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Phage display as a powerfull tool to engineer novel biomaterials for diverse regenerative medicine 
applications.  
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ABSTRACT 

The field of regenerative medicine has been gaining momentum steadily over the past 

few years. The emphasis in regenerative medicine is to use various in-vitro and in-vivo 

approaches that leverage on the intrinsic healing mechanisms of the body to treat 

patients with disabling injuries and chronic diseases such as diabetes, osteoarthritis, 

and degenerative disorders of the cardiovascular and central nervous system. 

Phage display has been successfully employed to identify peptide ligands for a wide 

variety of targets, ranging from relatively small molecules (enzymes, cell receptors) to 

inorganic, organic, and biological (tissues) materials. Over the last two decades, phage 

display technology has advanced tremendously and has become a powerful tool in the 

most varied fields of research, including biotechnology, materials science, cell biology, 

pharmacology, and diagnostics. The growing interest in and success of phage display 

libraries is largely due its incredible versatility and practical use. This review discusses 

the potential of phage display technology in biomaterials engineering for applications 

in regenerative medicine. 

 

 

KEYWORDS 

 

Bacteriophages (or phages): viruses that specifically infect bacterial cells and consist of an 

outer protein capsid enclosing genetic material (dsDNA - vast majority, ssDNA, ssRNA, or 

dsRNA - very rare, with either circular or linear arrangement).  

 

Biomaterials: synthetic or natural materials designed to interact with tissues and organs in the 

body to monitor and/or restore their functions. 
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Nanotechnology: technology that involves imaging, measuring, modeling, and manipulating 

materials on the nanometer scale (i.e. 10
-9

 meter), typically in the range of 1 to 100 

nanometers.  

Peptide ligand: a peptide sequence which binds with high affinity and specificity to a particular 

target. 

 

Phage display panning: combinatorial process of displaying random peptide sequences or 

engineered proteins, fused to the coat-proteins on the surface of phages, to identify peptides 

or proteins (out of billions of candidates) that bind specifically and selectively to a defined or 

unknown target.  

 

Phage display peptide library: collection of phage particles displaying random peptides 

containing as many as 10
9
 combinations.  

 

Regenerative medicine: new field in the health sciences dedicated to the regeneration of 

tissues or organs by applying specific cell populations or biomaterial scaffolds, alone or 

combined, to stimulate the intrinsic healing ability of the body and promote endogenous 

repair. 

 

Targeted delivery: method of delivering a therapeutic (drug, bioactive protein, or gene) or 

imaging (probe) agent to a specific site in the body, which optimizes its therapeutic or imaging 

index by restricting its pharmacological or imaging activity to the target tissue or organ, and 

reducing potential exposure in unwanted sites.  
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INTRODUCTION 

Regenerative medicine (RM) is a growing field of interdisciplinary research and clinical 

practices that has the potential of transforming the future of healthcare. It seeks to 

repair or replace malfunctioning cells, tissues, or organs caused by genetic disorders, 

chronic diseases, injuries or aging (1). It employs a combination of in-vitro/ex-vivo and 

in-vivo approaches that may involve transplantation of stem/progenitor, 

differentiated, or engineered cells, alone or incorporated in biomaterial scaffolds; 

tissue engineering; and delivery of therapeutic agents (e.g. cytokines, genes, small 

molecules) for reprogramming cell and tissue types or improving the function of the 

host environment. All RM strategies leverage on the stimulation of the body’s 

endogenous processes to develop and repair. Accordingly, stem cell research, gene 

therapy, biomaterials science, and molecular imaging play a central role in RM.  

Phage display is a potent, high-throughput technology used for identifying peptide 

ligands for a given target. The technique applies a library of phage particles displaying 

an ample variety of peptides or proteins to identify those that bind to a certain target. 

The utility of this technology derives from phage biology, as phages can be genetically 

modified to express polypeptides on their surface while the gene encoding the 

polypeptide, found inside the viral particle, can be analyzed. Since its first 

establishment by George P. Smith in 1985 (2), phage display has enabled the selection 

of a vast quantity of different peptides. Although being mostly used to discover 

peptide ligands for mapping protein–protein interactions, and in the field of antibody 

engineering, phage display has evolved, now contributing to a variety of different 

areas of medicine and technology. Some of those areas that now benefit from the 

system are molecular and imaging diagnosis (3), peptide drug discovery (4), targeted 

drug and gene delivery (5), vaccine development (6), identification of new receptors 

and ligands (6), and nanomaterials (7, 8). Several excellent reviews, covering different 

aspects of phages, including phage biology (9) and the application of phage display in 

different areas (6, 10-12) have been published.  

Cell transplantation often requires prior expansion of the cells in-vitro to obtain large 

numbers of functional cells for clinical applications. Thus in-vitro expansion is a critical 

step in cell-based therapies and typically involves the culture of cells on substrates 

coated with extracellular matrix (ECM) proteins. However, the batch-to-batch 

variability of ECM proteins presents limitations for both basic research and clinical 

applications of stem cells. Phage display technology provides a non-expensive tool for 

the rapid and efficient screening of peptide ligands on cells or tissues, discriminating 

between subtle differences in cell surface phenotypes and between normal or 

diseased tissues. These peptide motifs can be incorporated into biomaterials to guide 

stem cell proliferation and differentiation in-vitro for subsequent transplantation, or to 

recruit local stem cells in-vivo for stimulating tissue regeneration. Using phage-derived 

peptides targeting specific cells or tissues, rather than the non-specific peptide motifs 
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routinely used in RM approaches, more controllable and effective regenerative 

therapies can be developed and tailored to individual patients, leading towards 

personalized medicine. In addition, phage display can provide novel peptides to 

investigate peptide–protein interactions that underlie disease mechanisms, which can 

be further used for designing potential therapeutic agents. Thus, peptide phage display 

is also a valuable tool in RM, and several therapeutic products generated by this 

technology are now commercially available (4), demonstrating its clinical potential. 

This review aims to recount the applications of phage display in biomaterials 

engineering and RM, highlighting the future of phage display in these fields. 

 

Phage display screening - biopanning 

The most common screening method to identify peptide ligands for a given target by 

phage display (affinity selection) is known as biopanning. This procedure employs a 

phage display library that consist of a pool of individual clones (∼ 10
9
) bearing a 

different foreign DNA insert in the phage genome and presenting a different peptide 

on its surface. The external gene sequence is merged between genes encoding a signal 

peptide and a part of the capsid protein, which ensures that the foreign peptide is 

expressed fused to the coat-proteins. Molecules displayed on phage libraries are not 

restricted to peptides and antibodies. Random protein fragments, gene fragment- or 

cDNA-encoded proteins, and mRNA phage display libraries have also been created (13, 

14), broadening the practical applications of the technology and demonstrating the 

versatility of the technology. 

Typically, the process starts with library exposure to the target of interest to allow 

binding to the target under suitable conditions. The loosened phages are eliminated by 

washing, and the remaining bound phages are then eluted for subsequent bacterial 

infection and amplification. Viral multiplication occurs within the host cells, and 

thousands of newly-formed phage particles are generated for additional selection 

rounds (usually 2–5 rounds). After multiple panning rounds, enrichment of target-

binding phage is analyzed by phage tittering and/or immunological assays. When 

sufficient enrichment is achieved, single phages are separated and sequenced to 

identify predominant binding motifs (consensus sequence). Selective clones may be 

obtained by examining the differences between unselected and selected libraries using 

DNA sequencing (15, 16). 

Selection of ligands able to distinguish particular features in biological scenarios (cells 

and tissues) with good specificity and affinity is required for reliable diagnosis and 

effective regenerative therapies. Thus, potential targets in RM are signaling proteins 

(e.g. growth factors), cells, and tissues. These targets, however, have many potential 

binding sites, and non-specific binding to abundant molecules (e.g. albumin) is also 

believed to affect the outcome of the panning experiments. Hamilton and co-workers 

Page 5 of 38

ACS Paragon Plus Environment

ACS Chemical Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(17) described the application of phage display to select peptides that bind to bone 

morphogenetic protein 2 (BMP-2), which is implicated in osteoblast differentiation and 

stimulates bone formation. Using a recombinant form of human BMP-2 (rhBMP-2), 

they first biotinylated the protein for immobilization on streptavidin (SA)-coated 

microtiter plates. Biopanning was performed according to conventional protocols. 

After 3 cycles of screening, the populations of enriched phages were amplified in 

bacteria and the binding to BMP-2 was detected by an enzyme linked immunosorbent 

assay (ELISA). 

