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Abstract— We show that existing Bayesian network (BN) modelling techniques cannot 
capture the correct intuitive reasoning in the important case when a set of mutually exclusive 
events need to be modelled as separate nodes instead of states of a single node. A previously 
proposed ‘solution’, which introduces a simple constraint node that enforces mutual 
exclusivity, fails to preserve the prior probabilities of the events , while other proposed 
solutions involve major changes to the original model. We provide a novel and simple 
solution to this problem that works in all cases where the mutually exclusive nodes have no 
common ancestors. Our solution uses a special type of constraint and auxiliary node together 
with formulas for assigning their necessary conditional probability table values. The solution 
enforces mutual exclusivity between events and preserves their prior probabilities  while 
leaving all original BN nodes unchanged.  

Index Terms— Bayesian networks, mutually exclusive events, causes, uncertain reasoning.  

1 INTRODUCTION 

 

A Bayesian network (BN) is a graphical probabilistic model that is especially well-

suited in decision-making scenarios that require us to consider multiple pieces of 
uncertain evidence involving causal relationships (Fenton and Neil, 2012). A BN 
consists of a set of nodes (that represent uncertain variables) and directed edges 

between those nodes for which there is a causal or evidential relationship. Every node 
has an associated conditional probability table (CPT); for any node without parents the 

CPT specifies the prior probabilities of each of the node states, while for any node with 
parents the CPT captures the prior probability of each node state conditioned on each 
combination of states of the parent nodes. In addition to its powerful visual appeal, a 

BN has an underlying calculus based on Bayes Theorem that determines the revised 
probability beliefs of all uncertain variables when any piece of new evidence is 

presented. This process is called evidence propagation (Fenton and Neil, 2012, Pearl, 
1988). There are widely available BN tools that implement standard propagation 
algorithms (see (Murphy, 2014) for extensive list and comparisons), and hence enable 

non-specialist users to easily build and run BN models. With propagation a BN can be 
used for both prognostic and diagnostic types of reasoning. In prognostic reasoning we 

enter evidence about causes in order to reason about effects (we also refer to this as 
‘forward inference’) whereas in diagnostic reasoning we enter evidence about effects 
to reason about causes (we also refer to this as ‘backward inference’). 

 
What we are interested in here is the special case where different possible events or 

outcomes are necessarily mutually exclusive (meaning that only one can be true at any 
time) but where these outcomes need to be modelled as separate BN nodes rather than 
states of a single node. We assume that these separate nodes have no common ancestors. 

In Section 2 we describe why this is a common and important problem and what 
properties need to be satisfied in any BN that attempts to model mutually exclusive 

outcomes as separate nodes. Although previous work has touched on the problem (Diez 
and Druzdzel (2006), Flores et al., 2005, Lam and Yeap, 1992, Jensen and Nielsen, 
2007, Pearl, 2000, Pearl, 1988, Perry and Van Allen, 2005) it has never been stated 

explicitly nor has it been adequately resolved, although the problem of transforming 
the states of a variable into multiple mutually exclusive variables appears to bear a close 

resemblance to the problem of transforming an n-ary constraint into multiple binary 
ones in the field of constraint satisfaction (Samaras and Stergiou, 2005). In Section 3 
we review previously proposed solutions and show their limitations. In Section 4 we 

provide a novel solution to the problem that involves introducing an auxiliary node with 
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a constraint, and provide the formulas needed to assign values to the new CPTs. Section 
5 provides examples and guidelines on where it is appropriate to use the proposed 

solution.  
 

Executable versions of all of the BN models described in the paper are freely available 
for inspection and use in the supplementary content. 

 

2 THE PROBLEM 

 

Figure 1 BN model fragment based around a node S with n states  

 

The generic BN in Figure 1 involves a node S – with n discrete states – and a set of 

ancestor and descendant nodes. This BN structure is typical of many that arise in real 
world problems, such as in legal arguments and inquests. The states of node S represent 
n mutually exclusive and exhaustive, but unobservable, hypotheses of which we seek 

to determine which is/was the most likely. For example, in an autopsy the states of S 
might correspond to the set of possible causes of death {natural, suicide, accident, 

murder}. The example in Appendix 1 is of a legal trial of a defendant D where the 
hypotheses are not simply just {guilty, not guilty}. There are a wide range of 
applications where the problem occurs and needs to be solved, including any problem 

in which the events that we wish to determine or predict represent a classification of 
some outcome. For example:  

 Identifying an airborne enemy threat {𝑀𝑖𝑠𝑠𝑖𝑙𝑒,𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡, 𝐷𝑟𝑜𝑛𝑒,𝑂𝑡ℎ𝑒𝑟}:  

 Predicting the winner of an election {candidate1, candidate2, …candidateN)   

 
What characterises these sorts of BN model fragments are the following common 

properties: 

 The ancestors of S typically represent separate ‘causal pathways’ for the 

different states of S. So, in the autopsy case the ‘accident’ hypothesis might 
involve a narrative with factors such as “participating in dangerous sports”, 
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while the ‘murder’ hypothesis might involve a narrative with factors such as 
“in dispute with known criminal gang” 

 The descendants of S typically represent diagnostic and other evidence about 
the individual states of S. For example, evidence of a bullet found in the back 

of the body supports the murder hypothesis. 
 

The focus of the model is in determining, after observing the evidence and considering 
all prior assumptions and probabilities, which of the mutually exclusive states of the 
node S is the most likely. However, there is a fundamental problem in building such a 

BN: it requires us to complete CPTs which (in realistic examples with multiple causes 

and outcomes) are infeasibly large and for which the vast majority of entries are 

either redundant or meaningless. For example: 
 
 The CPT for S: In the example in Appendix A, even if we assume all causal parents 

have just two states (true and false), this CPT has 6 × 27 = 768 entries. Although 

each causal node influences only one possible hypothesis we are forced to give 
(redundant) separate probabilities conditioned on every combination of all the 
other causal factor states. For example, “X often swam in sea” can only influence 

whether or not “X died accidentally”; yet we are forced to provide separate 
probabilities of “X died accidentally” given each of the 64 possible combinations 

of values for the other causal factors – none of which is relevant.  

