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This paper deals with the problem of assessing probabilistic models which represent the evolution of
a target graph. Such models have long been a topic of interest for a number of networks, especially
communications networks. The solution developed in this paper gives a rigorous way to calculate the
likelihood of the observed graph evolution having arisen from a wide variety of hypothesised models
encompassing many already present in the literature. The framework is shown to recover parameters
from artificial data and is tested on real data sets from Facebook and from emails from the company
Enron.
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1. Introduction

This paper demonstrates a method for analysing dynamic graph models. It applies the well-founded
principles of likelihood-based inference and testing to the graphs to find a rigorous statistical method
for comparing graph evolution. The method is demonstrated on both artificial models and on two real
datasets, interactions between facebook users (wall posts) and emails between employees within Enron.

Dynamic graph models are a subject of increasing research interest. At the turn of the century it
was discovered that several networks appeared to share common properties. These were very different
from the properties of the well-studied Erdős–Rényi random graphs [8]. Small-world networks [20] and
scale-free networks [3] were observed in a variety of contexts. These three models rely on different
stochastic processes to generate graphs, while more recent research explores alternative stochastic pro-
cesses generating graphs with statistical properties that approximate those exhibited by given networks
of interest (e.g. the node/link ratio or degree distribution). These statistics are then compared using a
basket of statistics approach, which compares a generated graph to the target graph to see if its prop-
erties are similar, although generally this similarity is difficult to quantify. We discuss some of these
problems in section 2.1.

There is a genuine research need to advance the state of the art by creating a model which produces
a rigorous measuring stick which can judge the relative worth of two proposed graph evolution models
by comparing them in their ability to explain all stages of a graph’s evolution.

c© The author 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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FIG. 1. Example for likelihood based calculation

1.1 Data sets analysed

In this paper, we consider the analysis of the evolution of two computer-based social networks. Firstly,
facebook is a dataset consisting of almost 200,000 Facebook wall posts. Secondly, enron is a dataset
consisting of one million emails sent and received by Enron employees between 1999 and 2003. Both
these data sets contain timing information, so we can tell when a connection between two different
people is first made. (We assume in this paper that once a connection is made between two people, the
connection persists thereafter.) We have chosen these datasets to demonstrate how this method can be
useful in social network analysis for networks with different characteristics. In the facebook data, posts
are made on one person’s wall at a time; an e-mail may be sent to many people, so the growth in the
enron network is quite different.

1.2 Methodology introduced

This paper suggests a new method for approaching the study of dynamic graphs. When considering
rival candidate models for the evolution of graphs it is important to have a reliable measure for which
model gives the best explanation for the observed data. Consider the simplified example given in Figure
1 showing only two observerations of a dynamic graph. The graph changes by the addition of a node
four and a link between node one and node four. Given these two observations we might compare two
hypothetical models for the evolution of the graph.

• Model one. The graph currently containing N nodes evolves by adding one node and an edge
connecting it to an existing node randomly chosen with equal probabilities. The probability of
choosing node i is pi = 1/N for all i.

• Model two. The graph evolves by adding one node and an edge connecting it to an existing node
randomly chosen with probability proportional to node degree. The probability of choosing node
i is di/∑ j=1N d j where di is the degree of node i.

Here only the node choice section of the model is considered in order to keep the example simple. Model
one gives the probability of choosing node one (p1) as 1/3. Model two gives the probability of choosing
node one (p1) as 1/2 (d1 = 2, d2 = d3 = 1). We can see that model two is a more likely explanation for
the observed graphs. FETA gives a formal way to calculate the likelihood for a general class of models.

FETA, the Framework for Evolving Topology Analysis, is a statistically rigorous approach which can
be used to calculate the likelihood that a given sequence of graphs arose from a suggested probabilistic
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model. FETA can be shown to recover known parameters from test data where the underlying probabilis-
tic process is known. Further, by directly modelling the graph development processes, FETA can assess
probabilistic models which grow graphs with similar characteristics to known target graphs through-
out their history. Data and software are available from https://github.com/richardclegg/
FETA2.

This paper makes several contributions.

• It addresses the problem of determining the process for evolving graphs by presenting a rigorous
framework capable of producing a likelihood. Creating a likelihood framework is non-trivial in
this context but is necessary if rival models are to be compared rigorously.

• By producing a rigorous likelihood-based explanation of graph evolution, standard techniques in
statistical theory become accessible, such as hypothesis testing.

• It accounts for the whole observed lifetime of the evolution of a graph rather than trying to match
statistics on snapshots.

• It formally introduces the idea of separating graph evolution models into two parts: the operation
model which states how the graph will evolve (for example, adding a link, or removing a node) and
the object model which specifies the probabilities for each link/node. This distinction, detailed
in section 3, is implicitly present in earlier work and making it explicit allows the likelihood
calculations performed here.

• FETA introduces the concept of breaking evolution models into simpler model components which
can be combined proportionally. This allows graph models to be tested.

FETA goes beyond previous contributions by considering the entire graph lifetime, rather than fix-
ating on an arbitrary point in the evolution of the graph.

