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Hepatitis C Virus Treatment for Prevention Among
People Who Inject Drugs: Modeling Treatment
Scale-Up in the Age of Direct-Acting Antivirals

Natasha K. Martin,1,2 Peter Vickerman,2 Jason Grebely,3 Margaret Hellard,4 Sharon J. Hutchinson,5,6

Viviane D. Lima,7 Graham R. Foster,8 John F. Dillon,9 David J. Goldberg,5

Gregory J. Dore,3 and Matthew Hickman1

Substantial reductions in hepatitis C virus (HCV) prevalence among people who inject
drugs (PWID) cannot be achieved by harm reduction interventions such as needle
exchange and opiate substitution therapy (OST) alone. Current HCV treatment is ardu-
ous and uptake is low, but new highly effective and tolerable interferon-free direct-act-
ing antiviral (DAA) treatments could facilitate increased uptake. We projected the
potential impact of DAA treatments on PWID HCV prevalence in three settings. A
dynamic HCV transmission model was parameterized to three chronic HCV prevalence
settings: Edinburgh, UK (25%); Melbourne, Australia (50%); and Vancouver, Canada
(65%). Using realistic scenarios of future DAAs (90% sustained viral response, 12 weeks
duration, available 2015), we projected the treatment rates required to reduce chronic
HCV prevalence by half or three-quarters within 15 years. Current HCV treatment rates
may have a minimal impact on prevalence in Melbourne and Vancouver (<2% relative
reductions) but could reduce prevalence by 26% in 15 years in Edinburgh. Prevalence
could halve within 15 years with treatment scale-up to 15, 40, or 76 per 1,000 PWID
annually in Edinburgh, Melbourne, or Vancouver, respectively (2-, 13-, and 15-fold
increases, respectively). Scale-up to 22, 54, or 98 per 1,000 PWID annually could
reduce prevalence by three-quarters within 15 years. Less impact occurs with delayed
scale-up, higher baseline prevalence, or shorter average injecting duration. Results are
insensitive to risk heterogeneity or restricting treatment to PWID on OST. At existing
HCV drug costs, halving chronic prevalence would require annual treatment budgets of
US $3.2 million in Edinburgh and approximately $50 million in Melbourne and Van-
couver. Conclusion: Interferon-free DAAs could enable increased HCV treatment uptake
among PWID, which could have a major preventative impact. However, treatment costs
may limit scale-up, and should be addressed. (HEPATOLOGY 2013;58:1598-1609)

See Editorial on Page 1523

T
he global burden of hepatitis C virus (HCV)

infection continues to rise.1,2 The core of the
HCV epidemic in the developed world occurs

among people who inject drugs (PWID), who

comprise the majority of new (80%) and existing
(60%) cases.1 Globally, HCV seroprevalence (>60%

in most countries)3 and incidence (5%-40% annu-

ally)4,5 remains high among PWID. Prevention strat-

egies, such as needle and syringe programs (NSP) and

opiate substitution therapy (OST), can reduce HCV

Abbreviations: CrI, credible interval; DAA, direct-acting antiviral; HCV, hepatitis c virus; HIV, human immunodeficiency virus; NSP, needle and syringe pro-
grams; OST, opiate substitution therapy; PEG-IFN, pegylated interferon; PWID, people who inject drugs; RBV, ribavirin; SVR, sustained viral response.
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transmission and have maintained low levels of human

immunodeficiency virus (HIV) infection in many set-

tings, but they are insufficient to achieve substantial

reductions in HCV prevalence.6-9 This is partly

because high HCV prevalence and long injecting dura-

tion among PWID in many settings combine such

that the intervention coverage required for major prev-

alence reductions is unobtainable and unsustainable.9

Given that there is no HCV vaccine, alternative strat-

egies for HCV prevention are urgently needed.
In HIV, the demonstration that antiretroviral therapy

given to HIV-infected individuals can prevent secondary
transmission has generated considerable excitement10

and suggests that we may have reached a tipping point
for preventing HIV transmission.11 In contrast to HIV,
HCV is curable and therapy is finite. Therefore, HCV
treatment as prevention may provide even greater op-
portunity for preventing onward HCV transmission and
directly reducing HCV chronic prevalence.

