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Abstract: This paper builds classical and Bayesian testing procedures for choosing be-

tween nonnested multivariate regression models. Although there are several classical tests

for discriminating univariate regressions, only the Cox test is able to consistently handle

the multivariate case. We then derive the limiting distribution of the Cox statistic in such

a context, correcting an earlier derivation in the literature. Further, we show how to build

alternative Bayes factors for the testing of nonnested multivariate linear regression models.

In particular, we compute expressions for the posterior Bayes factor, the fractional Bayes

factor, and the intrinsic Bayes factor.
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1 Introduction

Applied researchers constantly face the fundamental problem of choosing among alternative

statistical models. The aim is to evince whether the models give significantly different fits

to the data, while keeping each model on equal footing. The Neyman-Pearson theory of

hypothesis testing only applies if the models belong to the same family of distributions.

Special procedures are thus called for if models belong to nonnested families.

Furthermore, the use of Bayes factors are not without difficulties. First, the priors for

one model must be coherent with the priors for the other models. In fact, if the parameter

spaces have different dimensions and there is no simple relation linking the parameters of

each model, performing a Bayesian analysis is a daunting task. Second, if prior information

is weak so that one employs an improper prior, the usual Bayes factor is not properly

defined. Alternative Bayes factors are thereof necessary.

The literature tackling the issue of nonnested families of hypothesis has a long pedigree,

dating back to the seminal works of Cox (1961, 1962). For reviews and further references on

nonnested hypothesis testing, see Gourieroux and Monfort (1994), McAleer (1995), Pereira

(1977b, 1981, 1998), and Pesaran and Weeks (2001). Literature reviews focusing on the

particular case of regression models appear in Pesaran (1974), MacKinnon (1983), McAleer

and Pesaran (1986), and McAleer (1987). Further references in time series are Godfrey and

Tremayne (1988), Burke, Godfrey and Tremayne (1990), Silvapulle and King (1993), and

Chambers (1993), whereas Zellner (1984), Rossi (1985), De Jong (1993), Wiginton (1974),

Allenby (1990), and Rust and Schmittlein (1985) develop Bayesian approaches. Other

econometric applications are Harvey (1977), Aurikko (1985), and Pesaran and Pesaran

(1995).

The contributions of this paper are twofold. First, we note that, even though the

resulting expression is correct, there is a flaw in Pesaran and Deaton’s (1978) derivation of

the asymptotic variance of the Cox statistic for nonnested multivariate regressions. Second,

we show how to build alternative Bayes factors for the testing of nonnested multivariate

linear regression models. In particular, we compute expressions for Aitkin’s (1991) posterior

Bayes factor, O’Hagan’s (1995) fractional Bayes factor, and Berger and Pericchi’s (1996)
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intrinsic Bayes factor.

The plan of the paper is as follows. Section 2 reviews the classical and Bayesian so-

lutions for the general problem of nonnested hypothesis testing. Section 3 introduces the

multivariate regression problem as well as the classical test statistics. It also corrects, for

linear regression models, the derivation of the asymptotic variance of the generalized Cox

test advanced by Pesaran and Deaton (1978). Section 4 describes alternative Bayes factors

for the multivariate regression problem, while Section 5 offers some concluding remarks.

2 Classical and Bayesian analyses

2.1 Cox procedure and alternatives

Let y = (y1, . . . , yn) denote a random sample from some unknown distribution. The null

hypothesis H0 and alternative hypothesis H1 respectively specify the parametric densities

f0(y|α0) and f1(y|α1) for the random vector y, where α0 and α1 are unknown parameter

vectors. Assume further that the density families are nonnested in the sense that arbitrary

members of one family cannot be obtained as a limit of members of the other.

The asymptotic tests developed by Cox (1961, 1962) relies on a modification of the

Neyman-Pearson likelihood ratio principle. The test statistic for H0 against H1 is

T01 = ∆`01(α̂0, α̂1)− n

[
plimn→∞

∆`01(α̂0, α̂1)
n

]
α0=α̂0

, (1)

where the probability limit is taken under H0, α̂0 and α̂1 are respectively the maximum

likelihood estimators of α0 and α1, and ∆`01(α0, α1) is the log-likelihood ratio `0(α0) −

`1(α1).

Cox shows that, asymptotically, T01 has a negative mean under the alternative hypoth-

esis, whereas, under the null hypothesis, it is normally distributed with mean zero and

variance

V0(T01) = V0[∆`01(α0, α1|0)]− C ′
0I
−1
0 C0, (2)

where α1|0 is the plim of α̂1 under H0, C0 ≡ n ∂
∂α0

[
plimn→∞

1
n ∆`01(α̂0, α̂1)

]
, and I0 is

the information matrix of α0 (see also White, 1982). If one wishes to test H1 against H0,

analogous results hold for the statistic T10. It then follows that T ∗
01 = T01V

−1/2
0 (T01) and

T ∗
10 = T10V

−1/2
1 (T10) are asymptotically standard normal under H0 and H1, respectively.
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Note that the possible outcomes of the Cox test include inconclusive results such as the

rejection, as well as the nonrejection, of both hypotheses.

