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Gaussian white noise as a resource for microscopic engines

Andreas Dechant,1 Adrian Baule,2 and Shin-ichi Sasa1

1Department of Physics #1, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
2School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom

We show that uncorrelated Gaussian noise, despite its paradigmatic association with thermal
equilibrium, can drive a system out of equilibrium and can serve as a resource from which work can
be extracted. We consider an overdamped particle in a periodic potential with an internal degree
of freedom and a state-dependent friction, coupled to an equilibrium bath. Applying additional
Gaussian white noise drives the system into a non-equilibrium steady state and causes a finite
current if the potential is spatially asymmetric. We calculate the current explicitly in the three
complementary limits. Since the particle current is driven solely by additive Gaussian white noise,
this shows that the latter can potentially be exploited as a work resource to power small engines.
By comparing the extracted power to the energy injection due to the noise, we find an expression
for the efficiency of such an engine.

I. INTRODUCTION

Noise, the random, uncontrollable and often unavoid-
able fluctuations in a system, is sometimes seen as merely
a complication that one would rather be rid of. Generally,
however, this is far from true. Noise can serve as a source
of information about a system [1, 2], or even be harnessed
as a resource. A particularly simple and well-studied for
using noise as a resource is the class of systems referred
to as Brownian ratchets [3–9]. The latter are a prototypi-
cal model for microscopic engines, converting the random
fluctuations due to noise into directed motion, effectively
serving as noise rectifiers. In accordance with the second
law of thermodynamics, this rectification is not possible
if the system is in thermal equilibrium, as was illustrated
by Feynman [10]. Ratchets thus necessarily have to be
driven out of equilibrium to operate. A variety of ratchets
have been proposed and studied over the last two decades
[6, 8, 9] with applications in physics and biology. They
all share three crucial ingredients: (i) noise, (ii) broken
symmetry (spatial or temporal) and (iii) nonequilibrium.
The paradigmatic model of a Brownian ratchet consists
of an overdamped particle in a periodic potential and
coupled to an equilibrium bath, represented by Gaussian
white (uncorrelated) noise of intensity D = γT , where γ
is the damping constant and T is the temperature of the
bath. The symmetry breaking can be realized through
a potential without inversion symmetry [3], and the sys-
tem can be driven out of equilibrium by a time-dependent
change in the potential, e. g. by flashing the potential [5].
Under these conditions, the particle can exhibit a net av-
erage drift, which can be used to perform work against
an external load [11]. Another way to drive the system
out of equilibrium is to vary the temperature and thus
noise intensity with time, either deterministically [12] or
randomly [13], which is akin to microscopic heat engines
[14].

Interestingly, directed motion can also be achieved
with a static setup, i. e. with both potential and noise
intensity being time-independent, if the noise distribu-
tion is non-Gaussian [15–17] or the noise is correlated

in time (non-white) [4, 18–20]. In these cases the term
“noise rectifier” is even more appropriate, since no exter-
nal driving is necessary but instead the noise itself drives
the system out of equilibrium. The ratchet thus directly
converts the nonequilibrium fluctuations into a directed
motion. Noise rectification can also be realized in an un-
derdamped system without potential, if the friction co-
efficient is a nonlinear function of the velocity [21, 22].
Here, in the absence of a potential the required asymme-
try can be incorporated either in the friction nonlinearity
or the noise itself. In all these examples of static noise
rectifiers, the origin of the noise is non-thermal, i. e. , it
represent the fluctuations of an environment that is not
at thermal equilibrium. The noise thus essentially cor-
responds to a random force that injects power into the
system, which, in turn, is converted into work.

We consider the case where the noise driving the sys-
tem out of equilibrium is given as additive Gaussian white
noise. This seems contradictory at first, since Gaussian
white noise conventionally represents equilibrium fluc-
tuations at a temperature T = D/γ, where D is the
noise intensity. This apparent uniqueness of Gaussian
white noise raises the question of whether work can be
extracted from Gaussian white noise at all.

The clue to resolve this question comes from the ob-
servation that in underdamped systems with a velocity-
dependent friction coefficient the addition of Gaussian
white noise does not lead to a thermal equilibrium sys-
tem since detailed balance is broken [23]. In this context,
Gaussian white noise thus does not correspond to equi-
librium fluctuations and can indeed be exploited to drive
a current in a ratchet-type setting [24]. However, due to
the inherent nonlinearity and coupled position and ve-
locity degrees of freedom, this type of dynamics is not
amenable to analytic treatment, in particular, there ex-
ists no general overdamped limit [25, 26].

We present a simple overdamped model with similar
properties as the general model of [24], but which is
amenable to analytical treatment. Our model, which we
describe in detail in Section II, consists of an overdamped
particle in an asymmetric potential, which is not only
coupled to an equilibrium heat bath, but also posses an
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internal degree of freedom such that the friction coef-
ficient depends on this internal state. If the switching
between the internal states is induced by thermal activa-
tion, the system is at thermal equilibrium. However, if we
now add Gaussian white noise, rectification occurs and
the system exhibits a directed current. Our model per-
mits an analytic treatment of the current in three distinct
limiting regimes, which we analyze in detail in Section
III: For switching dynamics of the internal state that is
slow (Sec. III A), respectively fast (Sec. III B), compared
to the diffusive dynamics in position space; and for the
case of small noise magnitude D (Sec. III D). We show
that for slow switching the current is the same as for a
system with a state-dependent temperature [13]. Com-
paring the slow and fast switching regime (Sec. III C), we
also predict the occurrence of current reversals. Finally,
we apply an external load to the ratchet to operate it as
an engine and extract work. Comparing the extracted
work to the energy injected into the system by the added
Gaussian white noise, we discuss the efficiency of the en-
gine in Section IV.

