

Supporting Information

In-Situ Exfoliation of Graphene in Epoxy Resins:

a Facile Strategy to Efficient and Large Scale Graphene Nanocomposites

Yan Li¹, Han Zhang^{1,2}, Maria Crespo¹, Harshit Porwal^{1,2}, Olivier Picot^{1,2}, Giovanni Santagiuliana¹, Zhaohui Huang³, Ettore Barbieri^{1,2}, Nicola M. Pugno^{4,5,1}, Ton Peijs^{1,2*}, Emiliano Bilotti^{1,2*}

¹ School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS, London, UK

² Nanoforce Technology Ltd., Mile End Road, E1 4NS London, UK

³ School of Materials Science and Technology, China University of Geosciences , 100083, P. R. China

⁴ Laboratory of Bio-inspired & Graphene Nanomechanics, Department of Civil,

Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy

⁵ Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, TN, Italy

*Email: e.bilotti@qmul.ac.uk (Emiliano Bilotti), t.peijs@qmul.ac.uk (Ton Peijs)

Content

Modelling of the TRL calendaring process

Figure S1. Schematic of nip region between two counter rotating rolls in the TRM Process. **Figure S2.** Pressure profile in TRM for Protocol I, II for Cycle I, Gap II. The pressure assumes a maximum for $x=x^*$ and $h=h^*$. It is noted that the ratio h^*/h_0 is found to vary within a narrow range of values (1.5-1.6) for all processing conditions evaluated and modelled.

Rheology of epoxy resin

Figure S3. Viscosity & shear stress of pure epoxy as function of shear rate, at 25, 35, 40° C.
Figure S4. (a) Viscosity of the epoxy and hardener as a function of temperature T. (b) Viscosity of epoxy resin filled with various loadings of graphite as a function of temperature.

Surface tension

Figure S5. Schematic of a liquid drop showing the quantities according to Young's equation.

Morphology of particles

Figure S6. AFM image of GNP particle obtained from Procotol III (35 °C).

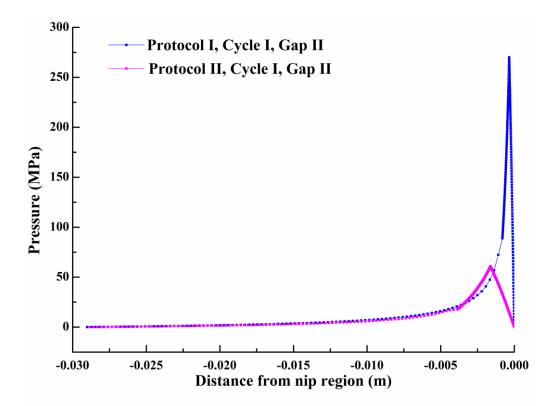
Review of graphitic nanoparticles and their composites properties

Table S1. A summary of the sizes of GNPs reported so far in scientific literature.

Table S2. A summary of the sizes of GNPs reported so far in commercial market.

Summary of processing parameters

Table S3. Processing parameters used in Three Roll Mill processing.

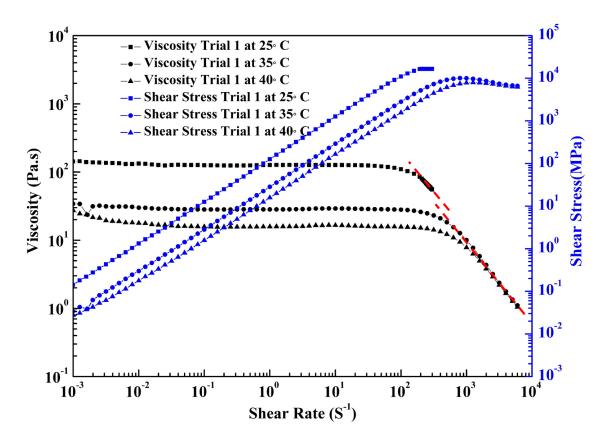
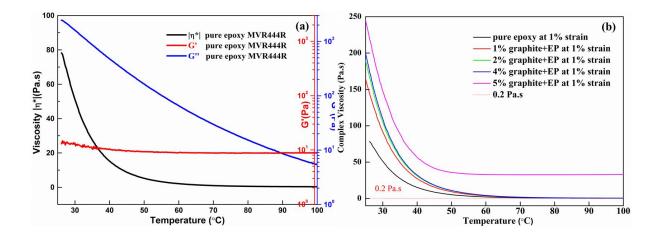

Table S4. Experimental trials of different processing parameters of TRM.

Reference

Modelling of the TRM calendaring process

Figure S1. Schematic of nip region between two counter rotating rolls in the TRM Process.

Figure S2. Pressure profile in TRM for Protocol I and II, for Cycle I, Gap II. The pressure assumes a maximum for $x=x^*$ and $h=h^*$. It is noted that the ratio h^*/h_0 is found to vary within a narrow range of values (1.5-1.6) for all processing conditions evaluated and modelled.