Many studies do not take into account the fact that the high density of receptors at the 

selection surface does not reproduce the density of receptors present on the native 

cell membrane. Thus, the binding affinity of the isolated peptide might be lower than 

the one observed when displayed on the phage. For example, Bastings et al. (18) 

demonstrated, using SA as a model multivalent receptor, that receptor density and 

ligand valency are important parameters associated with binding strength. They 

showed that phage affinity for SA-coated surfaces declines significantly into the 

nanomolar scale when the surface density of SA is reduced. By displaying the peptide 

ligand in a multivalent arrangement (e.g. dimer, tetramer, or pentameric peptide 

wedge) they were able to increase (104-fold) the binding affinity as compared to the 

monovalent peptide. This study suggests that for effective targeting strategies, both 

the ligand presentation and the density of the corresponding receptor are 

fundamental aspects to consider. The ligand selection should be conducted on surfaces 

with physiologically-representative receptor densities, and the peptides identified by 

phage display should be displayed in an appropriate form (e.g. dendrimer) when 

engineering biomaterials aiming for successful targeting. In addition, the cell surface 

contains proteins that can cluster or multimerize, and some of these organization 

patterns can be disturbed upon preparation of membrane proteins for selective 

screening. Indeed, the hydrophobic segments of membrane proteins direct them into a 

lipophilic environment, with such proteins naturally aggregating after separation from 

the membrane. Recombinant forms of these proteins have been widely used, but 

recombinant receptors are not always available. Hajduczki et al. (19) proposed a new 

approach for the solubilization and presentation of membrane proteins, by proposing 

a different strategy for phage display selection. They prepared a phage library 

displaying caveolin-1 (monotopic membrane protein associated with detergent-

insoluble rafts) variants generated by site-directed mutagenesis, and used an anti-

selection process, consisting of binding to a hydrophobic resin, to eliminate 

aggregation-prone hydrophobic variants. The less hydrophobic variants were 

subsequently recovered and used in positive selection to isolate variants binding to the 

gp41 ectodomain (a known caveolin function). This additional positive panning 

ensured that the obtained variants were correctly folded. Thus, phage display 

screening on whole cells offers more chances to obtain peptides that bind to 

transmembrane proteins in their natural conformation. Panning on living cells can be 
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done either on monolayers of attached cells or on cells in suspension. In these cases, 

the pool of target-binding phages needs to be diverse, but it can be reduced by 

performing a negative screening (pre-clearing) on “control” cells (20) or a funnel 

screening protocol. Kiessling’s group (21) used a screening approach based on the 

biopanning and rapid analysis for selective interactive ligands (BRASIL) method, 

previously developed by Giordano and co-workers (20), to isolate peptides binding to 

the surface of live stem cells. BRASIL is more specific (panning of cells in suspension) 

and faster than conventional methods that depend on washing or limiting dilution. 

Because living stem cells present many different receptors on their surfaces, and no 

appropriate “control cells” were available for a negative selection step, they further 

optimized the screening to narrow down the pool of cell-binding peptides. They 

incubated the cells (human embryonal carcinoma cell line) with a mixture (1:1) of 

peptide-bearing (library) and peptide-free (wild type) phage, and monitored phage 

titer at each panning and washing step. The phage members that remained bound to 

cells after all washing stages were then subjected to an additional cycle of incubation 

and washing, resulting in 50-fold enrichment of the peptide-containing phage. 

However, many non-specific phages remained in the pool. Therefore, to select the cell-

binding phage, they employed another screening step using an ELISA. Seven cell-

binding phage clones were isolated from the 370 clones tested. 

Since the human body is made of around 1014 cells with distinct types and the surface 

changes with the state of the cell, the problem gains further complexity in-vivo. 

Although most biopanning experiments are conducted in-vitro, it is recognized that the 

in-vivo conditions greatly influences the expression of cell surface molecules, and that 

the phenotype of certain cells changes when they are cultured in-vitro. Thus, the 

application of phage display selection in-vivo circumvents these challenges and allows 

the identification of ligands able of homing to specific tissues or organs (6, 22-25). In 

order to achieve this process, phage libraries are injected intravenously into animals 

and allowed to circulate for a certain time. While nonspecific phages tend to be found 

throughout the whole organism, phages with selective binding will concentrate in 

certain tissues or organs. The bound phages are recovered and amplified and their 

DNA is sequenced. Pasqualini and Ruoslahti (24) were the first to report this approach, 

isolating peptides that home to renal and cerebral vascular endothelium in-vivo. In-

vivo panning has also been applied to identify peptide ligands with potential 

applications in RM. For example, Nowakowski et al. (26) were the first to conduct a 

phage display experiment involving the bone marrow and stem cells. They injected the 

phage display library into the tail vein of mice and, 10 minutes after injection, isolated 

the bone marrow to elute phages bound to bone marrow cells. The eluted phages 

were purified, amplified, and then reinjected. Five rounds of screening resulted in the 

identification of a peptide that preferentially homes to bone marrow, also binding to 

resident hematopoietic stem cells. The receptor of this peptide may be involved in 

bone marrow engraftment by recruiting hematopoietic stem cells. 
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One of the most laborious and costly steps (rate-limiting) in phage display screening is 

the DNA sequencing of the encoded displayed peptides. Next generation sequencing 

(NGS), such as Illumina deep sequencing technology, permits a high-throughput and 

cost-competitive phage display selection because it can characterize over 10
7
 reads in 

a single run, providing more complete coverage of the libraries (27). This is particularly 

useful for panning on RM targets such as cells, which present hundreds of different 

receptors. For example, Hoen and colleagues (28) applied NGS to analyze the phage 

library at different stages of the selection process when panning on KS483 osteoblast 

cells, finding positive hits after one round of selection. Since its first application, NGS 

has been applied to enhance phage display protocols (28-31), allowing the isolation of 

phage binders after the first biopanning round, and the selection of less frequent but 

more specific peptides. As an example, a new method for selection against targets 

located on the cell surface, which are less abundant and cannot be purified, was 

implemented by the Lerner lab (32). This method allows for the identification of 

ligands for less-fit molecules with lower affinity. Having ligands with lower affinity can 

be useful for neutralizing the function/activity of the target through binding to 

different regions.  

In the following sections, we describe applications of phage-derived peptides in the 

functionalization of novel biomaterials with potential implications in RM strategies. 

 

APPLICATIONS OF PHAGE DISPLAY IN BIOMATERIALS ENGINEERING FOR 

REGENERATIVE MEDICINE  

The advances in phage display have greatly expanded the applications of the 

technology, creating new opportunities in biomaterials engineering and RM. Figure 1 

shows examples of in-vitro and in-vivo RM strategies using different biomaterial 

systems functionalized with peptides identified by phage display. Phage-derived 

peptides, able to bind specifically to receptors on the surface of stem cells, can be used 

to functionalize synthetic scaffolds (2D surfaces and 3D hydrogels) for promoting stem 

cell expansion (Figure 1-a) or differentiation (Figure 1-b) in-vitro. In-vivo approaches 

include the incorporation of peptide ligands identified by phage display into injectable 

biomaterials (e.g. nanofibers), which can bind to growth factors (GFs) and promote 

endogenous tissue repair (Figure 1-c), or into nanobiomaterials (e.g. liposomes, 

dendrimers), which can bind to receptors on the cell surface and deliver genetic 

material to target cells (gene therapy, Figure 1-d). 
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Figure 1. The use of phage display (center: M13 phage displaying a random peptide library on coat-

protein 3) in biomaterials engineering and their applications in in-vitro (a, b) and in-vivo (c, d) RM 

approaches. (a) Functionalized synthetic substrates (2D surfaces) for stem cell expansion; (b) 

Functionalized hydrogels (3D environments) for recreating/manipulating stem cell niches; (c) 

Functionalized injectable biomaterials for sequestering GFs to promote endogenous tissue repair; (d) 

Functionalized nanocarriers for cell reprogramming (target delivery of genetic material to specific cells). 

Different databases (PepBank, Tree of Medicine, BDB) collating peptide sequences 

identified by phage display can be accessed free of charge, greatly contributing to data 

mining in this area. Currently, the biopanning data bank (BDB, at 

http://immunet.cn/bdb/) formerly known as MimoDB (33, 34) contains 26813 peptide 

sequences, showing that the use of phage display has exploded over recent decades. 

However, many of the discovered sequences have not been further analyzed and 

validated in-vitro or in-vivo to assess specificity, selectivity, and stability, nor have they 

had their structure optimized to be clinically useful. To facilitate the search of 

sequences with utility for RM applications, we have compiled in Table 1 a selected list 

of peptide sequences that bind to RM targets (i.e., ECM components of tissues, GFs, 

surface of stem and differentiated cells). These peptide ligands can be used to 

specifically localize imaging probes or drugs to damaged tissues for diagnostic 
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(immunohistochemistry, magnetic resonance imaging, positron emission tomography) 

and therapeutic (treating diseases) purposes; to deliver different biologics (e.g., GFs, 

oligonucleotides) to selected cell types for controlling their behavior (adhesion, 

survival, proliferation, migration, differentiation, angiogenesis); or to recruit local stem 

cells to sites of injury for stimulating tissue regeneration. The BiopanningDataSet ID 

was also included, when available, to facilitate the search in MDB, as well as the 

equilibrium dissociation constant (KD), which represents the binding affinity between 

the peptide ligand and the target, or the half inhibitory concentration (IC50) from 

competition binding assays. In addition, a follow-up was performed to identify 

transformative publications that have identified breakthrough sequences, inspired new 

experiments based on the original sequence, and contributed to their application and 

clinical development, with potential impact on RM. To discriminate such contributions, 

quantitative data on the number of citations for each publication were first gathered, 

and from these, original articles were selected (excluding reviews, editorials, book 

chapters) to perform the analysis. While carrying out this evaluation, we must bear in 

mind that, typically, there is a 1–3 year citation lag time for each article with impact, 

and certain sequences have been only recently published. Table 1 also summarizes the 

outcome of this analysis by identifying the number of publications that describe 

subsequent use of the original peptide sequence in diverse experimental studies, 

including in-vitro and in-vivo testing/characterization, and optimization/formulation 

toward their medical application. More details on this analysis can be found in Table S1 