Mathematical modeling studies have suggested
HCV treatment for PWID could be an effective12-16

and cost-effective17 intervention to prevent HCV
transmission. However, these studies only considered
treatment with pegylated interferon (PEG-IFN) and
ribavirin (RBV). The feasibility of expanding this
treatment regimen as a strategy for treatment as pre-
vention is limited, given the poor tolerability and lim-
ited uptake of PEG-IFN1RBV therapy, particularly
among PWID.18,19 However, therapeutic options for
HCV are evolving rapidly. Preliminary data from IFN-
free direct-acting antiviral (DAA) therapy phase 2 trials

indicates that in the near future, regimens will be
available with markedly reduced toxicity, high efficacy
(>90% cure), improved dosing schedules (once or
twice-daily), and shortened treatment duration (6-24
weeks).20-22 Such advances indicate that a HCV treat-
ment as prevention strategy among PWID may be fea-
sible in the very near future.

We project the potential impact of DAA therapy on
HCV prevalence in three international settings with
varied prevalence.

Subjects and Methods

Mathematical Model
A deterministic HCV transmission and treatment

model among PWID12 was extended to incorporate
additional biological and behavioral complexity (details
in Fig. 1 and Supporting Information). The modeled
population was stratified by infection state (uninfected,
acute HCV, chronic HCV, on antiviral treatment, treat-
ment failure), transmission risk (low/high), and current
OST status (on/off ). A fixed number (U(t)) of chroni-
cally infected PWID initiate treatment annually (or all
chronic infections if fewer than U(t) are chronically
infected), for a treatment duration of 1/x(t). It was con-
servatively assumed treatment failures (those who do not
attain sustained viral response [SVR]) could not be
retreated due to potential resistance and reluctance to
undergo further therapy. Furthermore, at baseline, few
IFN1RBV treatment failures exist due to historically
low treatment rates for PWID. In the base-case, PWID
who are low-/high-risk and on/off OST are eligible for
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treatment; restricted treatment for only low-risk or those
on OST was explored in the sensitivity analysis.

Because the model is dynamic, the risk of infection
or reinfection for a PWID is proportional to HCV
prevalence, which changes over time. We do not
assume any risk difference after treatment; reinfection
risk is equal to primary infection risk. The forces of
infection for each susceptible state were defined by the

relative risk in that state, such that infectivity and sus-
ceptibility were altered by a factor C, P, or C 3 P if
the PWID was on OST, high risk, or both, respec-
tively. This was assumed to occur through a corre-
sponding change in the relative frequency of
transmission events with other PWID. The chance of
a PWID having a transmission event with any PWID
from another risk state and infectious status was pro-
portional to the relative frequency of transmission
events for PWID in that state. Due to rapid reductions
of HCV RNA levels during treatment,23 we assumed
the proportion on treatment who eventually achieve
SVR (a(t)) are not infectious, whereas the remainder
(1-a(t)) remain infectious. Some evidence indicates
that acute infection may be associated with 2-log
higher viral loads than during chronic infection24;
however no studies have shown increased transmissibil-
ity during this stage. Therefore, we assumed equal
infectivity for the base-case, but considered a five-fold
higher transmissibility during acute HCV in the sensi-
tivity analysis (assuming a similar relationship between
viral load and transmissibility as for HIV25).

