specific heat above and below Tg on both sides of the

glass transformation range,
clp
cgp

= 1.1−1.8 for various liq-

uids [54, 129]. The change of cp at Tg is considered as the
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FIG. 14: Heat capacity of Poly(a-methyl styrene) measured
in calorimetry experiments [128]. Glass transformation range
operates in the interval of about 260 − 270 K.

“thermodynamic” signature of the liquid-glass transition,
and serves to define Tg in the calorimetry experiments.
Tg measured as the temperature of the change of cp coin-
cides with the temperature at which τ reaches 102 − 103

s and exceeds the observation time.
Most researchers do not consider the change of cp as

a signature of the phase transition. This is supported
by the numerous data testifying that the structure of the
viscous liquid above Tg and the structure of glass are
nearly identical. What causes the change of cp at Tg?

Recall that liquid response includes viscous response
related to diffusive jumps and solid-like response. When
the viscous response stops at Tg during the experimental
time scale (from the definition of Tg) and only the elastic
response remains, system’s bulk modulus B and thermal
expansion coefficient α change. This results in different
cp above and below Tg [103].

Lets consider that pressure P is applied to a liquid. Ac-
cording to the Maxwell-Frenkel viscoelastic picture, the
change of liquid volume, v, is v = vel + vr, where vel

and vr are associated with solid-like elastic deformation
and viscous relaxation process. Lets now define Tg as
the temperature at which τ exceeds the observation time
t. This implies that particle jumps are not operative at
Tg during the time of observation. Therefore, v at Tg is
given by purely elastic response as in elastic solid. Then,
we write

P = Bl
vel + vr

V 0
l

P = Bg
vg

V 0
g

(81)

where V 0
l and V 0

g are initial volumes of the liquid and the

glass, vg is the elastic deformation of the glass and Bl and
Bg are bulk moduli of the liquid and glass, respectively.

Let ∆T be a small temperature interval that separates
the liquid from the glass such that τ in the liquid, τl,
is τl = τ(Tg + ∆T ) and ∆T

Tg
� 1. Then, V 0

l ≈ V 0
g .

Similarly, the difference between the elastic response of
the liquid and the glass can be ignored for small ∆T ,
giving vel ≈ vg. Combining the two expressions in (81),
we find:

Bl =
Bg

ε1 + 1
(82)

where ε1 = vr

vel
is the ratio of relaxational and elastic

response to pressure.
The coefficients of thermal expansion of the liquid and

the glass, αl and αg, can be related in a similar way. Lets
consider liquid relaxation in response to the increase of
temperature by ∆T . We write

αl =
1

V l
0

vel + vr

∆T

αg =
1

V g
0

vg

∆T

(83)

where vel and vr are volume changes due to solid-like
elastic and relaxational response as in Eq. (81) but now
in response to temperature variation and vg is elastic
response of the glass. Combining the two expressions for
αl and αg and assuming V 0

l = V 0
g and vel = vg as before,

we find

αl = (ε2 + 1)αg (84)

where ε2 = vr

vel
is the ratio of relaxational and elastic

response to temperature.
Eqs. (82,84) describe the relationships between B and

α in the liquid and the glass due to the presence of par-
ticle jumps in the liquid above Tg and their absence in
the glass at Tg, insofar as Tg is the temperature at which
t < τ . Consistent with experimental observations, these
equations predict that liquids above Tg have larger α and
smaller B as compared to below Tg.

We are now ready to calculate cp below and above
Tg. In the previous section, we have seen that in the
highly viscous regime, cv is given by the vibrational
component of motion only (see Eq. (80)). Hence, we
use cv = 3(1 + αT ) from Eq. (56) which accounts for
phonon softening due to inherent anharmonicity. Writ-
ing constant-pressure specific heat cp as cp = cv+nTα2B,
where n is the number density, we find cp above and be-
low Tg as

clp = 3 (1 + αlT ) + nTα2
l Bl, T > Tg

cgp = 3 (1 + αgT ) + nTα2
gBg, T < Tg

(85)



34

10-3 10-2 10-1 100 101
550

560

570

580

590

600
T g (

K)

q (K/s)

FIG. 15: Increase of Tg in Pd40Ni40P19Si1 glass with the
quench rate q [131].

