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Abstract  

The last decade has seen rapid advances in our understanding of the proteins of the nuclear envelope, 

which have multiple roles including positioning the nucleus, maintaining its structural organisation, 

and in events ranging from mitosis and meiosis to chromatin positioning and gene expression. Diverse 

new and stimulating results relating to nuclear organisation and genome function from across 

kingdoms were presented in a session stream entitled “Dynamic Organisation of the Nucleus” at this 

year’s Society of Experimental Biology (SEB) meeting in Brighton, UK (July 2016). This was the first 

session stream run by the Nuclear Dynamics Special Interest Group, which was organised by David 

Evans, Katja Graumann (both Oxford Brookes University, UK) and Iris Meier (Ohio State University, 

USA). The session featured presentations on areas relating to nuclear organisation across kingdoms 

including the nuclear envelope, chromatin organisation, and genome function. 
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Dynamic organisation of the plant nucleus 

Nuclear Envelope and Nucleoskeleton 

While often structurally and functionally similar, the composition of the nuclear envelope across 

kingdoms is surprisingly diverse (Fig 1). For example, the nucleoskeleton meshwork that underlies the 

inner nuclear membrane and structurally supports the nuclear envelope, the lamina, is formed of lamin 

proteins in metazoans and potentially of the nuclear matrix constituent proteins (NMCPs) in plants.
1
 

Despite the lack of sequence similarity with lamin proteins, the NMCPs are structurally similar and 

equivalently required for the regulation of nuclear shape, size and heterochromatin organisation. The 

metazoan lamina is anchored to the nuclear envelope, nuclear pore complexes (NPCs) and chromatin 

via lamin-binding proteins, some of which regulate signalling and transcription. No orthologues of the 

metazoan lamin interactors can be found in plants with the exception of Sad1 and UNC84 (SUN) 

domain proteins.
2
 The characterisation of the NMCP binding proteins represents an important focus to 

understand plant nuclear dynamics. Using far-western blotting and yeast two hybrid approaches, 

Daisuka Tsugama (Hokkaido University, Japan) identified new putative interactors of Daucus carota 

NMCP1. These interactors include the nuclear localised actin related protein 7 (ARP7)
3
 and three 

putative nuclear proteins, MYB-type transcription factor 3 (MYB3),  C3HC4 RING-finger proteins 

(SINAT) and a microtubule binding protein (BIM1). These proteins are strong candidates for in vivo 

DcNMP1-binding proteins to chromatin, and might be involved in chromatin regulation and 

mechanotransduction. 

The NPCs establish an essential conduit for nucleo-cytoplasmic transport, which contribute to basic 

cellular activity and cellular responses to biotic and abiotic stresses.
4
 NPCs are composed of 

approximately 30 different proteins called nucleoporins (NUPs), which can be subdivided into four 

classes: transmembrane, core scaffold, linker and Phe-Gly (FG)-repeat NUPs.
5,6

 In metazoan, NPCs 

are anchored to the lamina via direct interaction with a FG-repeat NUP, NUP153. The plant functional 

homolog of NUP153 is believed to be NUP136. Similarly to NUP153, NUP136 is a mobile 

nucleoporin which interacts with the RNA export factor 1 (RAE1) and is required for nuclear 

morphology.
7
 Additionally, Kentaro Tamura (Kyoto University, Japan) discovered a new plant-
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specific NUP136 homolog, called NUP82 based on its molecular mass. Immunoprecipitation 

experiments reveal that NUP82 interacts with NUP136 and RAE1, potentially contributing to gene 

expression and NPC anchoring via direct binding to NMCPs. The Arabidopsis thaliana double mutant 

nup82nup136 is impaired in defence and salicylic acid (SA) induced gene expression, resulting in 

defects in SA signalling and immune responses to Pseudomonas syringae pv. Tomato DC3000. 

Previously, constituents of the core scaffold of the NPCs, the NUP107-160 sub-complex, were shown 

to be required for innate immunity and responses to root legume symbiotic microorganisms.
8,9

 The 

research performed by Kentaro Tamura reinforced the role of plant NPCs in plant microbe 

interactions, not only via the NUP170-160 sub-complex but also via the FG-repeat NUPs.  