As an alternative, Cox (1961) suggests combining the two models in a general nesting

specification of which they would both be special cases. Assuming that the density is

proportional to the exponential mixture

[f0(y|α0)]λ [f1(y|α1)]1−λ, (3)

it suffices to conduct inference about λ to test the relative merits of the two models.1

Unfortunately, this sort of testing procedure, which is widely used in econometrics (see, for

example, Fisher, 1983), cannot be extended to simultaneous equations as shown by Pesaran

(1982).

Sawyer (1984) uses the distributional results of Cox (1961) to propose a statistic for the

multiple testing of k alternative models. Let fi(y|αi), i = 1, . . . , k be the densities under

scrutiny and denote by Tij the k−1 Cox statistics for testing the null hypothesis Hi against

each alternative hypothesis Hj (j 6= i). Letting T ′
i = (Ti,1, . . . , Ti,i−1, Ti,i+1, . . . , Ti,k), one

may test Hi against all others Hj (j 6= i) using T ′
iΣ

−1Tj , which is asymptotically χ2
k−1

under Hi. Here Σ is the covariance matrix Ci(Tij , Ti1) that is readily derived from Cox’s

results. Regularity conditions and properties are given in Pereira (1977a), White (1982),

Loh (1985), Pesaran (1987), Pace and Salvan (1990), Rukhin (1993), and Zabel (1993).

2.2 Bayesian analysis

Another general approach suggested by Cox (1961) rests on Bayesian inference. The pos-

terior odds for H0 versus H1 is

π0

π1

q0(y)
q1(y)

≡ π0

π1
B01(y) (4)

where πj is the prior probability of Hj and

qj(y) ≡
∫

fj(y|αj)πj(αj) dαj (5)

1 Atkinson (1970) develops a general theory for testing H0 : λ = 0 against H1 : λ = 1. To estimate α1

under the null hypothesis H0, Atkinson uses α1|0 rather than α̂1. However, Atkinson’s procedure does not
always entail consistent tests (see Pereira, 1977a).
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denotes the predictive distribution with prior probability πj(αj) for the parameters under

Hj (j = 0, 1). The Bayes factor B01(y) represents the weight of evidence in the data

favoring H0 over H1. Cox also provides a general expression considering a loss function in

the posterior odds, and describes the large-sample approximation for the distribution of the

Bayes factor.

This approach has two main limitations. First, the prior knowledge expressed by π0 and

π0(α0) must be coherent with that of π1 and π1(α1). If the parameter spaces have different

dimensions, for instance, there is no simple relation between the parameters. Second, if

the prior information is weak and one applies an improper prior, the usual Bayes factor is

not well defined (see Aitkin, 1991; O’Hagan, 1995). To overcome these difficulties, some

alternatives have been recently proposed (see Kass and Raftery, 1995).

Aitkin (1991) proposes the posterior Bayes factor that compares the posterior means of

the likelihood function under H0 and H1. More formally, the posterior density under Hj

(j = 0, 1) is

πj(αj |y) ≡ fj(y|αj)πj(αj)∫
fj(y|αj)πj(αj) dαj

, (6)

which yields

qP
j (y) =

∫
fj(y|αj)πj(αj |y) dαj (7)

as the posterior mean of the likelihood function under Hj (j = 0, 1). The posterior Bayes

factor then corresponds to the ratio of the posterior means, namely BP
01(y) = qP

0 (y)/qP
1 (y).

O’Hagan (1991) derives a modification to the posterior Bayes factor of Aitkin (1991) so

as to avoid problems with improper priors. Consider the partition y = (x, z) of the sample.

From the subsample x, one obtains proper posterior densities π0(α0|x) and π1(α1|x) to use

as the priors for the subsample z. The partial Bayes factor B01(z|x) then equals

B01(z|x) ≡
∫

f0(z|x, α0)π0(α0|x) dα0∫
f1(z|x, α1)π1(α1|x) dα1

=
q0(y)/q0(x)
q1(y)/q1(x)

=
B01(y)
B01(x)

. (8)

The idea is that improper priors affect B01(y) and B01(x) in the same fashion, and hence

the effect on B01(z|x) is null.