II. MODEL

Our model consists of an overdamped particle moving
in a periodic potential U(x+L) = U(x) and immersed in
an equilibrium bath at temperature T with Stokes fric-
tion. The motion of the particle is described by the over-
damped Langevin equation

mγẋ = −U ′(x) +
√

2mγTξ, (1)

where x is the position of the particle, m its mass (set
to 1 in the following) and ξ denotes zero-mean Gaussian
white noise of unit magnitude 〈ξ(t)ξ(t′)〉 = δ(t − t′). In
addition, we assume that the particle has an internal de-
gree of freedom, which can assume the discrete states
i = 1, . . . , N , and that the friction coefficient depends
on this internal state γ = γi. Physically this might be
realized via a molecule that can have N different confor-
mations which differ in size. Consequently, the Stokes
friction coefficient, γi = 6πηRi, depends on the state i,
with Ri being the spatial extension of conformation i
and η the viscosity of the medium. Similar to the under-
damped models with velocity dependent friction coeffi-
cient, the friction thus depends on an internal degree of
freedom of the particle, which now, however, is discrete
and independent the spatial motion. We further define
the rates rij ≥ 0 at which the internal state changes from
j to i

rij = rαij , (2)

where the αij are of order 1. Thus the parameter r de-
fines the typical timescale τr = 1/r on which the internal
state changes. We interpret the transitions between the
internal states as a thermally activated process, i. e. the
states are separated by energy barriers between which

transitions occur due to thermal fluctuations at temper-
ature T . While this interpretation is not necessary from
a mathematical point of view, it allows us to character-
ize the system as an equilibrium system at temperature
T . Equivalently to the Langevin equation (1), we can
describe the system by a set of coupled Smoluchowski
master equations for i = 1, . . . , N ,

∂tPi,t =
1

γi
∂x

[
U ′(x) + T∂x

]
Pi,t −

∑
j

(
rjiPi − rijPj,t

)
,

(3)

where Pi,t(x)dx is the probability to find the particle at
time t in state i and in the interval [x, x + dx]. It is
easily verified that the steady state solution to Eq. (3)
for periodic boundary conditions is given by

Pi(x) =
Pi
Z
e−

U(x)
T , (4a)∑

j

αjiPi =
∑
j

αijPj , (4b)

P (x) =
∑
i

Pi(x) =

∑
i Pi
Z

e−
U(x)
T =

1

Z
e−

U(x)
T . (4c)

Here Z =
∫ L
0

dx e−U(x)/T is the partition function and
the Pi are the occupation probabilities in state i, with
the normalization condition

∑
i Pi = 1. The occupation

probabilities are determined by the solution to Eq. (4b)
and normalization. In the stationary state the position
and the internal state decouple and the position distribu-
tion is precisely the equilibrium Boltzmann-Gibbs distri-
bution Eq. (4c). The system thus reaches an equilibrium
state at temperature T and there is no net motion in the
stationary state.

To drive the system out of equilibrium, we introduce an
additional Gaussian white noise with constant intensity
D,

γiẋ = −U ′(x) +
√

2γiTξ +
√

2Dη, (5)

with 〈η(t)η(t′)〉 = δ(t − t′) and 〈η(t)ξ(t′)〉 = 0. The
steady state Smoluchowski master equation is then mod-
ified to

1

γi
∂x

[
U ′(x) + Ti∂x

]
Pi = r

∑
j

(
αjiPi − αijPj

)
, (6)

where we defined the state-dependent effective tempera-
ture Ti = T + D/γi. This obviously reduces to Eq. (3)
for D = 0. For finite noise intensity D, however, the
solution is no longer given by Eq. (4); due to the state-
dependent temperature, the position and internal state
are now coupled. We note that the steady state of the

occupation probabilities Pi =
∫ L
0

dx Pi(x) still has to sat-
isfy Eq. (4b). Formally, Eq. (6) is similar to the ratchet
model introduced in Ref. [13] with a fluctuating temper-
ature. However, the physical picture is quite different,
as in our model the effective temperatures Ti are arise
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through the combination of state-dependent friction and
Gaussian white noise with constant intensity. By con-
trast, for the model of Ref. [13], the friction is constant
γi ≡ γ and the Ti correspond to different physical tem-
peratures. In the following analysis, we first treat Ti and
γi as independent, as this allows for the results to be
applied either situation.

The physical origin of the additional Gaussian white
noise can be understood in the following way: Con-
sider an additional heat bath at temperature T ∗, whose
coupling γ∗ to the system is independent of the inter-
nal state. Formally this then leads to a modified fric-
tion coefficient γ̃i = γi + γ∗ and effective temperature,
T̃i = γi/γ̃iT + γ∗/γ̃iT

∗. It is then easy to see that the

system is out of equilibrium (i. e. T̃i 6= T̃j) for T ∗ 6= T .
In particular for T ∗ → ∞ and γ∗ → 0 but D = γ∗T ∗

finite, one obtains precisely the model with added Gaus-
sian white noise Eq. (5) introduced above. Thus ad-
ditional Gaussian white noise corresponds to a second,
high-temperature but weakly coupled heat bath. A con-
crete experimental realization could be a charged parti-
cle, which changes between two conformations of differ-
ent size and thus friction coefficients γ1 and γ2, embed-
ded in a viscous fluid at temperature T . The additional
white noise may realized as an electrostatic force due to
charge fluctuations on a capacitor, either due to ther-
mal Johnson-Nyquist noise at temperature T ∗ � T or
an artificially generated random voltage applied to the
capacitor. Imposing an asymmetric periodic potential
should then lead to an observable current.