Chromocenter dynamics 

In plants, NMCP is connected with cytoskeletal elements through the linker of nucleoskeleton and 

cytoskeleton (LINC) complex.
2
 The LINC complex is composed of SUN and Klarsicht/ANC-1/Syne-1 

homology (KASH) proteins which span the double membrane of the nuclear envelope and 

mechanically couple the nucleoskeleton and cytoskeleton (Fig. 1). At the inner nuclear membrane, the 

LINC complex is anchored to NMPC via SUN proteins.
2
 While plant LINC complexes have been 

shown to regulate various nuclear processes including nuclear morphology, migration and meiotic 

chromosome organisation,
10

 their role in chromatin regulation still remains poorly understood. In A. 

thaliana interphase nuclei, clusters of heterochromatin, often referred to as chromocenters, can be 

found at the nuclear periphery, where they are typically associated with transcriptionally repressive 

chromatin.
11

 Using the software NucleusJ,
12

 Axel Poulet (Oxford Brookes University, UK & Clermont 

University, France) reported that chromocenters are positioned in close proximity to the periphery of 

the nucleus but that this distance varies with the nuclear volume in A. thaliana LINC complex and 

NMCP mutants. Additionally, using 3D-FISH and analyses of the centromeric and peri-centromeric 

short repetitive DNA, he demonstrated that both LINC complex and NMCP are required for 

heterochromatin organisation, compaction and associated with the release of gene silencing. 

Altogether, this suggests that the LINC complex and NMCP contribute to the regulation of 

heterochromatin organisation and gene expression potentially via the indirect interaction of unknown 
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components. Several improved nuclear proteomics approaches presented by Kentaro Tamura (Kyoto 

University, Japan) using A. thaliana, and Beata Petrovska (Institute of Experimental Botany AS CR, 

Czech Republic) using Barley,
13

 may help identify novel candidates to decipher the complex 

molecular regulation of chromatin at the nuclear periphery. 

In metazoan, at the core of the chromocenter during interphase, the centromere is compact with a 

specific histone variant CenH3 whose deposition is tightly controlled by specific histone chaperones; 

no chaperone has yet been identified in plants. In related studies, microtubule regulators associated 

with the centromere have emerged as strong candidates.
14,15

 The small γ-tubulin complex component 3 

(GCP3)-interacting proteins (GIPs) co-immunoprecipitate with the centromere-histone H3 variant 

CENH3, and co-localise with the chromocenters and CENH3 at the nuclear periphery in interphase 

nuclei.
15

 In A. thaliana, the gip1gip2 double mutant exhibits a decreased level of centromeric proteins 

including CENH3, strong microtubule disruption as well as deformed nuclei and abnormal distribution 

of NPCs and SUN1.
15,16

 These results indicate that GIPs are required not only for the recruitment 

and/or stabilization of CENH3 and centromeric cohesion but also for nuclear morphology and nuclear 

envelope organisation. Marie-Edith Chabouté (IBMP, CNRS Strasbourg, France) previously revealed 

that GIPs interact with the TonSoKu (TSK)-associating protein 1 (TSK1) interactor (TSA1).
14,17

 The 

Tsk1 mutant is sensitive to DNA-damage agents and presents reduced epigenetic gene silencing 

suggesting that TSK1 is required for genome maintenance.
18,19

 Marie-Edith Chabouté et al. explored 

the genetic relation between GIP1, GIP2 and TSK1. Using neutral comet assays and a cytological 

marker of double strand breaks, she revealed that the double mutants gip1tsk2 and gip1gip2 both 

present an increase of double strand breaks close to heterochromatin. Additionally, the results of FISH 

and immuno-cytological approaches proved that similarly to that for GIPs, TSK2 is required for 

centromeric cohesion. Further investigation will be required to clarify the epigenetic relation between 

GIPs and TSK, specifically whether some of them may interact in complexes that affect the 

transcriptional status at the chromocenters.  
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Chromatin structure-function  

Packaging of DNA into chromatin allows eukaryotes to contain large volumes of DNA into a small 

nuclear volume, to protect the DNA structure and sequence as well as control gene expression and 

DNA replication. These functions are regulated by changes in nucleosome positions and chromatin 

structures via complex mechanisms that are not yet fully understood. One of the regulatory 

mechanisms of gene transcription at the chromatin level is the control of accessibility of transcription 

machinery to appropriate DNA sequence. Hank Bass (Florida State University, USA) reported on 

chromatin structure-function relationships in the maize nucleus at multiple spatial scales. A 

differential nuclease sensitivity sequencing assay was developed based on the micrococcal nuclease 

(MNase) digestion to discover open chromatin regions in the maize genome. The MNase 

hypersensitive sites discovered were functionally verified by genome-wide association studies to 

explain most of the heritable phenotypic variation in maize.
20,21

 At a larger scale, in maize root tip 

cells, 3D quantitative analysis of spatio-temporal DNA-replication patterns unexpectedly revealed two 

intermingled chromatin compartments distinguished by their replication timing (early versus middle S 

phase) and degree of 4’6-diamidino-2-phenylindole-stained condensation.
22

 A mini-domain replication 

model from this work needs to be tested via future experiments.  