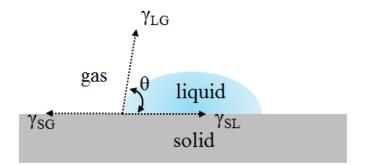

Figure S3. Viscosity and shear stress of pure epoxy as function of shear rate, at 25, 35, 40° C.

Figure S4. (a) Viscosity of the epoxy and hardener as a function of temperature. (b) Viscosity of epoxy resin filled with various loadings of graphite as a function of temperature.

Surface tension

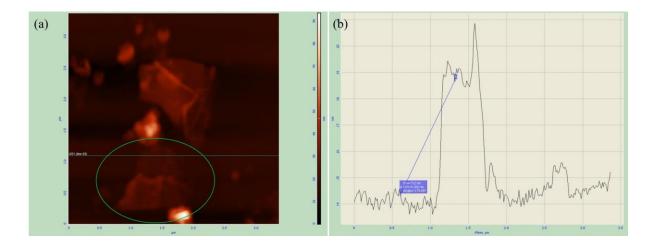
Drop shape analyser was used to measure the interfacial tension between the liquid epoxy and glass substrate. Surface energies were calculated from contact angle data of sessile drops. Base line and sessile droplet fitting were included for comparison. The most complicated, but also the theoretically most exact method for calculating the contact angle is the Young-Laplace equation ^{1, 2}. A given system of solid, liquid, and gas at a given temperature and pressure has a unique equilibrium contact angle. Indices S, L and G stand for "solid", "liquid" and "gas"; the symbols γ_{SG} and γ_{LG} describe the surface tension of two phases (solid-liquid and liquid-gas, respectively); and θ stands for the contact angle, corresponding to the angle between vectors γ_{LG} and γ_{SL} .

Figure S5. Schematic of a liquid drop showing the quantities according to the Young's equation.

The shape of a liquid/gas interface is determined by the Young-Laplace equation, with the contact angle playing the role of a boundary condition via Young's equation:

$$\gamma_{SG} = \gamma_{SL} + \cos\theta * \gamma_{LG} \tag{1}$$

During the experiment, we use the same glass substrate to keep the same surface roughness, and try to avoid potential contamination, or influence of possibly varying ambient conditions. In this method the complete drop contour is evaluated; the contour fitting includes a correction which takes into account the fact that it is not just interfacial effects which produce the drop shape, but that the drop is also distorted by the weight of the liquid it contains. After the successful fitting of the Young-Laplace Equation the contact angle is determined as the slope of the contour line at the three phases contact point. However, the calculation is only reliable for contact angles above 30°. Moreover, this model assumes a symmetric drop shape.


In order to make experiments easier, we choose a solvent, ethylene glycol, as a reference, whose surface tension is 47.70 N/m at 20 °C, with the boiling point at 197.3 °C (difficult to evaporate at 20 °C during the experiment procedure). Several μl ethylene glycol can maintain a good axisymmetric droplet profile on the glass substrate. With the measured volume, contact angle, the interfacial tension between the droplet and glass substrate can be calculated. According to Equation (1), the equilibrium condition can be described as follows,

$$\gamma_{Glass} = \gamma_{IFT1(Glass,Ethylene glycol)} + \cos \theta_1 * \gamma_{Ethylene glycol}$$
(2)

$$\gamma_{Glass} = \gamma_{IFT2(Glass, Epoxy)} + \cos \theta_2 * \gamma_{Epoxy}$$
(3)

Where, γ_{Glass} , $\gamma_{Ethylene\ glycol}$, γ_{Epoxy} represent the surface tension of the glass substrate, ethylene glycol and epoxy resin MVR444R, respectively. $\gamma_{IFT1(Glass,Ethylene\ glycol)}$ and $\gamma_{IFT2(Glass,Epoxy)}$ respectively, represent the interfacial tension of the ethylene glycol droplet and epoxy resin MVR444R with the glass substrate. θ_1 and θ_2 are the contact angles of ethylene glycol and epoxy resin with glass substrate under equilibrium condition. The surface tension of epoxy resin MVR444R is calculated as follows,

$$\gamma_{Epoxy} = \frac{(\gamma_{IFT1} - \gamma_{IFT2}) + \cos\theta_1 * \gamma_{Ethylene \ glycol}}{\cos\theta_2}, \qquad \gamma_{Epoxy} = \frac{(\gamma_{IFT1} - \gamma_{IFT2}) + 47.7 * \cos\theta_1}{\cos\theta_2}$$
(4)

Morphology of particle

Figure S6. (a) Semicontact mode AFM image of GNP particle obtained from Procotol III (35 °C). (b) Thickness measurement of the obtained GNP particle obtained from Procotol III (35 °C) (thickness t = 4.326 nm).