 The CPT for child nodes of S: Since most of these are also only relevant for a single 

hypothesis, we again have to unnecessarily specify separate probabilit ies 
conditioned on each of the different hypotheses states.  

  
Hence, the problem we wish to solve can be characterised as follows: 
 

The states of the main node S correspond – by definition – to mutually exclusive 

alternative ‘events’ or ‘states of the world’. These separate events have 
independent causal parental pathways (by which we mean no common ancestors) 

as well as largely independent causal effects, diagnostics and evidence. Yet, 
because the separate events are part of a single BN node we are unable to 
disentangle the separate causes and effects. Ideally, we would like to use instead a 

model in which the separate ‘events’ are modelled as separate Boolean nodes as 
shown in Figure 2 and in which the revised model successfully preserves the prior 

probabilities of each of the mutually exclusive events occurring. 
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Figure 2 Ideal structure separating the mutually exclusive outcomes into distinct (Boolean) nodes  

(note that, although we allow common descendants of the status nodes, we do not consider 

common ancestors) 

 

Specifically, and completely generally, we want to be able to define a transformation of 

an 𝑛 -state node into 𝑛  Boolean nodes, where 𝐶𝑖  is the random (binary) variable 
associated with 𝑖th ‘new’ Boolean node. The revised model must satisfy the following 

two properties to ensure it is semantically equivalent to the original: 

 
Property 1 (Basic Mutual Exclusivity): P(Cj = false | Ci = true) =1  for each 𝑖 ≠ 𝑗 

 
Property 2 (Equivalence of prior probabilities of the events): For each 𝑖, the prior 

marginal probability 𝑃(𝐶𝑖 = 𝑡𝑟𝑢𝑒) is equal to 𝑃(𝑆 = 𝑐𝑖) in the original model.   

 

3 PREVIOUSLY PROPOSED SOLUTIONS AND THEIR LIMITATIONS  

 

3.1 Basic solution 

There is a simple solution to the problem in the special case when there are no ancestors 

of the node S. In this case, the solution is to retain the node S and introduce the Ci nodes 
as children as shown in Figure 3. 
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Figure 3 Solution for special case when node S has no ancestors  

 
In this case, for i=1 to n, the CPT for node Ci is defined by: 

 

𝑃(𝐶𝑖 = 𝑡𝑟𝑢𝑒 |𝑐𝑗) = {
1 𝑖𝑓 𝑖 = 𝑗 
0 𝑖𝑠 𝑖 ≠ 𝑗

 𝑓𝑜𝑟 𝑗 = 1,… , 𝑛. 

 
This CPT assignment ensures both properties 1 and 2 hold: 
Property 1 holds since If 𝐶𝑖 is 𝑡𝑟𝑢𝑒 then 𝑃(𝐶𝑗 = 𝑓𝑎𝑙𝑠𝑒) = 1  for each 𝑖 ≠ 𝑗. 

Property 2 holds since  

𝑃(𝐶𝑖 = 𝑡𝑟𝑢𝑒) = ∑ 𝑃(𝐶𝑖 = 𝑡𝑟𝑢𝑒|𝑐𝑗)𝑃(𝑐𝑗) =

𝑛

𝑗=1

𝑃(𝑐𝑖). 

 
Clearly, because this solution involves node S as a parent of each of the consequence 

nodes 𝐶𝑖it does not help us in the case where S has ancestors.   
 

3.2 Solution with linked Ci nodes 

 
It turns out (as explained in Appendix B) that for the general case it is possible to 

construct a ‘solution’ that satisfies both Properties 1 and 2 by directly linking 𝐶𝑖 nodes 
together. However, by introducing direct links between the 𝐶𝑖 nodes we destroy the 

entire rationale for introducing separate event nodes, which was to separate the causal 

pathways to and from the events. Appendix B, therefore, also explains in detail why 
linking consequence nodes is unsatisfactory (in the solution we propose in Section 4 
there are no direct dependencies between any of the 𝐶𝑖  nodes). The solution in 

Appendix B is also infeasible where the number of states n is large, since for i=2…n, 
even if the node Ci has no causal parent nodes, it has i-1 enforced parent nodes (namely 

C1,…Ci-1)  and hence 2i CPT entries. 
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3.3 The simple constraint method  

 

Jensen and Nielsen (2007) proposed a solution by introducing a Boolean constraint 
node (as shown in Figure 4 for the simplest case where 𝑛 = 2) and setting it to be 𝑡𝑟𝑢𝑒. 

The CPT for the constraint node is a deterministic XOR, i.e. is defined as 𝑡𝑟𝑢𝑒 when 

exactly one of the parents is 𝑡𝑟𝑢𝑒 and 𝑓𝑎𝑙𝑠𝑒 otherwise (so this easily generalizes to 
arbitrary 𝑛 nodes). Providing the constraint is always set to be 𝑡𝑟𝑢𝑒 when the model is 

run, Property 1 is clearly satisfied because if 𝐶𝑖 is 𝑡𝑟𝑢𝑒 then, since the constraint is 

𝑡𝑟𝑢𝑒, 𝐶𝑗 must be 𝑓𝑎𝑙𝑠𝑒 for each 𝑗 ≠ 𝑖 because of the definition of the CPT. 

 

 

Figure 4 Enforcing mutual exclusivity by introducing simple Boolean constraint node 

 

However, since this solution requires the constraint node to be true it does not in general 
preserve the prior probabilities of 𝐶1 and 𝐶2, and thus it does not satisfy Property 2. To 

see this, suppose P(C1 = true) = x. Then, since there are just two mutually exclusive 
causes, this means that we would expect P(C2 = true) = 1-x. But then 

 
𝑃(𝐶1 = 𝑡𝑟𝑢𝑒|𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = 𝑡𝑟𝑢𝑒)

=
𝑃(𝐶1 = 𝑡𝑟𝑢𝑒) × (1 − 𝑃(𝐶2 = 𝑡𝑟𝑢𝑒))

(𝑃(𝐶1 = 𝑡𝑟𝑢𝑒) × (1 − 𝑃(𝐶2 = 𝑡𝑟𝑢𝑒)) + 𝑃(𝐶2 = 𝑡𝑟𝑢𝑒) × (1 − 𝑃(𝐶1 = 𝑡𝑟𝑢𝑒)))
 

 

=
𝑥2

𝑥2 + (1 − 𝑥)2
, 

 

which is equal to x only when x=1 or x=0.5      
 
For example, suppose P(C1 = true) = 0.7. Then, P(C1 = true | Constraint = true) = 0.8448  

So, when the constraint is set to true (as is necessary) the priors for the cause nodes 

change even though no actual evidence has been entered.  
 