Nucleus positioning and movement 

The nucleus is anchored to the cytoskeleton by specific interactions at the outer nuclear membrane via 

the LINC complex. These interactions anchor and regulate the movement of the nucleus in cells, a 

process known to be tightly coupled to certain plant physiological processes.
23

 In guard cells, the 

KASH protein, spectrin repeat containing nuclear envelope protein 1 (SINE1), binds actin filaments 

directly to position the nucleus in the cell centre.
24

 In mesophyll cells, nuclear shape and dark-induced 

movement is regulated by the KASH proteins, tryptophan-proline-proline (WPP) domain-interacting 

proteins (WIP), and the WPP domain–interacting tail-anchored protein (WIT) via recruitment of 

myosin XI-i.
25

 Iris Meier (Ohio State University, USA) presented the recent discovery that the LINC 

complex is also required for successful reproduction in A. thaliana. She demonstrated that the SUN 

and KASH protein (WIP-WIT) complexes are required for the movement of the pollen vegetative 
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nucleus during pollen tube growth as well as for pollen tube ovular guidance and reception.
26

 

Altogether, the function of LINC complexes in plant nuclear anchorage is unambiguous, although 

other nuclear components such as the NPCs might play a role. For instance, Kentaro Tamuro (Kyoto 

University, Japan) identified the gene KAKU3 in forward genetic screen for mutants impaired in 

nuclear movement. The kaku3 mutant fails to anchor the nucleus during cytoplasmic streaming 

observed in live hypocotyl cells. The KAKU3 gene is thought to encode a nuclear protein linked to the 

NPC, yet mutations in other NPCs did not show anchorage defects, which suggests a specific function 

of KAKU3. Further studies might shed light on how the NPC regulates nuclear anchorage as well as 

the relation to nucleocytoplasmic transport and gene regulation. While less studied, several other 

processes are tightly coordinated with nuclear movement e.g. root hair tip growth and trichome 

development as well as symbiotic and pathogenic plant-microbe interactions.
23

 To understand the role 

of nuclear movement in those processes, the identification of the nuclear proteins involved is required. 

Myriam Charpentier (John Innes Centre, UK) presented the recent discovery of new nuclear envelope 

localised calcium channels encoded by three cyclic nucleotide gated channel 15 (CNGC15) in 

Medicago truncatula.
27

 CNGC15s are located at the inner and outer nuclear membranes where they 

interact with a potassium permeable channel (DMI1) to orchestrate the generation of symbiotic factor-

induced nuclear-localised calcium oscillations (Fig 1).
27

 Nuclear localised calcium oscillations are one 

of the fastest physiological responses occurring at plant root cell nuclei upon perception of diffusible 

symbiotic factors.
9
 These calcium oscillations are essential to activate the endosymbiotic program. 

Interestingly the perception of the symbiont by the host cells induces, concomitantly to the nuclear 

calcium oscillation, the repositioning of the nuclei toward the site of penetration.
28

 Whether the 

calcium oscillation and the nuclear repositioning are connected is unclear and will require further 

investigation.  

Dynamic organisation of non-plant nuclei 

Lamin A/C regulated nuclear mechanics and genome function 

One key theme which emerged from this session was an appreciation of the interplay between nuclear 

organisation and the cell’s biophysical environment. Diseases involving mutations in nuclear envelope 
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protein components often manifest themselves in tissues subjected to mechanical stress.
29

 Yosef 

Gruenbaum et al. (Hebrew University of Jerusalem, Israel) presented a study investigating the effects 

of various Emery-Dreifuss muscular dystrophy (EDMD) associated mutations on the response of 

nuclei in living Caenorhabditis elegans exposed to mechanical strain. The EDMD lamin mutation 

L535P increased the resistance to strain specifically in muscle nuclei. This mechanical response could 

be rescued through inhibition of lamin prenylation via depletion of farnesyl diphosphate synthase gene 