Review of graphitic nanoparticles and their composites properties

Matrix/Substrate	Carbon source	After Exfoliation Particle	Fabrication of the	Ref
		Dimension	Filler	
NMP	Graphite flakes	6-12 layers, ~ 1.0-3.5 μm	Bath /Probe	3
			sonication	
NMP	Graphite powder	63 mg/mL, 3 layers, ~1.0* 0.5	Bath sonication/Probe	4
		μm	sonication	
90 wt.%	Graphite	Carbon nanoribbons (10 nm* (60	Ionic liquid-assisted	5
water/[BMIm]Cl		± 20) nm)	electrochemical	
electrolyte		In water-rich ILs, the size of the	exfoliation	
		carbon nanoparticles is larger (8-		
		10 nm);		
		In pure ILs, carbon nanoparticles		
		are 2-4 nm.		
Ni film on a SiO ₂ /Si	Methane -CH ₄	1 to \sim 12 graphene layers.	CVD on	6
substrate			polycrystalline Ni	
			films	
DMF	Expanded	Yield of 4–5 wt.%, thickness of	Ultra sonication and	7
	graphite (EG)	graphene layer, decreases from	centrifugation	
		6–7 nm to 0.75–1.07 nm		
DMF	Highly oriented	Lateral size ~ several hundred	Bath sonication and	8
	pyrolytic graphite	nm, thickness: several nm, low	centrifugation	
	(HOPG)	yield		
potassium	HOPG	Lateral size ~ 10 µm, 100%	Chemical exfoliation	8
permanganate, sodium		monolayer, thickness 0.96 nm	by Hummers method	
nitrate, and sulfuric				
acid				
H ₂ SO ₄ solution	HOPG	Lateral size ~ 1.0-2.0 µm,	Electrochemical	8
		thickness 2.1 nm	expansion and	
			exfoliation	
Ionic liquid and water	Graphite Rod	Several hundred nm, thickness:	Electrochemical	9
as electrolyte,		1.1 nm	exfoliation	
LiClO ₄ and proprylene	Graphite powder	Thickness 1.5 nm, lateral size 1-	Electrochemical	10
carbonate as	or HOPG	2 μm	exfoliation	
electrolyte, -15 \pm 5 V			assisted by >10 h	

Table S1. A summary of the sizes of GNPs reported so far in scientific literature.

			sonication	
0.48 g/L H_2SO_4 applying DC bias	Natural graphite flakes or HOPG	Thickness 1.5 nm, lateral size several µm	Electrochemical exfoliation	11
from -10 V to +10 V				
0.1 MSDS aqueous solution, 12 h from -1	Graphite Rod	Thickness 1.0 nm, lateral size ~ several hundred nm	Electrochemical exfoliation	12
V to 2 V.				
1 M HClO ₄ solution, 20 min from -1.6 V to 2 V	Laminated graphite foil	Lateral size several µm	Electrochemical exfoliation	13
Potassium	Natural graphite	Thickness 1.2 nm, lateral size ~	Chemical exfoliation	14
permanganate, sodium nitrate, and sulfuric acid	nakes	several hundred µm	by Hummers method	
Potassium permanganate, sodium nitrate, and sulfuric acid	Natural graphite particles or HOPG	Thickness 0.93 nm, lateral size 10-20 μm	Chemical exfoliation by Hummers method	15
Potassium permanganate, sodium nitrate, and sulfuric acid	Acid intercalation graphite flakes	Thickness 0.94 nm, lateral size 11-14 μm	Chemical exfoliation by Hummers method, microwave assisted expansion	16
NMP	Graphite powder	Thickness 3 layers, lateral size : several hundred nm, 4.0 wt.% monolayer	Bath sonication.	17
2 wt.% sodium cholate aqueous solution	Graphite flakes	thickness 1-2 nm, lateral size 100 nm	Horn sonication	18
Water with 2 wt.% surfactant Sodium dodecylbenzene sulfonate (SDBS)	Graphite powder	>40% of these flakes had <5 layers, ~3% of flakes consisting of monolayers, thickness 1 nm, lateral size 250 nm	Bath sonication	19
Organic solvents such as N-methyl- pyrrolidone	Graphite	1 wt.% monolayer	Bath sonication	20
Water/acetone mixtures	Graphite	0.21 mg/ ml ~50% of the nanosheets < 1 nm thick	Mild sonication for 12 h	21
DMF	Multi-layered graphite nanosheets	0.8-1.8 nm	Wet ball milling	22

A variety of organic	Graphite	Thickness 0.8~1.8 nm, lateral	Ball-milling	23
solvents	nanosheets	size 100–200 nm		
Polystyrene	Graphite	Mono- and few-layer graphene, ~	Ball-milling	24
	nanoplatelets	1.74 nm		
PVC dispersed in	Natural graphite	1.13-1.41 nm	Three Roll Mill	25
dioctyl phthalate DOP				
(adhesive)				
silicone polymer	Graphite	Thickness ~ 5 to 35 nm	Three Roll Mill	26
	nanoplatelets			
Sylgard184SiliconeElas	graphite	Thickness 20-200 nm, lateral size	Dual asymmetric	27
tomer	nanoplatelets	5 μm	centrifuge mixing,	
			Speed Mixer	

 Table S2. A summary of the sizes of GNPs reported so far in commercial market.

