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Abstract

Clinical trials are expensive and time-consuming and so should also be used to study how treatments work, allowing for
the evaluation of theoretical treatment models and refinement and improvement of treatments. These treatment
processes can be studied using mediation analysis. Randomised treatment makes some of the assumptions of
mediation models plausible, but the mediator—outcome relationship could remain subject to bias. In addition,
mediation is assumed to be a temporally ordered longitudinal process, but estimation in most mediation studies to
date has been cross-sectional and unable to explore this assumption. This study used longitudinal structural equation
modelling of mediator and outcome measurements from the PACE trial of rehabilitative treatments for chronic fatigue
syndrome (ISRCTN 54285094) to address these issues. In particular, autoregressive and simplex models were used to
study measurement error in the mediator, different time lags in the mediator—outcome relationship, unmeasured
confounding of the mediator and outcome, and the assumption of a constant mediator—outcome relationship over
time. Results showed that allowing for measurement error and unmeasured confounding were important.
Contemporaneous rather than lagged mediator—outcome effects were more consistent with the data, possibly due to
the wide spacing of measurements. Assuming a constant mediator—outcome relationship over time increased precision.

Keywords
Mediation, longitudinal mediation models, structural equation models, measurement error, clinical trials, chronic fatigue
syndrome

I Introduction

The primary objective of randomised clinical trials is to answer the question ‘does the treatment work’? However,
researchers generally have other important questions about treatment, such as how treatments work, and the
testing of these theoretical models of treatment mechanisms provides essential knowledge for future therapeutic
development. The case is especially strong when a trial shows no treatment differences, when it is important to
obtain information about why the treatment failed. Trials are expensive and can be demanding for both patients
and clinical staff. Answering questions beyond those of treatment effectiveness can be justified in terms of marginal
cost, burden and ethics, and in many instances may require little more than additional analyses. Such
investigations often rely heavily on mediation analysis. While mediation analysis is in very common use, with
one of the source works by Baron and Kenny having been cited more than 10,000 times, studies applying these
methods rarely discuss the problems of variables measured with error and post-randomisation confounding. This
paper describes how these problems can be addressed in a structural equation modelling framework.
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Figure 1. Treatment effect and mediation path diagrams.
R: randomised treatment; Y: outcome; M: mediator; U: unmeasured confounders.

A mediation model is depicted at the bottom of Figure 1, each path labelled as is traditional for this field. Under
certain no unmeasured confounding assumptions, correct model specification and when the mediator and outcome
are continuous, mediation can be assessed through a series of ordinary least squares regression equations where
Y = outcome, M =mediator and R =randomly assigned treatment':

Yi=oa1 + Bi1Ri + en (1)
M;=or+ BRi+ e 2
Yi=a3+ B3R +yM;+ep (3)

The i subscript refers to the unit (often the individual) receiving treatment. The «, a» and a3 parameters are
intercepts, with &1, €, &3 representing the error terms in the regression equations. By gives the total effect of
treatment on outcome, referred to in the mediation literature as the ¢ path. In the past, it was suggested that
mediation should only be assessed when this total effect was significant, but more recently we and others have
argued that mediation should be assessed whether or not B, is significant.>”” In order for there to be mediation, B,
in equation (2) (a in Figure 1), should be significant; i.e. treatment has an effect on the mediator. In addition, in
equation (3), where y corresponds to b in Figure 1, y should be significant, i.e. the mediator has an effect on the
outcome. The indirect, or mediated, effect is then given by B,y (or the product a times b), known as the product of
coefficients (POC) estimate.® Any remaining direct effect of treatment on the outcome is given by s, which is
referred to as ¢’. In the situation where B, is not significant, studying these relationships could clarify why the
treatment was not effective. The estimated a path shows whether the treatment had any effect on the mediator,
while the estimated b path clarifies whether the mediator is predictive of the outcome. Non-significance of either of
these estimates could partly explain the ineffectiveness of a treatment. Studying the @, b and ¢’ paths together will
also indicate whether the direction of the ¢’ path or direct effect is different from that of the indirect effect. This is
referred to as inconsistent mediation or suppression and can be associated with a non-significant overall effect.’
The POC mediated effect estimate is a simple example of the application of Sewell Wright’s path tracing rules,
which takes the products of the estimates along each legal path between two variables and then sums the products
across all of the paths.”!° Paths cannot be traced: (1) where an arrow is first traced in a forward direction and the
next arrow in a backwards direction, (2) through a variable more than once and (3) through more than one
bidirectional arrow. It is important to note that this tracing and indirect effect calculation assumes linear
relationships amongst the variables in the model and conditional multivariate normality.""'* The models in (2)
and (3) can be fitted simultaneously using the structural equation model (SEM) framework. We focus here on how
the framework allows some progress to be made in relation to two of the likely major sources of bias in mediation
effect estimates, namely measurement error in the mediator and confounding of the mediator-outcome
relationship — the potential for the latter is shown as U in Figure 1.

Classical measurement error in the mediator would result in a bias towards zero in the estimate of the mediator,
so-called attenuation or dilution.'* The single mediator/single outcome model of Figure 1 can account for
measurement error if a good estimate of the reliability of the mediator is known,'* and other regression-based
methods have also recently been applied to address this problem.'>'® However, SEM allows for the simultaneous
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estimation of multiple equations and with repeated or multivariate measurement this allows the incorporation of
measurement error using latent variables.!'*'*!” The latent or ‘true score’ is a hypothetical quantity relating to the
error-free measure of the construct of interest, which is defined in practice from a decomposition of
covariances.'""'? In SEM with repeated measures this commonly follows a classical measurement error model,
in which the variance of a measure is partitioned into a latent ‘true score’ and an additive error which is assumed
conditionally independent.!' ' The error is also assumed to be independent of this true latent mediator score given
exposure and covariates. The effect of a latent mediator variable on the outcome would provide an estimate of the
mediator—outcome relationship disattenuated for measurement error.''