It is important to note that in the examples in (Jensen and Nielsen, 2007) the priors for 

the mutually exclusive nodes were assumed to be uniform (i.e. in the 2-node example 
the prior 𝑡𝑟𝑢𝑒 and 𝑓𝑎𝑙𝑠𝑒 probabilities were 0.5 for each 𝐶𝑖 node).  

 

3.4 Extended XOR solution 

 

Diez and Druzdzel (2006) also introduced an XOR constraint node and proposed a 
method that also satisfies Property 2. This solution involves directly changing the CPTs 
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of every cause node. Specifically, assuming the original prior probability P(Ci=True)=xi 
then the CPT of Ci is changed to  

 

𝑃(𝐶𝑖 = 𝑇𝑟𝑢𝑒) =
𝑥𝑖

1 + 𝑥𝑖

 

 

These prior probability values ensure that the posterior probability of Ci is equal to xi 
when the deterministic XOR constraint is instantiated. The drawback here is that user 

sees a completely different set of CPTs for the original cause nodes so the model 
becomes unrecognisable from the original model. Furthermore, in its current form this 
solution also has limited value when mutually exclusive events have ancestors, as it 

becomes difficult to define the correct CPT values that satisfy the target posterior 
probability distribution.  

4 PROPOSED GENERAL SOLUTION 

Our solution (see Figure 5 for the structure) avoids the problems of the previous 
solutions and leaves all of the original BN nodes – and their relationships – unchanged.  
The solution is to add two nodes to the network in Figure 2: an auxiliary classificat ion 

node, which is a common child of the Ci nodes, and a constraint node child of this 
auxiliary node  to satisfy Properties 1 and 2. Setting the constraint node to true does not 
change the prior probabilities for the 𝐶𝑖 nodes. 
 

 

 

Figure 5 Structure for general solution 

The auxiliary node has 𝑛 + 1 states, namely the n original states ci (for 𝑖 = 1 to 𝑛)  of 

the node S plus a special NA state standing for “Not Applicable” and representing 

impossible combinations.  In what follows we will assume that in the original model  
 

P(S = ci)=xi  for 𝑖 = 1 to 𝑛  and hence that the necessary prior probabilities for each 
node Ci are P(Ci=true)=xi. 

 
Theorem. If the CPT of the auxiliary node is defined as in Table 1, and the CPT of the 

constraint node is defined as in Table 2, then both properties 1 and 2 are satisfied when 
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the constraint is true. 
 

 

Table 1 CPT for auxiliary cause node (specifically:  

𝑷(𝒄𝒊 = 𝟏) when 𝑪𝒊 = 𝒕𝒓𝒖𝒆 𝒂𝒏𝒅  𝑪𝒋 = 𝒇𝒂𝒍𝒔𝒆 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒊 ≠ 𝒋;  𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 𝑷(𝒄𝒊 = 𝟎); 

𝑷(𝑵𝑨) = 𝟎 if exactly one 𝑪𝒊 is true and 𝟏 otherwise)  

C1 False True 
C2 False True False True 
…         
Cn False True False True False True False True 

c1 0 0 0 0 1 0 0 0 

c2 0 0 1 0 0 0 0 0 
…         
cn 0 1 0 0 0 0 0 0 

NA 0 0 0 1 0 1 1 1 
 

 

Table 2 CPT for constraint node  

    Auxiliary c1 c2 … cn NA 
False x1 x2 … xn 1 
True 1 - x1 1 - x2 … 1 - xn 0 

 
 
Proof 

 
First we prove Property 1 holds, i.e.  P(Cj = false | Ci = true) =1  for each 𝑖 ≠ 𝑗. 
 
We argue by contradiction. Suppose Property 1 does not hold. Then  𝐶𝑗 is 𝑡𝑟𝑢𝑒 for some 

𝑖 ≠ 𝑗 when 𝐶𝑖 is 𝑡𝑟𝑢𝑒. But, if Ci and Cj are both true then, from the definition of the 

CPT for the auxiliary node, we must have P(NA)=1.  But then, from the definition of 
the CPT for the constraint node P(constraint = true) = 0, which contradicts the fact that 

the constraint is ‘true’.  
 
To prove property 2 we have to show that the marginal probabilities for the Ci nodes do 

not change when the constraint is set to true, i.e. we have to show for each 𝑖 = 1 to 𝑛 

 𝑃(𝐶𝑖 = 𝑡𝑟𝑢𝑒|constraint = 𝑡𝑟𝑢𝑒) =  𝑃(𝐶𝑖 = 𝑡𝑟𝑢𝑒)  (1) 
 

By Bayes 
 

𝑃(𝐶𝑖 = 𝑡𝑟𝑢𝑒|constraint = 𝑡𝑟𝑢𝑒) =
𝑃(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 =𝑡𝑟𝑢𝑒|𝐶𝑖 =𝑡𝑟𝑢𝑒)×𝑃(𝐶𝑖=𝑡𝑟𝑢𝑒)

𝑃(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 =𝑡𝑟𝑢𝑒)
 (2) 

 
Hence, if we can show 

  
𝑃(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = 𝑡𝑟𝑢𝑒|𝐶𝑖 = 𝑡𝑟𝑢𝑒) =  𝑃(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = 𝑡𝑟𝑢𝑒), (3) 

 
it follows from (2) that (1) is true. 