Graphene	Graphene	Details/Quality					
producer	product						
Graphene	Silver coated	Silver Decorated Graphene with 30 wt.% , Particle size : 4.5 μm					
Platform	graphene	Silver Decorated Graphene with 70 wt.% , Particle size : 7.2 μm					
	3D graphene	Grown on Cu/Ni Foam, continu coverage exceeding 95%.	ous layer with few small multilayer islands				
	Graphene	in NMP with non-ionic	Different concentration 0.1,1.0,10,50,100				
	dispersion	dispersant in NMP no	mg/ml,				
		surfactant	Purity : >99%, 1~10 Layers : >70%, >30				
			Layers : <5%				
		in water with non-ionic	Different concentration 0.1,1.0,10 mg/ml,				
		dispersant	Purity : >99%, 1~10 Layers : >70%, >30				
		Layers : <5%					
Thomas Swan	Elicarb®	Graphene powder	few-layer graphene flakes with an				
Advanced	Graphene		average of 5-7 layers.				
Materials		Graphene Dispersion	A water/surfactant dispersed GNP at 1g/l.				
ACS Material	Graphene	Single Layer Graphene, surface	area (g/m ²): 400~1000; Electrical				
	Series	resistivity (Ω ·cm) ≤ 0.30					
		Nitrogen-doped Graphene					
		1-5 atomic layer , Lateral size : 0.5-5 $\mu m;$ surface area (g/m²): 500~700 ;					
		Conductivity (S/m) >1000					
		Industrial-Quality Graphene, Th	nickness (nm) \leq 3.0; surface area (g/m ²):				
		~600; Electrical resistivity (Ω .cm) ≤ 0.30					

-		
		Carboxyl Graphene, Diameter $1 \sim 5 \mu m$, thickness $0.8 \sim 1.2 nm$, Carboxy
		ratio ~ 5.0%, Purity ~ 99%
		Carboxyl Graphene, Carboxyl Graphene Water Dispersion
		Diameter 1~5 μ m, thickness 0.8~1.2 nm, Carboxy ratio ~ 5.0% Purity ~
		99%
		Graphene Oxide
		Diameter 1~5 μ m, thickness 0.8~1.2 nm, single layer ratio ~ 99%. Purity~
		99%.
		Diameter 1~15 µm, thickness 0.8-1.2 nm
		Graphene Oxide, High Surface Area Graphene Oxide
		Diameter 1~5 μ m, thickness 0.8~1.2 nm, single layer ratio ~ 99%. Purity~
		99%.
		Single Layer, Oxide Ethanol Dispersion, Flake size: 0.5-2.0 µm; thickness:
		0.6-1.2 nm; Single-layer Ratio: >80%
ACS	Graphene	Single Layer Graphene Oxide Water Dispersion
Material	Series	(1)10 mg/ml, 100 ml (1 g), Flake size: 0.5-2.0 µm; Thickness: 0.6-1.2 nm;
		Single-layer Ratio: >80%
		(2) 10 mg/ml, 100 ml (0.5 g), Flake size: 500 nm; Thickness: 0.6-1.2 nm;
		Single-layer Ratio: >80%
		Diameter: ~5 µm; Thickness: 2-10 nm; surface area (g/m ²): 20-40 ,
		Conductivity: 80000 S/m
		Graphene Film-Super Paper, Diameter: 40 mm, thickness: 20 µm,
		Conductivity: 2000 S/m
		Graphene Oxide Film, Diameter: 40 mm, thickness: 20 µm; Non-
		conductive, 8x10 ⁻² S/m
		Aminated Graphene, Conductivity: 6.36 S/m
	CVD	Trivial Transfer Graphene, Predominantly single-layer graphene;
	Graphene	Transparency: >95%
	Chaphone	3D Graphene Foam, Sheet Resistance: $<600 \Omega/sq$
		Graphene on Copper Foil, Sheet Resistance: $<600 \Omega/sq$
		Graphene on Si
		-
		 Super large size graphene on copper foil up to 30 cm x 20 cm; Double or multi layer graphene;
		 2) Double or multi-layer graphene; 2) transformed onto giliagn substrates Sheet Resistances (600 Q/ag)
		3) transferred onto silicon substrate; Sheet Resistance: $<600 \Omega/sq$;
		Transparency: >95%
		Graphene on SiO_2
		1) Super large size graphene on copper foil up to 30 cm x 20 cm;
		2) Double or multi-layer graphene;
		3) transferred onto silicon dioxide substrate; Sheet Resistance: $<600 \Omega/sq$;