The aim of the present work is not to describe “the best” models to replicate the evolution of target
graphs. Instead, this paper describes a means for determining, given two explanations, which best fits a
target graph.

1.3 Structure of this paper

The structure of the paper is as follows. Section 2 gives further background work. Section 3 describes
the FETA framework in detail which also gives some of the assumptions and requirements for data for
FETA to be useful. Section 4 describes tests on artificial data. Section 5 describes tests on the model
used to select nodes in growing graphs. Section 6 gives conclusions and suggestions for further work.

2. Background and related work

Due to the time-varying nature of interactions between network nodes, the modelling of temporal
changes in networks has received increased attention from researchers in diverse scientific communities
(see, for example, the recent book [12]). However, whereas the temporal analysis of biological net-
works has focused on the analysis of node clustering changes with time and that of social networks
on the changes of network statistics with time [2, 10, 13], communications networks researchers have
focused on reachability and graph distance algorithms that explicitly incorporate temporal characteris-
tics [18, 21]. FETA builds upon this previous work and goes further by taking a data-centred approach
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to modelling how such networks evolve. It is important to realise from the outset that FETA is not a
proposed new model for graph evolution but a method for comparing models of graph evolution.

One of the first models used for graph analysis and generation is the Erdős-Rényi (ER) model, which
produces a Poisson degree distribution [8]. Although mathematically convenient, the ER model proved
insufficient with the discovery that many networks exhibit power law in their degree distributions. The
well-known Barabási–Albert (BA) model [3] provided a seminal explanation of these scaling property
in terms of a preferential attachment mechanism where the probability of connecting to a given node
is exactly proportional to its degree. This led to several models which attempted to explain network
evolution in terms of node degree and related properties; examples include the [1, 3, 11]. These proved
insufficient when a progressively wider set of network statistics was considered, leading to further refine-
ments [5, 15, 25].

It has been shown that a model which faithfully reproduces the node degree distribution may not
capture all the important properties of a graph [23]. Different approaches have been proposed. For
example, the ORBIS model does not try to model the dynamics of a growing network but, instead, tries
to replicate the features of the final network by a process of “rescaling” using graph motifs [14]. In [9]
the authors use various spectral measures as summary statistics and approximate Bayesian computation
to estimate parameters in graph creation models. All of the papers mentioned here test whether the
described model is a good fit to a target graph by considering various graph statistics (see section 2.1).
FETA provides an alternative framework for working these models that is both more rigorous and has
lower computational demands.

Many networks arising from human communication activity have common structural properties,
such as an approximately power law degree distribution. That is the case for the Internet Autonomous
System (AS) topology (the network of Internet connections at a large scale), the world wide web hyper-
link graph, and social networks based on email exchange and telephone calls (for examples and ref-
erences see [4, table 3.1]). One common hypothesis for the basis of these shared characteristics is the
influence of common network development processes.

In the social sciences, network analysis has shifted from simple models based on descriptive statistics
such as node degree or centrality to sophisticated ones that focus on the local selection forces that
determine global network structure. In particular, exponential random graph models (ERGMs), also
known as p∗-models [16, 17], can provide optimal estimates for the probability of a new link given the
properties of the links and nodes currently in the network. This is achieved by treating the network
as a realisation of a set of random variables, and then fitting the parameters for a proposed model for
the distribution of these variables. ERGMs can use node properties to predict connections on a static
collection of nodes to match a target static graph. This could be seen as similar to what FETA does on
dynamic networks. So for a given dynamic model (for example the BA model) for a fixed number of
nodes N it is in principle possilble to express the probabilities of all possible size N graphs under BA as
an ERGM although the form of the ERGM is not known.

Preliminary versions of this work have been presented at workshops [6, 7]. The former concentrates
on applying the results to a number of different data sets, and the latter, to the general theory of FETA
and its application to artificial data sets. The work has been considerably developed and clarified since
then in terms of terminology and ability to explain real data. This paper further develops the theoret-
ical, modelling and evaluation aspects of FETA, and presents results using two well-known data sets
(facebook and enron). These data sets have been studied before, for example in [19] the authors use the
enron data set to investigate automatic detection of change points in graphs. Facebook, of course, has
spawned considerable research effort, a summary from the social science perspective is [24].
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2.1 The “basket of statistics”

A typical approach to model graph evolution is to consider a graph at only one time point in its evolution
(or a small number of such points) and to measure a number of statistics on it for example [3, 5, 25].
A typical procedure would be to do the following. (1) Take the final state of a network as the “target”
for the model. (2) Measure several statistics on this target. (3) Propose a statistical process to generate
a graph, for example, “add a new node and connect it to three existing node chosens with probability
proportional to its degree” would characterise the preferential attachment model[3]. (4) Use this process
to grow a graph to the same size as the target. (5) Measure the same statistics on the artificial graph and
compare them to the actual statistics. A model is considered successful if an artificial graph grown
according to the model is similar for several chosen statistics. The field has progressed by finding
statistics which existing models did not replicate well and showing that improved models replicated
those statistics.