III. LIMITING CASES

Our model is simple enough that it permits an analytic
treatment, albeit not in full generality. In the following
four sections, we will thus focus on three limiting cases,
where the transition rate between the internal states is
slow (Sec. III A) or fast (Sec. III B) compared to the dy-
namics in the periodic potential and where the intensity
of the external noise is small (Sec. III D). In all three lim-
its, we show that the system exhibits a non-vanishing cur-
rent for nonzero D and thus work can be extracted from
the added Gaussian white noise. To facilitate the discus-
sion of the three limits, we introduce an overall damping
strength γ and temperature T , which are related to the
friction coefficient and effective temperatures in the indi-
vidual states by γi = νiγ and Ti = θiT , where the νi and
θi are dimensionless quantities that we assume to be of
order 1. Rescaling the position coordinate by the period
L of the potential x = zL with 0 ≤ z ≤ 1, we can write
Eq. (6) in dimensionless form

1

νi
∂z

[
u′(z) + θi∂z

]
pi(z) = ρ

∑
j

(
αjipi − αijpj

)
. (7)

Here u(z) = U(Lz)/T is a rescaled potential with pe-
riod 1 and pi(z) = LPi(Lz). For not too deep potentials

u ∼ O(1), the parameter ρ = rγL2/T = τx/τr specifies
the relaxation time τx = γL2/T of the dynamics along
the spatial direction relative to the one internal states,
τr = 1/r. For ρ � 1 (τr � τx) the spatial dynamics
are much faster than the transitions between the internal
states, which we refer to as slow switching. Conversely,
we refer to the opposite case ρ � 1 (τr � τx) as fast
switching. Writing θi = 1 + D/νi, the relative magni-
tude of the external noise is quantified by the parameter
D = D/(γT ), with D � 1 corresponding to weak exter-
nal noise.

A. Slow switching

We start with discussing the slow switching regime,
where the internal state changes slowly compared to the
position dynamics. We expand the solution to Eq. (7) in
terms of parameter ρ,

pi(x) ' p(0)i (z) + ρp
(1)
i (z) +O(ρ2). (8)

To lowest order (i. e. for ρ → 0), the solution to Eq. (7)
is readily obtained,

p
(0)
i (z) =

Pi
Zi
e
−u(z)θi , (9)

with Zi =
∫ 1

0
dz e

−u(z)θi . In this limit, the particle is with
probability Pi in a quasi-equilibrium state at effective
temperature Ti. Note that the occupation probabilities
Pi are still assumed to be stationary; this requires that
the stationary limit t→∞ is taken before taking r → 0.
The quasi-equilibrium nature of the steady state means
that to zeroth order in ρ, no current can be observed.
To first order in ρ we find a set of equations for the sub-
leading order corrections,

1

νi
∂z

[
u′(z) + θi∂z

]
p
(1)
i =

∑
j

(
αjip

(0)
i − αijp

(0)
j

)
. (10)

The general solution to Eq. (10) reads

p
(1)
i (z) =

νi
θi
e
−u(z)θi

[
N 1
i +

∫ z

0

dy e
u(y)
θi

(
fi(y)− J 1

i

)]
(11)

with fi(y) =
∑
j

∫ y

0

dx
(
αjip

(0)
i (x)− αijp(0)j (x)

)
.

The constants N 1
i and J 1

i have to be determined from

the normalization
∫ 1

0
dz p1i (z) = 0 [27] and periodicity

p1i (z + 1) = p1i (z) conditions. We obtain

J 1
i =

1

Z+
i

∫ 1

0

dz e
u(z)
θi fi(z), (12a)

N 1
i =

1

Zi

∫ 1

0

dz

∫ z

0

dy e
−u(z)−u(y)θi

(
J 1
i − fi(y)

)
, (12b)
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where we defined Z+
i =

∫ 1

0
dx eu(z)/θi . The constants J 1

i

can be related to the total probability current. Summing
Eq. (7) over i, we obtain

∂z
∑
i

1

γi

[
u′(z) + θi∂z

]
pi(z) ≡ −∂z

∑
i

Ji(z) = 0, (13)

since the double sum on the right hand side of Eq. (6)
cancels. The total probability current J is defined via
τx∂tpt(z) = −∂zJz and in the stationary state we have
∂zJz = 0, so that Jz ≡ J independent of z. Comparing
this to Eq. (7), we see that Jz =

∑
i Ji(z). Expanding Ji

in terms of ρ, we have Ji(x) = J
(0)
i (z) + ρJ

(1)
i (z). From

Eq. (11) we identify J 1
i = J

(1)
i (0). Since the zeroth order

currents vanish and J is independent of z, we thus have
J = ρ

∑
i J 1

i . The dimensionless current is then given by

Jz = ρ
∑
i,j

1

Z+
i

∫ 1

0

dz e
u(z)
θi

∫ z

0

dy

(
αjiPi
Zi

e
−u(y)θi − αijPj

Zj
e
−u(y)θj

)
. (14)

It is related to the physical current Jx via Jx = Jz/τx
Equation. (14) constitutes the first main result of our
paper. For nonzero D, state-dependent friction and an
asymmetric potential, the system exhibits a finite cur-
rent and drift velocity. We note that Jx depends on the
friction coefficients γi only via the effective temperatures
Ti. In the slow switching regime, the current obtained is
equivalent to a system switching between physical tem-
peratures Ti as in the model of Ref. [13]. The physical
reason for this is that for r � T/(γL2), the system in
state i is most of the time close to the quasi-equilibrium
state at effective temperature Ti, which depends on the
damping coefficient γi only via the effective temperature
Ti.