Berger and Pericchi (1996) first define that the training sample x in the sample partition

y = (x, z) is minimal if the posteriors for α0 and α1 are proper and there is no subset of
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x that entails a proper posterior. There are usually many, say R, partitions featuring a

minimal training sample. Berger and Pericchi then derive the intrinsic Bayes factor BI
01(y)

as the average of the partial Bayes factors {B01(zr|xr); r = 1, . . . , R} obtained from the R

minimal training samples.2

O’Hagan (1995) develop an alternative Bayes factor, which also relies on the use of a

training sample. Let b = nx/n denote the training fraction, where nx is the size of the

training sample x. The fractional Bayes factor then is B
[b]
01(y) = q

[b]
0 (y)/q

[b]
1 (y), with

q
[b]
j (y) =

∫
fj(y|αj)πj(αj) dαj∫

[fj(y|αj)]
bπj(αj) dαj

(9)

for j = 0, 1. The key to understand the fractional Bayes factor resides in the fact that, for

nx large enough, the likelihood for the full sample is approximately equal to the power b

of the likelihood for the training sample. O’Hagan (1995) shows that the fractional Bayes

factor is consistent provided that b shrinks to zero as n grows.

3 Test statistics for multivariate linear regressions

Most results and applications in the literature deals with the testing of univariate nonnested

regressions with homoskedastic error terms. Exceptions are due to Pesaran and Deaton

(1978) and Davidson and MacKinnon (1983), who deal with nonlinear systems of equations.

It is surprising that only Pesaran (1982) and Davidson and MacKinnon (1983) mention

the identification problem that impedes the generalization of nonnested hypotheses testing

procedures other than the Cox test to systems of equations without imposing unrealistic

assumptions. It is even more surprising that there is no mention in the literature to the

fact that, although Pesaran and Deaton’s (1978) expression for the asymptotic variance of

the Cox test statistic is correct, their derivation is defective. In this section, we describe the

multivariate linear regression setting that we are interested in and then provide a correct

derivation for the variance of the Cox test statistic.
2 One could also use other descriptive statistic, e.g. the geometric mean and the median, to summarize

the information given by the R partial Bayes factors. Moreover, if R is too large, one may randomly select
a sample from the collection of possible training samples.
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3.1 Notation and definition of the setup

We consider two nonnested multivariate linear regression models H0 : Y = XB0 + U0 and

H1 : Y = ZB1+U1, where Y is a n×m matrix of regressands, X and Z are respectively n×p

and n× q matrices of regressors, and B0 and B1 are respectively p×m and q×m matrices

of parameters. The error terms U0 and U1 have rows that are independent and identically

distributed (iid) as normal random vectors with means zero and covariance matrices Σ0 and

Σ1, respectively. We also assume that X and Z are of full rank (p and q, respectively), with

n ≥ m+p and n ≥ m+q. It thus follows that: U0 ∼ N (0, In⊗Σ0) and U1 ∼ N (0, In⊗Σ1),

whereas Y ∼ N (XB0, In ⊗ Σ0) under H0 and Y ∼ N (ZB1, In ⊗ Σ1) under H1.

The matrices of regressors X and Z are fixed and nonnested in the sense that it is

not possible to obtain the columns of X from the columns of Z, and vice versa. We

further assume that the matrices ΣX′X ≡ limn→∞
1
nX ′X and ΣZ′Z ≡ limn→∞

1
nZ ′Z are

nonsingular, and that ΣX′Z ≡ limn→∞
1
nX ′Z is a nonzero matrix.

We respectively denote by `0(α0) and `1(α1) the log-likelihood functions under H0 and

H1, where α0 = (vec B0, vec Σ0)′ and α1 = (vec B1, vec Σ1)′. Recall that the vec operator

stacks the columns, whereas the vech operator stacks only the elements on and under

the diagonal. Depending on the context, we may consider α∗0 = (vec B0, vechΣ0)′ and

α∗1 = (vec B1, vechΣ1)′ so as to avoid singularities in the information matrix.

We also take benefit from the fact that vec Σ0 = DmvechΣ0, where Dm is the full ranked

m2 × m(m + 1)/2 duplication matrix (see Magnus and Neudecker, 1999, pages 49-50). It

then follows that

α0 =
(

vec B0

vec Σ0

)
=
(

Ipm 0
0 Dm

)(
vec B0

vechΣ0

)
= Gmα∗0, (10)

where Gm is a (pm + m2)×
(
pm + m(m+1)

2

)
matrix. Because D′

mDm is invertible, it then

holds that (D′
mDm)−1D′

mvec Σ0 = vechΣ0. This yields

α∗0 =
(

vec B0

vechΣ0

)
=
(

Ipm 0
0 (D′

mDm)−1D′
m

)(
vec B0

vec Σ0

)
= Hmα0,

where Hm is a
(
pm + m(m+1)

