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Abstract

In [8] we proved an orbifold Cheeger-Gromov compactness theorem for com-
plete 4d Ricci shrinkers with a lower bound for the entropy, an upper bound
for the Euler characterisic, and a lower bound for the gradient of the potential
at large distances. In this note, we show that the last two assumptions in fact
can be removed. The key ingredient is a recent estimate of Cheeger-Naber [5].

1 Introduction

The goal of this short note is to improve our compactness theorem for 4d Ricci
shrinkers from [8], by removing two of the three assumptions. Recall that a Ricci
shrinker is a Riemannian manifold (M, g) (smooth, complete, connected) together
with a smooth function f : M → R such that

Rcg + Hessg f = 1
2g. (1.1)

Ricci shrinkers arise as singularity models for Hamilton’s Ricci flow [7], and have
received a lot of attention, especially in the last 10 years; see [2] for a recent survey.
As explained in [8], we can always find a natural basepoint p ∈M where the potential
f attains its minimum, and we can always normalize f such that∫

M
(4π)−n/2e−fdVg = 1. (1.2)

After imposing (1.2) every Ricci shrinker has a well defined Perelman entropy [9],

µ(g) = W(g, f) =

∫
M

(
|∇f |2g +Rg + f − n

)
(4π)−n/2e−fdVg > −∞. (1.3)

Let us now recall our compactness theorem for 4d Ricci shrinkers [8, Thm 1.2]. We
proved that any sequence (Mi, gi, fi, pi) of 4d Ricci shrinkers (with normalization
and basepoint pi as above) with entropy uniformly bounded below,

µ(gi) ≥ µ > −∞, (1.4)

Euler-characterisic uniformly bounded above,

χ(Mi) ≤ χ̄ <∞, (1.5)

1



and gradient of the potential uniformly bounded below at large distances,

|∇fi|(x) ≥ c > 0 if d(x, pi) ≥ c−1, (1.6)

has a subsequence that converges to an orbifold Ricci shrinker in the pointed orbifold
Cheeger-Gromov sense. This means in particular that the convergence is smooth
away from the orbifold singularities, which are isolated singularities modelled on
Rn/Γ for some finite subgroup Γ ⊂ O(n), see [8, Sec. 3] for the precise definitions.

The purpose of this short note is to improve our compactness theorem by removing
the assumptions (1.5) and (1.6). In other words, we prove the following theorem.

Theorem 1.1 (Compactness theorem for 4d Ricci shrinkers)
Let (Mi, gi, fi) be a sequence of 4d Ricci shrinkers with entropy uniformly bounded
below, i.e. µ(gi) ≥ µ > −∞. Then a subsequence of (Mi, gi, fi, pi) converges to an
orbifold Ricci shrinker in the pointed orbifold Cheeger-Gromov sense.

Theorem 1.1 gives orbifold compactness of the space of (shrinking) singularity models
for 4d Ricci flow, assuming only a lower bound for the entropy.

Remark. Simple examples, like cylinders over 3-dimensional lense spaces, show that
the entropy assumption in Theorem 1.1 is indeed necessary. Due to Perelman’s
monotonicity formula [9], the entropy assumption is of course perfectly natural.

Related interesting compactness theorems for Ricci solitons have been proved by
Cao-Sesum [3], Weber [11], X. Zhang [12], Z. Zhang [14], Tian-Zhang [10] and Chen-
Wang [6]. One key feature that distinguishes Theorem 1.1 from these compactness
theorems, in addition to removing some other assumptions, is that it applies in the
setting of complete (possibly noncompact) manifolds. This is in fact crucial, since
most interesting singularity models for the Ricci flow are noncompact.

The main ingredient in our proof is a recent estimate of Cheeger-Naber [5], that gives
L2-control for the Riemann tensor of noncollapsed 4d metrics with bounded Ricci
curvature. Though not directly applicable in our context, we can in fact combine
this L2-estimate with our previous compactness theorem [8, Thm. 1.1] by making
use of a nice observation of Z. Zhang [14] as well as some further uniform estimates
from [8].

2 The proof

Our previous proof of the 4d compactness theorem was based on a localized Gauss-
Bonnet argument on 4d Ricci shrinkers [8, Sec. 4], which – under the assumptions
(1.5) and (1.6) – gave us the necessary local L2 Riemann bounds to apply our
general n-dimensional compactness theorem [8, Thm 1.1]. We will now replace this
localized Gauss-Bonnet argument by a new L2-estimate, that works even without the
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assumptions (1.5) and (1.6).1 Namely, we will prove that for any 4d Ricci shrinker
(M, g, f) (with normalization and basepoint p as before) we have the L2 curvature
bound ∫

Br(p)
|Rm|2g dVg ≤ C(r) (2.1)

for some universal function C(r) = Cµ(r) <∞ depending only on a lower bound µ
for the entropy µ(g).

We start by recalling three lemmas from [8], see also Cao-Zhou [4] and Perelman [9].
First, by [8, Lem. 2.1] the potential f satisfies the estimate

1
4

(
d(x, p)− 20

)2
+
≤ f(x)− µ(g) ≤ 1

4

(
d(x, p) + 20

)2
(2.2)

for all x ∈M , where a+ := max{0, a}. Second, by [8, Lem. 2.2] we have the volume
growth estimate

VolBr(p) ≤ ωr4, (2.3)

for some universal constant ω <∞. Third, by [8, Lem. 2.3] there exists a function
κ(r) = κµ(r) > 0 such that we have the lower volume bound

VolBδ(x) ≥ κ(r)δ4 (2.4)

for every ball Bδ(x) ⊂ Br(p), 0 < δ ≤ 1.