Modeling Treatment Scale-Up and Regimes
Treatment rates, durations, and SVR were varied

over time to model scale-up and new treatments (see
Supporting Information). No treatment prior to 2002
was modeled, because clinical guidance recommended
against treatment of PWID. Due to the lack of reliable
treatment data before 2007, a linear scale-up to current
baseline treatment rates during 2002-2007 was mod-
eled, with baseline rates constant during 2007-2012.
Prior to 2012, we assumed all treatments used PEG-
IFN1RBV. We assumed a continuation of baseline
treatment rates from 2012-2015, during which time tri-
ple therapy with PEG-IFN1RBV and telaprevir/boce-
previr will be available,22 although due to potential
contraindications/drug interactions among PWID, we
assumed only half of genotype 1 patients would be eligi-
ble for triple therapy. IFN-free DAAs were assumed to
become available in 2015, followed by a 2-year linear
scale-up in treatment (2015-2017) to scaled-up treat-
ment rates (implemented from 2017-2027).

Multivariate Uncertainty Analyses
To consider the effect of uncertainty in the underly-

ing parameters, we performed a multivariate probabil-
istic uncertainty analysis where 1,000 parameter sets
were randomly sampled from setting specific parameter
distributions in Table 1. For each of the 1,000 param-
eter sets, the model was calibrated to the sampled
HCV chronic prevalence in 2012 and proportion on

Fig. 1. Model schematic showing HCV disease transmission and
treatment states (A) and behavioral states (B). (A) Compartments for
uninfected PWID (Xj,k), acutely infected PWID (Aj,k), chronically infected
PWID (Cj,k), PWID on antiviral treatment (Tj,k), and PWID treatment fail-
ures (Fj,k). (B) The population was stratified by risk (low/high, j 5 0 or 1,
respectively), and OST (off/on, k 5 0 or 1, respectively). New PWID enter
the model at a constant rate (h) as uninfected, off OST, and either low or
high risk. Uninfected PWID can become acutely infected with HCV, where
a proportion (d) of individuals spontaneously clear their acute infection
after a duration of time (1/w), and return to the uninfected compart-
ment. Those who do not spontaneously clear the acute infection (1-d)
progress to chronic infection, where they are eligible for antiviral treat-
ment. Because PWID are unlikely to be diagnosed during acute infection,
it was assumed that they are not treated during the acute stage. If
treated, a proportion [a(t)] achieve SVR and return to the uninfected
compartment. Those who do not attain SVR [1-a(t)] move to the treat-
ment failure compartment, where they cannot be retreated. PWID exit all
compartments due to permanent cessation of drug use (l1) or death
due to drug or non–drug-related causes (l2). The base-case analysis
assumed PWID transition between high/low risk stages, as well as on/
off OST. Additional details are provided in the Supporting Information.
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OST/high risk by varying p, b, and g. The model was
then used to project the prevalence reductions in each set-
ting over 15 years (2012-2027) with no treatment scale-

up, or scale-up to rates of 10, 20, 40, or 80 per 1,000
PWID annually. Additionally, the required scaled-up
treatment rates to achieve prevalence reductions of 1=4,
1=2, or 3=4 within 15 years were projected. For all projec-
tions, 95% credibility intervals (CrI) were generated from
the multivariate uncertainty sampling. A linear regression
analysis of covariance was performed on the 15-year
impact with scale-up to 10 per 1,000 PWID annually,
and the proportion of the sum-of-squares contributed by
each parameter was calculated to estimate the importance
of individual parameters to the overall uncertainty.

Sensitivity Analysis
To evaluate the impact of individual model assump-

tions, univariate sensitivity analyses were performed on
projected prevalence reductions at 15 years with a treat-
ment rate of 10 per 1,000 PWID annually using the
point parameter values in Table 1. The analysis deter-
mined the impact of: delayed scale-up initiation (start-
ing 2019 versus 2015); longer scale-up duration (6
versus 2 years); lower/higher DAA SVR (80%/100%
versus 90%); increased infectivity during acute infection
(five-fold infectiousness compared with chronic infec-
tion, equal in base-case); restricting treatment to only
those on OST or low risk, shorter/longer average dura-
tion of injecting career (6/20 years versus 11 years);
shorter/longer duration on OST; no turnover from high
to low risk; greater differences between high/low risk
(six times the relative risk between high/low risk versus
two times); and changes in mixing behavior between
high/low risk (fully assortative versus proportional).