2

)
×(pm+m2) matrix. The matrices Gm and Hm are important

because they reveal the close link between the information matrices I0 and I∗0 of α0 and α∗0,

respectively, namely I∗0 = G′
mI0Gm and I0 = H ′

mI∗0Hm.
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We next consider the test statistic T01 given in (1), whose limiting distribution is normal

with mean zero and variance V0(T01) as in (2). In the context of the multivariate linear

regression model, the log-likelihoods of the two nonnested models are

`0(α0) = −n

2
log |Σ0| −

mn

2
log(2π)− 1

2
tr(Y −XB0)Σ−1

0 (Y −XB0)′

`1(α1) = −n

2
log |Σ1| −

mn

2
log(2π)− 1

2
tr(Y − ZB1)Σ−1

1 (Y − ZB1)′,

and hence ∆`01(α̂0, α̂1) = n
2

(
log |Σ̂1| − log |Σ̂0|

)
, where Σ̂0 = 1

n Û ′
0Û0 and Σ̂1 = 1

n Û ′
1Û1. It

is well known that, under the null H0, Û0 = MXU0 and Û1 = MZU0 + MZXB0, where

MW = I −W (W ′W )−1W ′, and that

Σ̂1 =
1
n

Û ′
1Û1 =

1
n

(MZU0 + MZXB0)′(MZU0 + MZXB0)

=
1
n

(U ′
0MZU0 + B′

0X
′MZU0 + U ′

0MZXB0 + B′
0X

′MZXB0). (11)

The latter has asymptotic expectation under H0 equal to Σ1|0 ≡ Σ0 + B′
0Σ̄B0, where

Σ̄ ≡ ΣX′X − ΣX′ZΣ−1
Z′ZΣZ′X .

As Σ̂0 converges to Σ0 in probability under H0, it follows that

n plimn→∞
∆`01(α̂0, α̂1)

n
=

n

2
(
log |Σ0 + B′

0Σ̄B0| − log |Σ0|
)
, (12)

and hence

T01 = ∆`01(α̂0, α̂1)− n

[
plimn→∞

∆`01(α̂0, α̂1)
n

]
α0=α̂0

=
n

2

(
log |Σ̂1| − log

∣∣∣∣∣Σ̂0 +
B̂′

0X
′MZXB̂0

n

∣∣∣∣∣
)

,

where 1
n X ′MZX consistently estimates Σ̄.

Remark: In finite samples, the distribution of T0 under H0 depends on the unknown

parameters. In fact, it is well known that B̂0 = B0 + (X ′X)−1X ′U0 and hence

|Σ̂1|
|Σ̂1|0|

=
|U ′

0MZU0 + U ′
0MZXB0 + B′

0X
′MZU0 + B′

0X
′MZXB0|∣∣U ′

0MXU0 + [B0 + (X ′X)−1X ′U0]
′
X ′MZX [B0 + (X ′X)−1X ′U0]

∣∣ , (13)

which boils down to a quite complex function of B0. If the models are nested, and thus

MZX = 0, all terms depending on B0 disappear in (13).
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3.2 The asymptotic variance of T01

We start with the derivation of the first term of (2). It follows from

∆`01(α0, α1|0) = `0(α0)− `1(α1|0)

=
1
2

tr
[(

XB0 − ZB1|0 + U0

)
Σ−1

1|0
(
XB0 − ZB1|0 + U0

)′]− 1
2

tr
[
U0Σ−1

0 U ′
0

]
,

where B1|0 = Σ−1
Z′ZΣZ′XB0, that

V0

(
∆`01(α0, α1|0)

)
= V0

{
1
2

tr
[
(XB0 − ZB1|0)Σ

−1
1|0(XB0 − ZB1|0)

′
]

+
1
2

tr
[
U0

(
Σ−1

1|0 − Σ−1
0

)
U ′

0

]
+tr
[
(XB0 − ZB1|0)Σ

−1
1|0U

′
0

]}
= V0

{
1
2

tr
[
U0

(
Σ−1

1|0 − Σ−1
0

)
U ′

0

]
+ tr

[
(XB0 − ZB1|0)Σ

−1
1|0U

′
0

]}
,

given the nonstochastic nature of the first term. To solve this variance, we use the following

set of lemmata.

Lemma 1: tr
[
U0

(
Σ−1

1|0 − Σ−1
0

)
U ′

0

]
=
∑n

i=1 U0(i)

(
Σ−1

1|0 − Σ−1
0

)
U ′

0(i), where U0(i) denotes

the i-th row of U0.

Proof: From Lemma 2.2.3 of Muirhead (1982, p. 76), it follows that

trU0

(
Σ−1

1|0 − Σ−1
0

)
U ′

0 =
(
vec U ′

0

)′ [
I ⊗

(
Σ−1

1|0 − Σ−1
0

)]
vec U ′

0. (14)

From U ′
0 =

(
U ′

0(1), . . . , U
′
0(n)

)
and (vec U ′

0)
′ =

(
U0(1), . . . , U0(n)

)
, it then ensures that

tr
[
U0

(
Σ−1

1|0 − Σ−1
0

)
U ′

0

]
=
(
U0(1) · · ·U0(n)

) [
In ⊗

(
Σ−1

1|0 − Σ−1
0

)] U ′
0(1)

...
U ′

0(n)

 ,

which equals
∑n

i=1 U0(i)

(
Σ−1

1|0 − Σ−1
0

)
U ′

0(i). �

Lemma 2: tr(XB0 − ZB1|0)Σ
−1
1|0U

′
0 =

∑n
i=1 K(i)U

′
0(i), where K(i) is the i-th row of the

p×m matrix K ≡ (XB0 − ZB1|0)Σ
−1
1|0.