		Transparency: >95%
		Graphene on PET
		1) Super large size graphene on copper foil up to 30 cm x 20 cm;
		2) Double or multi-layer graphene;
		3) Graphene transferred onto PET substrate
		Graphene on Plastic, Graphene transferred to Plastic substrate (a polymer
		mainly containing PET <10%)
		Graphene on Quartz, Single Layer Graphene on Quartz Substrate; Sheet
		Resistance: <600 Ω/sq; Transparency: >95%
		Multi-layer , Predominantly Double- or Multi-Layer Graphene; Sheet
		Resistance: <600 Ω/sq; Transparency: >95%
		PMMA-coated , Pretreated Graphene-PMMA Coated; Sheet Resistance:
		<600 Ω/sq; Transparency: >95%
	Graphene	Aminated Graphene Quantum Dots, Solution, Colorless solution; PL peak:
	Quantum Dots	440 nm; Particle Size: <5 nm; Concentration: 1 mg/ml (available up to 20
		mg/ml);Solution: Water
		Blue Luminescent Quantum Dots, Quantum Dots Size 15 <nm, td="" thickness<=""></nm,>
		0.5 ~ 2 nm, Purity ~ 80%, concentration 1mg/ml.
		Carboxylated Graphene Quantum Dots, Solution, Colorless solution; PL
		peak: 487 nm; Particle Size: <10 nm; Concentration: 1 mg/ml (available
		up to 20 mg/ml);Solution: Water
		Carboxylated Graphene Quantum Dots, pale yellow powder; PL peak: 487
		nm; Particle Size: <10 nm.
		Chlorine Functionalized Graphene Quantum Dots, Solution, Colorless
		solution; PL peak: 452 nm; Particle Size: <6 nm. Concentration: 1 mg/ml
		(available up to 2 mg/ml), Solution: Water, Containing a little ethylene
		glycol
		Green Graphene Quantum Dots, Solution, Colorless solution; PL peak: 530
		nm; Particle Size: <6 nm. Concentration: 1 mg/ml (available up to 2
		mg/ml), Solution: Water, Containing a little DMF
		Hydroxylated Graphene Quantum Dots, Solution, Colorless solution; PL
		peak: 375 nm; Particle Size: <6 nm. Concentration: 1 mg/ml (available up
		to 2 mg/ml), Solution: Mixture of water and ethylene glycol
XG	xGnP bulk dry	Grade C, an average particle diameter of less than 2 microns. Average
Science	powder	surface areas are 300, 500 and 750 g/m^2 .
SCICILE	powder	
		Grade H, a typical surface area of 60 to 80 g/m ² , available with average
		particle diameters of 5, 15 or 25 µm.

		Grade M, ~ 6 to 8 nm , surface area of 120 to 150 g/m ² , available with
		average particle diameters of 5, 15 or 25 μ m.
	xGnP	Aqueous: xGnP® Graphene Nanoplatelets can be dispersed into water with
	dispersions	probe sonication or high shear mixing.
		Organic solvents, Suggested solvents include NMP, DMF, THF, toluene,
		ethyl acetate, isopropanol, ethanol, acetone, methyl ethyl ketone (MEK)
		and chloroform, 2 amino-butane and other polar solvents.
		Resins and custom
Advanced	MONOLAYER	HSMG TM on PMMA.
Graphene	Graphene	Transparent film, Optical transmittance at 550 nm: >97%; Coverage:
Products	Gruphene	>95%; 1 layer;
Tioducts	MONOLAYER	Thickness (theoretical): ~0.345 nm; sheet resistance: 220-800 Ohm/sq;
	Graphene	Grain size: Up to 1 mm
		HSMG TM monolayer on Si, Substrate: Si(B) (111) type p; Thickness 300
		μm; Single side polished; Res: 9-12 ohm/cm
	MULTILAYER	HSMG [™] on PMMA., Transparent film, Optical transmittance at 550 nm:
	Graphene	>85%; Coverage: >95%; 3-5 layers;
		sheet resistance < 800 Ohm/sq; Grain size: Up to 1 mm
		HSMG [™] monolayer on Si, Substrate: Si(B) (111) type p; Thickness 300
		μm ; Single side polished; Res: 9-12 ohm/cm
NanoXplore	NXE-Graphene	Grade A: Purity: 96% by weight, Average Specific surface area : 25-30
		g/m ² , 4-5 layers; Average sheet diameter : 5-20 μ m. Highly OH edge
		functionalized
		Grade B: Purity: 96% Average Specific surface area : 10-15 g/m ² , 2-3
		layers; Average sheet diameter : 0.5-5 μ m. Highly OH edge functionalized
		Grade C: Purity: 96% Average Specific surface area : 200 g/m ² , 4-5 layers;
		Average sheet diameter : 5-20 µm,
		Grade D Purity: 96% Average Specific surface area : 10-15 g/m ² , 2-3
		layers; Average sheet diameter :0.5-5 µm,
	NXE-Graphite	Grade E Purity: 96% by weight, Average Specific surface area :7-9 g/m ² , 5
	Graphene –	-20 µm graphene sheets mixed with large natural graphite flakes
	Composite	
	NXE-	Grade F1: Purity: 96% by weight, Average Specific surface area : 100
	Graphene	g/m ² , 2-3 layers, 200-500 nm, C content: 75% (with 20% Oxygen),
	Partially	Impurity: 2 wt.%, Humidity: 2 wt.%, Low defect density
	Oxidized	
	NXE-GO	Grade F2 Purity: 96% by weight, Average Specific surface area : 100 g/m ² ,
		2-3 layers, 100-200 nm, C content: 60% (with 30% Oxygen),