As a specific example, we choose a piecewise linear
potential

U(x) = U0 ×

{ x
x0

for 0 ≤ x < x0

L−x
L−x0

for x0 ≤ x ≤ L,
(15)

for which the integrals in Eq. (14) can be evaluated ex-
plicitly. The result for two internal states i = 1, 2 is given
in Eq. (A1) and is shown graphically in Fig. 1 as a func-
tion of different parameters. The current vanishes for a
symmetric potential x0 = L/2, identical friction coeffi-
cients γ1 = γ2 or zero external noise D = 0. The current
is generally larger, the more asymmetric the potential
or the more pronounced the difference in friction coeffi-
cients and thus effective temperatures is. As a function
of D, the current shows a D2 behavior for small D; it
then reaches a maximum at intermediate D before de-
creasing again at large D. In Sec. III D we show that the
D2 scaling for small D is in fact generic and not limited
to the slow switching regime. For large D, the overall
effective temperature is increased and thus the influence
of the potential, whose asymmetry generates the current,
becomes negligible. The current also has a maximum at
intermediate values of the potential depth U0. For small
U0 compared to T , the dynamics are mostly diffusive,
whereas for large U0 the particle will be trapped near the

minimum of the potential; in both situations the current
is small.

FIG. 1. The first order contribution to the dimensionless cur-
rent J

(1)
z for slow switching, Eq. (14) as a function of the

noise intensity D (top left), potential depth U0 (top right),
friction coefficient γ2 (bottom left) and asymmetry parame-
ter x0 (bottom right). The respective remaining parameters
are: D = γT, γ2 = 2γ, γ1 = γ, U0 = 2T, x0 = 0.2L. Note
that for D → 0, the current approaches 0 as D2.

B. Fast switching

In the opposite limit, the transitions between the inter-
nal states are much faster than the dynamics along the
coordinate axis, ρ � 1 or r � T/(γL2). For fluctuat-
ing physical temperature, this was examined in Ref. [13],
and the leading order contribution to the current was
found to be proportional to the inverse switching rate
1/r. We now re-examine this limit for our model, with
state-dependent friction. We restrict ourselves to two
internal states with transition rates r12 = r21 = r. Ex-
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panding

pi(z) ' p(0)i (z) + ρ−1p
(1)
i (z) +O(ρ−2), (16)

we find from Eq. (7) to order ρ−1

p
(0)
1 (z)− p(0)2 (z) = 0 (17a)

p
(1)
1 (z)− p(1)2 (z) =

1

γ1
∂z

[
u′(z) + θ1∂z

]
p
(0)
1 (z) (17b)

p
(1)
2 (z)− p(1)1 (z) =

1

γ2
∂z

[
u′(z) + θ2∂z

]
p
(0)
2 (z). (17c)

Since Eq. (17a) has to be true at any z, it can only be
satisfied for

p
(0)
i (z) = Pip̂(0)(z), (18)

with P1 = P2 = 1/2 where p̂(0) is independent of i. Sum-
ming Eqs. (17b) and (17c) we then obtain an equation
for p̂(0),

1

ν
∂z

[
u′(z) + θ∂z

]
p̂0(z), (19)

with
1

ν
=

1

ν1
+

1

ν2
, θ = ν

(
θ1
ν1

+
θ2
ν2

)
.

The zeroth-order solution is then just the Boltzmann-
Gibbs density at effective temperature θ,

p
(0)
i (z) =

Pi
Z
e−

u(z)

θ , (20)

with Z =
∫ 1

0
dz e−u(z)/θ. As expected, the zeroth-

order contribution to the current vanishes also in the fast
switching regime. Adding the order ρ−2 equations analog

to Eqs. (17b) and (17c), we obtain an equation for p
(1)
i ,

1

ν1
∂z

[
u′(x) + θ1∂z

]
p
(1)
1 (z) (21)

+
1

ν2
∂z

[
u′(z) + θ2∂z

]
p
(1)
2 (z) = 0.

Recalling the definition of the current, Eq. (13), we can
equivalently write this as

1

ν1

[
u′(z) + θ1∂z

]
p
(1)
1 (z) (22)

+
1

ν2

[
u′(z) + θ2∂z

]
p
(1)
2 (z) = −J (1)

z .

We now use Eq. (17c) to eliminate p
(1)
2 ,

1

ν

[
u′(z) + θ∂z

]
p
(1)
1 (z) = −J (1)

z (23)

− 1

ν22

[
u′(z) + θ2∂z

]
∂z

[
u′(z) + θ2∂z

]
p
(0)
2 (z).