Eq. (85) predicts that temperature dependence of cp
should follow that of α, in agreement with simultaneous
measurements of cp and α showing that both quantities
closely follow each other across Tg [130].

From Eq. (85),
clp
cgp

can be calculated using experimen-

tal B and α above and below Tg. This gives good agree-

ment with the experimentally observed
clp
cgp

[103].

We have related the change of cp at Tg to the change of
system’s thermal and elastic properties when the liquid
falls out of equilibrium at Tg. It is important to note
that Tg is not a fixed temperature. Tg decreases with the
observation time, or increases with the quench rate q (see,
e.g., [37, 131]). This is a generic effect involved in many
glass transition phenomena where a typical relaxation
time exceeds the experimental time scale.

In Figure 15, we show an example of how Tg, defined as
the temperature of the jump of heat capacity, increases
with the quench rate q in an appreciably large tempera-
ture range.

This effect can be explained as follows. Recall that
the jump of cp at Tg takes place when the observation
time t crosses liquid relaxation time τ . This implies that
because q = ∆T

t , τ at which the jump of heat capacity

takes place is τ(Tg) = ∆T
q , where ∆T is the tempera-

ture interval of glass transformation range. Combining
this with τ(Tg) = τD exp(U/Tg) (here U is approximately
constant because τ is nearly Arrhenius around Tg as dis-
cussed in the previous section “Continuity of solid and

liquid states...”) gives

Tg =
U

ln ∆T
τ0
− ln q

(86)

According to Eq. (86), Tg increases with the loga-
rithm of the quench rate q. In particular, this increase is
predicted to be faster than linear with ln q. This is con-
sistent with experiments [37, 131] and the data in Figure
15. We note that Eq. (86) predicts no divergence of Tg
because the maximal physically possible quench rate is
set by the minimal internal time, Debye vibration period
τD, so that ∆T

τD
in Eq. (86) is always larger than q.

Can the “glass transition line” be identified on the
phase diagram separating the combined oscillatory and
diffusive particle motion above the line from the purely
oscillatory motion observed below Tg during the exper-
imental time scale? This would serve as the opposite
to the Frenkel line which separates the combined oscilla-
tory and diffusive particle motion below the line from
the purely diffusive particle motion above the line at
high temperature. As we have seen above, Tg depends
on the observation time (or frequency), and so no well-
defined glass transition line exists on the phase diagram
because the low-temperature state is a non-equilibrium
liquid. The Frenkel line, on the other hand, separates
two equilibrium states of matter.

To summarize this section, we have seen that several
important experimental results of the glass transition, in-
cluding the heat capacity jump and dependence of Tg on
the quench rate can be understood in the picture viewing
the glass as the viscous liquid that falls out of equilibrium
at Tg.

There are several other interesting non-equilibrium ef-
fects involved in liquid physics. These serve as good
examples and case studies that inspire thinking about
more general issues, including the foundations of statis-
tical mechanics and their modification and extension to
non-equilibrium conditions (see, e.g., [132]).

PHASE TRANSITIONS IN LIQUIDS

We have ascertained several solid-like properties of liq-
uids in the above discussion. The important basic prop-
erty that immediately follows from this picture is that
during time shorter than τ , the local structure of the liq-
uid does not change. This implies the presence of well-
defined short- and medium-range order and transverse-
like excitations as in solids and gives the possibility
for the structure to undergo a phase transition. Phase
transitions in liquids have been indeed found, although
they were discovered fairly recently and their exploration
started much later than of phase transitions in solids.

First-order transitions in liquids demarcate different
local structures and thermodynamic properties. The
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transitions are common in multi-component systems and
liquid crystals where composition and molecular orienta-
tion serve as order parameters. On the other hand, the
possibility of the first-order transition in simple isotropic
liquids was not known until about 2-3 decades ago, ex-
cept for earlier theoretical works (see, e.g, Ref. [133]).