 
When Ci=true it follows from the definition of the CPT for the auxiliary node that 
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𝑃(𝑐𝑗|𝐶𝑖 = 𝑡𝑟𝑢𝑒) = {
∏ 𝑃(𝐶𝑗 = 𝑓𝑎𝑙𝑠𝑒) = ∏ (1 − 𝑥𝑗) if 𝑗 = 𝑖𝑛

𝑗≠𝑖
𝑛
𝑗≠𝑖

0 if 𝑗 ≠ 𝑖
  (4) 

 
Using (4) it follows from the definition of the CPT for the constraint node and 

marginalisation that: 

𝑃(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = 𝑡𝑟𝑢𝑒|𝐶𝑖 = 𝑡𝑟𝑢𝑒) = ∑(1 − 𝑥𝑗) × 𝑃(𝑐𝑗|𝐶𝑖 = 𝑡𝑟𝑢𝑒)

𝑛

𝑗=1

 

 

= (1 − 𝑥𝑖) × ∏(1 − 𝑥𝑗

𝑛

𝑗≠𝑖

)    (by (4))  

= ∏(1 − 𝑥𝑖

𝑛

𝑖=1

)              (5) 

 
Now we know from the definition of the CPT for the auxiliary node that: 
 

𝑃(𝑐1) = 𝑃(𝐶1 = 𝑡𝑟𝑢𝑒, 𝐶2 = 𝑓𝑎𝑙𝑠𝑒, … , 𝐶𝑛 = 𝑓𝑎𝑙𝑠𝑒) = 𝑥1(1 − 𝑥2) … (1 − 𝑥𝑛) 
𝑃(𝑐2) = 𝑃(𝐶1 = 𝑓𝑎𝑙𝑠𝑒, 𝐶2 = 𝑡𝑟𝑢𝑒, … , 𝐶𝑛 = 𝑓𝑎𝑙𝑠𝑒) = (1 − 𝑥1)𝑥2 … (1 − 𝑥𝑛) 

… 

𝑃(𝑐𝑛) = 𝑃(𝐶1 = 𝑓𝑎𝑙𝑠𝑒, 𝐶2 = 𝑓𝑎𝑙𝑠𝑒, … , 𝐶𝑛 = 𝑡𝑟𝑢𝑒) = (1 − 𝑥1)(1 − 𝑥2) … 𝑥𝑛 

 
So, in general for each i: 

𝑃(𝑐𝑖) = 𝑥𝑖 ∏(1 − 𝑥𝑗)

𝑛

𝑗≠𝑖

 

 
Using this together with the definition of the CPT for the constraint node and 

marginalisation: 

𝑃(𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = 𝑡𝑟𝑢𝑒) = ∑(1 − 𝑥𝑖)𝑃(𝑐𝑖)

𝑛

𝑖=1

= ∑ ((1 − 𝑥𝑖)𝑥𝑖 ∏(1 − 𝑥𝑗)

𝑛

𝑗≠𝑖

)

𝑛

𝑖=1

= ∑ ((𝑥𝑖 ∏(1 − 𝑥𝑖)

𝑛

𝑖=1

)

𝑛

𝑖=1

 

 

=  ∏(1 − 𝑥𝑖) (∑ 𝑥𝑖

𝑛

𝑖=1

)

𝑛

𝑖=1

 

 

= ∏(1 − 𝑥𝑖)

𝑛

𝑖=1

,          (6)      

 

since  ∑ 𝑥𝑖
𝑛
𝑖=1 = 1 
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This completes the proof.  An example using the solution is shown in Figure 6. 
 

There are four important points to note about the solution: 
 

1. The values in Table 2 are not unique. In fact, it follows from the above proof 
that any constant multiple of the values will also work (provided the results are 
all between 0 and 1 as they are probabilities assigned to a CPT), i.e. for any 

constant, for which  
 
0 < 𝑘(1 − 𝑥𝑖) < 1 for each 𝑖. 

 
Multiplying the probabilities by 𝑘  is correct because only the relative 

likelihoods transmitted from ‘constraint’ to ‘auxiliary’ are relevant. For 
example, Table 3 also works.  

 

Table 3 alternative CPT for constraint node with constant multiple 

    Auxiliary c1 c2 … cn NA 
False 1-k(1- x1) 1-k(1- x2) … 1-k(1- xn) 1 

True k(1- x1) k(1- x2) … k(1- xn) 0 

 
2. It extends to non-exhaustive events.  If our starting point for the mutual 

exclusivity problem is a node whose states we wish to represent as separate 
nodes then, by definition, the set of states are not only mutually exclusive but 
also exhaustive. However, in many situations our starting point for the 

problem is a BN in which we already have constructed separate nodes that we 
wish to force to be ‘mutually exclusive’.  In such situations the set of states 

may not be exhaustive.  The proposed solution works in such situations by 
simply adding a ‘leak’ state to the auxiliary node. This state represents the 
logical alternative  

𝑛𝑜𝑡(𝐶1 𝑜𝑟 𝐶1𝑜𝑟 … 𝑜𝑟 𝐶𝑛), 

 
where 𝐶1, … , 𝐶𝑛 are the nodes representing the known mutually exclusive 

events. By definition adding this state ensures the set {𝐶1, … , 𝐶𝑛, 𝑙𝑒𝑎𝑘} is 

mutually exclusive and exhaustive, and the prior probability of the state 𝑙𝑒𝑎𝑘 

is simply 1 − ∑ 𝑥𝑖
𝑛
𝑖=1  where 𝑥𝑖 is the prior probability of state 𝐶𝑖. Hence, the 

necessary CPT for the constraint node is that shown in Table 4. 

 

Table 4 CPT for constraint node where the states 𝑪𝟏, … , 𝑪𝒏  are not exhaustive 

    Auxiliary c1 c2 … cn 𝑙𝑒𝑎𝑘  NA 
False x1 x2 … xn ∑ 𝑥 𝑖

𝑛
𝑖=1   1 

True 1- x1 1- x2 … 1- xn 1 − ∑ 𝑥 𝑖
𝑛
𝑖=1   0 

 

3. There is an equivalent solution that does not require a separate constraint node. 

The constraint on the auxiliary node can also be imposed by using virtual 
evidence (Bilmes, 2004, Butz and Fang, 2005, Chan and Darwiche, 2005) 

directly on the auxiliary. This is explained in Appendix C, but this solution is 
more difficult to implement practically. 