Solving for p
(1)
1 and imposing periodicity, p

(1)
1 (z + 1) =

p
(1)
1 (z), we find for the first order current J

(1)
z ,

J (1)
z = − 1

ν22Z
+

∫ 1

0

dz e
u(z)

θ (24)

×
[
u′(z) + θ2∂z

]
∂z

[
u′(z) + θ2∂z

]
p
(0)
2 (z),

where we defined Z
+

=
∫ 1

0
dz eu(z)/θ. Plugging in the

result for p
(0)
2 and integrating by parts, we obtain for the

total current,

Jz = −1

ρ

ν2(θ1 − θ2)2

2(ν1ν2)2ZZ
+
θ
3

∫ 1

0

dz
(
u′(z)

)3
, (25)

which, as before, is related to the physical current via
Jx = Jz/τx. This is our second main result. We note that
for γ1 = γ2 this reduces to the result of Ref. [13], provided
that T1 and T2 are interpreted as physical temperatures.
For the model with state-dependent friction, we have ef-
fective temperatures with T1 − T2 = D(1/γ1 − 1/γ2).
It is then straightforward to see that, just as in the fast
switching case, the current is proportional to D2 for small
D. Eq. (25) is easily evaluated for the piecewise linear
potential Eq. (15) and reads, after returning to dimen-
sionful quantities,

Jx = −D
2

r

(
γ1 − γ2

γ1γ2(γ1 + γ2)

)2(
U0

T

)5 1
2 −

x0

L

L4
(
x0

L

(
1− x0

L

))2
×
(

4 cosh
(U0

T

)
− 4
)−1

. (26)

The current for fast switching in the piecewise linear po-
tential is shown in Fig. 2 as a function of various param-
eters. The overall dependence on the parameters is sim-
ilar to the slow switching case; in particular the current
also vanishes for a symmetric potential x0 = L/2, iden-
tical friction coefficients γ1 = γ2 or zero external noise
D = 0. Note that contrary to the slow switching regime,
the current diverges as x0 approaches 0 or L, which cor-
responds to a jump in the potential. In this situation, the
fast switching approximation breaks down, since at the
discontinuity, the spatial motion of the particle can no
longer be described by the slow timescale τx. The most
notable difference to the slow switching results is that
the magnitude of the first order correction is consider-
ably larger. We discuss the consequence of this finding
in the next Section. In contrast to the slow switching
result Eq. (14), for fast switching the current Eq. (25)
explicitly depends on the friction coefficients γi instead
of just the effective temperatures Ti. For fast switching,
the current is thus different for state dependent friction
as compared to a fluctuating temperature [13].

C. Crossover between slow and fast switching

As we discussed in the previous two sections, the cur-
rent is proportional to ρ = rγL2/T for small ρ, Eq. (14),
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FIG. 2. The first order contribution to the dimensionless cur-
rent J

(1)
z for fast switching, Eq. (25) as a function of the noise

intensity D (top left), potential depth U0 (top right), fric-
tion coefficient γ2 (bottom left) and asymmetry parameter
x0 (bottom right). The respective remaining parameters are:
D = γT, γ2 = 2γ, γ1 = γ, U0 = 2T, x0 = 0.2L.

and inversely proportional to ρ for large ρ, Eq. (25). For
the piecewise linear potential Eq. (15), since the sign of
the current is the same in both cases, it can be expected
that the current exhibits a maximum in between the two
limiting regimes. An estimate for the position of this
maximum is given by the crossover value ρc, defined as

ρc ≡

√√√√ J
(1)
z,fast

J
(1)
z,slow

, (27)

where J
(1)
z,slow (J

(1)
z,fast) denotes the first order correction

to the dimensionless current for slow (fast) switching.
Equivalently, this corresponds to a crossover value in
the switching rate rc = ρc/τx with τx = γL2/T . The
dimensionless quantity ρc depends on the relative fric-
tion coefficients γi/γ, potential U0/T , noise magnitude
D/(γT ) and position of the potential minimum x0/L; it
is shown as a function of these parameters in Fig. 3. The
crossover value ρ increases linearly with the relative noise
magnitude D/(γT ), since larger D corresponds to higher
effective temperatures and thus faster position dynam-
ics. Arguing along the same lines, one would expect ρ
to decrease with increasing potential depth U0/T , since
a deeper potential should slow down the dynamics. The
observed behavior is the opposite; while both in the slow
and fast switching regime the current decreases at large
U0, this decrease is actually faster in the slow switching
regime. This observation is, however, of limited value as
for deep potentials, the relevant time scale for the posi-
tion dynamics is no longer the time τx but instead the
much larger escape time τesc ∝ eU0/T , so that we expect
the system to be always in the fast switching regime for
deep potentials. Surprisingly, even if all the respective

FIG. 3. The crossover value ρc Eq. (27) between slow and fast
switching as a function of the noise intensity D (top left), po-
tential depth U0 (top right), friction coefficient γ2 (bottom
left) and asymmetry parameter x0 (bottom right). The re-
spective remaining parameters are: D = γT, γ2 = 2γ, γ1 =
γ, U0 = 2T, x0 = 0.2L.

parameters are of order unity, ρc is substantially larger
than unity. This is due to the first order coefficient of the
current for fast switching being considerably larger than
for slow switching. This implies that the system carries
larger current when the transitions between the internal
states are fast compared to the position dynamics, than
when the two timescales are similar. We suspect that the
cause for this at first glance surprising behavior is rooted
in the close-to-equilibrium nature of the slow switching
regime. In this limit the system in state i spends most of
the time close to a quasi-equilibrium state with effective
temperature Ti, and is only rarely driven out of equilib-
rium by a transition to a different state, which causes
a current to flow. By contrast for fast switching, even
though the overall system can also be approximately de-
scribed by an effective temperature (see Eq. (20)), it is
continuously driven out of equilibrium by the transitions
between the internal states, leading to a larger overall
current.