The latter result is trivial, hence we omit the proof. Lemmata 1 and 2 then yield

V0

(
∆`01(α0, α1|0)

)
= V0

{
1
2

n∑
i=1

U0(i)

(
Σ−1

1|0 − Σ−1
0

)
U ′

0(i) +
n∑

i=1

K(i)U
′
0(i)

}
.
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It is also interesting to observe that, by the normality assumption, the row vectors U0(i) are

iid N (0,Σ0). To complete the derivation, we use two well-known results that we collect in

the next lemma.

Lemma 3: If X ∼ N (µ,Σ) and A is symmetric, then X ′AX has covariance matrix

2 tr(AΣ)2 + 4µ′AΣAµ. Further, if a is a vector, then the linear combination a′X has

variance a′Σa.

Applying Lemma 3 then gives way to

V0

(
∆`01(α0, α1|0)

)
= tr

[
(XB0 − ZB1|0) Σ−1

1|0 Σ0 Σ−1
1|0 (XB0 − ZB1|0)

′
]

+
n

2
tr
[ (

Σ−1
1|0 − Σ−1

0

)
Σ0

]2
. (15)

We now turn our attention to the next quantity in (2), namely

C0 ≡ n
∂

∂α0

[
plimn→∞

1
n

∆`01(α̂0, α̂1)
]

=
n

2

[
∂

∂α0
log
∣∣Σ0 + B′

0Σ̄B0

∣∣− ∂

∂α0
log |Σ0|

]
.

To avoid singularities in the information matrix, we will work with α∗0 rather than α0. We

apply another well-known result from matrix calculus, which we state in the next lemma.

Lemma 4: If A is symmetric, then ∂
∂A log |A| = 2A−1 − diag A−1.

It then follows from Lemma 4 that ∂
∂Σ0

log |Σ0| = 2Σ−1
0 −diag Σ−1

0 and ∂
∂vechΣ0

log |Σ0| =

vech
(
2Σ−1

0 − diagΣ−1
0

)
. Lemma 4 also implies that ∂

∂B0
log |Σ0| = ∂

∂vecB0
log |Σ0| = 0,

whereas

∂ log |Σ0 + B′
0Σ̄B0|

∂Σ0
= 2

(
Σ0 + B′

0Σ̄B0

)−1− diag
(
Σ0 + B′

0Σ̄B0

)−1 = 2Σ−1
1|0 − diag Σ−1

1|0 (16)

and

∂ log |Σ0 + B′
0Σ̄B0|

∂vechΣ0
= vech

[
2
(
Σ0 + B′

0Σ̄B0

)−1 − diag
(
Σ0 + B′

0Σ̄B0

)−1
]

= vech
[
2Σ−1

1|0 − diag Σ−1
1|0

]
. (17)

Similarly,
∂ log |Σ0 + B′

0Σ̄B0|
∂B0

= 2Σ̄B0

(
Σ0 + B′

0Σ̄B0

)−1 = 2Σ̄B0Σ−1
1|0 (18)
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and
∂ log |Σ0 + B′

0Σ̄B0|
∂vec B0

= vec 2Σ̄B0Σ−1
1|0. (19)

We are now ready to compute C0 using α∗0:

C0 =
n

2

[
∂

∂α∗0
log
∣∣Σ0 + B′

0Σ̄B0

∣∣− ∂

∂α∗0
log |Σ0|

]
=

n

2

(
2 vec Σ̄B0Σ−1

1|0

2 vech
(
Σ−1

1|0 − Σ−1
0

)
− vech diag

(
Σ−1

1|0 − Σ−1
0

)) ,

which reduces to Pesaran’s (1974) result if m = 1.

