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Abstract

We establish the asymptotic normality of a quadratic form Qn in martingale difference

random variables ηt when the weight matrix A of the quadratic form has an asymptotically

vanishing diagonal. Such a result has numerous potential applications in time series analysis.

While for i.i.d. random variables ηt, asymptotic normality holds under condition ||A||sp =

o(||A||), where ||A||sp and ||A|| are the spectral and Euclidean norms of the matrix A,

respectively, finding corresponding sufficient conditions in the case of martingale differences

ηt has been an important open problem. We provide such sufficient conditions in this paper.
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1 Main results

We study here quadratic forms

Qn =
n∑

t,k=1

an;tkηtηk(1.1)

where {ηk} is a stationary ergodic martingale difference (m.d.) sequence with respect to some

natural filtration Ft, with moments

Eηk = 0, Eη2k = 1 and Eη4k <∞.

The real-valued coefficients an;tk in (1.1) are entries of a symmetric matrix An = (an;tk)t,k=1,...,n.

We denote by

||An|| = (

n∑
t,k=1

a2n;tk)
1/2
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the Euclidean norm and by

||An||sp = max
||x||=1

||Anx||

the spectral norm of the matrix An. For convenience, we set an;tk = 0 for t ≤ 0, t > n or k ≤ 0,

k > n.

The asymptotic normality property of the quadratic form Qn has been well investigated

when the random variables ηj are i.i.d. If An has vanishing diagonal: an;tt = 0 for all t, then

asymptotic normality is implied by the condition

||An||sp = o(||An||),(1.2)

see Rotar (1973), De Jong (1987), Guttorp and Lockhart (1988), Mikosch (1991) and Bhansali,

Giraitis and Kokoszka (2007a).

The aim of this paper is to extend these results to the m.d. noise ηj . We will need the

following additional assumptions on the m.d. noise ηt:

E(η2j |Fj−1) ≥ c > 0, (∃c > 0).(1.3)

The assumption (1.3) bounds the conditional variance of ηj away from zero. We also assume

that An has an asymptotically “vanishing” diagonal in the sense:

n∑
t=1

|an;tt| = o(||An||), n→∞.(1.4)

Relation (1.4) implies

n∑
t=1

a2n;tt = o(||An||2), n→∞.(1.5)

The following theorem shows that in case of m.d. noise {ηk}, the condition

||An||sp/||An|| → 0

above needs to be strengthened by including the assumptions (1.8) and (1.9) on the weights

an;ts. Its proof is based on the martingale central limit theorem.

Theorem 1.1. Let Qn be as in (1.1), where {ηj} is a stationary ergodic m.d. noise such that

Eη4j <∞ and (1.3) hold. Suppose that the an;ts’s are such that, as n→∞,

||An||sp/||An|| → 0.(1.6)

Then there exist c1, c2 > 0 such that

c1||An||2 ≤ Var(Qn) ≤ c2||An||2, n ≥ 1.(1.7)

If in addition,

(1.8)
∑n

t,s=1: |t−s|≥L a
2
n;ts = o(||An||2), n→∞, L→∞,
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and

(1.9)
∑n

t=k+2(an;t,t−k − an;t−1,t−1−k)2 = o(||An||2), ∀k ≥ 1

then the following normal convergence holds:

(Var(Qn))−1/2(Qn − EQn)
d→ N(0, 1).(1.10)

As usual, ”
d→ N(0, 1)” denotes convergence in distribution to a normal random variable with

mean zero and variance one.

Theorem 1.1 plays an important instrumental role in establishing asymptotic properties of

various estimation and testing procedures in parametric and non-parametric time series analysis

where the object of interest can be written as a quadratic form

Qn,X =
n∑

t,s=1

en(t− s)XtXs

of a linear (moving-average) process

Xt =

∞∑
j=0

ajηt−j

of uncorrelated noise ηt and the weights en(s) may depend on n. In the case of i.i.d. noise ηt, the

asymptotic normality for Qn,X is established by approximating it by a simpler quadratic form

Qn,η =
n∑

t,s=1

bn(t− s)ηtηs

with some different weights bn(t) and then deriving the asymptotic normality for Qn,η, as in

Bhansali, Giraitis and Kokoszka (2007b). For example, one sets

bn(t) =

∫ π

−π
un(x)f(x)eitxdx

where f(x) is the spectral density of the sequence Xt, and where un(x) is some convenient

function related to en(t), typically such that

en(t) =

∫ π

−π
un(x)eitxdx.