In recent years, phase transformations have been found
[47, 134–150] in several different types of liquids, includ-
ing in elementary liquids (e.g., P [134, 137, 138, 149],
Se [134, 136, 139, 140], S [134, 136], Bi [134, 136], Te
[134, 136]), oxide liquids (e.g., H2O [134, 150], Y2O3-
Al2O3 [137], GeO2 [141], B2O3 [146], P2O5 [148]), halo-
genides (e.g., AlCl3 [142], ZnCl2 [142], AgI [143]), and
chalcogenides (e.g., AsS [47], As2S3 [147], GeSe2 [144]).
Pressure-induced transformations are accompanied by
structural changes in both short-range and intermediate-
range order as well as changes of all physical properties.
Moreover, multiple pressure-induced phase transitions
may take place in one system: for example, AsS under-
goes the transformation between the molecular and cova-
lent liquid, followed by the transformation to the metallic
phase [47]. The transformations take place in the narrow
pressure range and with large changes of structure and
major properties such as viscosity.

Transformations in simple liquids can be both sharp
and smeared. The analysis suggests that sharp transi-
tions take place in liquids whose parent crystals undergo
phase transitions with large changes of the short-range
order structure and bonding type [151].

One of the first examples of sharp liquid-liquid transi-
tions is the semiconductor-metal transformation in liquid
Se [139]. The transition is accompanied by the change
of the short-range order structure, volume and enthalpy
jumps as well as by very large jump of conductivity. Near
the melting curve, the transition occurs at 700 C and 4
GPa. At very high temperatures this transition becomes
smooth and finally almost disappears.

Another clear example of the sharp liquid-liquid tran-
sition in a simple isotropic system is the transition in liq-
uid phosphorus [138, 149]. In Figure 16 we show sharp
changes of the structure factor taking place in a nar-
row range of pressure and temperature. An abrupt and
reversible structural transformation takes place between
the low-pressure molecular liquid and the high-pressure
polymeric liquid. This is shown in the phase diagram in
Figure 16b. As for Se, the line of liquid-liquid transfor-
mation is terminated at very high temperature only and
above 2200◦C.

The key to understanding these transitions lies in liq-
uid dynamical properties. Indeed, if, as was often the
case in the field, we consider a liquid as a structure-
less dense gas, no sharp phase transformations are possi-
ble. On the other hand, the oscillatory-diffusive picture
of liquid dynamics based on τ offers a different insight.
In the regime τ � τD, particles perform many oscilla-
tions around fixed positions before jumping to the nearby
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FIG. 16: (a) Sharp changes in the structure factor in liquid
phosphorus in a narrow range of pressure and temperature.
(b) Phase diagram showing the transition line between molec-
ular and polymeric phosphorus. The data are from Ref. [149].

quasi-equilibrium sites. Therefore, a well-defined short-
and medium-range order exists during time τ . In this
case, liquids not far above the melting point can support
pressure-induced sharp or smeared structural changes,
similarly to their solid analogues.

Interestingly, the critical point of the liquid-gas tran-
sition in phosphorus is around 695◦C and 8.2 MPa. This
means that the transition between the molecular and
polymeric fluids takes place in the supercritical state.
This may have come as a surprising finding in view of the
perceived similarity of the supercritical state in terms of
physical properties. Yet, as discussed above, well-defined
short- and medium-range order exist in liquids above the
critical point as long as the system is in the “rigid”-liquid
state below the FL where τ � τD. We can therefore
predict that liquid-liquid transitions in the supercritical
state operate in the rigid-liquid below the FL but not in
the non-rigid gas-like fluid state above the line.

Not surprisingly and similar to solids, liquid-liquid
phase transitions are accompanied by the change of spec-
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trum of collective modes. Recently, the evidence for
this has started to come from experiments and model-
ing [152].

Understanding liquid structure and its response to
pressure and temperature will continue to benefit from
the development of experimental techniques and in-situ
experiments in particular (see, e.g., Refs. [153, 154] for
review).