The last step is to compute the information matrix of α∗0, though we start deriving the

information matrix I0 of α0 = (B0,Σ0). Letting Λ0 ≡ Σ−1
0 yields

`0(α0) = −mn

2
log(2π) +

n

2
log |Λ0| −

1
2

tr (Y −XB0)
′ (Y −XB0) Λ0, (20)

whereas ∂
∂B0

`0(α0) = X ′(Y − XB0)Σ−1
0 and ∂2

∂B0∂B′
0
`0(α0) = −X ′X ⊗ Σ−1

0 . For n large

enough, the latter also equals −nΣX′X⊗Σ−1
0 . Moreover, the Hessian is block diagonal since

∂2

∂B0∂Λ0
`0(α0) → 0. It is also possible to demonstrate that

∂

∂Λ0
`0(α0) =

n

2
(2Σ0 − diag Σ0)−

1
2

(2U ′
0U0 − diag U ′

0U0), (21)

and that
∂2

∂Λ0∂Λ0
`0(α0) =

n

2

[
2Σ̃0 − |Σ0|diag (A1M01, . . . , AmM0m)

]
, (22)

where Σ̃0(i, i) = −Σ0JiiΣ0, Σ̃0(i, j) = −Σ0(Jij + Jji)Σ0 for i 6= j, and Jij is the m × m

matrix with elements that take value one in the position (i, j), zero otherwise. Further,

Ai = |Λ0ii| is the cofactor (i, i) of Λ0 with corresponding matrix Λ0ii and

M0i =
[
2Λ−1

0ii − diagΛ−1
0ii

]+ − (2Λ−1
0 − diagΛ−1

0

)
.

Finally, the operator [ · ]+ forms an m×m matrix with 0’s on the i-th row and i-th column

and fills the remainder terms with the (m− 1)× (m− 1) matrix in the brackets. It is not

surprising to observe that, for m = 1, the information matrices of B0 and Λ0 = Σ−1
0 reduce

to those derived by Pesaran (1974).

It rests to compute the information matrix of Σ0. Because ∂Λ0
∂Σ0

= Σ̆, where

Σ̆(i, j) =
{

Σ−1
0 JiiΣ−1

0 if i = j
−Σ−1

0 (Jij + Jji) Σ−1
0 if i 6= j,
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it follows that the information matrix of Σ0 is

∂2

∂Σ0∂Σ0
`0(α0) =

n

2
Σ̆
[
2Σ̃0 − |Σ0|diag (A1M011, . . . , AmM0mm)

]
Σ̆.

This matrix is singular, however. We therefore remove the singularities by dealing with

the information matrix of vechΣ0, which is given by

n

2
D′

mΣ̆
[
2Σ̃0 − |Σ0|diag(A1M011, . . . , AmM0mm)

]
Σ̆Dm.

The information matrix I∗0 of α∗0 then reads

I∗0 =

(
nΣX′X ⊗ Σ−1

0 0
0 n

2 D′
mΣ̆
[
|Σ0|diag(AiM0ii)m

i=1 − 2Σ̃0

]
Σ̆Dm

)
, (23)

and hence n(I∗0 )−1 = diag(∆1,∆2) with ∆1 ≡ Σ−1
X′X ⊗ Σ0 and

∆2 ≡ 2
{

D′
mΣ̆
[
|Σ0|diag(A1 M011, . . . , Am M0mm)− 2Σ̃0

]
Σ̆Dm

}−1
.

We are now ready to derive an expression for the second term in (2):

1
n

C ′
0 plimn→∞(nI−1

0 ) C0 =
n

4

[
µ′1∆1µ1 + µ2∆2µ2

]
, (24)

where µ1 ≡ 2 vec Σ̄B0Σ−1
1|0 and µ2 ≡ 2 vech

(
Σ−1

1|0 − Σ−1
0

)
− vech diag

(
Σ−1

1|0 − Σ−1
0

)
. It then

suffices to combine Equations (15) and (24) to obtain the asymptotic variance V0(T01) of

the test statistic.

Remark: Instead of applying Lemma 4, Pesaran and Deaton (1978) use a simpler matrix

calculus result that holds only for nonsymmetric matrices. The resulting expression for the

asymptotic variance of the Cox statistic is nonetheless correct for the errors in the derivation

of C0 and I0 cancel out.3

In practice, one must replace the parameters by consistent estimates to estimate the

asymptotic variance of the Cox statistic. It is however straightforward to find consistent

estimators for the key parameters by plugging their least-squares counterparts.
3 We thank M. H. Pesaran for supplying a proof that rests on the properties of the duplication matrix.
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4 Bayes factors for multivariate linear regressions

In this section, we extend the results of Aitkin (1991), O’Hagan (1995), and Berger and

Pericchi (1996) to the context of multivariate linear regressions. From Section 2.2, the

posterior odds for H0 against H1 is (π0/π1) B01. Suppose that one uses improper priors for

the parameters such that π0(α0) and π1(α1) are respectively proportional to constants K0

and K1. The Bayes factor B01 then is proportional to K0/K1 and is not well defined. For

the multivariate regression models, Jeffreys diffuse prior is given by

π0(α0) = π0(B0) π0(Σ0) = K0 |Σ0|−
m+1

2 , (25)

giving way to the following predictive distribution under the null hypothesis

q0(Y ) = K0

∫
|Σ0|−

n+m+1
2 exp

[
−1

2
trS0Σ−1

0

]
×
{∫

exp
[
−1

2
tr(B0 − B̂0)′X ′X(B0 − B̂0)Σ−1

0

]
dB0

}
dΣ0,

where S0 ≡ Û ′
0Û0 =

(
Y −XB̂0

)′ (
Y −XB̂0

)
and B̂0 = (X ′X)−1X ′Y . If one rewrites the

integrand of the second integral as

exp
[
−1

2
vec(B0 − B̂0)′ Σ−1

0 ⊗ (X ′X) vec(B0 − B̂0)
]