In randomised clinical trials, the mediator is not generally randomised, and as a consequence, the relationship
between the mediator and outcome could be subject to confounding, which we have shown as U in Figure 1.%1%2!
The need to make the assumption of no unmeasured confounding has received much attention in the
literature.>>*> 3% Extending the range of measured and included confounders is recommended, but without the
addition of an instrumental variable, which in practice is rarely available,*'* we cannot add an error covariance
between mediator and outcome to the simple model of Figure 1 as the model will no longer be identified. This is
because there would be six parameters to estimate (three regression parameters, two error variances and an error
covariance) and only five quantities available for estimation (two variances and three covariances). Quantifying
parameter estimate sensitivity to unmeasured confounding provides another option. For example, VanderWeele
describes general direct and indirect effects bias formulae for sensitivity analysis,?” while Imai and colleagues use
the SEM framework as a starting point, and provide methods to quantify the sensitivity of the mediator—outcome
relationship to the correlation between mediator and outcome error terms.>>** We highlight that with repeated
measurement, relaxation of the conditional independence assumption of SEM measurement models is possible and
can allow for correlated measurement errors that some unmeasured confounders may induce between the mediator
and outcome. This has allowed us to take a more model selection-based approach using model fit criteria and
perusal of the effect of different SEM on the mediator—outcome relationship estimates. Fitting different SEM in
this way could be thought of another type of sensitivity analysis. This method has some advantages over other
sensitivity analysis solutions that have been offered,'>'®?>* in that it allows for measurement error and
unmeasured confounding in a single step, and unlike regression based methods, does not require the provision
of sensitivity parameters such as measurement reliability and measurement error variance.'>'® Such parameters
are likely to be difficult to estimate accurately. De Stavola and colleagues extended the sensitivity analyses
described by Imai et al. to the situation where there are confounders of the mediator and outcome that are
affected by the treatment or ‘intermediate confounders’.?*?>2%2%2 We make the assumption for the purposes
of this paper that we have no ‘intermediate confounding’.

The study that motivated this work was the Pacing, Graded Activity, and Cognitive Behaviour Therapy: A
Randomised Evaluation or PACE study of rehabilitative treatments for Chronic Fatigue Syndrome (CFS),*!
which is described in more detail in the Methods section. In an initial study of mediation of the PACE
treatments using the POC method,® the mid-treatment measurement of the mediators and the follow-up
measure of outcomes showed that the effects of cognitive behavioural therapy and graded exercise therapy were
partially mediated through cognitive and behavioural factors.’® However, this initial analysis did not take
advantage of all the available repeated measures data. Mediation is regarded as a causal process, where the
temporal ordering of treatment->mediator->outcome is implied. The repeated measures of mediator and
outcome data in the PACE trial allow for exploration of time lags in mediated effects in addition to
measurement error and unmeasured confounding.

The aim of this work was to address issues affecting estimation and precision of the mediator—outcome
relationship, or b path, in longitudinal mediation models. These issues were: measurement error in the
mediator, time lags of mediator—outcome relationship, unmeasured confounding and the assumption of a
constant mediator—outcome relationship over time. The repeated measures of mediators and outcomes
available in the PACE data were used to address this aim.

2 Methods
2.1 Motivating study

The PACE trial of treatments for CFS randomised individuals to four treatment groups, which were three different
therapies each in addition to the control treatment, and the control treatment alone.?! The therapies were cognitive
behavioural therapy (CBT), graded exercise therapy (GET) and adaptive pacing therapy (APT), with the control
being specialist medical care (SMC) delivered by a doctor with experience of treating CFS. CBT was delivered by
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psychotherapists and focused on examining the link between thoughts, behaviours and symptoms and negotiating
behavioural and cognitive changes with the patient as appropriate. It was based on a fear avoidance model of
CFS.*> GET was delivered by physiotherapists and involved a mutually agreed gradual increase in activity for the
patient. It was based on deconditioning and exercise intolerance models of the illness. APT was delivered by
occupational therapists. It was based on a model of finite and limited amounts of energy and advised
participants to balance activity with rest. The trial found that CBT and GET were superior to APT and SMC
for both physical functioning and fatigue outcomes. Measures of the mediators and outcomes were taken at
baseline, mid-treatment (12 weeks post-randomisation), post-treatment (24 weeks post-randomisation) and
follow-up (52 weeks post-randomisation). The West Midlands Multicentre Research Ethics Committee (MREC
02/7/89) approved the original PACE study, ISRCTN 54285094. This trial provides a unique opportunity to study
longitudinal mediation given that most mediators were measured at all time points, the mediators and outcomes
were measured mid-therapy, which is uncommon, and there were four treatment groups rather than the usual two
treatment group design. The data on the subset of the participants randomised to receive CBT and APT were used
for this analysis shown here. Advantages associated with the four treatment group design and longitudinal
mediation results for all four treatment groups will be reported elsewhere.

An example mediator, fear avoidance beliefs, and one of the two primary trial outcomes, self-rated physical
functioning, were used in this study. Fear avoidance beliefs were measured using the Cognitive Behavioural
Responses Questionnaire,>*** which is a scale ranging from 0 to 24. Physical functioning was measured with
the physical functioning subscale of the SF-36,%>¢ which ranges from 0 to 100. Fear avoidance beliefs were found
to be the strongest mediator of the effect of CBT and GET as compared to APT in the simple single mediator/
outcome POC analysis.>

2.2 Structural equation models

Data were standardised using the mean and standard deviation (SD) of the baseline measure, so the units for the
mediator—outcome estimates and indirect effects were baseline physical functioning SDs. SEMs were used to model
the longitudinal mediation and outcome processes. The only other covariate in the models was treatment group
(CBT =1 versus APT =0). Mplus version 7.2 was used to fit models; full information maximum likelihood was
used, which estimates parameters using information from complete and incomplete records under a missing at
random assumption.>’*® Model fit was assessed using the chi-square test of model fit'? and the root mean square
error of approximation (RMSEA).***° Models were informally compared using the Chi-square statistic, RMSEA
and the Bayesian Information Criterion (BIC).*!