We also recall that the Bianchi identity forces the quantity R + |∇f |2 − f to be
constant, in fact

R+ |∇f |2 − f = −µ(g), (2.5)

see [8, (2.16)]. In particular, by (2.2) we have the upper bound

R+ |∇f |2 ≤ 1
4

(
d(x, p) + 20

)2
. (2.6)

Since Ricci shrinkers always have nonnegative scalar curvature [13],

R ≥ 0, (2.7)

the estimate (2.6) shows that both R and |∇f |2 grow at most quadratically. Finally,
we recall that the entropy is automatically bounded from above,

µ(g) ≤ µ, (2.8)

where µ = µµ <∞ (and most likely µ ≤ 0), see [8, p. 1097].

1The estimate of Cheeger-Naber [5, Thm. 1.5.] – which is the key ingredient – is of course
based on a local Gauss-Bonnet argument. However, the estimate is strong enough that it even gives
topological control, which ultimately works as substitute for the assumptions (1.5) and (1.6).
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Now, as in Z. Zhang [14] and Tian-Zhang [10] we consider the conformally rescaled
metric

g̃ = e−fg. (2.9)

By the growth estimate (2.2) the metrics are locally uniformly equivalent, i.e.

λ−1(r)g ≤ g̃ ≤ λ(r)g on Br(p), (2.10)

for some λ(r) = λµ(r) <∞. By the formula for the conformal transformation of the
Ricci tensor, see e.g. [1], we have

R̃c = Rc + Hess f + 1
2∇f ⊗∇f + 1

2(4f − |∇f |2)g

= 1
2g + 1

2∇f ⊗∇f + 1
2(2−R− |∇f |2)g, (2.11)

where we also used the soliton equation (1.1) and its trace. Combining this with
(2.6), (2.7) and (2.10) we obtain the estimate

|R̃c|g̃ ≤ K(r) on Br(p), (2.12)

for some K(r) = Kµ(r) <∞.

We will now cover Br/2(p) with suitable balls Bg̃

δ̄
(qi) with center points qi ∈ B3r/4(p).

Here, the notation Bg̃ indicates that the ball is defined with respect to the metric
g̃. We remark that one has to select the covering somewhat carefully, since in the
noncompact case the manifold (M, g̃) is always incomplete. However, if we chose δ̄
small enough to ensure that the balls Bg̃

2δ̄
(qi) are contained in Br(p) then we are

fine. More precisely, using (2.3), (2.4) and (2.10) we see that there exist constants
N(r) = Nµ(r) < ∞, v(r) = vµ(r) > 0 and δ̄(r) = δ̄µ(r) ∈ (0, 1] with the following
properties. We can find N(r) points qi ∈ B3r/4(p) such that

Bg̃

2δ̄(r)
(qi) ⊆ Br(p), (2.13)

Volg̃(Bg̃

δ̄(r)
(qi)) ≥ v(r), (2.14)

and
Br/2(p) ⊆

⋃
i

Bg̃

δ̄(r)
(qi). (2.15)

By (2.12), (2.13) and (2.14) we can now apply the fundamental estimate of Cheeger-
Naber [5, Thm. 1.5], which says that∫

Bg̃
δ̄(r)

(qi)
|R̃m|2g̃ dVg̃ ≤ C1(r), (2.16)

for some constant C1(r) = C1(K(r), v(r), δ̄(r)) < ∞. Together with (2.15) this
implies ∫

Br/2(p)
|R̃m|2g̃ dVg̃ ≤ N(r)C1(r). (2.17)
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Since r was arbitrary, we can rewrite this as∫
Br(p)

|R̃m|2g̃ dVg̃ ≤ C2(r), (2.18)

where C2(r) = N(2r)C1(2r).

The final step is to use the L2 bounds (2.18) for g̃ to derive the L2 bounds (2.1)
for the original metric g. To this end, we first recall the formula for the conformal
transformation of the Riemannn tensor, see e.g. [1],

Rm = ef R̃m− g ∧ (1
2 Hess f + 1

4∇f ⊗∇f −
1
8 |∇f |

2)g. (2.19)

Note that by (2.10) it does not matter, up to a factor depending on r, whether we
compute the norms and volumes with respect to g or g̃. Similarly, by (2.2) the factor
ef can be estimated by a constant depending only on r. Thus, the estimate (2.18)
implies the estimate (2.1), provided that we can estimate the L2 norms of the terms
with the Hessian and the gradient of f . By (2.3), (2.6) and (2.7) we have∫

Br(p)
|∇f |2dV ≤ ω(r + 20)6. (2.20)

By the soliton equation (1.1) we can replace Hess f by 1
2g−Rc. The L2-norm of the

metric is a lower order term and can be easily estimated thanks to (2.3). For the
leading order term, by [8, Lem. 4.1] we have the weighted L2 estimate∫

M
|Rc|2e−fdV ≤ C(µ), (2.21)

for some constant C(µ) <∞. Using again (2.2) this implies unweighted L2 bounds
for Rc on Br(p). Putting everything together, we conclude that∫

Br(p)
|Rm|2g dVg ≤ C(r) (2.22)

for some universal function C(r) = Cµ(r) <∞.

Having established the L2-bounds (2.22), we can now apply our general compactness
theorem [8, Thm 1.1]. This proves Theorem 1.1.
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