Typical statistics would include, number of nodes, number of links, clustering coefficient, the dis-
tribution of node degrees, the power law exponent associated with the node degree distribution (if there
is one), assortativity, clustering coefficient, graph diameter and many others. Here this approach is
referred to as the basket of statistics approach. There are a number of problems with this approach. It
accounts only for one part of the graph evolution, the end point. The statistics compared may be highly
correlated. Comparison of summary statistics may be inconclusive, for example a model is better for
the majority of statistics but significantly worse for a minority. The distributions of the statistics are not
known, so quantifying how similar one graph is to another is not readily possible. The FETA likelihood
framework addresses all these shortcomings.

3. A likelihood based framework

The FETA framework produces a rigorous likelihood for a probabilistic model for a graph’s evolu-
tion. Consider a graph G(t) where links and nodes may be added or removed. Assume that this
graph is observed at discrete times (these need not be evenly spaced) to produce a series of graph
snapshots gi, where i ∈ N. Let g be some sequence of observed graphs g = (gi,gi+1, . . . ,gi+n); here
this paper follows the standard statistical notation that Gi is a random variable and gi is an observa-
tion of it. Define a model M(θ), where θ is a vector of model parameters, which determines the
probability of all possible next observations given the current and previous observations. The assumed
structure of these models will be described in the next section. Let fi(gi|M(θ)) be the probability
of seeing gi as observation i given gi−1,gi−2, . . . for a particular model M(θ), so that fi(gi|M(θ)) =
P [Gi = gi|Gi−1 = gi−1,Gi−2 = gi−2, . . . ,M(θ)]. (Note that fi strictly is also conditioned on, and hence
a function of, gi−1,gi−2, . . . but this is omitted for brevity.)

FETA considers the problem of determining the likelihood of the observed evolution sequence g
given a starting graph gi

1 and a hypothesised explanatory model M(θ) for the evolution of a graph. It
is important to note that at each step of evolution of the model M(θ) then the probabilities are functions
only of the previously observed states of the graph. This allows probabilities to be factored in the normal
way. That is

P [Gi+1 = gi+1,Gi = gi|Gi−1 = gi−1,Gi−2 = gi−2, . . . ,M(θ)] = fi(gi|M(θ)) fi−1(gi−1|M(θ)).

(Note this is need not be a one-step Markovian assumption, fi(gi|M(θ)) can be conditioned on the
history of observations so far not just gi−1.) This can continue for all observations and therefore the

1This need not be the earliest observed graph in the sequence.
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likelihood of the parameterised model M(θ) given the observations G is given by

L(M(θ)|G) = P [G|M(θ)] =
k=i+n

∏
k=i+1

fk(gk). (3.1)

The likelihood of the observed sequence is the product of the probability of each step in that sequence.
The question this leaves, of course, is how to produce a probabilistic model which can assign prob-

abilities to different types of changes to a graph. This is achieved by breaking down the model into two
parts. These parts are referred to here as the “operation” and “object” models.

• The “operation model” selects the nature of the type of transformation which will be made to the
graph; and

• The “object model” elects the exact objects which will participate in the operation.

The literature in the area has implicitly worked with this separation of model elements as will be dis-
cussed in the next sections.

3.1 The operation model

The concepts here will be clearer with examples. In the original Preferential Attachment model [3],
the operation model is “At each step, add a new node and select three existing nodes to connect to it.”
Later work [1] added a more complex model which could, with given probabilities, perform one of three
actions to the network, two of which added new nodes and one of which connected and rewired internal
nodes. The probabilities could be tuned to replicate the edge/node ratio of the target network. The GLP
model [5] uses two operations, the addition of a new node with a fixed number of links and the addition
of links between existing nodes. The PFP model in [25] uses a model called the “interactive growth”
mode. For the operation model this chooses one from three operations with fixed probabilities. The
operations add new links and make onward connections from existing links in different ways.

However, this part of the modelling appears to have received scant attention from previous authors.
For example, if the proposed models previously described are used, networks are grown which all gen-
erate new nodes and new links in a fixed ratio. This is not what is typically seen in real networks. It
seems that if the field of dynamic graph generation models is to progress, one area where progress could
be made is in more realistic “operation models”. For example, for the enron data described here the
link/node ratio varies from near 2.8 at the start of the study period and finishes at near 6.0. For the
facebook data the ratio begins at 4.7 and finishes at near 8.0. It is clear that what is termed here the
operation model is an important and under-studied problem.

3.2 The object model

Once an operation model has been specified, the object model works out which entities the operation
acts on. In all cases currently used this involves choosing one or more nodes according to a probabilistic
rule based upon the current state of the graph. Several such models were mentioned in the introduction.
Firstly we define such a model in a common format: The preferential attachment model assigns a
probability to a node which which is proportional to its degree. Specifically then, the probability of
picking a node i is pi = di/∑i∈N di where di is the degree of node i and N is the set of all nodes. All
such object models have the common property of requiring normalisation and for simplicity they will
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be written in the form pi = di/k where k is understood to be a normalisation constant which makes pi
sum to one over the graph (and which changes with the graph).