2.3 Longitudinal structural equation models for mediation

There are several longitudinal SEMs that could be applied in a mediation analysis, which have been reviewed by
MacKinnon.? One such model is a first-order autoregressive as shown in Figure 2(a) for a mediator process where
measures have been taken at the time points in the PACE trial. The model assumes that: each variable is a function
only of the measure of that variable at the previous time point (plus other covariates such as treatment group),
there is no measurement error and correlations between the measurements decrease over time.>**** This may or
may not be a plausible assumption for the correlations of the mediator and outcome measurements in PACE and
other clinical trials. When using such models for mediation, an autoregressive structure is fit to both the mediator
and outcome processes separately and then these are linked together by estimates we will refer to as the b paths,® as
shown in Figure 3. Figure 3 also shows labelling of the ¢ and ¢’ paths in the longitudinal models; we have labelled
and will refer to the ¢’ paths as ¢ paths for simplicity. The exposure of interest, here R or in other words the
randomised treatment group, is allowed to affect various measures of both the mediator and outcome over time.

We explored the effects of the following on estimation and precision of the by, b, and b3 paths (Figure 3) within
the autoregressive model structure:

(1) allowing for independent measurement error in the mediators to remove attenuation bias,

(2) allowing different by, b, and b5 path time lags,

(3) allowing for measurement error covariances between the mediator and outcome variables that would be
induced by unmeasured confounding and which could attenuate or inflate the b, b, and b3 path estimates and

(4) assuming equality of the post-randomisation b paths over time, which would be consistent with the view that
no matter how or when the mediator is changed, its relationship with the outcome remains constant.
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Figure 2. Autoregressive and simplex model examples for the mediator process.

Mo: mediator at baseline; M,: mediator at 12 weeks; M,4: mediator at 24 weeks; Ms,: mediator at 52 weeks; FMq: latent true mediator
score at baseline; FM,: latent true mediator score at |12 weeks; FM,4: latent true mediator score at 24 weeks; FMs,: latent true
mediator score at 52 weeks. €|,, £54 and s, are the mediator error variances at 12, 24 and 52 weeks. One method for obtaining
identification of the model in (b) is shown in the figure: all the factor loadings = | and var(e) are set equal.

Figure 3. Autoregressive models with contemporaneous and lagged b paths and simplex models with contemporaneous and lagged
covariances using PACE example time points.

Mo, M2, M4, Msy: mediator measurements taken at baseline, 12 weeks, 24 weeks and 52 weeks post-randomisation. Yo, Y3, Y24, Ys3:
outcome measurements taken at the same time points. FMg: latent true mediator score at baseline, FM ,: latent true mediator score at
12 weeks, FM,4: latent true mediator score at 24 weeks, FMs, = latent true mediator score at 52 weeks, FY, FY 5, FY,4, FY5, =latent
true outcome scores as described for the mediator.

Before reporting results we detail how each of these issues were addressed in the modelling. All the models leave
the randomised treatment group to be uncorrelated with all other variables.

2.4 Measurement error — Autoregressive versus simplex models

Autoregressive models can be extended to allow for measurement error by fitting models with a quasi-simplex
structure as shown in Figure 2(b) for the mediator process. The quasi-simplex model (referred to as simplex
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M,=FM,+¢,

M,=FM,+¢,
M, =FM, +¢&,
Mg, =FMg, + €,

Y, =FY, +¢g,

Y, =FY, +é&
Y, =FY, +&
Y, =FY, +&,

FM,, =a,R+mFM,+&p,
FM,, =a,R+m,FM,, +Ey,
FMg, =a,R+m,FM,, +¢€,

FY, =aR+y,FY,+bFM , + €&,y
FYy =a,R+ y,FY, +b,FMy, + &gy,
FY,, =a;R+ y,FY,, +b,FM, + &y,

Figure 4. Equations describing dual-process simplex model shown in Figure 3(c).
Models were fitted with mediator (M) error variances set equal (em) and outcome (Y) error variances set equal (ey).

hereafter) uses each observed value of the variable as a single indicator for a latent ‘true score’ variable with the
autoregressive relationship for the variable then being between these true scores rather than the observed
scores.*>** In this way, classical measurement error is incorporated.''™'* So if for example we take the baseline
mediator measure, My, it is made up of the true measure, FM,, plus the conditionally independent error, ey, or
My = FMj + ey,. One way to obtain identification of a simplex model with four measurements is to assume
parallel measurement and set the factor loadings all equal to one and the error variances equal over time. This was
the approach taken here. The importance of allowing for measurement error was assessed by using the dual-
process autoregressive and simplex models fitted to both the mediator and outcome processes as shown in Figure 3
and comparing model fit, as well as informally comparing the b path estimates and their standard errors (i.c.
without using statistical tests). Figure 4 shows the equations associated with the model in Figures 3(c), assuming
classical measurement error.'?

2.5 Time lags of b paths - Lagged and contemporaneous

In each case, an autoregressive or simplex model was fitted with either lagged b;, b, and b3 paths between the
mediator at the time point prior to the outcome at the time point immediately following, or contemporaneous by,
b, and b5 paths between mediator and outcome at the same time point. Lagged paths respect the implied temporal
ordering of change in mediator prior to change in outcome that would be expected for a causal process. Models
with contemporaneous paths were also fitted despite their lack of allowance for temporal ordering as these sorts of
relations were plausible, perhaps especially given the considerable lengths of time between measures.
Autoregressive models with these two types of paths are shown in Figures 3(a) and (b). Figures 3(c) and (d)
show dual process simplex models with contemporaneous by, b, and b3 paths (the covariances are discussed in the
next section). Models with lagged and contemporaneous b paths were compared using the BIC and the other
model fit indices and informal comparison of the b path estimates and their standard errors.