(fpds-1), which also reversed the muscle phenotypes restoring normal mobility; and provides a 

potential future therapeutic approach for EDMD.
30

 Interestingly, this also induced a small shift in 

lamin distribution from the nuclear periphery to the nucleoplasm. Roland Foisner et al. (Medical 

University Vienna, Austria) demonstrated a novel role for nucleoplasmic lamin A/C in regulating 

euchromatin. This nucleoplasmic lamin A/C directly binds euchromatin and is associated with 

chromatin binding protein lamina-associated polypeptide (LAP)2α. Lamin A/C in LAP2α deficient 

cells is absent from euchromatic regions and its absence was associated with a change in epigenetic 

histone marks in euchromatin.
31

 Furthermore, overexpression of LAP2α in cells expressing progerin, a 

lamin A mutant causing the premature ageing disease Hutchinson Gilford Progeria Syndrome (HGPS), 

could rescue proliferation and the expression of extracellular matrix (ECM) genes.
32

 Reorganisation of 

Lamin A/C toward the nuclear periphery was also observed in stem cell differentiation by Stephen 

Thorpe et al. (Queen Mary University of London, UK). While lamin A/C phosphorylation increased 

with differentiation, strain application reduced phosphorylation. Defects in lamin A/C processing are 

associated with disease and ageing. Prelamin A accumulation has been observed in dilated 

cardiomyopathy (DCM), and Daniel Brayson et al. (King’s College London, UK) observed via a 

transgenic mouse with cardiomyocyte specific prelamin A accumulation, a rapid induction of DCM 

with mice succumbing by six weeks. This was associated with disruption of the LINC complex, DNA 

damage and senescence. Senescence and prelamin A accumulation have also been associated with the 

occurrence of nucleoplasmic reticulum.
33

 However, the mechanism behind these invaginations in the 

nuclear envelope is unclear. David Vaux et al. (University of Oxford, UK) have found that both 

membrane phospholipid and associated lamin components of these nuclear envelope invaginations are 

newly synthesised, suggesting an active process of invagination rather than external deformation of 
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pre-existing nuclear envelope. The role of nucleoplasmic reticulum is unclear; while it may act as a 

deep nuclear calcium signalling source,
34

 it may also provide a reservoir of nuclear membrane to 

facilitate conservation of volume while the nucleus distorts. 

Nuclear migration and the LINC complex 

The LINC complex, which bridges the nuclear envelope, plays a role in nuclear movement through its 

association with different cytoskeletal components. Stephen Thorpe et al. (Queen Mary University of 

London, UK) demonstrated that nuclear orientation is offset from that of the actin cytoskeleton in 

differentiating stem cells subjected to uniaxial strain, and this is associated with an increase in both 

SUN1 and SUN2 expression. Daniel Starr (University of California, Davis, USA) presented an elegant 

study of nuclear migration in C. elegans P cells, where the nucleus (3-4 µm diameter) must migrate 

through a 150 nm space between the body wall muscle and the worm’s cuticle. Interactions between 

canonical SUN and KASH proteins, UNC-84 and UNC-83 (microtubule recruitment) or ANC-1 (actin 

recruitment), are key to the switch between nuclear anchorage or migration (Fig. 1).
35

 In the P cell 

model, nuclei move toward the minus ends of microtubules using dynein. This is the opposite to what 

was previously observed in embryonic hyp7 cells.
36

 However, both kinesin and actin cables assist in 

squeezing the P cell nucleus though this constriction while the nuclear lamina completely rearranges to 

facilitate extreme nuclear distortion. 

Nuclear envelope proteins and chromatin tethering 

In addition to the C. elegans model described above (Yosef Gruenbaum et al.), nucleus distortion in 

response to an external mechanical perturbation was also investigated in both mesenchymal stem cells 

and in yeast. In both cases, nuclear deformation was regulated, at least in part, by chromatin state. 

Stephen Thorpe et al. (Queen Mary University of London, UK) demonstrated increased chromatin 

compaction in differentiated stem cell nuclei, which was associated with a reduction in nuclear 

elongation in response to strain. However, extensive lamin A/C reorganisation was also observed. 

Megan King (Yale School of Medicine, USA) presented a study in fission yeast, which lack a nuclear 

lamina, to investigate how chromatin tethering to the nuclear envelope influences nuclear stiffness. 