4. The solution does not work if there are common ancestors of the 𝐶𝑖  nodes. 
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Suppose, for example, that two nodes 𝐶𝑖 and 𝐶𝑗 have a common parent node A. 

Then these nodes are d-connected once the evidence “true” is entered in the 
constraint node.  So back propagation from 𝐶𝑖 to A can result in a change to 

P(𝐶𝑗). No such change is possible if there are no common ancestors.  There are 

no problems for common descendants since evidence in the constraint node 
does not change the conditional independence assertions of descendant nodes.  

 
a) We have three 

states 

𝐶1, 𝐶2, 𝐶3 with 
respective 

marginal 

probabilities 0.7, 

0.2, 0.1.  So 𝑥1 =
0.7, 𝑥2 = 0.2, 

𝑥3 = 0.1 

 

 
b) When constraint 

is set to 𝑇𝑟𝑢𝑒 the 
probabilities are 

equal to the 

marginal 
probabilities 

(property 2 

satisfied) 

 

 
c) When 𝐶1 is 𝑡𝑟𝑢𝑒 

both 𝐶2 and 𝐶3 are 

𝑓𝑎𝑙𝑠𝑒. Similarly if 

𝐶2 is 𝑡𝑟𝑢𝑒 both 𝐶1 

and 𝐶3 are 𝑓𝑎𝑙𝑠𝑒 

and if 𝐶3 is 𝑡𝑟𝑢𝑒 

both 𝐶1 and 𝐶2 are 

𝑓𝑎𝑙𝑠𝑒  (property 1 
satisfied) 

 

 
 

Figure 6 Example model showing the solution in action (𝒏 = 𝟑) 

5 USING THE PROPOSED SOLUTION IN PRACTICE 

Our original motivation for solving the problem was driven by its frequent occurrence 
in handling legal arguments where the prosecution and defence hypotheses normally 
have clearly different causal explanations and evidence (Fenton et al., 2013). Indeed, 

in that paper we identified it as an ‘idiom’ that was a special case of the classic 
‘explaining away’ reasoning.  Figure 7 shows an example fragment of a model from 

(Fenton et al., 2013) in which two nodes need to be separate (because of different causal 
pathways) but also have to be mutually exclusive. The solution proposed in Section 4 
achieves the logically ‘correct’ probabilistic reasoning in this model when evidence is 
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entered. Ordinary ‘explaining away’ (which can only be achieved by the definition of 
the CPT for node ‘Blood on shirt matches victim blood’) simply does not work. 

 

 

Figure 7 Blood is found on the defendant’s shirt 

 

Our proposed solution has also already been adopted by Vlek et al. (2014) to analyse 
evidence in legal trials using narratives. Vlek et al. (2014) used mutually exclusive 

causes to combine multiple BN fragments about different narratives in a real legal case 
study. Each BN fragment represented an alternative scenario explaining the available 
evidence. Since only one scenario can be true, the scenarios are modelled as mutually 

exclusive causes of the incident.  
 

The proposed method comes with some limitations: 
 

 The benefits of the method are limited when the number of mutually exclusive 

causes is low. In real-world problems, however, it is very common to deal with 
multiple causes and/or classifications, and in these cases the method becomes 

useful. 

 There is a need to update the CPT of the constraint node when the CPTs of the 

ancestors of the 𝐶𝑖’s change. Care is needed in situations where the mutually 
exclusive events represent alternative ‘causes’ of some incident.  

 It may be impossible to identify the set of all potential causes and hence there 
is a danger in assuming that the set of identified potential causes is exhaustive. 

This danger is especially pertinent for some legal arguments, where the causes 
represent different hypotheses (for example, the defendant fired a weapon 

without provocation or fired in self-defence). Strong evidence against one 
hypothesis here would result in favouring the other. This would be an 
inappropriate conclusion in the case where an additional potential hypothesis, 

say ‘fire by accident’, had been wrongly omitted from the model. The ‘fix’ to 
this problem is either to accept that the causes are not exhaustive (and to use 

probability to deal with unknown causes) or to add a catch-all ‘other/unknown’ 
cause to the list of known causes. The 𝑛𝑜𝑛𝑒 state in our solution represents the 
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case where all causes in the model are 𝑓𝑎𝑙𝑠𝑒 and therefore it can be used to 

model ‘other/unknown’ causes that are not included in the model. However, 
modelling unknown causes in a BN model creates different problems, notably 

that of completing the necessary prior conditional probabilities for the effect 
given a cause that we do not know. 

6 CONCLUSIONS 

 

BNs have proven to be a very powerful method for reasoning about uncertainty. 
However, in situations where we wish to model mutually exclusive events as part of a 

complex argument there is no ‘natural’ BN model that works. We can: 
 

 Model the events as the states of a single node. But this comes at the heavy cost 
of introducing complex and often meaningless sets of conditional probabilitie s. 

In practice we have found this ‘solution’ is unsatisfactory and often infeasible. 

 Introduce direct links between the nodes. However, the ‘obvious’ solution fails 

to retain the prior probabilities of the event states. Although we have shown it 
is possible to get round this problem using a special assignment of CPT values 
(Appendix B), any linked nodes solution defeats the objective of keeping causal 

pathways into individual nodes separate. Hence, this ‘solution’ never makes 
sense unless the event nodes have no parents.  

 
We showed that the proposed ‘solution’ (Section 3.3) of introducing a simple XOR 
constraint node and setting it to ‘𝑡𝑟𝑢𝑒’ fails to retain the prior probabilities of the event 

states except in special cases. The proposed extended XOR solution (Section 3.4) does 

preserve the priors but at the unacceptably heavy cost of having to redefine every event 
node CPT.  The verified solution we have proposed makes no changes at all to the 
original BN nodes and their links. What we have done is produce an auxiliary node and 

a constraint node that is set to ‘𝑡𝑟𝑢𝑒 ’. Our solution provides a simple method for 
assigning the necessary CPT values in all cases to these new nodes. 