(supplementary information). Many of the listed sequences have not resulted in any 

follow-up papers, mainly because they have been only recently discovered (since 

2008). One exception is compstatin, a cyclic tridecapeptide first identified by Sahu (35) 

from phage-display libraries, which binds to complement component 3 (C3), a protein 

of the immune system. An excellent review on the “clinical trajectory” of compstatin 

was provided by Ricklin and Lambris (36). This peptide has contributed significantly to 

the understanding of compstatin–C3 interactions and the generation of new 

therapeutics (complement inhibitors). Compstatin, and in particular POT-4 (Table S1), 

which has been commercialized by Potentia Pharmaceuticals, Inc., has entered phase I 

clinical trials for the treatment of age-related macular degeneration, and can be used 

for biomaterial functionalization to inhibit biomaterial-induced complement activation 

(37).  
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Table 1 Selected peptide sequences identified by phage display that bind to targets with relevance for biomaterials engineering in 

regenerative medicine applications 

Target 
Sequence 

(BiopanningDataSet ID) 

Ref.
a
 

(year) 

KD 

(µM) 

Designation/ 

Commercial name 

Follow-up
b 

Char
c
 Opt

d
 Appl

e
 

E
C

M
 c

o
m

p
o

n
e

n
ts

 

C
o

ll
a

g
e

n
 (

co
l)

 

Col I (rat) 
HVWMQAP (38) 

(2009) 

61±5 Coll I binding peptide - - 1  

Col I (human) 

(demineralized 

bone matrix) 

SWWGFWNGSAAPVWSR (39) 

(2008) 

<0.1 

(EC50) 

- - - 1  

Col II (bovine 

cartilage grafts) 

WYRGRL 

(486) 

(40) 

(2008) 

0.14 

(IC50) 

Col II binding peptide - - 5 

Col IV (human) 
KLWVLPK (41) 

(2010) 

0.114 

(IC50) 

- - - 5 

Hyaluronan (HA) 
GAHWQFNALTVR  

(756) 

(42) 

(2000) 

1.65 HA-binding peptide  

Pep-1 

1 2  23 

H
y

d
ro

x
y

a
p

a
ti

te
 

(H
A

P
) 

Crystalline HAP  
SVSVGMKPSPRP (43) 

(2008) 

14.1±3.8 - 3 - 1 

Synthetic HAP 

powder 

MLPHHGA, 

NPGFAQA 

(44) 

(2008) 

ND - - 1 2 

 

Single crystal 

HAP (100) 

NPYHPTIPQSVH 

(1342) 

(45) 

(2011) 

ND - - - 1 

C
e

ll
 s

u
rf

a
ce

, 
ti

ss
u

e
s 

a
n

d
 o

rg
a

n
e

ll
e

s 

D
if

fe
re

n
ti

a
te

d
 c

e
ll

s 

Cardiomyocytes  QPFTTSLTPPAR  

(1883) 

(46) 

(2011) 

ND - - - - 

Chondrocytes        

Mouse RLDPTSYLRTFW, 

HDSQLEALIKFM  

(2167) 

(47) 

(2013) 

ND - - - - 

Rabbit DWRVIIPPRPSA  

(1549) 

(48) 

(2011) 

ND CAP (chondrocyte 

affinity peptide) 

- - 1 

S
te

m
 c

e
ll

s 

Adipose 

derived 

       

Human adipose 

stem cells 

(ASCs) 

MLAGWIP  

(1576) 

(49) 

(2008) 

ND - - - - 

Mouse ASCs SWKYWFGE  

(1552),  

WLGEWLG  

(1576) 

(50) 

(2011) 

ND WAT7 - - - 

Bone marrow 

derived 

       

Human 

mesenchymal 

stem cells 

(MSCs) 

EPLQLKM  

(1941) 

(51) 

(2012) 

ND E7 (hBMMSC affinity 

peptide) 

- - 5 

Mouse MSCs NSMIAHNKTRMH 

 

(52) 

(2008)  

ND LAB (low affinity 

binding) peptide  

 

- - 1 

SGHQLLLNKMPN  ND HAB (high affinity 

binding) peptide 

- - 1 

Murine MSCs  STFTKSP  

(682) 

(26) 

(2004) 

ND BMHP (bone marrow 

homing peptide) 

2 - 4 

Rat MSCs  VTAMEPGQ  

(2294) 

(53) 

(2013) 

ND - - - 2 

Embryonic 

derived 

       

Human 

embryonic stem 

cells (ESCs) cell 

line X-01  

HGAAWGTRTGHV  (54) 

(2013) 

ND H166 - - - 

VGGEAWSSPTDL   H178  - - - 

Human ESCs  TVKHRPDALHPQ, 

LTTAPKLPKVTR  

(21) 

(2010) 

ND - - 1  - 
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a
 Reference/Year when the sequence was reported for the first time; 

b
 Number of research papers, from 

Web of Science Core Collection (Thomson Reuters), that describe subsequent use of the original 

sequence. Please see Table S1 for more details; 
c
 Characterization (determination of binding affinity, 

activity, stability, safety); 
d
 Optimization (rational, combinatorial and computational optimization to 

(655) 

Mouse ESCs  KHMHWHPPALNT  

(1262) 

(55) 

(2010) 

≈ 0.8 

(IC50) 

Seq2 peptide - - - 

Rhesus 

macaque ESCs 

APWHLSSQYSRT (56) 

(2010) 

≈ 0.5 

(IC50) 

- - - - 

Neuronal 

derived 

       

Mice neuronal 

precursor cells 

(NPCs)  

QTRFLLH,  

VPTQSSG 

(57) 

(2007) 

(0.3 µg) 

(IC50) 

- - - 1 

Murine 

neuronal stem 

cells (NSCs) 

KLPGWSG  

(2240) 

(58) 

(2013) 

ND KLPGWSG peptide 1 - - 

Rhesus monkey 

NSCs derived 

from ES cell line 

RS366.4 

HGEVPRFHAVHL  

(1516) 

(59) 

(2010) 

≈ 0.5 

(IC50) 

HGE peptide - - - 

Porcine skin 

TGSTQHQ  

(1847) 

(60) 

(2011) 

ND SPACE (skin 

permeating and cell 

entering) peptide 

- - 5 

Human Kaposi 

sarcoma KS1767 cell 

line 

(mitochondria/endop

lasmic reticulum 

fraction) 

YKWYYRGAA (61) 

(2012) 

ND - - - 1 

G
ro

w
th

 f
a

ct
o

rs
 Bone morphogenetic 

protein 2 (BMP-2)  

rhBMP-2  

TSPHVPY (62) 

(2005) 

0.037 - - - 2 

AGAWEAFSSLSGSRV (17) 

(2013) 

0.0014 

(EC50) 

BC-1 - - - 

Human recombinant 

basic fibroblast GF 

(rhbFGF) 

RTGQYK (63) 

(1993) 

0.122 - 1 

 

- 2 

 

Transforming GF β-1 

(TGFβ-1) 

HSNGLPL (62) 

(2005) 

ND - -  3  

C
e

ll
 r

e
ce

p
to

rs
 

Human recombinant 

stabilin-2 (4e5 

domain) 

RTLTVRK (64) 

(2011) 

ND S2P (stabilin-2 

peptide) 

- - - 

TGF-βR (human 

extracellular domain 

of TβRI and TβRII) 

LTGKNFPMFHRN (65) 

(2010) 

≈ 10 Pep1  - 1 - 

MHRMPSFLPTTL  

(1250) 

(65) 

(2010) 

≈ 10 Pep2 - 1 - 

rhTGF-β sRII/Fc 
GLLPVGRPDRNVWRWL 

KGQCDRFKGLPEW 

(66) 

(2002) 

≈ 1 - - - - 

O
th

e
r 

p
ro

te
in

s 

Complement 3 (C3) 

ICVVQDWGHHRCT (cyclic 

peptide) 

(35) 

(1996) 

ND Complement-

inhibiting peptide 

Compstatin 

 

10 21  19 

Vascular cell 

adhesion molecule 1 

(VCAM-1) 

VHSPNKK  

(354) 

 

(67) 

(2005) 

ND Cyclic VCAM-1 

peptide, known as VP 

(in-vitro screening) 

- 3 2 

VHPKQHR 

(353) 

(68) 

(2006) 

30 Linear VCAM-1 

internalizing peptide-

28 (VINP28) (in-vivo 

screening) 

- - 12 
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design new analogues with improved affinity/activity); 
e
 Application (biomaterials engineering for 

targeted binding/delivery, conjugation with imaging agents for targeted detection, mechanistic studies 

and therapeutics); ND: not determined. 

In some cases, more than one sequence is identified for the same target. For example, 

when screening hydroxyapatite (HAP) materials, different powder particles, of various 

sizes and morphologies, used for the selection may explain the observed differences. 

Ideally, the selection should be performed using a material with specific morphology, 

crystallography, and stereochemistry. As described previously, several phage clones 

are selected in a first screening, and the relative affinity tends to increase with an 

increasing number of panning cycles. After this first screening, isolated clones are 

analyzed by ELISA, for example, for cross reactivity and binding ability. Sequences with 

varied affinities (high, intermediate, or low binding constants) can be obtained, thus 

allowing the engineering of binding affinity and specificity. Furthermore, by comparing 

the sequences obtained by phage display with the ones derived from natural proteins 

known to bind to the same targets, differences in the amino acid composition and 

sequence are also observed. For example, Mummert et al. (42) found a 12-mer peptide 

that binds to hyaluronan (HA, Table 1) using phage display. This peptide sequence does 

not show significant (>25%) similarity with the HA-binding motifs found in hyaladherins 

(CD44, RHAMM, or link protein) (69), nor does it shows a consensus domain, known to 

be identical among these three HA-binding proteins (69). Nonetheless, the authors 

showed that the phage-identified peptide specifically binds to HA free in solution or 

bound to a substrate, and also to HA expressed on the cell surface, and that prevented 

the binding of HA to leukocytes and their attachment to HA coated surfaces. In 

addition, this sequence has been validated in numerous subsequent studies (Table S1).  