QUANTUM LIQUIDS: SOLID-LIKE AND
GAS-LIKE APPROACHES

A quantum liquid is a liquid at temperature low enough
where the effects related to particle statistics, Bose-
Einstein or Fermi-Dirac, become operable. Quantum
liquids is a large area of research (for review, see, e.g.
[2, 3, 155–158]), largely stimulated by superfluidity in
liquid helium. Here, we point to gas-like and solid-like
approaches to quantum liquids and to similarities and
differences of these approaches to those used in classical
liquids discussed earlier.

The solid-like approach to the thermodynamics of
quantum liquids is due to Landau. Emphasizing strong
interactions in the liquid and rejecting earlier proposals
which did not, Landau asserted that the energy of a low-
temperature quantum liquid, such as liquid helium at
room pressure, is the energy of the longitudinal phonon
mode [2].

In this consideration, the quantum nature of the liq-
uid simplifies the understanding of its thermodynamics:
Landau argued that any weakly perturbed state of the
quantum system is a set of elementary excitations, or
quasi-particles. In the low-temperature quantum liquid,
the quasi-particles are phonons and are the lowest energy
states in the system. This gives the solid-like heat capac-
ity of a quantum liquid equal to that in the quantum solid
but with one longitudinal mode only [2]:

cv =
2π2n

15 (h̄u)
3T

3 (87)

where n is the number density and u is the speed of
sound.

Eq. (87) is in agreement with the experimental heat
capacity of liquid helium at room pressure.

Interestingly, Landau assumed that only one longitudi-
nal mode contributes to the energy of a low-temperature
quantum liquid and did not consider high-frequency
transverse modes predicted earlier by Frenkel. This has
been consistent with the absence of direct experimental
evidence of transverse modes in liquid helium at room
pressure. However, it is interesting to ask whether one
should generally consider transverse modes in a hypo-
thetical low-temperature liquid. As we have seen ear-
lier (see section “Phonon excitations at low temperature”

above), transverse modes do not contribute to the liquid
energy in the limit of zero temperature. Hence Landau’s
assumption turned out to be correct.

In addition to explaining the experimental heat ca-
pacity, the solid-like phonon picture of liquid helium
explained superfluidity. Superfluidity emerges due to
the impossibility to excite phonons in the liquid moving
slower than the critical velocity. In the original Landau
theory, the critical velocity is the speed of sound. Con-
siderably lower critical velocity found experimentally was
later attributed to other effects such as energy-absorbing
vortices.

The above low-temperature picture is discussed in the
linear dispersion regime, ε = cp. At higher tempera-
tures, higher phonon branches become excited, includ-
ing the roton part of the spectrum. Interestingly, the
roton part, originally thought to be specific to helium,
later discussed in the context of the Bose-Einstein con-
densate (BEC) [155] and thought to be unusual in more
recent discussions [158], is seen in many classical high-
temperature liquids (see, e.g., [76], [70] and Figure 7).

In addition to the solid-like approach to liquid he-
lium mentioned above, the hydrodynamic approach has
been widely used to discuss hydrodynamic effects (nat-
urally) such as density waves (first sound) and temper-
ature or entropy waves (second sound) and their veloc-
ities [3, 156]. Interestingly and similar to the classical
liquids, two regimes of wave propagation and two sounds
are distinguished depending on ω. Waves with ωτ < 1 are
in the hydrodynamic regime, and are referred to as the
first sound. Regime ωτq > 1 corresponds to the “quasi-
particle” sound, where τq is the lifetime of the quasi-
particle excitation [156], and is analogous to the solid-like
elastic modes in classical liquids discussed above.

Interesting problems related to gas-like versus solid-
approach emerge when the question of BEC in liquid he-
lium is considered. As in the previous discussion, we can
identify two approaches: gas-like and solid-like. The gas-
like approach is due to Bogoliubov, and starts with the
Hamiltonian describing weakly perturbed states of the
Bose gas:

H =
∑
p

p2

2m
a+

p ap +
1

2

∑
U

p′
1p′

2
p1p2 a

+
p′

1
a+
p′

2
ap2

ap1
(88)

where the first and second terms represent kinetic and
potential energy, a+

p , ap are creation and annihilation

operators and U
p′

1p′
2

p1p2 is the matrix element of the pair
interaction potential U(r).