For the piecewise linear potential Eq. (15), the cur-
rent always has the same direction in the slow and fast
switching regimes. However, for other types of poten-
tial, this is not necessarily the case. Choosing U(x) =
U0[sin(2πx/L) + δ(sin(4πx/L)/2 + sin(6πx/L)/3)] and
plotting the resulting first order correction for the current
for fast and slow switching as a function of the asymme-
try parameter δ (see Fig. 4), it is readily apparent that
there exists a range of values for δ for which the cur-
rent flows in opposite directions in the slow, respectively
fast, switching regime. This implies that there exists
some intermediate switching rate r at which the current
changes sign and one thus observes a current reversal. We
note that also for this type of potential, the first order
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FIG. 4. The first order correction to the current for a potential
U(x) = U0[sin(2πx/L)+δ(sin(4πx/L)/2+sin(6πx/L)/3)], for
slow (top) and fast (bottom) switching, shown as a function
of the asymmetry parameter δ. The remaining parameters
are D = γT, γ2 = 2γ, γ1 = γ, U0 = 2T . Apart from being
overall much larger, the fast switching current is also negative
for δ . −1, while the current for slow switching is positive.
This implies a current reversal at some intermediate switching
rate.

fast switching correction is about three orders of magni-
tude larger than the corresponding slow switching one,
supporting the findings discussed above for the piecewise
linear potential.

D. Small noise

Since the current is driven by the added Gaussian
white noise, we want to understand how the current
scales in the limit where the noise intensity is small. Ex-
panding either Eq. (14) or Eq. (25) for small D, we find
that the zeroth and first order contributions vanish, so
that the total current is of order D2, see also Fig. 1.
While the zeroth order contribution has to vanish, as
the system is in equilibrium for D = 0, the vanishing of

the first order is non-trivial. This observation is not re-
stricted to the limits r � T/(γL2) or r � T/(γL2), but
is in fact more general. To see this, we consider an ex-
pansion of the probability density P (x) and the current
J ' J (0) + DJ (1) + D2J (2) in terms of small D � γT
similar to Eq. (8). Plugging this into Eq. (6), it can
be shown explicitly that the first order contribution to
the current J (1) is always zero (see Appendix B). This
agrees with the observation made in Ref. [12], that a
ratchet driven by temperature differences seems to re-
sist carrying a current. The non-vanishing contribution
to the current proportional to D2 can be calculated ex-
plicitly only for simple cases of the potential U(x). For
the piecewise linear potential Eq. (15), this procedure
is carried out in Appendix B. The resulting current is
compared to the slow and fast switching limits in Fig. 5.
Note that, as argued in Sec. III C, the maximum current

FIG. 5. The dimensionless current computed from the small
D (black), small ρ (blue, Eq. (A1)) and large ρ (orange,
Eq. (26)) expansions as a function of ρ for D = 0.05γT . The
remaining parameters are: γ2 = 2γ, γ1 = γ, U0 = 2T, x0 =
0.2L. The result from the small D expansion agrees very
well with the slow and fast switching results in the respec-
tive limits. In between, as expected, it exhibits a maximum,
whose position is approximately described by the crossover
value ρc ' 31 (dashed line).

occurs not for ρ ' O(1) but at the considerably larger
value ρ = ρc ' 31.

IV. WORK EXTRACTION AND EFFICIENCY

In the previous Section we derived analytic expressions
for the current in several limits. In particular, we can
observe a non-vanishing current for any finite external
noise intensity D. This current can be used to extract
work from the system and thus allows it to act as an en-
gine driven by Gaussian white noise. The simplest way
to extract work is to apply a constant external load force
F0 opposite to the current. As long as the external load
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is smaller than some stall value Fstall the particle will on
average move opposite to the load force and thus per-
form work on the load. This can be quantified by the
extracted power Pex = F0Jx,totL, where Jx,tot is the to-
tal current in the presence of both load force and inter-
nal dynamics. If the load force F0 is small compared to
the asymmetric potential U(x)/L, the total current de-
composes into a contribution due to the external load,
Jx,F = F0cJ , and the internal current Jx that was calcu-
lated in Sec. III. Here cJ depends on the details of the
potential and the switching dynamics; we provide the
corresponding expressions in App. C for slow (Eq. (C6))
and fast (Eq. (C7)) switching. Since Jx is to leading or-
der independent of F0, we can read of the stall force for
which Jx,tot = 0,

Fstall = −Jx
cJ
. (28)

The extracted power for small load is given by Pext =
cJLF

2
0 + JxLF0. The system performs work for Pext <

0, which requires Jx and F0 to have opposite sign and
|F0| < |Fstall|. The maximum power P ∗ext is obtained for
F0 = Fstall/2

P ∗ext = −1

4

L

cJ
J2
x . (29)

Thus the maximum extractable power is proportional to
the square of the internal current Jx, given by Eqs. (A1)
and (26) for slow respectively fast switching.

Since our fluctuating friction ratchet permits the ex-
traction of work and thus acts as an engine, it is natural
to consider the efficiency with which the engine converts
the external noise into work. To define efficiency, we first
need to specify the energy injected into the system as
a consequence of the external noise. From Eq. (3) and
taking into account the external noise, we have for the
change in the total energy of the particle

∂t〈U〉 =
∑
i

1

γi

[
〈U ′′〉i

(
T +

D

γi

)
− 〈(U ′)2〉i

]
. (30)

Here, 〈. . .〉i denotes an average with respect to Pi,t(x),
i. e. 〈U〉i is the energy of the fraction of particles in state
i. We identify the term proportional to D as the energy
injection rate due to the external noise. In the steady
state for two internal states and symmetric transition
rates, the energy injection rate is given by