   
Our solution is by no means ideal since it involves additional artificial nodes, as well 

as a 𝑁𝐴 state that represents impossible state combinations, and a 𝑁𝑜𝑛𝑒 state where the 
mutually exclusive events are not exhaustive. However, there is no solution to the 

mutual exclusivity problem without changing the original BN structure, and the 
solution we have provided solves the problem under the properties described in this 

paper, which represent common modelling scenarios.  
 
Although we have described the problem and its solution in generic form this is 

certainly not a purely theoretical exercise. Examples mentioned in the paper (legal 
arguments and military threat assessment) are examples involving real clients where 

we needed to model mutually exclusive causes and discovered that the standard BN 
solutions did not work.  
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APPENDIX A: EXAMPLE PROBLEM 

 

Figure 8 Simplified example of BN model used for prognosis and diagnosis  

The example BN in Figure 8 is a simplified version of a typical BN used to model 
legal arguments. In this example a defendant D is charged with the murder of X. 

Although the body of X has never been discovered the prosecution case is based around 
the following evidence: 

 Opportunity and motive (causal factors): A witness claims to have seen D 
entering X’s apartment the day before he was reported missing (opportunity) 

and other witnesses claim that D had said he wanted to kill X following a 
dispute (motive). 

 Diagnostic and other evidence: Various forensic evidence found on D and 

at X’s apartment after X’s disappearance linking D to a violent confrontat ion 
with X; evidence of a struggle taking place at X’s apartment 

 
The defence has one piece of evidence (an alibi from D that challenges the 

‘opportunity’ evidence of the prosecution) but also suggests a number of possible 

alternatives hypotheses to the prosecution’s each of which has its own different 
narrative and evidence (both causal and diagnostic). The ideal structure for this 

problem, involving separate ‘mutually exclusive’ nodes for each hypothesis about X is 
shown in Figure 9. 
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Figure 9 Ideal structure separating the mutually exclusive outcomes into distinct (Boolean) nodes  

(note that, although we allow common descendants of the status nodes, we do not consider common 

ancestors) 

APPENDIX B: SOLUTION INVOLVING DIRECT DEPENDENCIES BETWEEN THE 𝑪𝒊 NODES  

Mutual exclusivity between separate nodes can also be enforced by adding edges 
between every pair of those nodes. The main task in this case is to assign the CPTs of 

those in such a way that both properties of mutual exclusivity are satisfied, and to avoid  
introducing cycles to the BN structure. Let 𝐶1, … 𝐶𝑛 be separate nodes that we want to 

enforce mutual exclusivity. In order to have edges between every pair of those nodes, 

we need to add (𝑛
2
) edges. 

 
Suppose any edge added between 𝐶𝑖  to 𝐶𝑗  is directed from 𝐶𝑖  to 𝐶𝑗  where 𝑖 < 𝑗 . In 

other words, 𝐶1  has no parents, 𝐶2  has 1 parent (i.e. 𝐶1) , 𝐶𝑛  has 𝑛 − 1  parents (i.e. 

𝐶1,… , 𝐶𝑛−1 ) etc. (Figure 10 shows an example where 𝑛 = 3). Our task is to assign the 

CPTs of 𝐶1,… 𝐶𝑛 in such a way that both properties of mutual exclusivity are satisfied. 
A possible ‘solution’ is to define the CPT of the node 𝐶𝑖 (where 𝑖 > 1) to be 𝑓𝑎𝑙𝑠𝑒 for 

all columns except one: the column in which all the parents are 𝑓𝑎𝑙𝑠𝑒. For this column, 

the CPT is defined as:  
 

 for 𝑖 < 𝑛: 𝑡𝑟𝑢𝑒 and 𝑓𝑎𝑙𝑠𝑒 are both assigned probabilities 0.5 

 for 𝑛: it must be 𝑡𝑟𝑢𝑒 (i.e. 𝑡𝑟𝑢𝑒 is assigned probability 1) 
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Figure 10 Ensuring mutual exclusivity through direct dependencies between the 𝑪𝒊 nodes. Note 

that the last column of the CPT for C3 represents an impossible state combination and so can be 

defined with any values. 

 
However, it turns out that the solution fails to satisfy property 2 (equivalence of prior 

marginals), except in some special cases (such as when 𝑛 = 2 ). This is because 

whatever value 𝑥1, i.e. the prior of 𝐶1, is set to the other 𝐶𝑖’s will have the following 
marginal values for 𝑡𝑟𝑢𝑒: 

 
In the case where 𝑛 = 3 

𝑃(𝐶2 = 𝑇𝑟𝑢𝑒) = (1 −  𝑥1)/2 
𝑃(𝐶3 = 𝑇𝑟𝑢𝑒) = (1 −  𝑥1)/2 

 
In the case where 𝑛 = 4: 

𝑃(𝐶2 = 𝑇𝑟𝑢𝑒) = (1 − 𝑥1)/2 
𝑃(𝐶3 = 𝑇𝑟𝑢𝑒) = (1 −  𝑥1)/4 
𝑃(𝐶4 = 𝑇𝑟𝑢𝑒) = (1 − 𝑥1)/4 

 

In the case where 𝑛 = 5: 
𝑃(𝐶2 = 𝑇𝑟𝑢𝑒) = (1 − 𝑥1)/2 
𝑃(𝐶3 = 𝑇𝑟𝑢𝑒) = (1 − 𝑥1)/4 
𝑃(𝐶4 = 𝑇𝑟𝑢𝑒) = (1 − 𝑥1)/8 
𝑃(𝐶5 = 𝑇𝑟𝑢𝑒) = (1 − 𝑥1)/8 

 

etc. 
 

So, in the special case when 𝑛 = 3 and each of the priors happens to be 1/3 the solution 
will work as shown in Figure 11.  
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Figure 11 Marginal values for 𝑪𝒊 = 𝒕𝒓𝒖𝒆 are all equal to 𝟏/𝟑 

 

However, suppose that the marginals for states 𝑐1, 𝑐2, 𝑐3  are 0.7 , 0.2  and 0.1 
respectively. Then, because 𝑥2 ≠ 𝑥3 , the marginals are not preserved (as shown in 

Figure 12). 