2.6 Unmeasured confounding — Lagged and contemporaneous
measurement error covariances

One plausible extension of the simplex model is to allow for covariance between measurement errors in the
mediator and outcome. Some of this covariance could be thought of as encompassing a type of unmeasured
confounding. This could be covariance in errors at the same time point, where factors on a given day are affecting
measurement of both mediator and outcome, or covariance between an earlier measure of the mediator and a later
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measure of the outcome, where there is a more persistent process in play. Such paths can be allowed for when
repeated measurements are available, as in Figure 3(c) and (d), which show examples of models with
contemporaneous and lagged covariances, respectively. Models with different types of covariances were
compared as described in the previous section on time lag of b paths.

2.7 Precision of the b paths in longitudinal mediation models

To potentially increase the precision of the b paths and also in the interest of model parsimony, evidence for setting
the measurement error covariances to be equal over time and for setting the b, b, and b3 paths to be equal over
time was examined. This was done using Wald chi-square tests for model constraints with the degrees of freedom
equal to the number of parameter constraints tested. For the covariances, this was initially a test of equality of four
contemporaneous covariances or two post-baseline lagged covariances. If this test indicated a significant
difference, pairwise tests were done to characterise the differences. For the b paths, the Wald test was
structured as a test of equality of either three contemporaneous post-randomisation paths (b;, b, and b;) or
two lagged post-randomisation paths (b, and b3).

One other assumption was explored. Theoretically there may be no need for treatment to mediator (a3 path)
and treatment to outcome (c3 path) paths beyond the end of treatment. The need for these paths was assessed using
a Wald chi-square test for these two paths being equal to zero.

The assumptions were tested in the models in the order: equal measurement error covariances, need for a3 and
¢3 paths and equality of b paths. If an assumption could be made, it was incorporated in models going forward.

2.8 Calculation of indirect effects in longitudinal mediation models

When we extend mediation models to the longitudinal case there are more indirect or mediated paths than the
single effect in the simple mediation model. In the simplex models we have fitted using the SEM framework, the
mediated effects are straightforward to calculate using the path tracing rules described previously.®'%?! When
assuming multivariate normality and linear relationships between variables,'""'? this entails finding each path
between two variables, multiplying together all parameter estimates on each path and then summing these
products together. Cole and Maxwell point out the key issue of choosing the effects of interest in models with
several measures of outcome over time. They suggest these would most likely be effects on the final outcome time
point, given that data have been gathered to that point for a clinical and/or theoretical reason.?! They describe
‘time-specific indirect effects’, which refer to the effects for a given time point, and ‘overall indirect effects” which
are the effects on the final measurement. Indirect effects are those going through any measure of the mediator, with
direct effects being those that do not pass through any measure of the mediator.

The main indirect/mediated effect of interest in the PACE example here is the overall indirect effect for the 52
week time point. In order to obtain this effect, all of the time-specific indirect effects would be calculated for this
time point and summed together. An example of one of the time-specific effects that would contribute to the
overall indirect effect at 52 weeks in the model in Figure 3(a) would be R->Mj,->M,4->Ms,->Y 5, (calculated as
ay; X my X my X by). An example of a direct or non-mediated effect (does not pass through any measure of the
mediator) would be R->Y,->Y»4->Ys, (calculated as ¢; x y» X y3). So, the total effect of the randomised
treatment R on the final measure of Y, including all indirect and direct effects, would be:

Ys) = (@ R-myMys - m3Moy - by Ms)+ )
(@R -maMyy - byMyy - y3Yo4)+ ©)
(@R-biMyy - y2Y12 - y3Y24)+ (6)
(@R -m3Mpy - b3Msy)+ )
(@2R - baMoy - y3You)+ ®)
(3R - b3Ms2)+ ©)
(1R -2 Y12 - y3Y2a)+ (10)
(2R - y3Yo4)+ an

(c3R) (12)
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Expressions (4) through (9) are time-specific indirect effects, which summed together, constitute the overall
indirect effect (because here we are looking at the final outcome time point). Expressions (10), (11) and (12)
are time-specific direct effects (for the 52 week time point), which summed together, constitute the overall
direct effect. The total effect can be obtained by summing all effects, or by summing the overall indirect and
direct effects. These effects can be easily extended to the simplex models by replacing the observed variables by
their latent true score counterparts. The target parameters are the same in the simplex and autoregressive models,
but the estimates differ; in the case of the simplex model the parameters incorporate a model-based correction
for measurement error. The indirect and direct effects can be assumed to be causal if there is no residual
unmeasured confounding or measurement error, no ‘intermediate confounders’, the linearity and multivariate
normality assumptions are met and the models are otherwise properly specified. Confidence intervals (CI) for the
indirect and direct effects were calculated using 1000 repetitions of the bias-corrected bootstrap.* *” While we
focus here on making these assumptions and taking the SEM approach, causal estimators could be elucidated
using potenti?l outcomes, following on from the multiple causally ordered mediator estimands put forward by
Daniel et al.

2.9 Simulation study - the consequences of ignoring measurement error
and unmeasured confounding

Some model assumptions were addressed using simulations. Data were simulated and analysed using the Mplus
MONTECARLO command. Data were generated under the following three models:

(1) Simplex model without measurement error or unmeasured confounding (error covariances) to approximate
the autoregressive models (as in Figure 6(c) with e=1 x 107'°).

(2) Simplex model allowing for measurement error, no unmeasured confounding (as in Figure 6c¢).

(3) Simplex model allowing for measurement error and unmeasured confounding (as in Figure 6e).

The data generated were then analysed under each of the three types of model in turn. The analyses with
equivalent data generation and analysis models served as controls. The true parameter values were obtained by
fitting the model of interest to the PACE data, saving the parameter estimates and using them as the true estimates
in the MONTECARLO program. The simulation study was based on the two group CBT versus APT
comparison, with datasets of n=>50, 100, 320 (the number in two groups in the PACE trial), 640 (the number
in four groups in the PACE trial) and 1000 simulated, with 1500 repetitions in each case, as recommended.*®
Absolute bias was calculated by subtracting the true parameter values from the average parameter estimate across
repetitions. Mean square error (MSE) and coverage across repetitions were obtained from the Mplus output.

