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ABSTRACT

The voice is a rich and powerful means of expressing acous-
tic concepts such as musical sounds. Recent research on
vocal imitations has demonstrated the viability of using the
voice to search for sounds, using query by vocalisation. Here
we present the methods used to develop a dataset for evalu-
ating the performance of query by vocalisation systems for
drum sounds. The dataset consists of imitations of 30 drum
samples from a commercial drum sample library, performed
by 14 musicians with experience in computer based music
production. The dataset includes participant ratings of their
satisfaction with each imitation, and perceptual similarity
ratings between each imitation and the sounds being imi-
tated, collected via an online, MUSHRA style listening test.

1. REQUIREMENTS OF THE DATASET

Searching for drum sounds is a core part of the electronic
music making process [1], and the voice is an effective means
of describing sounds [2]. Query by vocalisation (QBV) sys-
tems allow a user to search for a sound by vocalising an
example of the desired sound [3,4]. This interaction modal-
ity presents an intuitive way for musicians, music producers
and sound engineers to search for musical sounds using in-
telligent search methods. However, to build a QBV system
that can retrieve perceptually relevant sounds, we require a
model that maps between the sound spaces of the voice and
a sample library, based on a priori knowledge of the per-
ceptual similarity between vocal imitations and the samples
in question. To design and build such a model, we require a
dataset of prototypical vocal imitations that includes percep-
tual similarity ratings between the imitations and each of the
sounds being imitated. The primary aim of this work is to
develop such a dataset, specifically for drum samples, how-
ever the methods used here could also be applied to other
types of sample libraries.

2. SELECTING THE STIMULI

The drum samples were selected from the fxpansion1 BFD3
Core and 8BitKit sample libraries, with six samples taken
from each of five drum classes (kicks, snares, hi-hats, toms,
cymbals), giving thirty samples to be used as the stimuli.
The samples for each class were selected as follows: first, a
random seed sample was selected; next, the most and least
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similar samples to the seed were selected, based on a within-
drum-class similarity measure using auditory images [5]; fi-
nally, three samples equally spaced in distance between the
closest and furthest samples were selected. This approach
gives a range of six samples within a drum class that are
representative of the variety of sounds in the sample library.

The auditory image based similarity measure is an im-
plementation of the best performing method in [5], which
the authors found to be highly correlated with perceptual
similarity ratings of within-class drum sounds for bass, snare
and tom drum classes. In brief, this measures the distance
between the spectrograms of two drum sounds after after
the following pre-processing: length is matched by zero
padding the shorter spectrogram; loudness (in dB) is scaled
using Terhardt’s ear model [6]; frequency scaled using the
Bark scale.

3. RECORDING THE IMITATIONS

Fourteen participants recorded their vocal imitations of the
thirty extracted samples. The recording workflow is shown
in Figure 1. The participants could practise and re-record
the imitations of each stimulus as many times as they wished.
After recording each imitation, the participants gave sat-
isfaction ratings for their imitations on a five point Likert
scale from completely dissatisfied to completely satisfied.
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based on a priori knowledge of the perceptual similarity be-
tween vocal imitations and the samples in question. To design
and build such a model, we require a dataset of prototypical
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tween the imitations and each of the sounds being imitated.
The primary aim of this work is to develop such a dataset,
specifically for drum samples, however the methods used here
could also be applied to other types of sample libraries.

2. SELECTING THE STIMULI

The drum samples were selected from the fxpansion1 BFD3
Core and 8BitKit sample libraries, with six samples taken
from each of five drum classes (kicks, snares, hi-hats, toms,
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samples for each class were selected as follows: first, a ran-
dom seed sample was selected; next, the most and least simi-
lar samples to the seed were selected, based on a within-drum-
class similarity measure using auditory images [5]; finally,
three samples equally spaced in distance between the closest
and furthest samples were selected. This approach gives a
range of six samples within a drum class that are representa-
tive of the variety of sounds in the sample library.

The auditory image based similarity measure is an imple-
mentation of the best performing method in [5], which the au-
thors found to be highly correlated with perceptual similarity
ratings of within-class drum sounds for bass, snare and tom
drum classes. In brief, this measures the distance between
the spectrograms of two drum sounds after after the following
pre-processing: length is matched by zero padding the shorter
spectrogram; loudness (in dB) is scaled using Terhardt’s ear
model [6]; frequency scaled using the Bark scale.

3. RECORDING THE IMITATIONS

Fourteen participants recorded their vocal imitations of the
thirty extracted samples. The recording workflow is shown
in Figure 1. The participants could practise and re-record the
imitations of each stimulus as many times as they wished. Af-
ter recording each imitation, the participants gave satisfaction
ratings for their imitations on a five point Likert scale from
completely dissatisfied to completely satisfied.
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Figure 1: Workflow for recording each vocal imitation.

4. LISTENING TEST FOR SIMILARITY RATINGS

In the second part of this work, we conducted an online MUSHRA2

style listening test to collect similarity ratings for each imi-
tation with respect to the stimuli from the same class. The
implementation of this test is based on BeaqleJS [7]. Each
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Figure 1: Workflow for recording each vocal imitation.

4. LISTENING TEST FOR SIMILARITY RATINGS

In the second part of this work, we conducted an online
MUSHRA2 style listening test to collect similarity ratings
for each imitation with respect to the stimuli from the same
class. The implementation of this test is based on BeaqleJS
[7]. Each participant is presented with 28 test pages taken
from a random selection of the 420 imitations, plus 2 re-
peated imitations. The purpose of the repeated imitations is
to ensure participants are able to repeat their ratings when
presented with the same task twice. For each test page, the
participant is presented with an imitation as the reference
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sound and 6 test items, which are the 6 drum samples from
the class of the imitated sample, including the imitated sam-
ple as the hidden reference. For each imitation, the similar-
ity between the imitation and each of the within-class drum
samples is measured on a relative scale from ‘less similar’
to ‘more similar’, as shown in Figure 2.
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Figure 2: Example of a single test page from the listening test.

5. CONCLUSION

We have created a dataset of vocal imitations of 30 drum sam-
ples, which were taken as a representative sample of kicks,
snares, hi-hats, toms and cymbals from a commercial sam-
ple library. To complement this dataset we have conducted
an online listening study to measure the similarity between
each imitation and the samples from the drum class of the
imitated sound. This provides a comprehensive dataset that
can be used to evaluate different QBV models. At the time of
writing, data is still being collected for the listening test and
we encourage readers to partake in this part of the study3.
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Figure 2: Example of a single test page from the listening
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