An object model then, is a function which makes an assignment between a node in a graph and a
probability for choosing that node, in such a way that the probabilities sum to one over all nodes. They
will be represented here with M• and, if the model has a parameter as M•(θ). The random model (all
nodes equally weighted) will be a null hypothesis and hence referred to as M0. Model components used
in this paper are as follows.

• Random model M0 : pi = 1/k.

• Preferential attachment Md : pi = di/k.

• PFP Mp(δ ) : pi = d1+δ log10(di)
i /k where δ is a parameter.

• Degree power Md(α) : pi = dα
i /k where α is a parameter.

• Triangle model Mt : pi = ti/k where ti is the triangle count of node i2.

• Singleton model M1 : pi = 1/k if di = 1, or pi = 0 otherwise.

• Doubleton model M2 : pi = 1/k if di = 2, or pi = 0 otherwise.

• Hot model MH : pi = 1/k if node picked in last n picks or pi = 0 otherwise (n is a parameter).

The singleton and doubleton models are used because of the observation that some graphs (notably the
AS graph [25] have a different number of nodes of low connectivity than might be expected). The
Hot model is introduced because of the observation that in some networks, nodes which have made a
connection are more likely to make another connection. Obviously some of these models would become
ill-defined at certain points and in those cases the assumption is made that all nodes are equi-probable.
For example the singleton model would not otherwise be well-defined if there were no nodes with degree
one. The hot model would not be well-defined before any nodes were chosen. By introducing the extra
condition of equi-probability then the models are well-defined at any time there is one or more nodes to
choose from.

Some of these models well-defined but not useful in isolation (the hot model will pick the same nodes
again and again, the singleton model will eventually give every node degree 2). However the models
can be linearly combined. So, for example 0.5M0 + 0.5Md represents a model which is half random
and half preferential attachment where pi = 0.5/k0 + 0.5di/kd where k0 and kd are the normalisation
constants for the random model and the preferential attachment model respectively. In general models
can be constructed by adding together components: for example

M(θ) = β0M0 +βpMp(δ )+βhMh(n). (3.2)

(random plus degree power plus hot), where θ = (β0,βp,βh,δ ,n) and this will be a valid probability
model if β• ∈ [0,1] and β0 +βp +βh = 1. It is easy to show that if the pi sum to one (over all nodes
in the graph) in each model component then the pi sum to one if the components are weighted by β•
parameters which sum to one. By combining models components in this way a large number of potential
models can be generated to test on each graph.

2The triangle count is the number of pairs of neighbours of a node that are also themselves neighbours.
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Equation 3.1 gives the likelihood of some observed sequence of graph evolution arising from a
hypothesised operation model and object model. This can be broken down into the separate likelihood
of the operations arising from the operation model and the objects selected arising from the object
model. The log likelihood is given by

l(M(θ)|G) = log(L(M(θ)|G)) =
k=i+n

∑
k=i+1

log( fk(gk)).

From an observation of a sequence of graphs g = (gi,gi+1, . . . ,gi+n) and an operation model, a set of
object model node choices C = (ci,1,ci,2, . . . ,ci, j(i),ci+1,1 . . . ,ci+n, j(i+n)) can be inferred, where at stage
i a number of nodes j(i) were chosen, these nodes being ci,1,ci,2, . . . ,ci, j(i). We let the total number of
nodes chosen be N = |C|= ∑i j(i). The likelihood of these objects being chosen can then be calculated
using the probabilities pi for the particular model outlined above. Note depending upon the object
model, different numbers of nodes may be chosen at each step.

For the object model, a more human-readable measure for this model is c0, which is is the likelihood
ratio of a hypothesised model M compared to the random model under the null model M0.

Definition 1 Let M(θ) be some object model for the set of node choices C of size N, dependent on
parameters θ . Let M0 be the random model (all nodes equi-probable). Let L(M(θ)|C) and l(M(θ)|C)
be the likelihood and log-likelihood of the choices object model M producing choices C with parameter
θ . The per choice likelihood ratio c0 is the number of observations of g made. It is given by

c0(θ) =

[
L(M(θ))|C

L(M0|C)

]1/N

= exp
[

l(M(θ)|C)− l(M0|C)

N

]
.

This is introduced for two reasons. Firstly, it enables the experimenter to quickly see whether the
proposed object model is better or worse than the hypothesis that the nodes are chosen completely at
random, as c0 > 1 represents a more likely model than M0. Secondly, it puts the figures into a more
human readable range – for example, in one of the experiments in section 4 the log likelihood varied
from −128868 to −118082 whereas c0 varied from 6.751 to 3.710.

Definition 2 For a particular model M(θ) parameterised by θ . Let Θ be the complete parameter space
of θ . Given hypotheses H0 : θ ∈Θ0 and H1 : θ ∈Θ/Θ0, we can form the likelihood ratio test statistic as

Λ(C) =
sup{L(M(θ) |C) : θ ∈Θ0 }
sup{L(M(θ) |C) : θ ∈Θ }

.

In the case where the null hypothesis is nested within the alternative hypothesis, Wilks’ theorem
[22] tells us that −2logΛ(C) is distributed approximately according to the χ2 distribution with degrees
of freedom equal to the difference in the number of parameters shared between the hypotheses, with the
approximation becoming better as N→ ∞. This allows us to perform formal hypothesis testing.