RS MINES	Reduced GO	highly oxidised, highly conductive reduced graphene oxide paste, multiple
	(RSrGO) Paste	uses including the enhancement of energy storage devices, conductive
		additive for polymers, and of course to make single to few layer graphene.
Graphenea	Suspended	on Cavities, Substrate size up to 1.5 x 1.5 cm, Substrate withstand 450 °C
	Monolayer	Temperature, Cavity size up to 30 µm, Minimum cavity depth: 500 nm,
	Graphene	Film, transparent; transparency >97%, 1 layer, thickness :0.345 nm, Grain
		size: Up to 10 µm
	Monolayer	on SiO ₂ /Si or Cu or SiO ₂ /S or PET or Quartz
	Graphene	Film, Transparency: >97 %, Coverage: >95%, Thickness (theoretical):
		0.345 nm, Grain size: Up to 10 µm
	Bilayer	on SiO ₂ /S, Transparency >94%, Appearance (Form): Film, Coverage
	Graphene	>95%, 2 layer, Thickness: 0.69 nm,
		Grain size: Up to 10 µm
	Trilayer	on SiO ₂ /S, Transparency >92%, Appearance (Form): Film, Coverage
	Graphene	>95%, 3 layer, Thickness: 1.035 nm,
		Grain size: Up to 10 μm
	Suspended	on TEM Grids (Quantifoil Gold), Film, Transparency: >97 %, Coverage:
	Monolayer	>95%, Thickness : 0.345 nm,
	Graphene	Grain size: Up to 10 µm
	Graphene	Form: Dispersion of graphene oxide sheets, Sheet dimension: Variable,
	Oxide	Colour: Yellow-brown, Odour: Odourless Dispersibility: Polar solvents,
		Solvent: Water, pH: 2,2 - 2,5
		Concentration: 4 mg/mL, Monolayer content (measured in 0.5 mg/mL):
		>95% (*)
		Form: Dispersion of graphene oxide sheets, Solvent: Water,
		Concentration: 0.5 mg/mL, Monolayer content
	Reduced	Form: Powder, Sheet dimension: Variable, Colour: Black, Odour:
	Graphene	Odourless, Solubility: Insoluble
	Oxide	Dispersability: It can be dispersed at low concentrations (<0.1 mg/mL) in
		NMP, DMSO, DMF
	GO Film	Diameter: 4 cm, Thickness: 12-15 µm, Non-conductive
Angstron	Graphene and	N002-PS-0.5 Graphene Oxide Solution
Materials	GO Dispersions	Water Content (percent): \geq 99.50, Average Z Dimension (nm): 1.0 – 1.2,
		Average X & Y Dimensions (um): 0.554
		N002-PS-1.0 Graphene Oxide Solution
		Average Z Dimension: 1-1.2 nm , (Single Layer GO), Average X-Y
		Dimension: ~ 500 nm
	Graphene and	N002-PDE Graphene Oxide Powder
	GO Powder	Few Layer Graphene Oxide, 2-3 nm , lateral size $\leq 7~\mu\text{m},$ Specific Surface
	l	

Area (g/m^2) : ≥ 400
N008-P-40 Polar Graphene Powder
Average Z Dimension (nm): 50 – 100, Average X & Y Dimensions (um): \leq
10, Specific Surface Area (g/m ²): 20-40
N008-P-10 Polar Graphene Powder
Average Z Dimension (nm): 50 – 100, Average X & Y Dimensions (um): \leq
7, Specific Surface Area (g/m^2) : ≤ 40
N008-N Pristine Graphene Powder
Average Z Dimension (nm): 50 – 100, Average X & Y Dimension (um): 5,
Specific Surface Area (g/m ²): ≤ 30
N006-P Polar Graphene Powder
Average Z Dimension (nm): 10 – 20, Average X & Y Dimensions (um): 5,
Specific Surface Area (m^2/g) : ≥ 15
N002-PDR Few Layer Graphene Powder
Less than 3 layers, Average X & Y Dimensions (um): ≤ 10 , Specific
Surface Area (m ² /g): 400 – 800

Summary of processing parameters

Processing		Levels								
Parameters	1	2	3	4	5	6	7	8	9	10
I. Shear Rate	5µm, 30 rpm	5 μm, 60 rpm	5 μm, 90 rpm	5 μm, 150 rpm	5μm, 200 rpm	120/40µm, 200 rpm	60/20 μm, 200 rpm	30/10 μm, 200 rpm	15/5 μm, 200 rpm	5N/mm 200 rpm
II. Filler concentration	1.0 wt.%	2.0 wt.%	3.0 wt.%	4.0 wt.%	5.0 wt.%	-	-	-	-	-
III. Temperature	25 °C	30 °C	35 °C	40 °C	-	-	-	-	-	-
IV. Number of cycles	1	2	3	4	5	6	7	8	9	10
V. Direct (D) Vs Masterbatch (M) + Dilution (D)	D	M+D	-	-	-	-	-	-	-	-

Table S3. Processing parameters used in Three Roll Mill processing.