 

Biomaterials functionalized with peptide ligands identified by phage display as in-

vitro cell culture models  

The isolation and culture of human stem cells in-vitro have largely contributed to 

important advances in fundamental cell biology and cell therapies, by understanding 

the molecular mechanisms involved in the processes by which stem cells undergo self-

renewal or differentiation (70). Recent discoveries have shown novel mechanisms by 

which stem cell fate is regulated (71-73), but continued research in the molecular 

biology of stem cells will boost their application in RM. A challenge in cell-based 

therapies is to find adequate sources of stem cells and the need for maintaining them 

undifferentiated during in-vitro expansion. Thus, there is an urgent need to develop 

precise and reproducible culturing systems able to control the behavior of human stem 

cells in-vitro. In addition, for cell therapies in humans, an essential requirement is to 

avoid the exposure of stem cells to animal-derived components during culture. 

Advances in biomaterials engineering has enabled the development of in-vitro culture 

platforms for cell expansion, and also for the differentiation of stem cells into specific 
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lineages. In-vivo, cells receive signals from the ECM and other cells through specialized 

transmembrane proteins that bind to components of the ECM and receptors of 

neighboring cells. One potential approach to mimic these interactions and guide cell 

growth or differentiation in-vitro is the use of biomaterials based on peptide 

sequences that bind to those cell receptors. Phage display has been applied to probe 

the surface of different stem cells, including adipose progenitor cells (49, 50), bone 

marrow-derived mesenchymal stem cells (MSCs) (26, 51-53, 74), and embryonic stem 

cells (ESCs) (21, 54-56) (Table 1). The latter are of special interest, considering their 

differentiation pluripotency. Peptide ligands for stem cell receptors can then be 

broadly used in cell culture and differentiation (immobilized on 2D surfaces or 3D 

hydrogels), namely, as probes for detection of specific stem cell populations during 

isolation procedures or to ascertain the role of proteins for stem cell differentiation. 

 

2D substrates for the controlled expansion (and/or differentiation) of (stem) cells 

Kiessling and collaborators (21) used a peptide sequence identified by phage display 

(binding receptors on human embryonal carcinoma, Table 1) for culturing ESCs. Using 

self-assembled monolayers (SAMs) for displaying bound peptide ligands on a synthetic 

surface (Figure 2-a1), they showed that these chemically defined functional substrates 

supported the undifferentiated proliferation of pluripotent cells (Figure 2-a2). These 

cells are capable of replicating indefinitely and generate all human cell types, offering a 

useful resource for both research and RM. Thus, a surface with a well-defined 

composition could eliminate the problem associated with the use of animal-derived 

proteins, which suffer from batch-to-batch variability, and increase the predictability of 

culturing cells in-vitro. 

Similarly, MSCs cultured on peptide SAMs containing BMHP1 (Table 1, Figure 2-b1) in 

maintenance medium (DMEM) or osteogenic differentiation medium (ODM) were able 

to produce higher amounts of calcium than when cultured on bare substrates (Figure 

2-b2, b3), demonstrating that BMHP1 can enhance cell mineralization. It was also 

shown that the amount of calcium deposition was dependent on the peptide density 

(Figure 2-b3).  

These studies showed the utility of the identified peptides for elucidating cell–matrix 

interactions in 2D. This information could be translated for the functionalization of 3D 

biomaterials to control cell behavior.  
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Figure 2. 2D biomaterials (surfaces) functionalized with peptide sequences identified by phage display 

for in-vitro cell culture (proliferation and differentiation). (a) Synthetic surfaces of SAMs displaying 

phage-derived peptides that bind to the surface of human ESCs support their undifferentiated growth; 

(a1) SAMs composed of perfluorinated alkanethiols (ATs) containing different ratios of peptide-AT and 

glucamine-AT (non-adherent for cells) to obtain surface arrays of peptides with different densities; (a2) 

Human ESCs (hESCs) proliferating on peptide-AT SAMs maintain expression of markers of pluripotency 

(Oct4 and SSEA4). Adapted with permission from ref. (21). Copyright 2010 American Chemical Society. 

(b) BMHP1 immobilized on 2D surfaces induce the osteogenic differentiation of MSCs; (b1) Linear and 

cyclic BMHP1 (cBMHP1) were conjugated to maleimide-functionalized quartz substrates via a cysteine 

residue inserted in the N-terminal; (b2) Low-magnification (200×) inverted microscopy images of Alizarin 

Red S (forms a bright red complex with calcium) staining on MSCs cultured on bare and peptide-

functionalized surfaces in DMEM (top panel) and ODM (bottom panel) for 7 days (insets show 

macroscopic images); (b3) Colorimetric quantification of calcium deposition by cells cultured in DMEM 

(left) and ODM (right). Adapted from ref. (75) with permission of The Royal Society of Chemistry. 

Growth factors (GFs) are involved in numerous cellular processes, such as cell growth, 

differentiation, and migration. TGF-β is able to both positively and negatively affect 

inflammation and wound healing. Thus, several studies have been performed towards 

the identification of peptide ligands with selectivity and affinity to this GF and its 

receptors, aiming to understand their interactions and thus develop new strategies to 

tune their signaling capacity. 

The regenerative potential of surfaces functionalized with TGF-β1-binding peptide 

(Table 1) through azide-terminated SAMs and microcontact printing, and pre-loaded 
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with TGF-β1, was evaluated by culturing human articular chondrocytes (hACs) on the 

material (76). After 7 days of culture, more cells were observed on the peptide-

functionalized surfaces than on the bare azide SAMs. Chondrocytes cultured in the 

absence of TGF-β1 were found to be more extended, resembling the typical 

morphology of fibroblasts, while those cultured in presence of TGF-β1, exhibited a 

round polygonal shape, representative of chondrocyte phenotype. In addition, 

glycosaminoglycan (GAG) analysis revealed higher levels of GAGs in lysates of hACs 

cultured on peptide-functionalized surfaces with bound TGF-β1 compared to hACs 

cultured on glass and with the GF free in the medium, and for cultures on peptide-

functionalized surfaces without TGF-β1. 

Using phage display, two peptides that bind specifically to the TGF-β receptor II (TβRII) 

(Table 1) have been identified (66). These peptides can mimic or block distinct 

functions of TGF-βI, and can be used to regulate these different functions, separately 

or in concert, which are important for vascular therapy. The group of Kiessling also 

used phage display to identify peptide ligands specific for TGF-β receptors I and II (65) 

(Table 1). They showed that the identified peptides bind to the receptors on a region 

different from the binding site used by TGF-β, thus not interfering with TGF-β signaling. 

Therefore, these ligands can be applied as tool to examine the diverse cellular 

functions of TGF-β, as well as to promote the identification of potential therapeutics. 

Indeed, in later work, Kiessling and co-workers employed SAMs to present the 

previously identified peptide sequences, which interact with both TGF-β receptors 

(TβRI-ED and TβRII-ED), to provide localized and defined spatial signaling to cells (77). 

As a proof of concept, they used NMuMG mouse mammary gland cells to investigate 

the attachment of cells expressing TGF-β receptors to the surfaces displaying the TβR-

binding peptides. The cells bound to SAMs presenting either peptide (even at low 

peptide densities, 4%), but not to the bare surfaces. They further demonstrated that 

the functionalized surfaces activated Smad2/3 nuclear translocation (a hallmark of 

TGF-β signaling).  

These studies demonstrate the power of phage display to generate peptides that can 

be used to regulate signaling pathways that lead to specific cell outcomes. Strategies 

to control the beneficial roles of signaling pathways would be valuable for applications 

in RM. 

 

3D hydrogels for recreating specific (stem) cell or tissue environments 

Molecular design of biomaterials offers the opportunity to incorporate peptide ligands 

that can be recognized by specific cell receptors or enzymes, and to control their 

spatial and temporal availability for triggering regenerative events. The incorporation 

of peptide sequences identified by phage display into molecularly-designed 
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biomaterials, and in particular, self-assembling peptide biomaterials, has been 

reported by several groups.  

Being the major inorganic constituent of bone and teeth, HAP has received great 

attention as a target for phage display experiments. For example, the Sarikaya group 

identified a HAP-binding peptide (Table 1) (44), which was then incorporated into a 

peptide hydrogel capable of directing the mineralization of HAP (78) (Figure 3a). Other 

studies describing peptides with preferential adsorption to HAP-based materials have 

also been reported (45, 79, 80) (Table 1). Peptides with binding affinity to different 

apatite substrates can be used to direct the growth of HAP on biomaterials surfaces 

(81), or to improve the functional properties of HAP-based scaffolds, and thus enhance 

bone regeneration. 

The Stupp laboratory designed self-assembling peptides, known as peptide 

amphiphiles (PAs), for RM applications. Of particular interest for the purpose of this 

review, are PAs designed to bind GFs using peptide sequences derived by phage 

display. They first reported a novel class of reverse PAs to enable the creation of 

peptide assemblies with free N-terminal, which were not possible to obtain through 

the original design. They were able to apply this new methodology to synthesize PAs 

incorporating peptide sequences, derived via phage display and requiring a free N-

terminus, that bind GFs, BMP-2, and TGF-β (Table 1) (62), all involved in stem cell 

differentiation. These PA molecules are known to form nanofibers by self-assembly 

(Figure 3-b2), which at sufficiently high concentration, is accompanied by gelation 

(Figure 3-b1). By permitting the direct binding of the GF to the PA nanofiber, gels 

containing BMP-2 bound to PA allowed prolonged GF retention (Figure 3-b3). When in 

solution, the BMP-2-bound PA nanofibers induced the differentiation of C2C12 pre-

myoblast cells into osteoblasts, as detected by an increased number of alkaline 

phosphatase (ALP, marker for osteoblast differentiation)-positive cells (Figure 3-b4). 