Model Parameterization
The model was parameterized to three international

settings with a range of HCV chronic prevalence
among PWID: Edinburgh, UK; Melbourne, Australia;
and Vancouver, Canada. Model parameters and sources
are given in Table 1 and the Supporting Information.

HCV antibody prevalence estimates for Edinburgh,
Melbourne, and Vancouver were 34%,26 66%,19,27

and 88%,18,28 respectively. Because 26% of individuals
spontaneously clear acute infection,29 it was assumed
74% of HCV antibody-positive individuals were
chronically infected, resulting in HCV chronic preva-
lence estimates of 25% in Edinburgh, 50% in Mel-
bourne, and 65% in Vancouver.

Death and Cessation Rates. PWID death rates
were similar in Edinburgh (1% per year30,31) and Mel-
bourne (0.83% per year32) but higher in Vancouver
(3% per year33). Site-specific unbiased estimates of the
average duration of injecting until cessation are
unavailable and difficult to obtain. We assumed an

Fig. 2. Chronic prevalence over time in (A) Edinburgh, (B) Mel-
bourne, and (C) Vancouver. Simulations show no scale-up from base-
line, or scale-up to 10, 20, 40, or 80 per 1,000 PWID treated
annually. We assume no treatment prior to 2002, a linear scale-up to
baseline treatment rates during 2002-2007, and baseline treatment
rates during 2007-2012. A linear scale-up from baseline to scaled-up
rate during 2015-2017 was modeled. HCV prevalence data points
shown for comparison with 95% confidence intervals.
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average injecting duration of 11 years,34 but varied
this from 6 years up to 20 or 27 years in the uncer-
tainty/sensitivity analyses based on seroprevalence sur-
vey data.19,28,35,36

Baseline Treatment Rates. Current annual num-
bers treated and treatment rates were estimated as: 32
PWID annually (8 per 1,000 PWID) in Edinburgh,
75 PWID annually (3 per 1,000 PWID) in Mel-
bourne, and 68 PWID annually (5 per 1,000 PWID)
in Vancouver.

SVR Rates. SVR rates for PEG-IFN1RBV were
obtained from a meta-analysis of treatment among
PWID (37% [95% confidence interval, 26%-48%] for
genotype 1; 67% [95% confidence interval, 56%-78%]
for genotypes 2/3).37 Telaprevir/boceprevir with PEG-
IFN1RBV increases genotype 1 SVR rates by 70% over
PEG-IFN1RBV,38,39 so a 63% SVR rate was modeled.
It was assumed IFN-free DAAs will achieve 90% SVR
for all genotypes with a duration of 12 weeks.20-22

Results

Base-Case. Without any treatment scale-up, low
chronic HCV prevalence in Edinburgh (25%) com-
bined with switching to new DAAs and moderate
baseline levels of treatment (8 per 1,000 PWID annu-
ally) could lead to a 26% (95% CrI, 13%-45%) rela-
tive reduction in prevalence within 15 years. However,
in Melbourne and Vancouver, higher chronic HCV

prevalence (50% and 65%, respectively) combined
with low current levels of treatment (<5 per 1,000
PWID annually) produce little impact (<2%) on
prevalence over 15 years. Figure 2 shows HCV chronic
prevalence reductions over time, and Fig. 3 shows rela-
tive prevalence reductions at year 15 (10 years after
full scale-up).

Minimal and achievable levels of treatment scale-up
result in substantial impact in Edinburgh and Mel-
bourne. Scaling-up treatment to 20 per 1,000 PWID
annually could result in relative prevalence reductions
within 15 years of 69% (95% CrI, 54%-83%) and
23% (95% CrI, 17%-32%) in Edinburgh and Mel-
bourne, respectively, but only 9% (95% CrI, 7%-
15%) in Vancouver. Higher treatment rates (>40 per
1,000 PWID annually) are required to reduce preva-
lence by over >20% in Vancouver within 15 years. A
scale-up to treating 80 per 1,000 PWID annually
could reduce HCV chronic prevalence to below 5% in
Edinburgh and Melbourne, and to 30% in Vancouver,
within 15 years.