EXAMPLE 3.1 Suppose we wish to test whether the model M(θ) = β0M0 + βdMd(δ ) fits a dataset
better than the random model M0 where at each step all nodes are chosen with equal probability. As
noted, β0 +βd = 1, so we can without loss of generality assume that θ = β0 and parameterise M(β0) =
β0M0 +(1−β0)Md . We then wish to test the null hypothesis H0 : β0 = 1 (i.e. that the random model is
true) against the null hypothesis 0 6 β0 < 1. We form the likelihood ratio test statistic Λ(C) = L(M(β̂ ) |
C)/L(M0 | C), where β̂ is the maximum likelihood estimator for β , i.e. the value of β that yields the
choice set C with the highest likelihood. As M contains one parameter, we can test the hypotheses
against the χ2 distribution with one degree of freedom.
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Note that when considering a model M(θ) in which the random model is nested, we can test the
hypothesis H0 that the random model is true against the alternative hypothesis that the full model M(θ)
is true for choice set C by considering that Λ(C) = [c0(θ̂)]

−N such that the Wilks’ ratio −2logΛ(C) =
2N logc0. This can be tested against χ2

ν−1, where ν is the number of parameters in model M(θ).

3.3 Computational considerations

To go from the mathematical statements above to computational implementation is a major contribution
of this work. The computational implementation of FETA so far (FETA version 2.0) does not make the
most general implementation of the framework. In allows analysis of connected simple (no multiple
links or self-loops) networks (directed or undirected). The operation model actions comprise the fol-
lowing: add new node and link to n existing nodes and m other new nodes (n+m > 0); add clique of n
new nodes and m existing nodes n+m > 0; and add a link between two existing nodes.

The code and data and instructions on how to use FETA are freely available at https://github.
com/richardclegg/FETA2. Work is underway on FETA version 3.0 which will include self-
loops, multiple links, weighted links and node and link deletions. It is important to state that these
enhancements are intended to reduce limitations of the current codebase, not of the framework.

The workflow for analysing a likelihood for an observed network using FETA 2.0 is described below.

1. Specify an explanatory object model with all parameters – separate models can be included for
cliques, new nodes and links between old nodes (see list above).

2. Read the input network which is assumed to be a list of nodes or links each stamped with a time.

3. Where multiple links/nodes are added at the same time:

(a) Find and remove any sets of cliques added.

(b) Find and remove any sets of new nodes (and their links) added.

(c) Anything left is parsed as sets of links between existing nodes.

4. The network is now broken down into a series of operations. The likelihood of each operation
is given by the operation model. The likelihood of the objects for the operation is given by the
object model.

5. The likelihood with the null object model (random) is also calculated.

6. The likelihoods are combined and output as an overall likelihood, an object model and operation
model likelihood and a likelihood ratio per choice relative to null c0.

This gives the likelihood of a proposed model. Often we will want to assess models which are
linear combinations of some sub-models, such as in Equation 3.2. In [6] we showed how we might
quickly search for the optimal linear combination and hence the model with the maximum likelihood,
by regarding the model as a General Linear Model (here without error component) and using standard
procedures to find the values of θ that maximise the likelihood.

Having settled upon one or more models for further investigation the FETA code can be used to out-
put statistics of interest throughout the life of the actual target network and artificial networks generated
using the target models.

A number of optimisations are important to make the FETA code run at reasonable speed. For
example, nodes are grouped by sets according to their attributes (e.g. sets of nodes of a given degree)
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which are tracked as the network evolves. Preferential attachment can then be made faster by selecting
a node degree and then choosing one from the selected set of those nodes.

An important note in this is that, when compared with the traditional method of growing example
networks and comparing statistics, with FETA it is much faster to assess a likelihood than to grow a
network. When assessing a likelihood, at each stage the procedure must calculate the probability of the
link and node combination chosen. When growing a network, at each stage the procedure must calculate
the probability of every potential link/node that may be picked and then choose one. In the experiments
here, assessing the likelihood of a model growing a target network was between 10 and 100 times faster
than growing an artificial network using that model – this is another advantage of using likelihoods
rather than comparing statistics on grown models.

4. Artificial tests

The first test is to see if FETA can estimate known artificial parameters. The results in this section
will concentrate on the object model. In this section, the experiments have common form. A target
graph is generated from a simple known operation model and object model. The object model will be
parameterised. The likelihood of the target graph will then be measured with various settings for the
model parameters. If FETA works correctly then the likelihood will be maximised when the parameters
match the input parameters used to grow the graph. For these experiments the operation model is very
simple. At every iteration a single node is added and connected to two existing nodes. An initial three
node network is given (a triangle) and the process continues until 10,000 nodes have been added.