In general, obtaining simple asymptotic normality conditions for Qn,X is a hard theoretical

problem but of great practical importance, which for an i.i.d. noise ηt was solved in Bhansali,

Giraitis and Kokoszka (2007b). In addition, in Section 6.2 in Giraitis, Koul and Surgailis (2012)

one considers discreet frequencies and shows that a sum

Sn =

n/2∑
j=1

bnjI(uj)
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of weighted periodograms

I(uj) = (2πn)−1
∣∣∣ n∑
k=1

eikujXk

∣∣∣2
of the sequence Xt at Fourier frequencies uj can be also effectively approximated by a quadratic

form Qn,η. This allows, by theorem like Theorem 1.1, to establish the asymptotic normality

for such sums Sn. However, assumption of i.i.d. noise is restrictive and may be not satisfied in

practical applications and in some theoretical, i.e. ARCH, settings. In a subsequent paper we

will derive corresponding normal approximation results for Qn,X and Sn when ηt is a martingale

difference process.

The following Corollary 1.1 displays situations where the conditions of Theorem 1.1 are easily

satisfied. For a Toeplitz matrix An, that is with entries

an;ts = bn(t− s),

the assumption (1.9) is clearly satisfied, since

an;t,t−k − an;t−1,t−1−k = bn(k)− bn(k) = 0.

The following lemma provides a useful bound that can be used to prove (1.6).

Lemma 1.1. Suppose that

bn(t) =

∫ π

−π
eitxgn(x)dx, t = 0, 1, ...,

where gn(x), |x| ≤ π is an even real function. If there exists

0 ≤ α < 1/2

and a sequence of constants kn > 0 such that

|gn(x)| ≤ kn|x|−α, |x| ≤ π,

then

||An||sp ≤ Cknnα, n ≥ 1.(1.11)

For the proof see Theorem 2.2(i) in Bhansali et al. (2007a).

Suppose now, in addition, that gn(x) ≡ g(x), n ≥ 1 and |g(x)| ≤ C|x|−α, |x| ≤ π. Then∫ π

−π
g2(x)dx <∞, bn(t) = b(t) and

∞∑
t=−∞

b2(t) <∞

and, in addition, kn = 1 in (1.11). Hence

||A||2 =
∑n

t,s=1 b
2(t− s) =

∑n
k=−n b

2(k)(n− |k|) ∼ n
∑∞

t=−∞ b
2(t) as n→∞
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and

||An||sp ≤ Cnα = o(n1/2) = o(||A||)

which implies (1.6). Moreover,

n∑
t,s=1: |t−s|≥L

a2n;ts =

n∑
t,s=1: |t−s|≥L

b2(t− s) ≤ n
∑
|k|≥L

b2(|k|).

Since
∑
|k|≥L b

2(|k|) → 0 as L → ∞, we obtain (1.8). This together with Theorem 1.1 implies

the following corollary.

Corollary 1.1. Let

Qn =

n∑
t,k=1

b(t− k)ηtηk,

where b(t) = b(−t), b(0) = 0 are real weights and {ηj} is a stationary ergodic m.d. noise such

that Eη4j <∞ and (1.3) hold.

(i) If
∑∞

t=0 |b(t)| <∞, then

∃c1, c2 > 0 : c1n ≤ Var(Qn) ≤ c2n, n ≥ 1,(1.12)

(Var(Qn))−1/2(Qn − EQn)
d→ N(0, 1).(1.13)

(ii) If b(t) =
∫ π
−π e

itxg(x)dx, t = 0, 1, ..., where g(x), |x| ≤ π is an even real function such

that for some 0 ≤ α < 1/2 and C > 0,

|g(x)| ≤ C|x|−α, |x| ≤ π(1.14)

then (1.12) and (1.13) hold.

Next we consider two quadratic forms

Q(1)
n =

n∑
t,s=1

a
(1)
n;tsηtηs, and Q(2)

n =
n∑

t,s=1

a
(2)
n;tsηtηs,(1.15)

with corresponding matrices A
(1)
n , A

(2)
n and a m.d. sequence ηt which satisfy the assumptions of

Theorem 1.1, so that

(Var(Q(i)
n ))−1/2(Q(i)

n − EQ(i)
n )

d→ N(0, 1), i = 1, 2.

The next corollary provides additional sufficient condition that implies asymptotic normality of

their sum.

Corollary 1.2. Suppose that the quadratic forms Q
(1)
n , Q

(2)
n in (1.15) satisfy the assumptions

of Theorem 1.1. Set

An = A(1)
n +A(2)

n .
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If in addition

lim
n→∞

||A(1)
n ||−1||A(2)

n ||−1tr(A(1)
n A(2)

n ) = 0(1.16)

then the quadratic form Qn := Q
(1)
n +Q

(2)
n satisfies

∃c1, c2 > 0 : c1(||A(1)
n ||+ ||A(2)

n ||) ≤ Var(Qn) ≤ c2(||A(1)
n ||+ ||A(2)

n ||), n ≥ 1,

and

(Var(Qn))−1/2(Qn − EQn)
d→ N(0, 1).