,

it becomes apparent that it must integrate to (2π)mp/2|Σ0|p/2
∣∣(X ′X)−1

∣∣m/2 given that it

resembles a normal density with mean vec B̂0 and covariance matrix Σ0⊗(X ′X)−1 and that∣∣Σ0 ⊗ (X ′X)−1
∣∣1/2 = |Σ0|p/2

∣∣(X ′X)−1
∣∣m/2.

The predictive distribution then becomes

q0(Y ) = (2π)mp/2 K0 |X ′X|−m/2

∫
|Σ0|−

n+m+1−p
2 exp

[
−1

2
trS0Σ−1

0

]
dΣ0,

which has an integrand that is proportional to the density function of the inverted Wishart

with parameters S0 and n− p. This means that integrating with respect to Σ0 results in

q0(Y ) = π
m(2n−2p−m+1)

4 K0 |X ′X|−m/2 |S0|−
n−p

2

m∏
s=1

Γ
(

n− p− s + 1
2

)
. (26)

A similar expression holds for the alternative model Y = ZB1 + U1. The resulting Bayes

factor then is

B01(Y ) = πm(p−q)/2 K0

K1

(
|Z ′Z|
|X ′X|

)m/2 |S1|(n−q)/2

|S0|(n−p)/2

m∏
s=1

Γ
(

n−p−s−1
2

)
Γ
(

n−q−s−1
2

) , (27)
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where S1 ≡ (Y − ZB̂1)′(Y − ZB̂1) and B̂1 = (Z ′Z)−1Z ′Y . It is clear from (27) that the

Bayes factor is not well defined for it depends on the unknown ratio K0/K1.

From (26) and (27), it is now possible to derive the alternative Bayes factor that we

discuss in Section 2.2. For instance, the posterior Bayes factor BP
01(Y ) of Aitkin (1991)

results from the ratio between

qP
0 (Y ) = (2

√
π)−mn |S0|−n/2

m∏
s=1

Γ
(

2n−p−s+1
2

)
Γ
(

n−p−s+1
2

)
and

qP
1 (Y ) = (2

√
π)−mn |S1|−n/2

m∏
s=1

Γ
(

2n−q−s+1
2

)
Γ
(

n−q−s+1
2

) .

It therefore ensues that

BP
01(Y ) =

(
|S1|
|S0|

)n/2 m∏
s=1

Γ
(

2n−p−s+1
2

)
Γ
(

n−q−s+1
2

)
Γ
(

2n−q−s+1
2

)
Γ
(

n−p−s+1
2

) . (28)

The arithmetic version of the intrinsic Bayes factor of Berger and Pericchi (1996) be-

comes

BI
01(Y ) =

1
R

R∑
r=1

B01(Y )
B01(Y(r))

= B01(Y )
1
R

R∑
r=1

B10(Y(r))

where Y(r) is a minimal training sample with design matrices X(r) and Z(r) under H0 and

H1, respectively. By definition, Y(r) is matrix such that both X ′
(r)X(r) and Z ′

(r)Z(r) are

nonsingular. It has dimension n̄ ×m, where n̄ = d(m + 1)/2e + max(p, q) and d·e returns

the smallest integer greater than its argument. From (27), it follows that

BI
01(Y ) =

(
|Z ′Z|
|X ′X|

)m/2 |S1|
n−q

2

|S0|
n−p

2

m∏
s=1

Γ
(

n−p−s+1
2

)
Γ
(

n̄−q−s+1
2

)
Γ
(

n−q−s+1
2

)
Γ
(

n̄−p−s+1
2

)
× 1

R

R∑
r=1

(
|X ′

(r)X(r)|
|Z ′

(r)Z(r)|

)m/2
|S0(r)|(n̄−p)/2

|S1(r)|(n̄−q)/2
, (29)

where Sj(r) is analogous to Sj for the r-th minimal training set (j = 0, 1).