4.1 Plotting likelihood surfaces

In this section, graphs are grown using object models which have two free parameters and it is shown
that FETA can estimate these parameters correctly in most circumstances. Working with the grown
network model, every likely pair of parameters is selected and a likelihood surface is produced. Because
likelihood detection is much faster computationally than growing a new network then this can be done
extremely quickly for modestly sized networks. For example, for the 10,000 link network above, one
likelihood test took 0.60 seconds using a single CPU (i7-4710HQ CPU @ 2.50GHz) of a standard laptop.
If speed did become a problem then it is not necessary to test every single element of a network’s growth
to find the maximum likelihood estimator for a parameter. Standard methods in optimisation, such as
steepest ascent algorithms, are applicable.

If the FETA procedure provides useful estimates, the likelihood will be highest when the parameters
are those which were used to grow the network. In other words, the maximum likelihood estimators
found by FETA should be an unbiased estimate for the original parameters for sufficiently large graphs.

The first model tested (model one) is that new nodes are selected with a combination of the degree
power model with α = 0.5 and the doubleton model. In the terms of section 3.2, the model is 0.5F2 +
0.5d(0.5). The fitting will assume the form β1F2 +β2Fd(α). Obviously, to be valid β1 +β2 = 1 so there
are only two free parameters, β1 and α . The actual values chosen were β1 = β2 = α = 0.5. All values of
β1 from 0.1 to 0.9 were tried (at intervals of 0.05) and values of α from 0.1 to 2.0 were tried (at intervals
of 0.1). The likelihood is shown in terms of the ratio c0 defined in Definition 1.

Figure 2(left) shows the likelihood surface for the parameters and contour lines of equal likelihood
(these lines are not evenly spaced but are selected to demonstrate how the likelihood increases toward
the correct value). As can be seen, the likelihood surface forms a dome with the centre (the maximum
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FIG. 2. Artificial network with degree-power/doubleton model (left) and the PFP and triangle model (right) showing c0.

likelihood estimator) in the exactly correct place. From this model, the estimators β̂1 = α̂ = 0.5 seem
to be unbiased.

A second and more challenging test is provided model two 0.5Fp(0.05)+ 0.5Ft – that is half PFP
with δ = 0.05 and half the triangle model. This is a more difficult test because the triangle model and
the PFP model are to some extent doing “the same thing”. That is, a node with a high degree is also
likely to have a high triangle count. The maximum likelihood estimators are β̂1 = 0.45 and δ̂ = 0.04
close to but not exactly equal to the original parameters as can be seen in Figure 2(right).

It is known that maximum likelihood estimators are consistent, in terms of this framework that as
the number of graphs in the observed sequence, n, increases to ∞, the estimator converges in probability
to its true value. However, as the graphs analysed are finite it is useful to investigate the properties of
the maximum likelihood estimators and specifically that the the bias and variance of the estimators are
small for reasonable n.

For each of these models, Monte Carlo simulation is performed on graphs grown with Model one
and Model two. In each experiment 1,000 graphs are grown for each of Model one and Model two. For
each replication the best c0 value was found with β1 values tested from 0.35 to 0.65 at intervals of 0.01
and α values tested in the same range and interval. Graphs with 5,000 links and 10,000 links were used
to see how the variance in estimates changes with graph size.

A plot of counts for best the β̂1 and α̂ estimates (the values of that maximise c0) for each of the
1,000 runs is shown in Figure 3. As can be seen, both the β̂1 and the α̂ estimates are clustered around
the correct values (β1 = 0.5 and α = 0.5). No significant bias can be seen. For β̂1 the mean values
were 0.500025 and 0.5 respectively for 5,000 and 10,000 links. For α̂ the mean values were 0.4993 and
0.498125. the β1 parameter was almost always correctly estimated even with the smallest number of
counts. The variance in the estimate was low, 0.00237 and 0.000974 respectively for α̂ and 0.0000169
and 0 for β̂ . This is good evidence that even for relatively small graphs the FETA method produces a
low bias and low variance estimator.

The same experiment is tried with model two, again with 1,000 replications and graphs of size 5,000
and 10,000 links. In this case the true values of the parameters are β1 = 0.5 and δ = 0.05. The β1
values were tested as before from 0.35 to 0.65 at intervals of 0.01 and d values were tested from 0.035
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FIG. 3. Counts for best c0 values for model one, 5,000 links (left) 10,000 links (right).

to 0.065 at intervals of 0.001. The resulting counts for the values of δ̂ and β̂1 (again those that maximise
c0) are shown in Figure 4. Again there is good evidence even for relatively small graphs that the bias
and variance of the estimate are low and converge quickly. The mean values for β̂1 were 0.499 for
5,000 links and 0.5 for 10,000 links. The mean values for δ̂ were 0.0496 and 0.0499 respectively. The
variances for β̂1 were 0.0000106 and 0.00000304 and for δ̂ were 0.000253 and 0.000112. Again, this
is strong evidence that FETA produces low bias low variance estimates for known parameters. We also
see that there appears to be a covariance between β̂1 and δ̂ , reflecting our belief that it is challenging to
distinguish between the triangle and the PFP object models.
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FIG. 4. Counts for best c0 values for model two, 5,000 links (left) 10,000 links (right).