The BMHP motif was used by Gelain and co-workers (58, 82-86) to functionalize self-

assembling peptide scaffolds for culturing and controlling neural stem cell (NSC) 

behavior for nervous tissue regeneration. In their pioneering work (83), they used 

BMHP-functionalized self-assembling peptide hydrogel scaffolds for 3D culture of adult 

mouse NSCs. In differentiation assays, the scaffolds containing BMPH motifs (BMHP1 

and BMHP2, Figure 3-c3,c4) showed β-tubulin
+
 and nestin

+
 cells comparable with those 

cultured on Matrigel (Figure 3-c1). β-Tubulin
+
 cells on BMPH scaffolds also showed 

increased branching when compared with non-functionalized scaffolds (Figure 3-c2). 

These results demonstrate the ability of these synthetic peptide nanofiber scaffolds to 

be functionalized with different peptide motifs for the controlled 3D culture of diverse 

cell types.  
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Figure 3. 3D biomaterials (hydrogels) functionalized with peptide sequences identified by phage 

display for in-vitro cell culture (proliferation and differentiation). (a) Self-assembled peptide hydrogels 

functionalized with HAP-binding peptides for periodontal regeneration; (a1) Schematic illustration of the 

peptide self-assembly and hydrogel formation; (a2) Fluorescence microscopy image of a live/dead assay 

on cementoblast cells encapsulated within self-assembling peptide gels showing viable cells; (a3) 

Scanning electron microscopy (SEM) image of the peptide gel showing the deposition of calcium-

phosphate mineral by cementoblasts, as confirmed by the corresponding EDXS (inset). Reprinted and 

adapted from ref. (78). Copyright 2010 with permission from Elsevier. (b) BMP-2-binding PA (BMP2b-PA) 

nanofibers induced osteoblast differentiation of a myoblast cell line (C2C12) in vitro; (b1) Photographs 

of PA-based gels (D-BMP2b-PA: obtained by mixing equal ratios of BMP2b-PA with diluent PA at the 

same concentration); (b2) SEM micrographs of PA gels showing the network of filamentous 

nanostructures; (b3) In vitro release of BMP-2 from PA gels, with or without BMP-2-binding PA, in 

comparison to collagen sponges pre-loaded with BMP-2 up to 28 days; (b4) Optical micrographs of 

C2C12 cells stained for the detection of ALP on day 3 of culture in growth medium supplemented with 

treatment media containing 50 ng mL
-1

 of BMP-2 with heparin or PAs at different concentrations. 

Adapted from (87). Copyright© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) NSC 

differentiation on 3D peptide nanofiber gel scaffolds functionalized with bone marrow binding peptides, 

BMHPs; (c1-c4) Inverted fluorescence microscopy images of differentiating adult mouse NSCs cultured in 

vitro during 7 days on: (c1) 1% Matrigel (positive control), (c2) non-functionalized RADA16 peptide gel 

(negative control), (c3) RADA16-BMHP1, and (c4) RADA16-BMHP2, stained for cell nuclei (blue), β-

tubulin
+
 (red) for neurons, and nestin

+
 (green) for neural progenitors (green). Adapted with permission 

from ref. (83). Copyright 2006 PlosOne. 

Chemically crosslinked hydrogels, such as those composed of poly(ethylene glycol) 

(PEG), have been functionalized with different peptide ligands to culture cells in 3D. 
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The Anseth group (88) functionalized PEG hydrogels with a basic fibroblast growth 

factor (bFGF)-binding peptide, previously selected by phage display (63), to control GF 

retention and sustained release for applications in GF-induced regeneration. To 

enhance the affinity of the bound ligand for diffusible proteins (e.g. GFs) within the 

hydrogel, they synthesized tri-functional peptides and examined how the molecular 

structure of the affinity peptides affected their accessibility and binding using Forster 

resonance energy transfer. They then showed that the optimal functionalization 

strategy allowed the sustained release of bioactive bFGF able to induce the in-vitro 

differentiation of the PC12 pheochromocytoma cell line. This affinity hydrogel could be 

manipulated for GF retention, or delivery, and be easily applied in distinct RM 

approaches, such as controlled stem cell differentiation in-vitro, or GF-mediated 

wound healing in-vivo.  

 

Implantable biomaterials functionalized with peptide ligands identified by phage 

display for promoting endogenous tissue repair in-vivo  

Tissue regeneration in-vivo can be enhanced by promoting the recruitment and 

localization of stem cells into injured tissues and/or stimulating the function and 

differentiation of local stem cells. This can be achieved by manipulating the properties 

of the niche (e.g. promote angiogenesis or de-novo niches) or through the delivery of 

active molecular regulators, directly or combined with a biomaterial, or by using 

biomaterial sequestering GFs. 

Stem cell homing 

Using polycaprolactone (PCL, a FDA-approved polymer for medical applications) 

electrospun meshes conjugated with phage-derived peptide (E7, Table 1) with affinity 

for human bone marrow-derived MSCs (hBMMSCs), Shao and co-workers showed 

improved recruitment of MSCs in-vivo after implantation in full-thickness articular 

osteochondral defects in a rat knee (51). Immunofluorescence staining of harvested 

implants (Figure 4-a) showed that cells on the E7-conjugated PCL meshes were mostly 

positive for CD44, CD90, and CD105 (MSCs surface markers), indicating that the 

functionalized scaffold could selectively recruit and retain MSC-like cells from the bone 

marrow. In contrast, cells in the PCL meshes conjugated with the cell adhesive peptide 

RGD (with no cell specificity, control) showed lower levels of MSCs surface markers. 

CD68 staining was also used to assess the inflammatory response. Results from 

immunofluorescence staining showed that there was a high proportion of 

inflammatory cells in the RGD-conjugated PCL meshes, while CD68
+
 cells were scarce in 

the E7-conjugated scaffold, suggesting only a minor inflammatory response. For the 

bare PCL meshes, only few cells could be detected into the mesh, due to the 

unfavorable cell adhesion properties of PCL. The E7 peptide could be further applied 
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for functionalizing other biomaterials for effective MSC-homing in stem cell-based 

tissue repair strategies. 

Controlled release of growth factors (GFs) 

TGF-β1 is known to play a critical role in the development, growth, maintenance and 

repair of articular cartilage. To this end, the Stupp group designed self-assembled 

peptide nanofibers for cartilage regeneration, using a peptide sequence derived by 

phage display with binding affinity for TGF-β1 (Table 1) (89). When implanted into a 

full-thickness chondral defect in a rabbit model (Figure 4-b1), these self-assembled gels 

were shown to support the regeneration of articular cartilage (Figure 4-b2, b3) with or 

without the supplementation of TGF-β1, as detected by formation of hyaline-like tissue 

(GAGs and collagen II staining, Figure 4-b3) within the defect space. 

To promote bone healing, Hamilton et al. (17) developed a novel strategy to deliver 

osteogenic GFs, such as BMP-2, in a collagen biomaterial carrier. This carrier contained 

a bifunctional peptide (BC-1) that displayed BMP-2 and collagen-binding domains, both 

identified by phage display (Table 1). This strategy allowed the simultaneous binding of 

GFs directly to an implantable biomaterial, without the requirement for any 

conjugation steps, thus allowing the controlled delivery of GFs at the implantation site. 

To test the ability of this system to promote bone formation in-vivo, the authors 

injected BMP-2 within a collagen gel, containing or lacking BC-1, into the subcutaneous 

regions of Sprague Dawley rats (rat ectopic bone formation model). Histological 

analysis and evaluation of the explants showed significantly higher osteogenic cellular 

activity, bone area formed, and bone maturity in the presence of BC-1 (Figure 4-c1, 

c2).  
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Figure 4. The application of phage-derived peptides for in-vivo tissue regeneration. (a) In-vivo stem cell 

homing by PCL electrospun meshes functionalized with E7 peptide with specific affinity for MSCs; (a1) 

Confocal microscopy images of peptide-conjugated PCL electrospun meshes harvested 7 days after 

implantation in full-thickness articular osteochondral defects in rats and stained by immunofluorescence 

for specific MSC (CD44, CD90, CD105) and inflammatory (CD68) markers (green: FITC, blue: 

Hoeschst33258, red: CD44/CD90/CD105/CD68 counterstained with Cy3 & Cy5). Reprinted and adapted 

from ref. (51). Copyright 2012 with permission from Elsevier. (b) PA molecules displaying binding 

epitopes for TGFβ-1 support the regeneration of full thickness chondral defects in articular cartilage; 

(b1) Surgical and implantation procedure showing: (b1.1) full thickness articular cartilage defects made 

with a microcurette in rabbit trochlea; (b1.2) Microfracture holes through the subchondral bone using a 

microawl to promote bleeding into the defect; (b1.3) Injected PA gel in the defect (arrow); (b1.4) PA gel 

labeled with a fluorescent dye contained within the cartilage defects after injection. (b2) Images of 

articular cartilage defects after 12 weeks of implantation with: (b2.1) 100 ng∕mL TGF-β1; (b2.2) Filler PA 

+ 100TGF; (b2.3) 10%TGFBPA +100TGF, (b2.4) 10%TGFBPA alone. (b3) Microscopy images of tissue 

sections of articular cartilage defects obtained from histological and immunohistochemical analysis and 

stained for GAGs using safranin-O (left panel) and type II collagen (right panel) 12 weeks after treatment 

with: (b3.1, b3.2) 100 ng∕mL TGF-β1; (b3.3, b3.4) filler PA +100TGF; (b3.5, b3.6) 10%TGFBPA +100TGF; 

(b3.7, b3.8) 10%TGFBPA alone. Reprinted with permission from (89). Copyright (2010) Proceedings of 

the National Academy of Sciences of the United States of America. (c) An injectable collagen gel 

containing a bifunctional peptide (BC-1) with affinity for collagen and BMP-2 enhances retention of 

BMP-2 and increases ectopic bone formation; (c1) Osteogenic cellular activity, bone area and bone 

maturity scored from H&E slides (c2) and by two observers; (c2) Histology images (H&E staining) from 

the rat ectopic model; (c2.1) 2 µg BMP-2 in 1.5% collagen gel; (c2.2) 2 µg BMP-2 with 50-fold molar 
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excess of BC-1 in 1.5% collagen gel. (b – bone zones; c – collagen zones; cells are stained blue). Adapted 

with permission from ref. (17). Copyright 2010 PlosOne. 