〈ĖD〉 ' D



∑2
i=1

〈U ′2〉Ti
2Tiγ2

i
+O(r) slow switching

〈U ′2〉T
2T

γ2
1+γ

2
2

(γ1γ2)2
+O(r−1) fast switching

〈U ′2〉T
2T

γ2
1+γ

2
2

(γ1γ2)2
+O(D) small noise,

(31)

where 〈. . .〉T denotes an average over using a Boltzmann-
Gibbs distribution at (effective) temperature T . This

expression is positive and to leading order independent
of the switching rate r. To define the efficiency, we have
to compare this rate of energy injection to the extracted
power Pex

η = − Pex

〈ĖD〉
. (32)

The maximum efficiency η∗ is thus obtained at maximum
power P ∗ext. For small external noise, the power is pro-
portional to D4 and thus the efficiency is proportional to
D3. At moderate values of D the efficiency is generally
larger, however, here we only have asymptotic results for
slow and fast switching. Since the energy injection rate
is independent of the switching rate r, but the power is
proportional to r2 for slow switching, respectively r−2

for fast switching, the efficiency is proportional to r2,
respectively r−2. Thus, at least in the limits discussed
above, the efficiency of the ratchet, like the current, is
asymptotically small; only a small proportion of the in-
jected energy is converted into useful work. However, this
neglects the fact that Gaussian white noise is usually a
readily available and often naturally occurring resource,
which might make the ratchet viable as an engine despite
its low efficiency.

V. DISCUSSION

With an internal degree of freedom with a state-
dependent friction coefficient, an overdamped Brownian
particle can be driven out of equilibrium by the addition
of state-independent Gaussian white noise. As we have
shown, this can be utilized to generate a current and ex-
tract work from the uncorrelated Gaussian fluctuations
of the noise. Previous studies have focused on ratchets
driven by correlated [4, 18–20] or non-Gaussian noise [15–
17], which require a specially tailored noise source. Gaus-
sian white noise, on the other hand, occurs naturally as
the coarse-graining limit of any weakly correlated, finite-
variance noise and thus occurs commonly in the descrip-
tion of many physical systems, often as an equilibrium
noise. Our analysis underlines that the difference be-
tween equilibrium and nonequilibrium noise is not only
due to the noise itself but always has to be determined
in the context of the system. This means that even un-
correlated Gaussian noise, which is an ideal realization of
“true” randomness, can serve as a resource from which
work can be extracted, given a suitably designed system.
Thus Gaussian white noise can potentially serve as a re-
source to power microscopic engines.
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Appendix A: Current for sawtooth potential

For the piecewise linear sawtooth potential Eq. (15),
the first order slow switching contribution to the current
Eq. (14) can be evaluated explicitly. We restrict ourselves
to two internal states {1, 2} and assume symmetric tran-
sition rates α12 = α21 = 1. The result reads

J (1)
x =

(
1− 2x0

L

)
16 sinh2

(
β1

2

)
sinh2

(
β2

2

)[β1 cosh(β2) + β2 cosh(β1) +
β1 + β2
β2 − β1

(
sinh(β1) + β1 − sinh(β1 − β2)− sinh(β2)− β2

)]
.

(A1)

Here we defined βi = U0/Ti with the effective tempera-
tures Ti = T + D/γi. As expected, the current vanishes
for x0 = L/2 or T1 = T2 (equivalent to D = 0 or γ1 = γ2).

Appendix B: Small D for arbitrary r

For small D � γT and arbitrary r, we expand the

probability density similar to Eq. (8), Pi(x) ' P (0)
i (x) +

DP
(1)
i (x) + O(D2). We then have from Eq. (6) to first

order in D

1

γi
∂x

[
U ′(x) + T∂x

]
P

(1)
i (x) +

1

γ2i
∂2xP

(0)
i (x)

=
∑
j 6=i

(
rjiP

(1)
i (x)− rijP (1)

j (x)
)

(B1)

with P
(0)
i (x) =

Pi
Z
e−

U(x)
T , Z =

∫ L

0

dx e−
U(x)
T .

Taking the sum over the N equations, the term involving
the transition rates cancels and we are left with

∑
i

[
1

γi
∂x

[
U ′(x) + T∂x

]
P

(1)
i (x) +

1

γ2i
∂2xP

(0)
i (x)

]
= 0.

(B2)

Due to the definition of the current Eq. (13), we obtain
upon integration[

U ′(x) + T∂x

]
P̃ (1)(x) +

∑
i

1

γ2i
∂xP

(0)
i (x) = −J (1)

x ,

(B3)

where we defined

P̃ (1)(x) =
∑
i

1

γi
P

(1)
i (x). (B4)

This is readily solved for P̃ (1)(x),

P̃ (1)(x) =
1

T
e−

U(x)
T

[
Ñ (B5)

−
∫ x

0

dy e
U(y)
T

[∑
i

1

γ2i
∂yP

(0)
i (y) + J (1)

x

]]
.