5. Object model tests on real data

FETA has already been tested with several data sets [6, 7]. These include an authorship network, two
measurements of the Internet Autonomous Systems graph and two photo sharing websites. In addition
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to presenting an improved modelling framework, this paper tests it using two additional freely available3

data sets of interest to communication networks, facebook and enron.
In this section the focus of interest is the object model. The operation model is isolated by directly

using the operations provided by network growth datasets. That is, when in the real dataset a link is
added between existing nodes or a new node is linked to one or more nodes, FETA will apply this same
operation at exactly the same time. However, instead of choosing the nodes defined by the dataset,
FETA instead connects nodes chosen using the object model.

In this section, candidate object models are tested by assessing their likelihood. This testing is done
purely by assessing existing data from the target network, not by growing a candidate artificial models
and comparing its statistics. The c0 value (higher indicating a better likelihood) is used to distinguish
which model is better. If the FETA technique works well, then a higher c0 should lead to an improved
match in artificial networks grown using these models.

5.1 Facebook wall post data

This data set, termed facebook, uses facebook wall posts. The network is treated as undirected and
duplicate links are removed leaving a network with 183,412 links.

The approach is to compare the real network data with an artificial network grown from probabilistic
rules. In this case, the object models compared are random connections, preferential attachment, the PFP
model 9with the optimal value of δ to maximise likelihood), the Degree power model (with the optimal
value of α to maximise likelihoods) and a “best” model (chosen by investigating a large number of
combined models and selecting the model and parameters with the highest likelihood).

The claim made is not that these models are good representations of the graph but that the likelihood
predicts which models are better representations. To reduce the number of plots given on the graphs,
only the preferential attachment, the “best” model and the model with the highest c0 from PFP and
degree power are shown. In general PFP and degree power had similar success and the random model
was, as would be expected, uniformly very bad.

The Preferential Attachment model has c0 = 1.091. The PFP model with δ =−0.2 has c0 = 1.199.
The Degree Power model with α = 0.575 has c0 = 1.220, The “best” model is only a slight improve-
ment. Mixing the random model with the Degree Power model and adjusting the α to 0.8 improves the
likelihood but only to c0 = 1.221. The “best” model is 0.41Mr + 0.39Md(0.8). From these results it
would be expected that “best” and Degree Power are approximately as good a fit to the target graph and
both are better than preferential attachment.

It is possible to test whether the “best” model is significantly improved on the degree power model.
For our general model M(β0,α) = β0Mr +(1−β0)Md(α) which is a mixture of the random model plus
the degree power model with parameter α , we wish to test the null hypothesis that β0 = 0 against the
alternative hypothesis β0 > 0. We form the ratio Λ(C) which for this dataset is the ratio of the best model
found under the null hypothesis (e.g. that with only the degree power model), where c0(Md) = 1.22025
against that for the unrestricted model with c0(M) = 1.22129 as (Λ(C))1/N = 1.22025/1.22129, from
which we can calculate the Wilks’ Ratio −2logΛ = −2N log(1.22025/1.22129) = 216.2. Comparing
this to the χ2 distribution with 1 degree of freedom suggests that the “best” model is significantly better
than that with preferential attachment alone, the p-value being effectively zero.

Having identified three candidate models, PA, degree-power and “best” the next stage is to grow
three networks and see how well they fit various statistics during the growth of the graph. To ensure

3http://konect.uni-koblenz.de/networks
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repeatability each model is grown five times and the statistics averaged. The mean value of the five
repetitions are used. The standard deviation was calculated but the error bars were too small to show up
on the graphs.

This process of growing a model and comparing statistics with the target graph is typical of the Bas-
ket of Statistics approach discussed in the introduction. The flaws of such comparison are as previously
discussed. However, it does provide some insight into the connection between graph likelihood and
differences in measured statistics across the evolution of the graph.

The plots here are all given as plots of absolute percentage error against time, that is, if at time t the
target graph has S(t) for the statistic and the artificial graph has S′(t) then the graphs plot 100|[S′(t)−
S(t)]/S(t)|. While this hides some information (the absolute value of the statistic in question) it provides
a much easier comparison between hypothetical graph models. If the answer is closer to zero it is a closer
fit for that statistic at that time. All graphs are grown from the same initial seed models and hence start
with zero error. Each model is grown five times and averaged, error bars were so small that they did not
show up on the plots – the graph models were replicating the statistics very closely between runs.
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FIG. 5. Error in estimation for the facebook data set: Number of singleton nodes (top left), doubleton nodes (top right), Mean
degree squared (bottom left) Maximum node degree (bottom right)

Figure 5 shows the accuracy to which various statistics on the facebook graph are modelled. Four
statistics are shown. For the majority it is clear that the degree power and PFP models are fairly realistic.
The preferential attachment model performs poorly at estimating the number of singleton nodes and
the mean degree squared. Maximum node degree is a notoriously hard statistic to estimate. More
importantly, however, the models are as would be predicted from the c0 value, with “best” and degree
power performing similarly but both outperforming preferential attachment.