Optical tweezers were used to perturb isolated yeast nuclei with and without inner nuclear membrane 
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chromatin tethers Heh1, Heh2 (both orthologues of mammalian LEM domain proteins Man1, LEMD2 

and emerin; Fig. 1) and Ima1 (homologous to mammalian Net5/Samp1). Nuclei lacking tethers were 

less stiff and exhibited increased chromatin flow associated with a reduction in viscosity, particularly 

in frequency ranges which recapitulate the kinetics of cytoskeletal dynamics.
37

 Additionally, in vivo 

fluctuations in nuclear morphology were observed to be driven by microtubules. King et al. also 

observed co-localisation of Heh1 and Ima1 with S. pombe SUN domain protein Sad1 which resides at 

the centromere-spindle pole body interface of the nuclear envelope. This accumulation of chromatin 

tethers was associated with a large area of heterochromatin. In another unicellular organism, 

Dictyostelium discoideum, Ralph Gräf et al. (Universität Potsdam, Germany) observed an enrichment 

of SUN1 in the region of the spindle-pole body interface of the nuclear envelope. SUN1 was observed 

to interact with a lamin-like protein, NE81,
38

 which also associated with and required Src1 

(homologous to MAN1) for localisation at the nuclear envelope. The tissue specific and postnatal role 

of MAN1 in angiogenesis, heart development and muscle regeneration was explored by Alexander 

Stubenvoll et al. (Max-Planck Institute for Heart and Lung Research, Germany) using a conditional 

knock out mouse model. Loss of MAN1 resulted in severe cardiac abnormalities and was embryonic 

lethal. MAN1 also plays a key role in muscle homeostasis and regeneration which was disrupted with 

loss of MAN1 in muscle stem cells, although inhibition of TGF-β signalling rescued these defects. The 

association of LEM domain proteins with key signalling pathways was also highlighted by Parisa 

Ghanbari et al. (Max-Planck Institute for Heart and Lung Research, Germany) who identified a role 

for emerin in the restriction of Wnt/β-catenin signalling,
39

 suggesting that the absence or abnormal 

localisation of emerin leads to hyper-activation of this pathway and genomic instability contributing to 

cancer initiation. 

Evolution and the nuclear envelope 

The nuclear envelope is the defining structure of the eukaryotic cell, and its most prominent structures 

include the nuclear pore complexes (NPCs) and the closely associated filamentous nuclear lamina 

(Fig. 1). Mark Field (University of Dundee, UK) presented an overview of the evolution of the NPC 

based on interactome mapping of the trypanosome NPC, a representative, highly divergent eukaryote. 
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While retaining similar protein composition, considerable architectural dissimilarities exist between 

opisthokont (yeast and metazoans) and excavate (trypanosome) NPCs.
40

 Interestingly, although lamins 

were assumed a derived feature of the animal nucleus, they found lamin homologs with shared domain 

architecture and sequence motifs in diverse protists.
41

 This ancient evolutionary origin of nuclear 

lamins was further substantiated by Ralph Gräf et al. (Universität Potsdam, Germany) who observed 

the presence of a lamin-like protein, NE81, in another unicellular organism, Dictyostelium 

discoideum.
38

 

Chromatin organisation and genome function 

In addition to involvement in signalling pathways, nuclear envelope proteins direct establishment of 

genome-wide patterns of peripheral heterochromatin formation. Eric Schirmer (University of 

Edinburgh, UK) presented work demonstrating that tissue-specific nuclear envelope gene tethering 

does indeed provide an additional layer of genome regulation. Muscle-specific nuclear transmembrane 

proteins (NETs; Fig. 1), NET39, Tmem38A and WFS1 direct specific myogenic genes to the nuclear 

periphery to facilitate their repression.
42

 While genes were repressed in the absence of NET gene 

tethering, this repositioning contributes between 
1
/3 and 

2
/3 of a gene’s normal repression in 

myogenesis. Furthermore, expression of tissue-specific NETs from muscle, liver and fat in a fibroblast 

cell line was able to recapitulate gene repression specific to the tissue of NET origin. Sequencing of 74 

unlinked EDMD patients revealed several of these spatial genome organisation NETs from muscle as 

strong disease candidates. The mechanism through which chromosome and gene movement occurs 

remains elusive. Joanna Bridger et al. (Brunel University, UK), in a snail cell model of host-parasite 

interactions, revealed that specific chromosomes and genes move rapidly (15 min.) to a new non-

random location.
43

 This movement is associated with expression as the actin gene locus was observed 

to move ~30 min. before transcription was detected. This active and directed movement is dependent 

on nuclear actin and myosin polymerisation. In addition to silencing and activation, the positioning of 

gene loci and chromosomes also facilitates interactions between different gene regions. Limb specific 

sonic hedgehog gene (Shh) expression is regulated by the enhancer designated ZRS, ~1 Mb away. Iain 