Π III IV V 10 2 3 5 2 3 4 5 7 8 9 1 4 1 2 3 4 2 3 5 7 9 10 1 2 1 6 1 4 6 8 Х Х Х Х X /0 I 1 Х Х Х Х Х Х Х Х Х Х Х Х Х/О 2 3 Х Х Х Х Х Х Х Х X /0 4 Х Х Х Х Х Х Х Х X /0 Х Х Х Х Х Х 5 Х Х X /0 Х Х Х Х O/T X /0 Х Х 6 Х Х Х Х Х Х O/T X /0 7 Х Х Х Х Х Х X /0 8 9 Х Х Х Х Х Х Х 10 Х Х Х Х Х Х O/T O/T O/T O/T O/T O/T Х Π 1 0 0 0 X /0 X /0 Х /О X /0 X /0 X /0 X /0 X /0 Х /О Х Х X /0 X /0 Х /О Х /О Х /О Х/О Х/О Х /О Х 2 0 0 0 Х /О X /0 Х X /0 O/T O/T Х /О Т Х /О Х /О X/O Х/О Х /О Х/О Х/О X/O Х Х Х/О 3 O/T Т Т Х /О Х /О O/T O/T O/T X /0 Х /О Х /О X /0 X /0 X/O X /0 Х X /0 4 Т Т Х Т 5 O/T O/T O/T X /0 Т Т X /0 Х /О Х/О X /0 X /0 Х/О X/O X/O Х Х X /0 0 Т O/T X/O X /0 O/T Ш 1 O/T O/T O/T O/T O/T O/T O/T O/T 0/T O/T O/T O/T O/T O/T O/T O/T O/T 2 3 O/T 4 O/T IV 1 Х O/T X /0 X/O X /O/T X/O/T X/O/T X /0 O/T O/T O/T X/O/T X/O/T X /0 X /O/T X/O/T X /O O/T O/T 2 Х O/T X /0 O/T X/O/T X/O/T X /O/T X/O/T 3 Х O/T X /0 X/O X /0 O/T O/T O/T X/O/T Х X /O/T O/T X /0 X/O X/O/T X/O/T Х/О O/T O/T 4 O/T X/O/T 5 Х O/T X /0 X/O X /O/T X/O/T X/O/T X /0 O/T O/T O/T X/O/T 6 Х O/T X /0 X /0 X /O/T X/O/T X/O/T X /0 O/T O/T O/T X/O/T X/O/T X /0 X /0 X /O/T X/O/T X /0 7 Х O/T O/T O/T O/T X/O/T Х /О X /0 X /O/T X/O/T X/O/T X /0 O/T O/T Х O/T O/T X/O/T 8 Х Х Х 9 Х Х Х Х Х 10 Х Х Х Х Х Х Х Х X X X Х Х X /0 Х/О X /0 Х /О Х/О X/O X/O X/O X/O X/O X/O X/O X/0 X/O X/0 X/O X/O V 1 Х Х Х Х Х Х Х 2 0 0 O/T O/T O/T O/T O/T

Table S4 Experimental trials of different processing parameters of TRM.

X-Process I, O- process II, T-Temperature Controlled samples, using Process II.

References

1. Adamson, A. W.; Gast, A. P. *Physical Chemistry of Surfaces*, 2nd ed; A Wiley-Interscience Publication: New York, 1967.

2. Cheng, C.-H.; Lin, H.-H. Measurement of Surface Tension of Epoxy Resins used in Dispensing Process for Manufacturing Thin Film Transistor-liquid Crystal Displays. IEEE Transcation on Adavanced Packaing **2008**, 31(1), 100-106.

3. Khan, U.; O'neill, A.; Porwal, H.; May, P.; Nawaz, K.; Coleman, J. N., Size Selection of Dispersed, Exfoliated Graphene Flakes by Controlled Centrifugation. *Carbon* **2012**, *50* (2), 470-475.

4. Khan, U.; Porwal, H.; O'neill, A.; Nawaz, K.; May, P.; Coleman, J. N., Solvent-exfoliated Graphene at Extremely High Concentration. *Langmuir* **2011**, *27* (15), 9077-9082.

5. Lu, J.; Yang, J.-X.; Wang, J.; Lim, A.; Wang, S.; Loh, K. P., One-pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. *ACS Nano* **2009**, *3* (8), 2367-2375.

6. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large Area, Few-layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. *Nano Lett.* **2008**, *9* (1), 30-35.

7. Dhakate, S.; Chauhan, N.; Sharma, S.; Tawale, J.; Singh, S.; Sahare, P.; Mathur, R., An Approach to Produce Single and Double Layer Graphene from Re-exfoliation of Expanded Graphite. *Carbon* **2011**, *49* (6), 1946-1954.