Other statistics showed a similar pattern the exception being clustering coefficient where all three
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models performed almost identically and had nearly 100% error (the real data had a CC which began
at 0.06 and finished around 0.12 and the models did not predict this growth and uniformly kept the CC
of 0.06 throughout). This is likely because none of the models had a triadic closure element (a model
component that would preferentially complete triangles). In general though, as would be expected, the
c0 value was a good predictor for the success of a model at replicating the real graph.

5.2 Enron data model

The enron data set consists of more than one million emails sent and received by Enron employ-
ees between 1999 and 2003. Email recipients/senders are modelled as nodes, and at least one email
between them defines a link. The network is treated as undirected and non complex (duplicate emails
are ignored). After removal of repeated links, 256,133 links remained. At one point a large email to
many people greatly changed the maximum degree (and to a lesser extent other network properties) –
this can be seen at time 0.075 on the graph representing maximum node degree (one email to many
people becomes the maximum degree node).

A similar process as used for the facebook data was used to find the maximum values for c0. The
PFP model has its maximum c0 = 4.932 when δ = −0.02. The degree power model has its maximum
c0 = 4.907 with α = 0.98. The preferential attachment model gives c0 = 4.898. The similar c0 values
indicate that there is little difference between the three models in terms of likelihood (PFP is equivalent
to PA when δ = 0 and the degree power model is equivalent when α = 1). The “best” model was a
combination of the “hot” model (choose again a recently chosen node) and PFP with δ =−0.02 giving
the model 0.75Fp(−0.02)+ 0.25Fh(1). This model has c0 = 22.479 indicating it is considerably more
likely than PFP or PA.

The general form of the “best” model is M(β0,β1,α,n) = β0Mr +β1Mh(n)+ (1−β0−β1)Md(α).
If we wish to formally test whether the “best” model has higher likelihood than, for example, the PFP
model, we test H0 : β0 = β1 = 0 against H1 : At least one of β0 and β1 is non-zero. The Wilks’ Ratio
is -2 logΛ(C) = −2N log(4.903/22.479) = 518574 which shows that we can reject H0 with an over-
whelming amount of evidence: the “best” model’s likelihood is substantially higher.

A similar procedure to that for the facebook data set is followed, and three models are grown five
times each (in this case, PFP, PA and “best”) and matched to the target data. Again error bars showing
the difference between the runs were too small to show up on the graphs. Given the values of c0 it would
be expected that PA is worse than PFP which is much worse than “best”.

Figure 6 shows the same four statistics for the enron data. This model proved a little harder to match
real statistics. In particular the count of doubletons (nodes of degree two) proved hard to model. It is
hard to distinguish between the performance of PFP and “best” but it is clear that preferential attachment
performs badly on two statistics. Again the clustering coefficient (not pictured) was captured poorly by
all models. The graphs shown here are completely consistent with what would be expected from the
likelihood with the exception that it would be expected that “best” would show an extremely clear
advantage which it does not. The explanation here is almost certainly the hot model component. This
strongly predicts the exact order in which links are selected and this does not affect any of the statistics
shown. Therefore it is likely that the increased likelihood the “best” model has is demonstrated in factors
not shown in the investigated statistics.

In summary then, for both datasets (five others are tested in previous work) the likelihood assessment
can be used to test a large number of models extremely quickly. When test networks are grown to
compare the models with the real data, models with higher likelihood provide a better fit to observed
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FIG. 6. Error in estimation for enron data: Number of singleton nodes (top left), doubleton nodes (top right), Mean degree squared
(bottom left) Maximum node degree (bottom right)

statistics on the graph. Moreover, for nested models, a rigorous test can be used to see if one model is
significantly more likely than another.

6. Conclusions and further work

This paper introduced FETA (Framework for Evolving Topology Analysis). The framework is used to
compare potential models which explain the evolution of growing networks. Previous approaches at
modelling graph evolution have attempted to match any of a number of statistics to a particular snapshot
of the network at a point in time. Where information is available about the history of a network this
throws away the vast majority of the data. FETA, instead, constructs a likelihood for a hypothesised
model based on the entire observed section of graph evolution. FETA identifies two model components:
an operation model (that selects the nature of the change to the graph) and object model (that selects
the actual links and nodes involved with the operation). Using these as separate components in a graph
evolution model has previously been implicit in the literature but has never been formalised as such. It
is this formalisation that allows the development of a full likelihood model.

The framework is tested on artificial data grown using probabilistic models with known parameters.
It is shown that, given the evolution of a target graph, FETA can correctly recover the parameters of the
growth model. On real data it is shown that FETA can rapidly test a large number of models to find
the best fitting model without having to grow artificial graphs and measure statistics on them. Further
it is shown that when graphs are grown, the fit to statistics is in line with the likelihood given by FETA
(improved likelihood translates to improved performance on a number of graph statistics).

The operation model is an important part of graph evolution but it has been given scant attention.
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Further work on refining what operations the model can use to alter a graph would be an important step
and this will form the basis of future work. Graphs where nodes and links can be deleted as well as
added could be studied in this way.

FETA is a promising method which looks at probabilistic graph models in terms of the evolution of
the graph rather than merely trying to fit a snapshot. The CPU and memory requirements are extremely
modest, and an implementation of the framework has been provided.
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