3 Results

The model diagrams are shown in Figures 5 (lagged b paths) and 6 (contemporaneous b paths).

3.1 Measurement error

Model fit indices show that the simplex models fitted better than the comparable autoregressive models (Table 1),
suggesting it was important to allow for measurement error. For example, for the models with contemporaneous b
paths, the simplex model BIC minus the autoregressive model BIC was —24 (comparing Figure 6a and b). For the
models with lagged b paths, accounting for measurement error had the expected disattenuation effect, i.e. the
simplex model b paths were larger in magnitude (in Figure 5b versus Figure 5a and Supplementary Table A).
However for models with contemporaneous b paths, the opposite was true (Figure 6b versus Figure 6a and
Supplementary Table A). The effect of taking measurement error into account was also seen in the magnitude
of paths between the previous measure of the mediator/outcome and the subsequent measure (i.c. the m and y
paths as shown in Figure 3c). These paths were of larger magnitude in the simplex models (for example, compare
Figure 5a and b). Accounting for measurement error led to a small loss in precision (e.g. comparing the b paths
from autoregressive model Figure 6a to simplex model Figure 6b, also see Figure 7). Evidence suggested that the a3
and ¢’; paths to the final outcome time point could be set equal to zero in the simplex models (p > 0.43 for all
covariance/b path lag combinations), so they were set equal going forward.
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Figure 5. Longitudinal mediator—outcome process models with lagged b paths.

Numbers are estimate (standard error). R: randomised treatment group; Mo, M|, M4, Ms,: mediator measurements taken at baseline,
12 weeks, 24 weeks and 52 weeks post-randomisation; Yo, Y3, Y24, Ys55: outcome measurements taken at the same time points; FMo,
FM )2, FMa4, FMs,: true mediator scores at baseline, 12 weeks, 24 weeks, 52 weeks post-randomisation; FYg, FY |5, FYo4, FYs): true
outcome scores at the same time points. Paths between observed and latent variables for both the mediator and the outcome process
all have factor loadings = I.

3.2 Time lags of b paths

The BIC suggested that models with contemporaneous b paths fitted better than models with lagged paths (Table
1). For example, the BIC for the simplex model with contemporaneous b paths minus the BIC for the model with
lagged b paths was —31 (comparing Figures 5c and 6¢). The contemporaneous b paths were generally larger in
magnitude than the lagged b paths (Figure 7 and Supplementary Table A).

3.3 Unmeasured confounding

In both the cases of the lagged and contemporaneous error covariances, the overall tests for equality of covariances
indicated that not all covariances could be assumed equal (p < 0.004 for lagged and p < 0.030 for contemporaneous).
For the lagged covariances, there was no evidence that the 12-24 week and 24-52 week covariances were different
(p > 0.77), so these were set equal. For the contemporaneous covariances, the general pattern was that the baseline
and 24 week covariances were of a smaller magnitude than those at 12 and 52 (data not shown). When considered
from the point of view of unmeasured confounding there would seem little basis for a hypothesis of a constant
covariance. However, when considered from a measurement model perspective, a parsimonious model would
suggest uniform covariances as plausible. The RMSEA and AIC were very similar in models with and without
these covariances set equal, with the BIC being smaller in the models with equal covariances. For example, the model
shown in Figure 6(e) with equal contemporaneous covariances had a BIC difference of 7 when compared to a model
where the covariances were freed (data not shown). The four covariances were therefore set to be equal in models
with contemporaneous covariances going forward. The covariances were generally statistically significant in models
where they were set equal (see Figures 5d and e and 6d and e).
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Figure 6. Longitudinal mediator—outcome process models with contemporaneous b paths.

Numbers are estimate (standard error). R: randomised treatment group; Mo, M2, M4, Ms,: mediator measurements taken at baseline,
12 weeks, 24 weeks and 52 weeks post-randomisation; Yo, Y5, Y24, Ys55: outcome measurements taken at the same time points; FMo,
FM|,, FM,4, FMs,: true mediator scores at baseline, 12 weeks, 24 weeks, 52 weeks post-randomisation; FYq, FY 5, FYo4, FY5y: true
outcome scores at the same time points. Paths between observed and latent variables for both the mediator and the outcome process

all have factor loadings = I.

The inclusion of contemporaneous error covariances had greater impact than the inclusion of lagged error
covariances. For example, in the three models with lagged » paths in Figure 5(c) to (e), the BICs for the models
with no and with lagged error covariances were very similar (Table 1, Figure 5c compared to Figure 5d), however,
the differences in BIC for the model with contemporaneous error covariances and the model with none was —64
(Table 1, Figure Se compared to Figure Sc). There was a similar pattern for models with contemporaneous b paths.
The only models with RMSEA values consistent with good model fit were those with contemporaneous error
covariances (Table 1). In models with contemporaneous b paths, the inclusion of contemporaneous covariances
decreased the magnitude of the b path somewhat (comparing the models in Figure 6¢c and e, see also Figure 7).

3.4 Precision of the b paths

Tests for equality of b paths over time showed that these could be set equal both for lagged paths (for equality of 5, and
bs paths, p=10.92 for model with lagged covariances, p = 0.84 for contemporaneous covariances) and contemporaneous
paths (for equality of by, b, and b5 paths, p=0.13 for model with lagged covariances, p=0.12 for contemporaneous
covariances). Making this assumption of equal » paths over time gave a large precision gain; for example, comparing
Figure 6(b) to (c), the smallest standard error in Figure 6(b) with free b paths was 0.057 and in Figure 6(c) with a
common b path was 0.030, giving a 47% relative increase in precision. Assuming equal error covariances over time also
increased the precision of the b path, but by only a small amount in most cases (data not shown).