Degenerative joint diseases, such as osteoarthritis (OA), are characterized by 

progressive cartilage matrix degradation. Targeted therapies for damaged articular 

cartilage can offer the opportunity for localization of bioactive proteins, such as GFs, 

that can enhance the synthesis of a more hyaline-type cartilage. Towards this 

challenge, Hubbell’s group described the synthesis and functionalization of 

nanoparticles for the release and retention of drugs inside articular cartilage through 

the identification of a peptide specific for the principal component of the cartilage 

matrix (collagen II α1, Table 1) (40). After intra-articular injection in a mouse model, 

conjugation of the peptide to nanoparticles led to higher retention of the 

nanoparticles within the ECM of articular cartilage (72-fold increase after 48 h) when 

compared to nanoparticles functionalized with a non-targeted (control) peptide. Such 

an approach could be used to deliver and localize specific GFs for cartilage repair. 

 

Nanobiomaterial carriers functionalized with peptide ligands identified by phage 

display for genetic manipulation of cells in-vitro and in-vivo 

The field of gene therapy for tissue repair and regeneration would benefit considerably 

from the isolation of peptides that can target endocytosing receptors on specific cells 

(90). Internalization of gene delivery systems is a prerequisite for efficient transgene 

expression. Peptides that can be internalized by cells are likely to be useful for 

nonviral-mediated gene delivery, where some current systems do not have the ability 

to enter the cells (e.g. polycation-DNA complexes). Gene therapy vectors could be 

modified with specific peptide ligands and delivered intravenously to transfect only 

specific cells, thus improving their efficacy and reducing the toxicity of the process. 

Therefore, many research groups have attempted to select cell-binding and cell-

penetrating peptides (“homing peptides”) using phage display for targeting specific cell 

types (91, 92).  

Targeted gene therapy 

The use of phage display to identify cell-selective and cell-entry peptides as gene 

therapy vectors was first reported by Barry and colleagues in 1996 (92). They displayed 

12- and 20-mer peptide libraries on pIII protein of fdTET phage and, by screening the 

libraries on mammalian cells, isolated cell-binding peptides. This was the first 

demonstration that cell-selective peptides could be identified by panning peptide 

phage libraries on cells, without prior information of the target receptors. However, in 

this pioneering work, they did not demonstrate the delivery of functional genes to the 

nucleus of specific mammalian cells. 
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In attempt to develop in-situ gene therapy, Schmidt el al. (57) identified peptide 

ligands (Table 1) that selectively bound to mouse NPCs from phage display peptide 

libraries. They subsequently conjugated the identified peptides to wild-type capsid and 

capsid-mutated adenovirus (Ad) vectors and tested their targeting potential in-vitro 

and in-vivo, respectively. Peptides were shown to mediate Ad binding and infection of 

NPCs in-vitro, and selective transduction of NPCs in the brain of adult C57BL/6 mice, as 

shown by the presence of nestin (Figure 5-a1), a NPC-specific marker, co-localized with 

green fluorescent protein (GFP) (Figure 5-a2). Injection of a non-specific peptide failed 

to transduce cells in the dentate gyrus, as seen by the absence of GFP expression 

(Figure 5-a3), while injection of wild-type capsid AdGFP resulted in transduction of 

non-NPCs, such as astrocytes and neurons (Figure 5-a4).  

Using a non-viral vector (poly(amido)amine (PAMAM) dendrimers) functionalized with 

bone-targeting peptides, identified by phage display and having high (HAB) and low 

(LAB) affinity binding to mouse MSCs, Santos and co-workers (93) were able to 

promote the uptake of plasmid DNA (pDNA) by rat MSCs (rMSCs). HAB peptide-

functionalized dendrimers led to increased accumulation of pDNA inside cells (Figure 

5-b1). In addition, the presence of HAB bone-targeting peptides on the dendrimer 

surface led to higher transfection levels than those obtained with native dendrimers, 

measured by luciferase (Luc) gene expression (Figure 5-b2). Similarly, Ma and 

colleagues (53) used a rMSC-homing peptide, identified by phage display (Table 1), to 

improve the targeting capability of protamine/DNA lipoplex (LPD) liposomes to rMSCs 

for the delivery of Sleeping Beauty (SB) transposon plasmid. They also incorporated 

the positively charged nuclear localization signal (NLS) peptide to promote 

translocation of gene materials into the nucleus. By combining rMSC-targeting ability 

and NLS peptide into LPD liposomes, the transfection efficiency was improved, in 

comparison to control peptides (randomly selected), by enhancing the receptor-

mediated endocytosis of LPD liposomes and their accumulation in the nucleus. They 

showed that the SB transposon and targeting LPD system did not result in cell toxicity, 

and did not promote osteogenic differentiation, suggesting the potential of this system 

for effective nonviral gene delivery in stem cell therapy. 

By panning on porcine skin, Hsu and Mitragotri (60) identified a peptide by phage 

display, named as skin permeating and cell entering (SPACE) peptide, to enable the 

diffusion of macromolecules across the stratum corneum into the epidermis and 

dermis. The peptide also showed ability to translocate the membrane of skin cells, 

such as keratinocytes, fibroblasts, and endothelial cells (Figure 5-c1). The efficacy of 

the peptide to carry and release small interfering RNA (siRNA) for GFP (Figure 5-c2.1) 

and IL-10 was tested in-vitro and in-vivo (Figure 5-c2.2), respectively. Peptide 

conjugation with siRNA led to enhanced cell penetration and absorption into the skin, 

and knockdown of corresponding protein targets. On the contrary, however, no 
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substantial knockdown was obtained with only siRNA or SPACE or using control siRNA 

conjugated with SPACE or a control peptide.  

 

Figure 5. Cell-targeting gene delivery for selective and more efficient in-vitro and in-vivo gene therapy. 

(a) Selective transduction of NPCs in adult C57BL/6 mouse brain by capsid-mutated AdGFPL.VPTQSSG 

vector. Fluorescence-activated laser scanning microscopy images of brain sections analyzed by 

immunohistochemistry after injection of: (a1, a2) PEGylated AdGFPL.VPTQSSG, (a3) AdGFPL.HTFEPGV, 

(a4) AdGFP into the dentate gyrus of adult mice. Nestin (red fluorescence, a1) and merge (yellow a2); 

Abbreviations: AdGFP, adenoviral vector that expresses GFP; AdGFPL, adenoviral vector that expresses 

GFP-Luc; VPTQSSG, NPC-specific binding peptide; HTFEPGV, unspecific peptide; gcl, granular cell layer;. 

Reprinted and adapted from ref. (57). Copyright 2007 with permission from John Wiley and Sons. (b) 

Targeted gene delivery using PAMAM dendrimers functionalized with MSCs binding peptides; (b1) 

Fluorescence microscopy images showing intracellular localization of (RITC)-labeled pDNA (red) in MSCs 

transfected with native dendrimers (unconjugated, G5) and dendrimers conjugated with 4 peptide arms 

[G5-(HAB)4, G5-(LAB)4] as vectors. The endosomal-lysosomal system was stained with LysoSensor Green 

DND-189 (green), and the nucleus with DAPI (blue); (b2) Luc gene expression obtained with dendrimers 

(native and conjugated with 2, 4 and 8 HAB peptide arms) with and without pre-saturation of cell 

receptors by HAB peptide (0.1 mM). Reprinted with permission from (93). Copyright (2010) American 

Chemical Society. (c) Delivery of siRNA into the skin and cells using SPACE peptide; (c1) Confocal 

microscopy images of human umbilical vein endothelial cells (HUVECs) (nuclei stained in blue) treated 

with: (c1.1) PBS (control), (c1.2) FITC-labeled SPACE peptide for 24 h; (c2) Delivery of siRNA in vitro and 

in vivo; (c2.1) Percentage of knockdown of GFP in GFP-expressing endothelial cells; (c2.2) Percentage of 
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knockdown of interleukin-10 (IL-10) in mice after 24 h of treatment. Reprinted with permission from 

(60). Copyright (2011) Proceedings of the National Academy of Sciences of the United States of America. 