 

 

Figure 12 Marginals of 0.7, 0.2, 0.1 are NOT preserved. 

 

In order to preserve the marginals we have to be much more careful in the definition of 
the CPTs of nodes 𝐶𝑖 where 1 < 𝑖 < 𝑛. Specifically, we cannot assign uniform values 

to 𝑡𝑟𝑢𝑒 and 𝑓𝑎𝑙𝑠𝑒 for the column where all parents are 𝑓𝑎𝑙𝑠𝑒.  
 

Instead, we have to assign values that preserve the priors.  Now we know that the 

marginal probability 𝑃(𝐶𝑖 = 𝑡𝑟𝑢𝑒) is simply the sum of all probabilities of the form: 
 

𝑃(𝐶𝑖 = 𝑡𝑟𝑢𝑒|𝐶1 = 𝑡𝑟𝑢𝑒, 𝐶2 = 𝑓𝑎𝑙𝑠𝑒, … , 𝐶𝑖−1 = 𝑡𝑟𝑢𝑒)𝑃 (𝐶1 = 𝑡𝑟𝑢𝑒) … 𝑃(𝐶𝑖−1 = 𝑡𝑟𝑢𝑒) 
 

Where we consider all state combinations of the parents 𝐶1, … , 𝐶𝑖−1   
 

However, we also know that the conditional probability that 𝐶𝑖  is 𝑡𝑟𝑢𝑒  given the 

parents’ states is 0 unless all the parents are 𝑓𝑎𝑙𝑠𝑒. Hence, we can conclude that the 

marginal probability 𝑃(𝐶𝑖 = 𝑡𝑟𝑢𝑒) is equal to: 
 

𝑃(𝐶𝑖 = 𝑡𝑟𝑢𝑒|𝐶1 = 𝑓𝑎𝑙𝑠𝑒, 𝐶2 = 𝑓𝑎𝑙𝑠𝑒, … , 𝐶𝑖−1 = 𝑓𝑎𝑙𝑠𝑒)𝑃 (𝐶1 = 𝑓𝑎𝑙𝑠𝑒) … 𝑃(𝐶𝑖−1 = 𝑓𝑎𝑙𝑠𝑒) 
 

However, we need 𝑃(𝐶𝑖 = 𝑡𝑟𝑢𝑒) to be equal to the marginal probability for the state 

𝑐𝑖, i.e. 𝑥𝑖. Then it follows that: 
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𝑥𝑖 = 𝑃(𝐶𝑖 = 𝑡𝑟𝑢𝑒|𝐶1 = 𝑓𝑎𝑙𝑠𝑒, 𝐶2 = 𝑓𝑎𝑙𝑠𝑒, … , 𝐶𝑖−1 = 𝑓𝑎𝑙𝑠𝑒)(1 − 𝑥1)(1 − 𝑥2) … (1 −
𝑥𝑖−1)  

 

And hence 

𝑃(𝐶𝑖 = 𝑡𝑟𝑢𝑒|𝐶1 = 𝑓𝑎𝑙𝑠𝑒, 𝐶2 = 𝑓𝑎𝑙𝑠𝑒, … , 𝐶𝑖−1 = 𝑓𝑎𝑙𝑠𝑒) =
𝑥𝑖

(1 − 𝑥1)(1 − 𝑥2)… (1 − 𝑥𝑖−1)
 

 

So, the required CPT entry for 𝐶𝑖 being 𝑡𝑟𝑢𝑒 when all the parents are 𝑓𝑎𝑙𝑠𝑒 is: 

 
𝑥𝑖

(1 − 𝑥1)(1 − 𝑥2)… (1 − 𝑥𝑖−1)
 

 

As an example consider the case where the marginals for 𝑐1, 𝑐2, 𝑐3  are respectively 
0.7, 0.2, 0.1  then it is the CPT for node 𝐶2  that has to be redefined with 

𝑃(𝐶2 = 𝑡𝑟𝑢𝑒 |𝐶1 = 𝑓𝑎𝑙𝑠𝑒) equal to 0.2/(1 − 0.7) = 2/3. With this assignment we get 

the preserved marginal as shown in Figure 13. 
 

 

 

Figure 13: Marginals 0.7, 0.2, 0.1 are preserved 

Although we have shown that it is possible to configure the CPTs such that properties 
1 and 2 are both satisfied, the solution is unsatisfactory because it compromises the fact 

that the main objective of creating separate nodes for each outcome was to separate the 
largely independent causal pathways to and from the outcomes. By introducing direct 

links between the 𝐶𝑖 nodes we destroy the separation, and actually create a model that 
is far more complex than the original. Not only do we now need carefully constructed 

CPTs for each of the 𝐶𝑖 nodes conditioned on other 𝐶𝑗 nodes, but these CPTs have to be 

completely redefined as soon as there are causal parents for node 𝐶𝑖. We are again 
forced to consider all the irrelevant combinations of states of all the other 𝐶𝑗 nodes in 

defining the CPT for 𝐶𝑗 given the causal factors. Even without causal factor parents, 

the CPTs involve a whole range of meaningless columns and impossible state 
combinations.  
 

Another unsatisfactory aspect of this ‘solution’ is the fact that we have to arbitrarily 
decide which one of 𝐶𝑖 and 𝐶𝑗 is to be the ‘parent’ of the other even in cases where a 

temporal or causal association between these mutually exclusive events simply does 
not exist. 
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APPENDIX C: VIRTUAL EVIDENCE SOLUTION 

The constraint node linked to the auxiliary node (described in Section 4) can also be 
interpreted as uncertain evidence and handled accordingly. BNs have two types of 
uncertain evidence – virtual and soft evidence – that are often confused with each other 

(Pearl, 1988, Bilmes, 2004, Chan and Darwiche, 2005). Virtual evidence uses a 
likelihood ratio to represent the uncertainty of evidence. The formal definition of virtua l 

evidence is as follows: 
 

Let η be some uncertain evidence imposed on a set of mutually exclusive and 

exhaustive events 𝑐1,… , 𝑐𝑛   and assume that such evidence is specified by 

𝑤1, … , 𝑤𝑛 such that: 
 

𝑃(𝜂|𝑐1): … : 𝑃(𝜂|𝑐𝑛) = 𝑤1: … : 𝑤𝑛, 
 

the revised distribution proposed by the virtual evidence is 𝑃(. |𝜂). The virtua l 

event 𝜂 is independent of all other events given 𝑐𝑖 for i=1,…,n.  
 