Figure 4 shows the levels of treatment necessary to
reduce prevalence by 1=4, 1=2, and 3=4 within 15 years
(10 years after full scale-up) in all settings. Halving
current prevalence could be achieved through scaled-
up treatment rates of 15 (95% CrI, 12-19), 40%
(95% CrI, 30-50), and 76 (95% CrI, 56-102) per
1,000 PWID annually in Edinburgh, Melbourne, and
Vancouver, respectively. This would require doubling
treatment rates in Edinburgh (currently 32 PWID

Fig. 3. Relative prevalence reductions at 15 years (by 2027) with
no treatment scale-up (8 per 1,000 PWID annually in Edinburgh, 3
per 1,000 PWID annually in Melbourne, and 5 per 1,000 PWID annu-
ally in Vancouver) and four treatment rate scenarios (10, 20, 40, and
80 per 1,000 PWID annually). Bars indicate the mean relative preva-
lence reductions, with whiskers representing the 95% CrI for the
simulations.

Fig. 4. Annual scaled-up treatment rate required to reduce preva-
lence by 1=4, 1=2, or 3=4 in Edinburgh, Melbourne, and Vancouver within
15 years (by 2027). Bars (and numbers) indicate the mean value,
with whiskers representing the 95% CrI.
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[8 per 1,000 PWID] annually). However, in Mel-
bourne, it would require a 13-fold scale-up (currently
75 PWID [3 per 1,000 PWID] annually), and in Van-
couver would require a 15-fold scale-up (currently 68
PWID [5 per 1,000 PWID] annually). Reducing prev-
alence by 3=4 would require a scale-up of three-fold in
Edinburgh (to 22 [95% CrI, 18-27] per 1,000 PWID
annually), 18-fold in Melbourne (to 54 [95% CrI, 43-
67] per 1,000 PWID annually), and 20-fold in Van-
couver (to 98 [95% CrI, 74-127] per 1,000 PWID
annually). This would result in HCV chronic preva-
lences of <10% in Edinburgh, <15% in Melbourne,
and <20% in Vancouver, respectively.

Uncertainty/Sensitivity Analysis. Analysis of co-
variance indicated that uncertainty in average injecting
duration contributed to the majority of variation
(59%-78%) in impact at 15 years with a treatment
scale-up to 10 per 1,000 PWID annually. The remain-
ing variation was due to uncertainty in baseline treat-
ment rate in Edinburgh, baseline prevalence in
Melbourne, and baseline prevalence and death rate in
Vancouver.

One-way sensitivity analyses showed baseline preva-
lence, injecting duration, and time to scale-up initia-
tion had the most effect on model projections at 15
years with treatment scale-up to 10 per 1,000 PWID
annually (Fig. 5, shown for Melbourne). Across the
sites, if baseline chronic HCV prevalences were 5%
lower, the impact of treatment scale-up increased by

24%-37%, whereas if baseline prevalences were 5%
higher, impact decreased by 20%-27%. If the average
injecting career was 20 rather than 11 years, then
potential impact increased by 16%-53% (with greater
impact at higher chronic prevalence), whereas if aver-
age injecting duration was shorter at 6 years, impact
was reduced by 29%-43%. Delaying the initiation of
scale-up by 4 years (2019 versus 2015) resulted in
7%-18% less impact. Decreasing/increasing IFN-free
DAA SVR rates (to 80%/100% versus 90%) corre-
spondingly decreased/increased impact by 12% to
15%. If acute infection was associated with a five-fold
increase in transmissibility compared with chronic
infection (equal for base-case), impact was reduced by
11%-16%.