Williamson et al. (MRC Institute of Genetics and Molecular Medicine, UK), using super-resolution 
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microscopy with fluorescent in situ hybridisation (FISH) and chromatin conformation capture (5C),
44

 

identified elevated frequencies of Shh/ZRS co-localisation consistent with the formation of an 

enhancer-promoter chromatin loop in Shh expressing regions of limb bud only.
45

 However close 

Shh/ZRS proximity in the nucleus occurs regardless of whether the gene or enhancer is active. This 

constrained chromatin configuration may enhance the opportunity for the active enhancer to locate and 

instigate Shh expression. 

Conclusion and future perspectives 

Overall the research presented at this meeting demonstrated how fast this field has moved forward in 

recent years. Research across kingdoms on the dynamic organisation of the nucleus is undergoing a 

shift in focus from fundamental knowledge of nuclear composition and connections, to understanding 

of the mechanisms and function of these components; instances of which include signalling roles of 

nuclear envelope proteins, nuclear envelope structural changes in disease, and the role of nuclear 

structure in epigenetics. Recent discoveries of nuclear components in lesser studied species and 

kingdoms (e.g. trypanosomes and Dictyostelium) has highlighted how much remains to be determined 

relating to nuclear composition and function in all species. As such, the discovery of CNGC15 as a 

plant nuclear-localised calcium channel represents a major breakthrough, paving the way to 

understand the regulation and genome function of biotic stresses-induced nuclear calcium signalling. 

In addition to new components, new roles for some of the previously discovered nuclear components 

in the regulation of a host of cellular processes are being discovered. While the components often 

differ substantially, discoveries in one kingdom can inform those in another. The NPC is one area 

where comparison across kingdoms has already proved highly informative.
40

 Evident at this meeting 

was a focus on the role of mammalian LEM domain proteins Man1, LEMD2 and emerin and their 

orthologues in S. pombe and Dictyostelium. The future looks bright in this emergent field of nuclear 

dynamics. This meeting has served to highlight, not just the differences, but the great degree of 

similarity in nuclear organisation across kingdoms. As we shift our focus toward mechanism and 

function, the value of parallels drawn across kingdoms will be come all the more apparent. 
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Figure 1. Highlight on functional components of the nuclear envelope across kingdoms. The 

fundamental units of the LINC complexes which mechanically couple the nucleoskeleton and 

cytoskeleton are KASH (Klarsicht, ANC-1 and SYNE homology) domain-containing nesprins and 

SUN (Sad-1 and UNC-84) domain-containing proteins. Although functionally conserved, most of 

those components identified in metazoans do not have sequence homologues across kingdoms. With 

the exception of SUN proteins (e.g. SUN1, SUN2 and SUN3), KASH proteins (e.g. WIP, WIT) 

present no homology with their animal functional equivalent (e.g. Nesprin, ANC-1, Klarsicht, UNC-

83, KASH5 or MSP-300). Similarly, most of the inner nuclear envelope proteins gathered in the 

LEM2-emerin-MAN1 (LEM) domain protein family, do not yet have functional equivalent in plant. 
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The LEM domain proteins share an ability to bind lamins and tether repressive chromatin at the 

nuclear periphery. These have homologues in Dictyostelium discoideum (Src1) and yeast (Heh1, Heh2 

and Ima1) which in the absence of lamins, play a role in nuclear stiffening through chromatin tethering 

to the INM. The functional lamin-like proteins in plant are the nuclear matrix constituent proteins 

(NMCPs) also called crowded nuclei (CRWN) in Arabidopsis, while NE81 has been identified in 

protozoa. SUN1 and SUN2 bind CRWN1, whereas NMCP1 has several putative interactors including 

ARP7. In M. truncatula, the ion channel complex DMI1-CNGC15 which localise to both inner nuclear 

membrane (INM) and outer nuclear membrane (ONM), are required for symbiotic factor induced 

nuclear localized calcium release. At the nuclear pore complex (NPC), plant-specific FG-repeat 

nucleoporin, NUP136 and NUP82, have been identified. While the trypanosome NPC is 

predominantly symmetric, the yeast NPC is comparatively less so.  

 

 