In BNs, virtual evidence can be manually modelled by:  
1. adding a dummy node that corresponds to 𝜂,  

2. adding a directed edge between the node containing 𝑐𝑖 and the dummy node,  

3. instantiating the dummy node.  

The dummy node is equivalent to the constraint node in our method. The conditiona l 

probabilities of the instantiated state of the dummy node are defined according to the 
likelihood ratio of uncertain evidence.  

 
Virtual evidence is implemented in many commercial BN software packages that 
automatically handle the dummy variable and its CPT. When we use such software, our 

task is only to set the virtual evidence weights representing likelihood ratios:  
 

(𝑤1, 𝑤2, … , 𝑤𝑛, 𝑤𝑁𝐴 ) 
 
for the respective states 𝑐1,… , 𝑐𝑛 , 𝑁𝐴 in such a way that the resulting marginal for the 

auxiliary node is equal to: 

 
(𝑥1,𝑥2, … , 𝑥𝑛, 0). 

 

Note that we also have to define a weight for the NA state in our auxiliary node. The 
required virtual evidence weights are the same as the CPT parameters of the constraint 
node described in Section 4: 

 
𝑤𝑖 = 𝑘(1 − 𝑥𝑖)  for 𝑖 = 1, … , 𝑛, 

 
𝑤𝑁𝐴 = 0, 

 
where 𝑘 is any constant for which 1 > 𝑘(1 − 𝑥𝑖) > 0 .  
 
Figure 14 shows how the constraint is imposed with virtual evidence in AgenaRisk 

(2016) using the same example shown in Section 4. 
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a) We have three states 

𝐶1, 𝐶2, 𝐶3 with respective 
marginal probabilities 

0.7, 0.2, 0.1.  So 𝑥1 =
0.7, 𝑥2 = 0.2, 𝑥3 = 0.1 

 

 
b) When we enter virtual 

(soft) evidence with the 

weights 𝑤1 = 1 − 𝑥1, 

𝑤2 = 1 − 𝑥2, 𝑤3 = 1 −
𝑥3 , 𝑤𝑁𝐴 = 0 
to the auxiliary node the 

marginal probabilities are 
preserved (property 2 

satisfied) 

 

 
c) When 𝐶1 is 𝑡𝑟𝑢𝑒 both 

𝐶2 and 𝐶3 are 𝑓𝑎𝑙𝑠𝑒. 

Similarly if 𝐶2 is 𝑡𝑟𝑢𝑒 

both 𝐶1 and 𝐶3 are 𝑓𝑎𝑙𝑠𝑒 

and if 𝐶3 is 𝑡𝑟𝑢𝑒 both 𝐶1 

and 𝐶2 are 𝑓𝑎𝑙𝑠𝑒  
(property 1 satisfied) 

 

 
Figure 14 Alternative Solution using Virtual (Soft) Evidence 

 
We use virtual evidence to set the probabilities of the auxiliary node to a target value. 
This is analogous to the second type of uncertain evidence called soft evidence. While 
virtual evidence uses uncertain evidence values as likelihood ratios, soft evidence uses 

them as the target posterior distribution. In other words, when soft evidence is applied, 
the result of propagating the BN is such that the marginal distribution for the node N is 

exactly the array (𝑥1,𝑥2, … , 𝑥𝑛), where 𝑥𝑖’s sum to one. The formal definition of soft 
evidence is as follows: 

 
Let η be some uncertain evidence imposed on a set of mutually exclusive and 

exhaustive events  𝑐1, … , 𝑐𝑛, the revised distribution proposed by soft evidence 
satisfy the following constraint 

 

𝑃(𝑐𝑖|𝜂) = 𝑥𝑖 . 
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The solution described in this appendix uses the virtual evidence updating to produce 
the soft evidence outcome. Another way to impose soft evidence by using virtua l 

evidence is to use the following likelihood ratios as weights of the virtual evidence. 
 

 
𝑥1

𝑝1

:
𝑥2

𝑝2

: … :
𝑥𝑛

𝑝𝑛

, 

 

where pi are the probabilities of the states ci before the uncertain evidence is applied for 
i=1,…,n. In our example, p1, p2, p3 and pNA are the probabilities in the auxiliary node 
before the constraint is imposed, and their values are 0.504, 0.054, 0.024 and 0.418 

respectively (see Figure 14). The target probabilities of the states of the auxiliary nodes 
are 0.7, 0.2, 0.1 and 0 respectively. The likelihood ratios that satisfy these target 

probabilities are:  
 
 

0.7

0.504
:

0.2

0.054
:

0.1

0.024
:

0

0.418
. 

 
 

These likelihood ratios are the equivalent to the virtual evidence weights computed by 
𝑤𝑖 = 𝑘(1 − 𝑥𝑖). 

 
Soft evidence is not readily implemented in the popular BN tools; the likelihood ratios 

that satisfy the desired soft evidence must be manually calculated and entered by users  
(Murphy, 2014). There are propagation algorithms for soft evidence (for example ‘big 
clique’ (Kim et al., 2004), IPFP (Pan et al., 2006) but none are provided with any of the 

widely available BN tools. There is also a philosophical concern about whether soft 
evidence has any rational meaning in the real world. (Pearl, 1988) considered that the 

only sensible type of ‘uncertain evidence’ that could rationally be specified was ‘virtua l 
evidence’. The distinction and comparison between the different types of uncertain 
evidence is explained in detail by (Chan and Darwiche, 2005, Bilmes, 2004, Pearl, 

1988).  
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