3.5 Type of covariances versus lag of b paths

In the simplex model it appeared that the type of measurement error covariances was more important than the type of
b paths. For example, in terms of model fit there was little to choose between the two models having contemporaneous
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Table I. Comparison of fit statistics across autoregressive and simplex models.

General type Figure # Covariance type b path type Model x? RMSEA (90% ClI) AIC BIC
Models without parameter restrictions®
Autoregressive 5A N L 187.943 0.162 6633.276 6753.863
df =20 (0.141, 0.184)
p <0.001 p <0.001
Simplex 5B N L 115.696 0.130 6565.030 6693.153
df=18 (0.108, 0.153)
p<0.001 p <0.001
Autoregressive 6A N C 123.004 0.127 6568.337 6688.924
df =20 (0.106, 0.149)
p <0.001 p<0.001
Simplex 6B N C 87.706 0.110 6537.039 6665.162
df=18 (0.088, 0.134)
p <0.001 p<0.001

Models with parameter restrictions®

Simplex 5C N L 117.023 0.120 6560.356 6677.174
df =21 (0.099, 0.141)
p <0.001 p <0.001

Simplex 6C N C 91916 0.100 6533.249 6646.299
df =22 (0.079, 0.121)
p <0.001 p <0.001

Simplex 5D L L 106.322 0.120 6553.655 6678.010
df=19 (0.098, 0.143)
p <0.001 p<0.001

Simplex 5E C L 47.051 0.065 6492.384 6612.970
df =20 (0.041, 0.089)
p=20.001 p=0.14

Simplex 6D L C 82.252 0.099 6527.585 6648.171
df =20 (0.077, 0.121)
p <0.001 p <0.001

Simplex 6E C C 41.383 0.055 6484.717 6601.534
df =21 (0.030, 0.080)
p=0.005 p=0.34

x* chi-square model fit statistic; RMSEA: root mean square error of approximation; Cl: confidence interval; AIC: Akaike’s Information Criterion; BIC:
Bayesian Information Criterion; N: no measurement error covariances; C: contemporaneous; L: lagged; df: degrees of freedom.

?Parameter restrictions are treatment to mediator at 52 weeks and treatment to outcome at 52 weeks =0 and mediator to outcome b paths equal
over time. Error variances are set equal for the mediator measures and the outcome measures in the simplex models (all models except 5A and 6A).

covariances but different types of b paths in Figures 5(e) and 6(e) (Table 1). On the other hand, when comparing
models with the same type of b paths but contemporaneous versus lagged covariances (for example, Figure Se versus
Figure 5d), it is clear that the models with contemporaneous covariances fitted the data much better (Table 1).

3.6 Best fitting model

In summary, the most plausible model by RMSEA, AIC and BIC was the simplex with contemporaneous b paths
and error covariances (Table 1 and Figure 6¢). As this model had no treatment to 52 week mediator or outcome
paths it assumed no direct effect of treatment on physical functioning at 52 weeks, and that any residual effects of
treatment had persisted from the post-treatment time point (24 weeks).

3.7 Indirect effects in longitudinal simplex mediation models

Figure 8 shows the total indirect/mediated effects for each time point, with more detail of the estimates for the
various time specific indirect, direct and total and overall effects in Tables B, C and D in the supplementary
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Figure 7. b paths (95% CI) for autoregressive and simplex models. (a) Lagged b paths; (b) Contemporaneous b paths.

Cov: covariance type; Rest: restrictions; AUTO: autoregressive model; SIM: simplex model; N: no error covariances; L: lagged; C:
contemporaneous; NONE: treatment to 52 week paths present, mediation b paths not set equal; REST: treatment to 52 week
paths =0, mediation b paths set equal; w: weeks post-randomisation; Common: common b path for all post-randomisation time
points; ES: estimate; Cl: confidence interval.

material. Figure 8 shows the smaller 5 paths in the lagged models led to smaller indirect effects as would be
expected. The figure also shows that using path analysis rules to calculate mediated effects from the simplex models
gives effects that accumulate over time.

The total effect of treatment group on physical functioning at 52 weeks in the best fitting model with
contemporaneous b paths and error covariances (Figure 6e) was 0.69 physical functioning SD units (95% CI
0.44, 0.95) (Supplementary Table D). The time specific indirect/mediated effect for this time point indicated that
CBT increased physical functioning through the fear avoidance mediator by 0.28 physical functioning SD units
(95% bias-corrected bootstrap CI 0.15, 0.44) (Figure 8 and Supplementary Table D). This suggested that
approximately 41% of the effect of treatment on physical functioning was mediated through fear avoidance
when all repeated measures of both mediator and outcome were modelled and measurement error and
unmeasured confounding were taken into account.
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Figure 8. Overall indirect/mediated effects (95% bias-corrected bootstrap Cl) for simplex models.

Cov: covariance type; L: lagged; C: contemporaneous; w: weeks post-randomisation; ES: estimate; Cl: 95% bias-corrected bootstrap
confidence interval.

The common b path assumption that led to greater precision in the » paths also led to greater precision in the
indirect effects. In the model shown in Figure 6(e), the standard error (SE) for the 52 week indirect effect with this
assumption was 0.068, giving a CI of 0.15-0.44 (Figure 8). If the common b path assumption was relaxed in this
model, the SE was 0.073 and CI 0.18-0.47.