Changing other assumptions regarding treatment
duration or population heterogeneity (e.g., average
time in OST/high risk, proportion high-risk, relative
transmission risk when in OST or high-risk, mixing
assumptions between low and high-risk, restricting
treatment to only those on OST or low-risk) had
<10% impact on projections for a scaled-up treatment
rate of 10/1,000 PWID annually. However, at higher
treatment rates (e.g., 80 per 1,000 PWID for Mel-
bourne), sustaining treatment at this level would
require treating the non-OST population or expanding
OST coverage.

Budgetary Impact. Previous cost-effectiveness anal-
yses estimated the drug-only cost of triple therapy with

Fig. 5. Results from the one-way sensitivity analyses; percent change from the base-case scenario of the predicted relative prevalence reduc-
tion at 15 years in Melbourne with scaled-up treatment rate of 10 per 1,000 PWID annually (from a baseline rate of 3 per 1,000 PWID annu-
ally). For the base-case, all chronically infected PWID (high/low risk or on/off OST) were eligible for treatment. Mo., months.
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protease inhibitors in the United States at approximately
$50,000 USD per course.40 The cost of future IFN-free
DAA regimens is unknown, but if they cost $50,000
($25,000-$75,000), then the scaled-up treatment rates
necessary to halve prevalence within 15 years (15, 40,
and 76 per 1,000 PWID annually in Edinburgh, Mel-
bourne, and Vancouver, respectively) would require an
annual HCV treatment budget for PWID of $3.2 mil-
lion ($1.6-$4.7 million) in Edinburgh, $50.0 million
($25-$75 million) in Melbourne, and $51.3 million
($25.7-$77.0 million) in Vancouver.

Discussion

This modeling study explored the feasibility of
HCV treatment as prevention in the era of IFN-free
DAA-based HCV therapy. Current levels of HCV
treatment among PWID are projected to only achieve
modest or negligible reductions in HCV chronic prev-
alence among PWID. However, scaling up treatment
could lead to substantial reductions in HCV preva-
lence. In Edinburgh, a doubling of treatment rates (to
15 per 1,000 PWID annually) could halve prevalence;
a three-fold increase could reduce chronic HCV preva-
lence to <7% within 15 years. Greater scale-up will be
required in Melbourne and Vancouver, where current
treatment rates are lower and chronic prevalence
higher, but prevalence could be halved in 15 years
with treatment rates of 40 per 1,000 PWID (a 13-fold
increase from 3 per 1,000 PWID annually) in Mel-
bourne and 76 per 1,000 PWID (a 15-fold increase
from 5 per 1,000 PWID annually) in Vancouver. A
20-fold increase from baseline treatment rates could
reduce chronic prevalence to <15% and <20% in
Melbourne and Vancouver, respectively, in 15 years.

Such scale-up, though considerable in Melbourne
and Vancouver, has been achieved and exceeded for
HIV treatment in both resource rich and poor set-
tings,41 and even amongst PWID in some settings.42,43

In addition, programs designed to address barriers to
care among PWID have achieved yearly HCV treat-
ment rates of 40-80 per 1,000 PWID with PEG-
IFN1RBV in Australia, Canada, Europe, and the
United States.44-47 Moreover, scale-up of IFN-free
DAA in theory will be easier to implement and have
greater impact than current treatment regimes. IFN-
free DAA regimens will require shorter duration and
less complex monitoring22 which in combination with
higher SVR and reduced toxicity will markedly acceler-
ate the current expansion of HCV treatment into the
community, including integration with drug treatment,
such as OST.

Limitations. These projections are based on a the-
oretical mathematical model, with several limitations.
First, there is uncertainty in a number of parameters.
These projections are predicated on assumptions of the
effectiveness of IFN-free DAAs (based on phase 2
studies as evidence from large-scale evaluations are not
yet available). Outcomes among PWID are unknown,
but systematic reviews report similar response rates
among PWID and non-PWID for IFN1RBV regi-
mens.48,49 Additionally, active PWID are generally
younger (a meta-analysis48 found a lower median age
(38 years) for studies with HCV treatment among
PWID compared with registration trials for PEG-
IFN1RBV (43-45 years)) and have less advanced liver
disease than the broader HCV population. We do not
explicitly model HIV/HCV coinfection, as two of our
settings have marginal (<1%) coinfection prevalences.
However, in settings where a greater proportion of
PWID are HIV/HCV-coinfected, lower SVR rates
may be achieved. Sensitivity analyses revealed that a
lower SVR of 80% would still achieve substantial
impact, although slightly higher treatment rates would
be required to achieve specific reductions in HCV
prevalence.