Without the second term, the ground state of the sys-
tem is the BEC gas state. For weak interactions, the
energy levels of the system can be calculated in the per-
turbation theory. As a result, the diagonalised Hamilto-
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nian reads [2]:

H = E0 +
∑

ε(p)b+p bp

ε(p) =

√
u2p2 +

(
p2

2m

)2

u =

√
4πh̄2na

m2

(89)

where n is concentration, a = m
4πh̄2U0 and U0 is the vol-

ume integral of the pair interaction potential.
According to Eq. (89), the presence of interactions

modifies the energy spectrum of the Bose gas and results
in the emergence of the low-energy collective mode with
the propagation speed u. At small momenta, ε = up.

This result is analogous to the gas-like approach to
classical liquids where the weak interactions result in the
low-frequency sound. What happens when interactions
are strong as in liquid helium and when the perturbation
theory does not apply? Here, we face the same problem
of strong interactions as in the classical case.

Landau rejected the possibility of BEC in a strongly-
interacting system: in his view, the low-energy states
of the strongly-interacting system are collective modes
rather than single-particle states as in gases, the picture
similar to quantum solids where phonons are the lowest
energy states and where BEC is irrelevant. In later devel-
opments, BEC was generalized for the case of strongly-
interacting system on the basis of macroscopic occupa-
tion of some one-particle state. It was estimated that in
low-temperature liquid helium, about 10% of atoms are
in the BEC state while the rest is in the normal state
(in this picture, the interactions “deplete” BEC) [156].
The BEC component is then related to the superfluid
component, and its weight changes with temperature.

It is probably fair to say that compared to well-studied
effects of BEC in gases, operation of BEC in liquids is not
understood in a consistent and detailed picture. Pines
and Nozieres remark [156] that a quantitative micro-
scopic theory of liquid helium is yet to emerge. Leggett
comments on the challenge of obtaining direct experi-
mental evidence of BEC in liquid helium as compared to
gases [157].

We now recall our starting picture of liquids where par-
ticle motion includes two components: oscillatory and
diffusive. Can quantum liquids be understood on the
basis of these two types of motion only, similarly to clas-
sical liquids? An interesting insight has come from path-
integral simulations [159]: the emergence of macroscopic
exchanges of diffusing atoms contributes to the λ-peak
in the heat capacity, confirming the earlier Feynman re-
sult [160], and is related to momentum condensation and
superfluidity.

This picture enables one to adopt the solid-like ap-
proach to quantum liquids (instead of the commonly dis-

cussed gas-like approach): we approach the system from
the solid state where strong interactions and resulting
collective modes are considered as a starting point, and
introduce diffusive particle jumps as in the classical case.
From the thermodynamic point of view, these jumps only
modify the phonon spectrum in classical liquids. In quan-
tum liquids, they additionally contribute to the exchange
energy because particle jumps enable the effect of quan-
tum exchange [161].

Can the exchange energy be related to exchange fre-
quency ωF, as is the case for liquid energy in Eqs. (51),
(54) or (60)? This would amount to a Frenkel reduction
discussed earlier but applied to the exchange energy. We
think interesting insights may follow. We feel that gen-
erally developing closer ties between the areas and tools
of classical and quantum liquids should result in new un-
derstanding.

MIXED AND PURE DYNAMICAL STATES:
LIQUIDS, SOLIDS, GASES

The emphasis of our review has been on understand-
ing experimental and modeling data and on providing
relationships between different physical properties. In
addition to this rather practical approach, we can revisit
a more general question alluded to in the Introduction:
how are we to view and classify liquids in terms of their
proximity to gases or solids? Throughout the history of
liquid research, different ways of addressing this question
were discussed [1, 2, 4–8, 10, 12, 15, 16].