3.8 Consequences of ighoring measurement error and unmeasured confounding

Figures 9 and 10 show the absolute bias, MSE and coverage results from the simulation study. Each simulation took
25 seconds or less to run using the Mplus program. Figure 9 shows effects of ignoring measurement error when it is
present on the ay, a», b, m,, ms, y, and y3 paths and Figure 10 shows the effect of ignoring measurement error and
confounding when they are present on the same paths (the numeric data are available upon request). Models
converged across most repetitions in all conditions, with some exceptions when n =50 (Supplementary Table E).
There were problems with the latent variable covariance matrix and the residual covariance matrix for simulations
where data were generated and analysed with measurement error, which were alleviated in the case of larger sample
sizes. There were also problems with the residual covariance matrix for simulations where data were generated
without and analysed allowing for measurement error that did not dissipate with increasing sample size. There
was little evidence of effects on bias, MSE and coverage when allowing for measurement error and unmeasured
confounding in the case where these were not present (Supplementary Figure A and Figure 9 middle row). However,
there were issues with the statistical quantities for most of the paths of interest in the models when measurement error
was present but not accounted for (Figures 9 and 10, bottom rows) and to a lesser extent when only unmeasured
confounding was ignored (Figure 10, middle row). The effects were somewhat worse when both measurement error
and confounding were present and ignored (Figure 10, bottom row) as compared to measurement error alone (Figure
9, bottom row). Effects tended to be worse for the paths connecting the mediator and outcome measures through time,
i.e. the m,, m3, y, and y3 paths. This is important because these paths contribute to longitudinal mediated effects (see
Section 2.8 Calculation of indirect effects in longitudinal mediation models).

Except for the MSE, increasing sample size did not generally alleviate problems with the estimates, and where
bias did not improve, coverage worsened. It was of note that the b path suffered from very poor coverage both
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Figure 9. Simulation results — measurement error present.

All data generated using simplex models and 1500 repetitions for each sample size, allowing for measurement error (ME), but not for
measurement error covariances representing unmeasured confounding (Conf). MSE: mean square error; Control: generated and
analysed allowing for ME only when only ME present: Allow for ME & Conf: analysed allowing for both ME and Conf when only ME
present; Allow for neither: analysed without allowing for ME or Conf when only ME present.
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Figure 10. Simulation results — measurement error and confounding present.

All data generated using simplex models and 1500 repetitions for each sample size allowing for measurement error (ME) and for
measurement error covariances representing unmeasured confounding (Conf). MSE: mean square error; Control: generated and
analysed with ME and Conf when both ME & Conf present; Allow for ME only: analyse allowing ME only when both ME & Conf
present; Allow for neither: analysed without allowing for ME or Conf when both ME & Conf present.
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when measurement error and confounding were ignored and also to a lesser extent when just confounding was
ignored.

4 Discussion

The aim of this paper was to examine issues affecting longitudinal mediator—outcome relationships, or b paths, in a
trial of complex treatments for CFS. The paper focused specifically on measurement error in the mediator, time
lags, unmeasured confounding and the assumption of a constant mediator—outcome relationship over time. It was
clearly important to account for measurement error and unmeasured confounding, otherwise parameter estimates
and mediated effects were biased, which could have led to inferences about estimates being flawed. While lagged
mediator—outcome paths would be more consistent with a causal effect, models with contemporaneous mediator—
outcome b paths fitted better. Assuming a constant mediator—outcome b path over time was plausible and brought
a large gain in precision. Our findings here using longitudinal measures supported our earlier finding using a single
measure of both mediator and outcome that fear avoidance mediated the effect of treatment on physical
functioning.*?

The superiority of the simplex over the autoregressive models and the results of the simulation study clearly
showed it was important to account for measurement error in the mediator, perhaps more so than accounting
for unmeasured confounding. Models with lagged mediator—outcome b paths followed the classical
measurement error paradigm where error dampens effects and so taking account of it increased the
magnitude of these paths. On the other hand, the contemporaneous mediator-outcome b paths were smaller
in magnitude when measurement error was taken into account, which is not what we would expect for classical
measurement error. Complex effects of accounting for measurement error in multi-equation models have been
noted previously.'! Measurement error was accounted for in this study by using the simplex models, but it is also
important to try to do more to address this issue through improved measurement of mediators and outcomes in
the first place.

Accounting for measurement error led to a small loss in precision. Instrumental variables analysis (IV) is
another method for coping with confounding and measurement error in predictor variables. It has proven
difficult to apply IV methods to mediation analysis so far, mainly due to the absence of strong instruments,
leading to imprecise mediator—outcome estimates.*'* In our experience, the use of these repeated measures
measurement error models as an alternative to IV has led to much smaller losses in precision.

Lagged mediator—outcome relationships, which would be more consistent with the temporal ordering of a
causal process such as mediation, were not supported in the PACE data. This could have been due to the
apparent almost simultaneous change in mediator and outcome in these data.’’ However, it could also be
because the first measurement of the mediator was taken too late to capture mediator change prior to
change in the outcome. The mid-treatment measurements were taken after participants had received
approximately seven sessions of therapy, which was an important time point from the point of view of the
trial, but may have been late in the process of mediator change. For example, evidence of gains in the first three
sessions of brief psychosocial therapy interventions has been demonstrated for depression.* Studies looking at
the trajectories of mediator and outcome change in more detail by taking earlier and more frequent measures of
the variables, perhaps even at every session of therapy, could clarify optimal timing and number of
measurements.

The potential for unmeasured confounding of the mediator—outcome relationship was allowed for in models
through covariances between mediator and outcome errors. The best fitting models were those with
contemporaneous error covariances, suggesting there were unmeasured confounders of the mediator and
outcome variables at the same time point that needed to be taken into account. Lagged covariances would
have been more consistent with unmeasured confounding in a typical ‘simple’ mediator model with one
measure of the mediator taken earlier acting on a single later measure of the outcome. There was less
evidence for this sort of unmeasured confounding in the PACE data, although this may not be the case in
other situations. Allowing for unmeasured confounding is desirable given the attention this issue has been
given in the literature, with the approach described here providing one option. In practice there is no single
best approach and, for example, the approach here could be extended to incorporate existing sensitivity
analysis methods®* >* to quantify the level of confounding that would alter these longitudinal model
conclusions.