Furthermore, better information on average inject-
ing duration could substantially reduce uncertainty in
the projections. The average age (and injecting dura-
tion) of people in drug treatment and serological sur-
veys in the three sites suggest injecting durations
between 11 and 27 years,19,28,35 but unbiased esti-
mates are unavailable. An 11-year average injecting du-
ration was assumed,34 but if it were longer, then
greater impact would be achieved. Also, HCV risk and
treatment uptake will vary between PWID subgroups,
relating to injecting patterns or other factors such as
homelessness. However, we considered scenarios where
HCV treatment is delivered only in OST or when
PWID are at low risk and show there is little impact
on the outcome given movement between low- and
high-risk states over an injecting career.

Second, complexities involved in treatment scale-up
are not modeled. Treatment scale-up will likely be
delivered in the community alongside OST, but addi-
tional interventions may be required to increase the
case-finding among PWID, including health care
workforce training and interventions addressing stigma
surrounding testing and treatment. Importantly, in our
model, a fixed number of PWID are treated annually;
therefore, as prevalence falls, an increasing proportion
of infected PWID are treated. This will have implica-
tions for diagnosis and treatment retention, particularly
among those PWID who are more difficult to reach.
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However, treatment recruitment may become easier as
more PWID are treated.

Third, the model assumes a stable injecting popula-
tion size that, although true in the settings examined,
may not be applicable to all settings. For example, data
from Amsterdam50 suggest a decline in the number of
injectors. In these settings, as PWID prevalence falls, we
would expect HCV prevalence to increase as the cohort
ages, and detailed models of these settings would require
age-specific information on prevalence of PWID and
injecting duration to determine intervention impact.

Finally, the model incorporates current levels of
OST, but it did not consider the impact of scale-up or
targeting of interventions such as OST and NSP, which
may contribute additionally toward reducing HCV
transmission.9 As our aim was to explore the scale-up
of antiviral treatment, we did not stratify the popula-
tion by drug-type or explore OST eligibility criteria.
Additionally, we do not explicitly model NSP, but
account for existing levels of coverage in modeling the
epidemic in each setting.

Implications and Comparison With Other
Studies. This is the first analysis to explore the poten-
tial of new and future direct-acting HCV antiviral ther-
apy as prevention in a range of global prevalence
settings, and supports previous modeling studies indi-
cating that HCV antiviral treatment could reduce trans-
mission and HCV prevalence among PWID.12-16 In
contrast, mathematical models have shown that scale-
up of OST/NSP could have considerable impact in
areas with historically low levels of OST/NSP; however,
in many developed countries where coverage is already
high (such as our sites), the scale-up required (e.g.,
80% PWID on OST or high coverage NSP for 15
years) would be unachievable and unsustainable, and
would achieve less impact than modest levels of HCV
treatment.9

Overall, the projections suggest IFN-free DAA
HCV treatment, as prevention is a feasible option for
reducing the future burden of HCV-related disease,
which is of critical public health importance given the
lack of alternative effective HCV prevention strategies.
HCV treatment is cost-effective, and in most settings
treatment of PWID is highly cost-effective,17 primarily
because of the potential prevention benefit and reduc-
tion in secondary transmission.

A question still remains, though, as to whether
scale-up is affordable—especially if the drugs are mar-
keted at similar cost to existing therapy. Expansion will
be costly, and so any future scale-up of HCV treat-
ment for prevention will require drug-price reform,
especially for lower and middle income settings, but

possibly also for developed countries that require high
treatment rates.
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