Since every P
(1)
i (x) has to be periodic, the same is true

for P̃ (1)(x) and we find

J (1)
x = − 1

Z+

∑
i

1

γ2i

∫ L

0

dy e
U(y)
T ∂yP

(0)
i (y), (B6)

with Z+ =
∫ L
0

dx eU(x)/T . Using the expression for P
(0)
i

from Eq. (B1), it is easy to see that the integral yields
zero and the first order contribution to the current for
small D vanishes. For the second order contribution, we
find in complete analogy

J (2)
x = − 1

Z+

∑
i

1

γ2i

∫ L

0

dy e
U(y)
T ∂yP

(1)
i (y), (B7)

where the P
(1)
i are determined by the solution of

Eq. (B1). For general U(x) there exists no closed form

solution for P
(1)
i , however, we can solve the equations in

special cases. First we note that, from Eq. (B5) using

the normalization condition
∫ L
0

dx P̃ (1)(x) = 0

P̃ (1)(x) =
1

ZT 2

∑
i

Pi
γ2i

(
U(x)− 〈U〉0

)
e−

U(x)
T . (B8)

Comparing this to the definition of P̃ (1), Eq. (B4), we
define

P
(1)
i (x) =

1

ZT 2

Pi
γi

(
U(x)− 〈U〉0

)
e−

U(x)
T + gi(x). (B9)

The first part on the right hand side is the trivial cor-
rection due to finite D, which due to an increased tem-
perature T → T +D/γi increases the probability for the
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particle to be at larger values of the potential compared
to the average 〈U〉0 at temperature T . It is easy to ver-
ify by direct computation that this trivial term does not
contribute to the current. The functions gi then satisfy
the equations

1

γi
∂x

[
U ′(x) + T∂x

]
gi(x) =

∑
j

(
rjigi(x)− rijgj(x)

)
+

ξi
ZT 2

(
U(x)− 〈U〉0

)
e−

U(x)
T , (B10)

with ξi =
∑
j(rjiPi/γi − rijPj/γj) and the additional

condition due to Eq. (B4)∑
i

1

γi
gi(x) = 0. (B11)

In terms of the gi, the second order correction to the
current reads

J (2)
x = − 1

Z+

∑
i

1

γ2i

∫ L

0

dy e
U(y)
T ∂ygi(y). (B12)

For two internal states with symmetric transition rates
r12 = r21 = r, we can use Eq. (B11) to eliminate g2 and
obtain

∂x

[
U ′(x) + T∂x

]
g1(x) = r(γ1 + γ2)g1(x)

+
r

2ZT 2

(
1− γ1

γ2

)(
U(x)− 〈U〉0

)
e−

U(x)
T .

(B13)

This equation can be solved explicitly for the piecewise
linear potential Eq. (15), where U ′(x) = α = const. In
this case, the general solution to Eq. (B13) reads

gi(x) =
1

ε

[
e−

(α+ε)x
2T

[
c1 −

∫
dx e

(α+ε)x
2T h1(x)

]
(B14)

+ e−
(α−ε)x

2T

[
c2 +

∫
dx e

(α−ε)x
2T h1(x)

]]
,

where we defined

ε =
√
α2 + 4rT (γ1 + γ2) (B15a)

h1(x) =
r

2ZT 2

(
1− γ1

γ2

)(
U(x)− 〈U〉0

)
e−

U(x)
T . (B15b)

For the potential Eq. (15) we have αl = U0/x0 for 0 <
x < x0 and αr = −U0/(L−x0) for x0 < x < L. Matching
g1 and its derivative at the boundaries,

gr1(x0) = gl1(x0), gl1(0) = gr1(L), (B16)

gr1
′(x0) = gl1

′
(x0) +

U0

T
gr1(x0)

L

x0(L− x0)
,

gl1
′
(0) = gr1

′(L)− U0

T
gl1(0)

L

x0(L− x0)
,

determines the four coefficients cl,r1,2. Plugging the re-

sults for g1 and g2 into Eq. (B12) then yields the de-
sired expression for the current. This above procedure is
straightforward but tedious and we use Mathematica to
solve and evaluate the resulting expressions.

Appendix C: Current due to external load

Taking into account a constant external load force F0,
Eq. (7) changes to

1

νi
∂z

[
u′(z)− f + θi∂z

]
pi(z) = ρ

∑
j

(
αjipi − αijpj

)
,

(C1)

where f = F0L/T . For small load f � 1, we can expand

pi(z) ' p
(0)
i + fp

(1)
i . Here p

(0)
i is the result for zero load

force, which was discussed in Sec. III. Integrating over z,
we have

1

νi

[
u′(z) + θi∂z

]
p
(1)
i (z) (C2)

= ρ
∑
j

∫ z

0

dy
(
αjip

(1)
i (y)− αijp(1)j (y)

)
+

1

νi
p
(0)
i (z)− J (1)

i ,

where the constants J
(1)
i are related to the total current

via Jz '
∑
i(J

(0)
i + fJ

(1)
i ). For slow switching, we can

now further expand for small ρ � 1, p
(k)
i ' p

(k,0)
i +

ρp
(k,1)
i . Since the term p

(1,1)
i leads to a contribution of

order fρ, we neglect it and only consider the leading
order term, for which we have

1

νi

[
u(z) + θi∂z

]
p
(1,0)
i (z) =

1

νi
p
(0,0)
i (z)− J (1)

i . (C3)

The function p
(0,0)
i is just the effective Boltzmann-Gibbs

distribution Eq. (9). Solving for p
(1,0)
i and demanding

periodicity, we obtain

J
(1)
i =

Pi
νiZiZ

+
i

, (C4)

where Zi and Z+
i were defined in Sec. III A. The total

current is then given by

Jz,tot '
∑
i

Pi
νiZiZ

+
i

f + Jz +O(ρf), (C5)

where Jz is given by Eq. (14) and is proportional to ρ and
independent of f . In terms of dimensionful quantities we
have Jx,tot = Jz,tot/τx and thus

Jx,tot '
F0

L

∑
i

Pi
γiZiZ

+
i

+ Jx. (C6)
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Following an analogous calculation using the results of
Sec. III B, we find in the fast switching regime

Jx,tot '
F0

L

1

2γZZ
+ + Jx. (C7)
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