Using a cartilage affinity peptide (CAP, Table 1) conjugated with polyethyleneimine 

(PEI) for DNA complexation (CAP-PEI/DNA) in in-vivo cartilage-targeted gene delivery, 

Pi et al. (48) showed that the CAP-functionalized vector led to a nine-fold higher 

transfection efficiency in cartilage than the scrambled peptide-conjugated vector. 

However, no statistical difference in the transfection efficiency was observed in the 

synovium between the vectors modified with targeted (CAP) and control (scrambled) 

peptide. 

The identification of peptide ligands binding to receptors in organelles of mammalian 

cells (Table 1) was recently reported (61). When chemically fused to penetratin, the 

identified peptide was internalized and localized in the mitochondria, promoting cell 

death. This study demonstrated the further utility of phage display for subcellular 

targeted drug delivery. Advances in targeted intracellular delivery selectivity also has 

implications for RM, namely, in RNA interference (RNAi)-based anabolic therapies, 

such as the delivery of osteogenic siRNAs specifically to osteoblasts (bone cells), aimed 

at promoting bone formation (94, 95). 

 

Imaging probes functionalized with peptide ligands identified by phage display for 

targeted imaging of cells and tissues in-vitro and in-vivo  

Clinical imaging is an essential tool in RM. First, it is important to characterize the 

status of the damaged/diseased tissue for pre-treatment planning, and second, it is 

necessary to evaluate the risks and efficacy of the therapy (post-transplant 

assessment) (96). 

Injured and regenerating host environment  

The environment in injured or diseased tissues is not favorable for transplanted cells. 

Some tissues produce scars (e.g. fibrotic scar, glial scar) after injury, and this scarring 

process prevents engraftment of stem cells with the neighboring tissues. Additional 

factors that contribute for a hostile condition in damaged tissues include the presence 

of inflammatory cytokines and limited oxygen and nutrient delivery. Aging of the stem 

cell niche and corresponding alteration of the acellular components can cause loss of 

stem cell functionality. Thus, imaging of the niche properties, including tissue 

architecture (structural integrity/morphological alterations), and molecular and 

cellular composition (e.g. ECM, GFs, cell populations), could be beneficial for ensuring 

that cells are hosted in a healthy environment (non-necrotic tissues). Peptides can be 

combined with fluorophores or radioisotopes for the development of new probes (97), 

as they provide numerous benefits over antibodies; they have higher stability and 

lower immunogenicity, diffuse faster (owing to their small size allowing better tissue 

penetration), and are easier to synthesize. 
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Peptide sequences binding to major components of the ECM of tissues, such as 

collagen and HA (Table 1), have been identified by phage display. These sequences 

have been further developed into molecular probes to detect these macromolecules in 

different tissues (e.g. pericardium, skin).  

HA plays a central role in the wound healing process, and influences stem cell behavior 

(98, 99). The HA-binding peptide, described as Pep-1 in the literature, has been 

biotinylated for identification of HA in the skin (42).   

To improve the affinity of a phage-derived collagen-binding peptide for detecting 

collagen I in tissues, and to improve contrast/detection, the Meijer group proposed a 

new approach to display phage-derived peptides on dendritic architectures (18, 38). In 

this system, a dendron mimics the pentavalent head of the phage (Figure 6-a1). The 

system was then tested using a collagen-specific 7-mer peptide against collagen type I 

from rat tails (38). Pentavalent display of collagen-binding peptides on dendrimer 

wedges enhanced affinity for collagen by 100-fold when compared with the 

monovalent peptide (38), allowing selective staining of collagen in tissues containing 

collagen arranged in different levels of organization (fibrils, fibers, fiber bundles). Using 

0.6 μM fluorescein-labeled pentameric peptide on pig parietal pericardium, a highly 

defined fibrous network with fibers of 2 μm in thickness was observed (Figure 6-a2). 

This result demonstrate that the identified peptide, derived from rat collagen, also 

binds to collagen of different species. The monovalent form of the collagen binding 

peptide at the same concentration (Figure 6-a3) did not allow collagen detection. 

Comparable collagen fibrillar structures were visualized as for the pentameric peptide 

when using 60 μM of the monovalent peptide, but the intensity of background 

fluorescence was higher (Figure 6-a4). A naturally occurring collagen binding protein 

(CNA35) was used as a comparison with the fluorescein-labeled pentavalent peptide. 

Both probes allowed visualization of collagen fibers with the same orientation, but the 

pentameric peptide led to a more specific stain when compared to CNA35 (Figure 6-

a5-a7).  

Optical and nuclear imaging agents could be coupled to ECM-binding peptides to allow 

clinical imaging and characterize organ/tissue morphology (e.g. degraded matrix) 

before and after the therapies (matrix formation as a result of regeneration).  

Lee and collaborators reported the results of panning against stabilin-2 (64) (Table 1), 

known to be produced by activated macrophages and also strongly expressed in 

smooth muscle cells and endothelial cells of atherosclerotic lesions. The identified 

peptide sequence was found to bind specifically to stabilin-2 and localize to 

atherosclerotic plaques in-vivo. In addition, the peptide was conjugated with 

fluorescently tagged glycol chitosan nanoparticles and administered to apolipoprotein 

E-deficient mice through direct injection into the left ventricles. The peptide-

conjugated nanoparticles were found to accumulate in the atherosclerotic lesions, 

while control nanoparticles were not visible. These studies revealed peptide ligands 

that can be used for selective molecular imaging of atherosclerosis. 
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Phage display-derived vascular adhesion molecule 1 (VCAM-1)-specific peptide has 

allowed targeted imaging of activated endothelium under inflammatory conditions by 

fluorescence imaging and magnetic resonance imaging (MRI, Figure 6b), and has 

enabled the visualization of structural abnormalities in the aortic wall (67). Similar 

probes could be developed against pro-inflammatory cytokines implicated in tissue 

injury (e.g. tumor necrosis factor α (TNF-α); interleukin 1-β (IL-1β)) to characterize 

tissue functionality and delineate the feasibility of the cell therapy. 

Phage-derived peptides would be also useful to measure regeneration outcomes, such 

as angiogenesis and formation of new tissue. For example, angiogenic vasculature has 

been assessed by imaging the binding of RGD-containing peptides conjugated to PET 

imaging agents to specific integrins on the cell surface (100). Using the above-

described probes, the production and structure of tissue-specific ECM components 

(e.g. collagen II in cartilage or HAP in bone or tooth) could be visualized independently 

and non-invasively through different imaging modes. Similarly, the functionality of 

newly-formed tissue could be detected by assessing the presence of specific cell 

populations using ligands for phenotype-specific markers. The discovery of novel 

peptide ligands for the development of molecular imaging probes with enhanced 

specificity for detecting constant changes in the environment of damaged and 

regenerating tissues would greatly benefit cell-based therapies.  

 

Cell labeling/tracking 

Tracking the distribution, function, and fate of transplanted cells using noninvasive 

imaging is an important goal in RM. The ability to assess cell localization, viability, 

growth, differentiation, and engraftment in the host would be extremely valuable. 

However, cells administered into humans cannot be tracked unless they are first 

labeled in-vitro. Cells can be labeled directly, using chemical agents, or indirectly, by 

inclusion of reporter genes. Cell labeling methods should be specific, nontoxic, and 

stable (i.e. label agents should remain in the target cells for suitable periods of time to 

allow correlation with cell numbers).  

Several cell-binding peptides have been identified, with the isolation of stem-cell 

binding peptides being of particular utility for RM applications (100) (Table 1). These 

peptides can be exploited for cell labeling/imaging and isolation purposes. For 

example, Ma’s group (54-56, 59) used phage-derived cell-binding peptides conjugated 

with quantum dots (QDs, light emitting agents) to specifically label ESCs. By panning on 

rhesus macaque ESCs, they identified the sequence, APWHLSSQYSRT (Table 1), with 

high affinity for undifferentiated ESCs. They subsequently conjugated the peptide to 

CdSe-ZnS QDs (Figure 6-c1) and showed that the conjugates could bind efficiently and 

selectively to ESCs, with no binding observed for other cell types (primary mouse 

embryonic fibroblast, PMEF, Figure 6-c3) and ESCs from other species (mouse ESCs, 
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Figure 6-c5), or when control QDs were used (Figure 6-c4, c6). The E7 peptide (Table 

1), known to bind hMSCs, was conjugated to gadolinium(Gd)-1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for labeling MSCs for MRI 

(101). In-vitro studies showed Gd-DOTA-E7 yielded minimum labeling efficacy, but 

good contrast enhancement.   

Identification of peptides that interact with stage-specific cellular targets (e.g., 

differentiation stage) would be useful for assessing molecular profiles of cells in-vivo 

(e.g., imaging differentiation of transplanted cells). Zhao et al. (59) identified a peptide 

with the ability to bind NSCs derived from rhesus monkey ESCs, and used this peptide 

combined with QDs for cell imaging. This study described for the first time the use of 

phage-derived peptides for studying ESC differentiation by optical imaging.  