On the basis of discussion in this paper, our answer
is that liquids do not need such a classification, or any
other compartmentalizing for that matter. With their in-
teresting and unique properties, liquids belong to a state
of their own. Throughout this review, we have seen that
most important properties of liquids and supercritical flu-
ids can be consistently understood in the picture where
we are compelled to view them as distinct systems in the
notably mixed dynamical state. Particles undergo both
oscillatory motions and diffusive jumps, and the relative
weight of the two components of motion changes with
temperature. As discussed in the section “Viscous liq-
uids” above, this relative weight is quantified by the ratio
τD
τ , which we now define as parameter R:

R =
τD
τ

=
ωF

ωD
(90)

We have seen that R enters the energy of both low-
viscous liquids (see Eqs. (51),(54),(60)) and highly-
viscous liquids including in the glass transformation
range (see Eqs. (69),(70),(73)) and is implicitly present
throughout our discussion.

In liquids, R varies between 0 and 1, and defines the
liquid’s proximity to the solid or gas state. This enables
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us to delineate solids and gases as two limiting cases in
terms of dynamics and thermodynamics.

In solids, particle motion is purely oscillatory, corre-
sponding to R = 0. Indeed, τ → ∞ in ideal crystals or
becomes astronomically large in familiar glasses such as
SiO2 at room temperature [103].

In gases, particle motion is purely diffusive. This cor-
responds to R = 1, as is the case in the supercritical state
above the FL where the oscillatory component of particle
motion is lost and where τ ≈ τD.

We note that R = 1 at the FL above the critical point
or in subcritical liquids constitutes a microscopic and
physically transparent criterion of the difference between
liquids and gases [112]. Indeed, existing common criteria
include distinctions such as that gas fills available vol-
ume but liquid does not, or that gas does not possess
a cohesive state but liquid does. These criteria are ei-
ther not microscopic, are tied to a particular pressure
range or can not be implemented in practice [112]. On
the other hand, asserting that the gas state is charac-
terized by purely diffusive dynamics of particles whereas
the liquid state includes both diffusive and oscillatory
components of particle motion gives a microscopic and
physically transparent criterion.

We therefore find that R = 0 and R = 1 give solids
and gases as two limiting cases of dynamical properties.
In this sense, gases and solids are pure states of matter
in terms of their dynamics. It is for this reason that they
have been well understood theoretically. Liquids, on the
other hand, are a mixed state in terms of their dynamics,
the state that combines solid-like and gas-like motions. It
is the mixed state which has been the ultimate problem
for the theory of liquids.

On the basis of R-parameter, we see that liquids can
only be viewed as solid-like or gas-like when R is either
close to 0 or 1. In all other cases, liquids are thermody-
namically close to neither state. This becomes apparent
from looking at the experimental thermodynamic data
such as in Figure 9. This highlights our earlier point
about the distinct mixed dynamical state of liquids and
associated rich physics.

Once the last assertion is appreciated, theorists be-
come better informed about what approach to liquids is
more appropriate. The best starting point for liquid the-
ory is to make no assumptions regarding the proximity
of liquids to gases or solids and seek no extrapolations
of the hydrodynamic regime to the solid-like regime and
vice versa. Instead, the best starting point is to con-
sider the microscopic picture of liquid dynamics and its
mixed character from the outset, and recognize that the
relative weights of diffusive and oscillatory components
change with temperature. Depending on the property in
question, we can encounter several possibilities.

If we are concerned with long-time and low-energy ob-
servables only (t > τ or ωτ < 1), the relevant equa-
tions are hydrodynamic [3]. Well-understood, these equa-

tions describe hydrodynamic properties independently
and separately from the solid-like regime. The solid-like
approach to liquids does not apply to hydrodynamic ef-
fects.