8. Xia, Z. Y.; Pezzini, S.; Treossi, E.; Giambastiani, G.; Corticelli, F.; Morandi, V.; Zanelli, A.; Bellani, V.; Palermo, V., The Exfoliation of Graphene in Liquids by Electrochemical, Chemical, and Sonication-assisted Techniques: A Nanoscale Study. *Adv. Funct. Mater.* **2013**, *23* (37), 4684-4693.

9. Liu, N.; Luo, F.; Wu, H.; Liu, Y.; Zhang, C.; Chen, J., One Step Ionic Liquid Assisted Electrochemical Synthesis of Ionic Liquid Functionalized Graphene Sheets Directly from Graphite. *Adv. Funct. Mater.* **2008**, *18* (10), 1518-1525.

10. Wang, J.; Manga, K. K.; Bao, Q.; Loh, K. P., High-yield Synthesis of Few-layer Graphene Flakes through Electrochemical Expansion of Graphite in Propylene Carbonate Electrolyte. *JACS* **2011**, *133* (23), 8888-8891.

11. Su, C.-Y.; Lu, A.-Y.; Xu, Y.; Chen, F.-R.; Khlobystov, A. N.; Li, L.-J., High-quality Thin Graphene Films from Fast Electrochemical Exfoliation. *ACS Nano* **2011**, *5* (3), 2332-2339.

12. Alanyalıoğlu, M.; Segura, J. J.; Oro-Sole, J.; Casan-Pastor, N., The Synthesis of Graphene Sheets with Controlled Thickness and Order Using Surfactant-assisted Electrochemical Processes. *Carbon* **2012**, *50* (1), 142-152.

13. Morales, G. M.; Schifani, P.; Ellis, G.; Ballesteros, C.; Martínez, G.; Barbero, C.; Salavagione, H. J., High-quality Few Layer Graphene Produced by Electrochemical Intercalation and Microwave-assisted Expansion of Graphite. *Carbon* **2011**, *49* (8), 2809-2816.

14. Zhao, J.; Pei, S.; Ren, W.; Gao, L.; Cheng, H.-M., Efficient Preparation of Large-area Graphene Oxide Sheets for Transparent Conductive Films. *ACS Nano* **2010**, *4* (9), 5245-5252.

15. Pan, S.; Aksay, I. A., Factors Controlling the Size of Graphene Oxide Sheets Produced via the Graphite Oxide Route. *ACS Nano* **2011**, *5* (5), 4073-4083.

16. Luo, Z.; Lu, Y.; Somers, L. A.; Johnson, A. C., High Yield Preparation of Macroscopic Graphene Oxide Membranes. *JACS* **2009**, *131* (3), 898-899.

17. Khan, U.; O'neill, A.; Lotya, M.; De, S.; Coleman, J. N., High-concentration Solvent Exfoliation of Graphene. *Small* **2010**, *6* (7), 864-871.

18. Green, A. A.; Hersam, M. C., Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation. *Nano Lett.* **2009**, *9* (12), 4031-4036.

Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; Mcgovern, I., Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. *JACS* 2009, *131* (10), 3611-3620.

20. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; Mcgovern, I.; Holland, B.; Byrne, M.; Gun'ko, Y. K., High-yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. *Nat. Nanotechnol.* **2008**, *3* (9), 563-568.

21. Yi, M.; Shen, Z.; Zhang, X.; Ma, S., Achieving Concentrated Graphene Dispersions in Water/Acetone Mixtures by the Strategy of Tailoring Hansen Solubility Parameters. *J. Phys. D: Appl.Phys.* **2013**, *46* (2), 025301.

22. Zhao, W.; Fang, M.; Wu, F.; Wu, H.; Wang, L.; Chen, G., Preparation of Graphene by Exfoliation of Graphite Using Wet Ball Milling. *J. Mater. Chem.* **2010**, *20* (28), 5817-5819.

23. Zhao, W.; Wu, F.; Wu, H.; Chen, G., Preparation of Colloidal Dispersions of Graphene Sheets in Organic Solvents by Using Ball Milling. *J.Nanomater.* **2010**, 6.1-5

24. Wu, H.; Zhao, W.; Hu, H.; Chen, G., One-Step In Situ Ball Milling Synthesis of Polymer-Functionalized Graphene Nanocomposites. *J.Mater. Chem.* **2011**, *21* (24), 8626-8632.

25. Chen, J.; Duan, M.; Chen, G., Continuous Mechanical Exfoliation of Graphene Sheets via Three-Roll Mill. *J.Mater. Chem.* **2012**, *22* (37), 19625-19628.

26. Raza, M.; Westwood, A.; Brown, A.; Stirling, C., Texture, Transport and Mechanical Properties of Graphite Nanoplatelet/Silicone Composites Produced by Three Roll Mill. *Compos. Sci. Technol.* **2012**, *72* (3), 467-475.

27. Raza, M.; Westwood, A.; Stirling, C. Graphite Nanoplatelet/Silicone Composites for Thermal Interface Applications, International Symposium on Advanced Packaging Materials: Microtech (APM). IEEE, **2010**, 34-48.