Finally, the fractional Bayes factor of O’Hagan (1995) results from the ratio between

q
[b]
0 (Y ) = πmn(1−b)/2bmnb/2 |S0|−n(1−b)/2

m∏
s=1

Γ
(

n−p−s+1
2

)
Γ
(

nb−p−s+1
2

)
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and

q
[b]
1 (Y ) = πmn(1−b)/2bmnb/2 |S1|−n(1−b)/2

m∏
s=1

Γ
(

n−q−s+1
2

)
Γ
(

nb−q−s+1
2

) . (30)

It then holds that

B
[b])
01 (Y ) =

(
|S1|
|S0|

)n(1−b)/2 m∏
s=1

Γ
(

n−p−s+1
2

)
Γ
(

nb−q−s+1
2

)
Γ
(

n−q−s+1
2

)
Γ
(

nb−p−s+1
2

) . (31)

5 Conclusion

This paper aims at contributing to the literature of testing nonnested multivariate linear

regression models. We first correct Pesaran and Deaton’s (1978) derivation of the asymp-

totic variance of the Cox statistic and then show how to apply Aitkin’s (1991) posterior

Bayes factor, O’Hagan’s (1995) fractional Bayes factor, and Berger and Pericchi’s (1996)

intrinsic Bayes factor in such a context. Topics for future research include the extension of

these results to the context of nonnested multivariate nonlinear regression models.
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Appendix

Proof of (16) and (18): Let W = [wij ] = Σ0 + B′
0Σ̄B0 with wii = σii + B′

0(i)Σ̄B0(i) and

wij = σij + B′
0(i)Σ̄B0(j), where Σ0 = [σ(ij)] and B0(i) is the i-th column of B0. For any

parameter θ, it holds that

∂|W |
∂θ

=
∑

i

∑
j

∂|W |
∂wij

∂wij

∂θ
=
∑

i

∂|W |
∂wii

∂wii

∂θ
+
∑
i6=j

∂|W |
∂wij

∂wij

∂θ
.

However, ∂wii
∂σii

= 1 for every i, ∂wii
∂σij

= 0 for i 6= j, ∂wij

∂σij
= 1 for all (i, j), and ∂wij

∂σi′j′
= 0 for all

(i, j) 6= (i′, j′). Thus, for every i, ∂|W |
∂σii

= ∂|W |
∂wii

= Wii, where Wii is the cofactor associated

to wii. Similarly, for every (i, j) such that i 6= j, it follows that ∂|W |
∂σij

= 2Wij , where Wij is

the cofactor associated to wij . This completes the proof of (16). Analogous manipulations

show that ∂wii
∂B0(i)

= 2Σ̄B0(i) for all i, ∂wii
∂B0(j)

= 0 and ∂wij

∂B0(i)
= Σ̄B0(j) for i 6= j, and ∂wij

∂B0(k)
= 0

for all i 6= k and j 6= k. It then ensues that, for every i, ∂|W |
∂B0(i)

= 2
∑

j WijΣ̄B0(j). Thus,

∂|W |
∂B0

= 2Σ̄B0W
−1|W | = 2Σ̄B0

(
Σ0 + B′

0Σ̄B0

)−1 |Σ0 + B′
0Σ̄B0|.

Taking the log yields (18). �

Proof of (21) and (22): The first result readily follows from the fact that ∂trXY
∂X =

Y +Y ′−diag Y if X is symmetric. To derive the second result, observe that ∂2

∂Λ0∂Λ0
`0(α0) =

n
2

[
2 ∂

∂Λ0
Λ−1

0 − ∂
∂Λ0

diag Λ−1
0

]
. It is a standard result in matrix calculus that ∂

∂Λ0
Λ−1

0 = Σ̃0.

Next, denote by λij the typical element of Λ0. To obtain ∂
∂Λ0

diag Λ−1
0 , observe that

diagΛ−1
0 =

1
|Λ0|


A1 0 0 · · · 0
0 A2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · Am


where Ai is the cofactor of λii. However, Ai is the determinant of the symmetric matrix

Λ0ii. For instance, A1 = |Λ011| and

Λ0 =


λ11 λ12 . . . λ1m

λ21

...

 Λ011


λm1

 ,
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which implies that

∂A1

∂Λ0
=


0 0 0 . . . 0
0
...

 |Λ011|
[
2Λ−1

011 − diag Λ−1
011

]
0

 .

In general ∂Ai
∂Λ0

= Ai

[
2Λ−1

0ii − diag Λ−1
0ii

]+ for all i = 1, . . . ,m. Now,

∂

∂Λ0

Ai

|Λ0|
=

1
|Λ0|2

(
∂Ai

∂Λ0
|Λ0| −Ai

∂|Λ0|
∂Λ0

)
=

Ai

|Λ0|

{[
2Λ−1

0ii − diag Λ−1
0ii

]+ − (2Λ−1
0 − diag Λ−1

0

)}
=

Ai M0ii

|Λ0|
,

so that
∂2

∂Λ0∂Λ
`0(α0) =

n

2

[
2Σ̃0 −

1
|Λ0|

diag(A1M011, . . . , AmM0mm)
]

,

completing the proof. �
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