If we are interested in thermodynamic properties such
as energy and heat capacity, it is the solid-like proper-
ties of liquids that matter most because high-frequency
modes contribute to the liquid energy almost entirely and
propagate in the solid-like regime ωτ > 1. In this case,
we can focus on the solid-like regime of liquid dynamics
from the outset and treat it separately and independently
from the hydrodynamic regime. In this approach, we do
not need to extrapolate the hydrodynamic description
into the solid-like regime as is done in generalized hydro-
dynamics and where extrapolation schemes may be an
issue.

Each regime, hydrodynamic or solid-like, can be an-
alyzed separately. There are also mixed cases where,
for example, we observe solid-like high-frequency modes
(ωτ > 1) at long times (t > τ) because we are inter-
ested in their propagation length. Here, we can start with
either hydrodynamic or elasticity equations and modify
them appropriately. This gives the same results as we
have seen above.

CONCLUSIONS AND OUTLOOK

Our important conclusion regarding the theoretical
view of liquids has already been made in the previous
section. In this review, we discussed how this view
evolved and how different ideas proposed at very differ-
ent times were developing. With the recent evidence for
high-frequency solid-like modes in liquids, it has now be-
come possible to use the solid-like approach to liquids and
discuss their most important thermodynamic properties
such as energy and heat capacity. We have reviewed how
this can be done for liquids in different regimes: low-
viscous subcritical liquids, high-temperature supercriti-
cal gas-like fluids, viscous liquids in the glass transfor-
mation range and systems at the liquid-glass transition.
In each case, we have noted limitations and caveats of
this approach throughout this review.

As alluded to in the Introduction, liquids have been
viewed as inherently complicated systems lacking useful
theoretical concepts such as a small parameter. New un-
derstanding of liquids, including the increasing amount of
high-energy experimental data and its quantitative agree-
ment with predicted thermodynamic properties, change
this traditional perspective. We are beginning to un-
derstand liquid thermodynamics on the basis of high-
frequency collective modes. Contrary to the pessimistic
and vague picture often drawn about them, liquids are
emerging as exciting and unique systems amenable to
theoretical understanding in a consistent picture.

Several points can be mentioned that may advance liq-
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uid research. The evidence for high-frequency collective
modes and transverse modes in particular has started to
emerge fairly recently. It will be interesting to widen
the number of systems with mapped solid-like disper-
sion curves and go beyond simple liquids. It will also be
interesting to extend the experiments to high tempera-
ture and pressure including the supercritical state and
to follow the evolution of collective modes as predicted
theoretically. This can be directly compared to the con-
comitant variation of thermodynamic properties such as
heat capacity.

We have not reviewed molecular dynamics (MD) sim-
ulations although in places we discussed modeling aimed
at backing up experiments and theory. MD simulations
of liquids are as old as the method itself: indeed, the need
for MD simulations was originally rationalized by the dif-
ficulty to construct liquid theory [162], with simulations
playing the role of testing the theory. With the first
simulation of liquids performed in 1957, the generated
data exceeds what is feasible to review. For more recent
examples, an interested reader can consult liquid text-
books and review papers cited throughout this review.
A common issue faced by computer simulations is the
same as in experiments: understanding and interpreting
the data. With reliable interatomic potentials existing
today, it is not hard to calculate cv shown in Figure 9,
but understanding the results requires a physical model.
As far as liquid heat capacity is concerned, it is fair to say
that MD simulations have not resulted in understanding
liquid cv such as shown in Figure 9. Once liquid ther-
modynamics is better understood, MD simulations will
provide interesting microscopic insights and potentially
uncover novel effects. These can include the operation
of collective modes in the solid-like elastic regime and
their evolution at conditions not currently sampled by
experiments including in the supercritical state.

We feel that bringing concepts and tools from classi-
cal and quantum liquids closer may result in new un-
derstanding, particularly in the area of thermodynamics
and operation of BEC in real strongly-interacting liquids.
Exploring the mixed state of liquid dynamics and the sep-
aration of solid-like oscillatory and gas-like diffusive par-
ticle dynamics in quantum liquids may bring unexpected
new insights.

We are grateful to S. Hosokawa and A. Mokshin for
discussions and providing data and to EPSRC for sup-
port.
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