A problem with these imaging agents is that the signal cannot be used to distinguish 

live from dead cells, and is not certain whether or not these probes will be retained by 

cells in the long term. Previous studies indicated that after cell death, contrast agents 

can be passed to host cells, producing false positives (102, 103). Thus, monitoring stem 

cell fate may require a combination of complementary imaging methods, such as 

fluorescence and magnetic resonance, to allow the correlation between anatomical 

localization of labeled stem cells and cell viability. Reporter genes represent a potential 

solution to this issue, although this can pose additional safety and regulatory 

problems. Phage display could also contribute towards the development of molecular 

probes that would bind only viable cells resulting in the release of the label after cell 

death. Since dead cells have a compromised cell membrane, it might be possible to 

identify a specific ligand for live cells by panning on dead cells first (pre-clearing).  
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Figure 6. The application of phage-derived peptides for targeted imaging of cells and tissues in-vitro 

and in-vivo. (a) Collagen I-specific probe based on collagen-binding peptide displayed on dendrimer 

edges; (a1) Collagen-binding peptide displayed on dendrimer edges resembling the typical pentavalent 

structure of phages. Laser scanning confocal microscopy images of pig parietal pericardium incubated 

with: (a2) 0.6 μM fluorescein-labeled peptide pentamer; (a3, a4) fluorescein-labeled monovalent 

collagen binding peptide at 0.6 μM and 60 μM; (a5-a7) 6 μM AlexaFluor568-labeled CNA35 (red) 

followed by 0.6 μM fluorescein-labeled peptide pentamer (green) (co-staining). Adapted with 

permission from ref. (38). Copyright 2009 American Chemical Society. (b) Detection of VCAM-1 by MRI 

and fluorescence imaging using VCAM-1-binding peptide (VP) and multimodal nanoparticles (VNPs) in 

atherosclerotic lesions. Intravital confocal microscopy images of mouse ear with (b1, b3) or without (b2, 

b4) mTNF-α-induced inflammation at 4 (b1, b2) and 24 h (b3, b4) after intravenous injection of VNP 

(red). Green color in the images is due to the tissue autofluorescence; Images obtained from the 3D 

stack reconstruction of the Z series (b5) from (b3) and of the time series (b6) of VNP staining within the 

vessels (each time point is shown as an individual slice in the Z direction and the level of peptide staining 

(low to high) is given by the color scheme (blue to green)). In-vivo (b7) and ex-vivo (b8) MRI of the aorta 

of cholesterol-fed apoE
_/_

 mice using gadolinium-protected graft copolymer (Gd-PGC) shows defined 

vascular lumen and aortic abnormalities such as narrowing (b7, arrows) and low signal changes caused 
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by VNP localization (arrows, b8); (b9) Epifluorescence image of excised aorta using fluorescent labeled 

peptide confirming details observed in (b8); (b10, b11) Immunofluorescence images of aorta sections 

revealing co-localization of VCAM-1 (green) and VNP (red). Nuclei in b10 and b11 are stained with DAPI 

(blue). Bars = 10 µm. Adapted with permission from Lippincott Williams and Wilkins/Wolters Kluwer 

Health: Circulation Research (67), copyright 2005. (c) Targeted imaging of ESCs using peptide-conjugated 

QDs. (c1) Schematic of CdSe-ZnS QDs conjugated with APWHLSSQYSRT peptide (green sphere); (c2) 

Fluorescence and bright-field microscopy images of ESCs (cell nuclei in blue, Hoechest 33258) after 

incubation with peptide-QDs (red) showing their binding to ESC colonies (inside dashed line); (c3) 

Fluorescence microscopy image of peptide-QDs with PMEF cells which are used as a feeder layer 

(outside dashed line); (c4, c6) Fluorescence microscopy images of cells with free QDs (without 

conjugated peptides, control); (c5) Fluorescence microscopy images mESCs peptide-conjugated QDs; 

Adapted with permission from ref. (56). Copyright 2010 PlosOne.   

 

CONCLUDING REMARKS AND OUTLOOK 

The ability to display a large and highly diverse collection of random peptide sequences 

on the coat-proteins of phages offers the possibility to discover new interactions with 

useful targets, often without knowing their structure. The field of phage display 

technology has evolved significantly from when it was first developed for mapping 

interactions between proteins, and has expanded into other areas that benefit from 

the discovery of new interacting ligands. This review demonstrates the usefulness of 

phage display in the emerging field of RM, suggesting opportunities for further 

applications. However, we must consider the challenges associated with phage-derived 

peptides before their translation into useful RM tools. When used as linear monomers, 

isolated peptide ligands usually show poor affinity for their targets, as this 

presentation differs significantly from the original display (valency and orientation) on 

the phage particles. Multimerization (conjugation of multiple peptide copies to a 

surface of a nanoparticle, like dendrimers, liposomes, or micelles) has been proven to 

increase affinity of the ligand for its targets, but the affinity of these multivalent 

peptide platforms also depends on the density of receptors on the cell periphery. In 

addition, when displayed on the phage, peptides are fused to the coat protein through 

the C-terminus and have a free N-terminus. This feature is not always taking into 

account when presenting phage-derived peptides into multivalent carriers. This 

stresses the importance of the use of biomaterials engineering to enable the peptides 

to be displayed in the precise and optimal multimeric conformation for interaction 

with cell receptors. Presenting peptides within a biomaterials platform also provides 

protection against proteolytic degradation, which is essential for prolonging their half-

life in-vivo. 

It should be noted that many of the sequences described in this review were obtained 

from targets derived from multiple species. Thus, it is necessary to confirm if these 

peptides also bind to the same targets in humans. Although cell-binding peptides can 

be used without knowing their specific receptors, identification of their cellular targets 

is essential for gaining clinical approval, as emphasized by Gray and Brown (100). It is 
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also useful for obtaining information about the heterogeneity of the protein repertoire 

on the cell surface and how it varies among cell types and states.  

To accelerate the safe application of phage-derived peptides within the field of RM, 

the next logical steps will be their further optimization and validation in-vitro and in-

vivo, in terms of affinity, specificity, activity, stability, and biodistribution.  

While binding has been the basis for peptide screening in phage display, selection 

based on function might be useful for certain RM approaches (e.g. controlled stem cell 

differentiation). In a recent perspective article (104), Lerner highlighted the potential 

of intracellular combinatorial (unbiased) antibody libraries as a discovery tool to select 

antibodies able to bind unknown receptors or to identify new roles of common 

receptors. They showed that infection of BMSCs with unbiased libraries led to the 

selection of various antibody agonists that induced proliferation of cells, or 

proliferation followed by differentiation or trans-differentiation into neural cells, 

indicating new roles for identified receptors in differentiation. These studies suggest 

new ways to regulate cell fates by selecting cell-binding antibodies or peptides on the 

basis of function (e.g., ability to activate a given receptor involved in inducing 

differentiation).  

With further advances in biology and RM, there are enormous opportunities for phage 

display to contribute tools for research and applications in such fields. Led by a vibrant 

research community in biology and RM, phage display technology will have a broad 

range of applications in the future. 
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Ad: adenovirus: ALP: alkaline phosphatase; ASCs: adipose stromal cells; ATs: alkanethiols; BC-

1: bifunctional peptide 1; BRASIL: biopanning and rapid analysis of selective interactive 

ligands; bFGF: basic fibroblast growth factor; BMHP: bone marrow homing peptide; BMP-2: 

bone morphogenetic protein 2; BMSCs: bone marrow stem cells; C3: complement 3; CAP: 

chondrocyte-affinity peptide; cBMHP: cyclic BMHP; cDNA: complementary DNA; Col: collagen; 

DMEM: Dulbecco's modified eagle medium; DNA: deoxyribonucleic acid; DOTA: 1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetraacetic acid; ds: double stranded; EC50: half maximal 

effective concentration; ECM: extracellular matrix; ELISA: enzyme-linked immunosorbent 

assay; ESCs: embryonic stem cells; FDA: US Food and Drug Administration; FITC: Fluorescein 

isothiocyanate; GAG: glycosaminoglycan; Gd-PGC: gadolinium-protected graft copolymer; GF: 

growth factor; GFP: green fluorescent protein; HA: hyaluronic acid (or hyaluronan); HAB: high 

affinity binding; hACs: human articular chondrocytes; HAP: hydroxyapatite; H&E: hematoxylin 

and eosin; HUVECs: human umbilical vein endothelial cells; IC50: half inhibitory concentration; 

IL-1: interleukin 1; IL-10: interleukin 10; KD: dissociation constant; LAB: low affinity binding; 

MRI: magnetic resonance imaging; mRNA: messenger RNA; MSCs: mesenchymal stem cells; 

mTNF-α: murine TNF-α; NGS: next generation sequencing; NLS: nuclear localization signal; 

NPCs: neural progenitor cells; NSCs: neural stem cells; OA: osteoarthritis; ODM: osteogenic 

differentiation medium: PA: peptide amphiphile; PAMAM: poly(amido)amine; PCL: 

polycaprolactone; pDNA: plasmid DNA; PEG: polyethyleneglycol PEI: polyethyleneimine; PET: 

positron emission tomography: PMEF: primary mouse embryonic fibroblast; QDs: quantum-

dots; RGD: arginine-glycine-aspartic acid; rhBMP-2: recombinant form of human BMP-2; RM: 

regenerative medicine; RHAMM: receptor for hyaluronan-mediated motility; rMSC: rat MSCs; 

RNA: ribonucleic acid; RNAi: RNA interference; S2P: stabilin-2 peptide; SA: streptavidin; SAM: 

self-assembled monolayer; SEM: scanning electron microscopy; siRNA: small interfering RNA; 

SPACE: skin permeating and cell entering; ss: single stranded; TGF-βR: transforming growth 

factor β receptor; TGF-β: transforming growth factor β; TNF: tumor necrosis factor; VCAM-1: 

vascular cell adhesion molecule 1; VNP: VHSPNKK-modified magnetofluorescent nanoparticle. 
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Supporting Information 

Table S1 shows the follow-up analysis on the subsequent applications of peptide sequences 

listed in Table 1. This material is available free of charge via the Internet at http://pubs.acs.org. 
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