The assumption of equal mediator—outcome b paths over time led to greater precision in these estimates. The
idea that no matter how or when the mediator is changed it will have the same effect on the outcome is a
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potentially strong and theoretically appealing assumption. This assumption aligns well with a description of
mediation used in programme theory and intervention evaluation. These fields have described mediation
analysis as evaluating both an ‘action theory’ — the « path in Figure 1 where an intervention seeks to change a
mediating variable, and a ‘conceptual theory’ — the b path in Figure 1, which is the causal relationship between the
mediator and outcome.>® Describing the b path as the ‘conceptual theory’ fits with thinking of this as a stable
relationship existing in nature that can be manipulated by the ‘action theory’ or intervention. This implies that the
‘conceptual theory’ relationship exists in the absence of the intervention and should exist at different points in time.
The support of both action and conceptual theories provides evidence for mediation. From a statistical point of
view, this assumption led to a large increase in mediator—outcome effect precision, which in turn led to more
precise mediated effects. When plausible, making this assumption could be important given the often low power to
detect mediated effects.”’

Many of this study’s strengths lay in the use of high quality data stemming from a rigorously conducted trial, as
well as the availability of multiple measurements of mediators and outcomes allowing for the fitting of more
complex models. It was only possible to allow for unmeasured confounding in these models because of the
availability of multiple measurements. Using a single measurement each of mediator and outcome as is
generally done in mediation analysis does not allow for fitting of a model with mediator—outcome covariance,
as such a model is not identified. It is also more difficult to account for measurement error in these single measure
models, although it can be done if the reliability of the measure is known. At least three measurements and
assumptions such as those applied here are needed for identification of all parameters in single-process simplex
models. Clinical trials often take only baseline, post-treatment and follow-up measurements, but the mid-treatment
measures taken in PACE made it possible to allow for more paths and to explore assumptions in models. Also, given
the apparent simultaneous early change in mediators and outcomes in PACE? it may be fruitful to collect more
measurements earlier in the process to clarify mediator and outcome trajectories. Having additional repeated
measures of mediator and outcome and/or different measurements of the mediator and outcome at each time
point could allow for the exploration of further model assumptions. Furthermore, other strengths of this study
derive from the methods used. Much of the causal mediation literature has focused on the issue of unmeasured
confounding, however, both the simulation results in this study and previous findings'* suggest that in the area of
mental health measurement error may be of even greater concern than unmeasured confounding. The approach
taken here simultaneously addressed both measurement error and some sources of unmeasured confounding induced
by correlated measurement error, while avoiding the need to estimate complex sensitivity parameters. As such, this
approach provides for another type of sensitivity analysis. In addition, it is likely much easier to gain information
about the reliability of measurement, such as we have done here using repeated measures, than it is in most situations
to identify and measure all important confounders. This being said, we do not see the approach taken here and the
sensitivity analyses described in the literature'>'®**2* as mutually exclusive. For example, the approaches using
SEM to study sensitivity to unmeasured confounding® >* could be incorporated into the sorts of measurement
models that we have fitted here.

Although there has been some criticism of the use of SEMs to model causal processes, these models have made
a large contribution to the modern study of mediation and have been shown here and by others to be a very useful
tool for this purpose.®” This study showed that modelling of repeated mediator and outcome measurements using
SEMs provided flexibility and allowed for exploration of some important assumptions.

There are some limitations of the study. One is that we did not adjust for other potential baseline confounders
of the mediator and outcome besides the baseline measures of mediator and outcome. We included a larger list of
measured confounders in the initial PACE mediation analysis and so are confident that the relationship between
fear avoidance and physical function is robust to confounding.’® We would generally advise the inclusion of
measured confounders, which requires consideration at the trial design stage. However, the baseline measures
of the mediator and outcome are likely the most important confounders'* and may also act as proxies for other
confounders that have not been included. The longitudinal models used here included baseline and other measures
of the mediator and outcome over time, which are also likely to be important confounders. Given this and the
results of the initial mediation analysis,** it seems unlikely the inclusion of other variables would have had a large
effect on the mediation estimates. In another analysis (not shown), the variable with the largest effect on the
relationship between the fear avoidance mediator and physical functioning outcome was baseline fear avoidance,
which was included in the models presented here, with baseline work and social adjustment having the second
largest effect.* The latter variable changed the mediated effect by less than 0.06 units on the standardised scale.
This suggests it is unlikely that including work and social adjustment and other weaker confounders would negate
the mediation effects found here. It is possible that measurement error covariances could be less important when
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more measured confounders are included, and it would be important to explore this. A further consideration was
the focus of this study on a subset of PACE data. However, these and other longitudinal models have been used to
study the full PACE trial data set, which will be described in another paper. Finally, we have assumed that missing
data are missing at random, an assumption that may not have been met. However, the autoregressive and simplex
models likely made this assumption more plausible as earlier measures of the mediator and outcome were
predictors of later measures in the models. Future research could evaluate the effect of violation of this
assumption on estimates of mediated effects.

The simplex models offer advantages over the autoregressive models, including acknowledging measurement
error. However, simplex models make some restrictive assumptions, such as assuming effects between different
true scores follow a first order autoregressive structure.*** These may or may not have been plausible
assumptions for the PACE data. In addition, the accumulation of mediated effects over time implied by
these models may not have best reflected the nature of changes over time in PACE, where at least on
average there was greater change in the mediator and outcome variables up to 12 weeks with a plateau
afterwards.®’ These issues may have been reflected in the model fit indices, which suggested that the best
model shown here could still be improved upon. We will explore other model types allowing for different
assumptions in another paper.

In conclusion, longitudinal SEMs can account for important sources of potential bias in mediation analysis,
such as measurement error in the mediator and unmeasured confounding. Optimal application of these methods
requires the availability of repeated measures, necessitating consideration at the study design stage. Assuming that
no matter how or when the mediator is changed it has the same effect on the outcome was reasonable and gained
efficiency. Later phase clinical trials of treatments should aim to address mediation as well as effectiveness
hypotheses, keeping in mind these analyses would be enhanced by the inclusion of more and earlier
measurements of mediators and outcomes.
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