Proof. We have Qn =
∑n

t,s=1 an;tsηtηs where an;ts = a
(1)
n;ts + a

(2)
n;ts. Thus, to prove the corollary,

it suffices to show that An satisfies assumptions of Theorem 1.1. This easily follows from the

fact that both A
(1)
n and A

(2)
n satisfy assumptions of Theorem 1.1, and the property

||An||2 = (||A(1)
n ||2 + ||A(2)

n ||2)(1 + o(1)).

The latter follows from

||An||2 = ||A(1)
n ||2 + ||A(2)

n ||2 + 2tr(A(1)
n A(2)

n )

because the matrices A
(1)
n and A

(2)
n are symmetric so the cross term

2
∑
t,s

a
(1)
n;tsa

(2)
n;ts = 2

∑
t,s

a
(1)
n;tsa

(2)
n;st = 2tr(A(1)

n A(2)
n ).

Hence

||An||2 = (||A(1)
n ||2 + ||A(2)

n ||2)(1 + rn)

where

rn = 2tr(A(1)
n A(2)

n )/(||A(1)
n ||2 + ||A(2)

n ||2).

Since ||A(1)
n ||2 + ||A(2)

n ||2 ≥ 2||A(1)
n || ||A(2)

n || we get rn = o(1) by (1.16).

Corollary 1.2 indicates that we need the additional condition (1.16) in order to obtain the

asymptotic normality of Qn. It does not imply that in this case the components Q
(1)
n and Q

(2)
n

are asymptotically uncorrelated and hence asymptotically independent. We conjecture that Q
(1)
n

and Q
(2)
n will be asymptotically independent in the case when ηt is an i.i.d. noise.

2 Proof of Theorem 1.1

In the proof of Theorem 1.1 we shall use the following result.

Lemma 2.1. (Dalla, Giraitis and Koul (2014), Lemma 10).

(i) Let

Tn =
∑
j∈Z

cnjVj ,
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where {Vj}, j ∈ Z = {· · · ,−1, 0, 1, · · · } is a stationary ergodic sequence, E|V1| < ∞, and cnj
are real numbers such that for some 0 < αn <∞, n ≥ 1,∑

j∈Z |cnj | = O(αn),
∑

j∈Z |cnj − cn,j−1| = o(αn).(2.17)

Then

E|Tn − ETn| = o(αn).

In particular, if αn = 1, then

Tn = ETn + op(1).

(ii) If the m.d. sequence ηt satisfies maxtE|ηt|p <∞, for some p ≥ 2, then

E
∣∣∑

j∈Z djηj
∣∣p ≤ C(∑j∈Z d

2
j

)p/2
,(2.18)

for any dj’s such that
∑

j∈Z d
2
j <∞, where C <∞ does not depend on dj’s.

For the convenience of the reader we provide the proof of the following lemma.

Lemma 2.2. One has

max
t=1,...,n

n∑
s=1

a2n;ts ≤ ||An||2sp, max
t,s=1,...,n

|an;ts| ≤ ||An||sp.(2.19)

Proof. We drop the index n and let A = (ats). The second inequality |ats| ≤ ||An||sp follows

from the first since

max
t,s

a2ts ≤ max
t

n∑
s=1

a2ts ≤ ||An||2sp.

Turning to the first inequality, we have ||An||2sp = sup||x||=1 ||Ax||2 where x = (x1, ..., xn)′ and

||Ax||2 = ||
n∑
s=1

a1sxs, ...,
n∑
s=1

ansxs||2 = (
n∑
s=1

a1sxs)
2 + ...+ (

n∑
s=1

ansxs)
2.

Set y = (0, ..., 0, 1, 0, ...., 0)′ where 1 is at the t0 position. Note that ||y|| = 1. Then

||An||2sp ≥ ||Ay||2 = a21t0 + ...+ a2nt0 =
n∑
s=1

a2st0 =
n∑
s=1

a2t0s

since A is symmetric. Hence

||An||2sp ≥ max
t0=1,...,n

n∑
s=1

a2t0s.

Proof of Theorem 1.1.

Using (1.6), the second claim of (2.19) implies

(2.20) max
1≤k,u≤L

|an;ku| = o(||A||), ∀L ≥ 1 fixed.
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Relation (2.20) implies that no single an;ku dominates.

• Proof of (1.7). Below we write ats instead of an;ts. Let

znt = 2ηt

t−1∑
s=1

atsηs and z′t = att(η
2
t − Eη2t ).(2.21)

Then

Qn − EQn =

n∑
t=2

znt +

n∑
t=1

z′nt = Sn + S′n.(2.22)

Observe that Eηtηs = 0 for t > s and hence ESn = 0 since ηs is a m.d. sequence. In addition,

(2.23) ES2
n = 4

n∑
t=2

E
[
η2t (

t−1∑
s=1

atsηs)
2
]
.

Using Eη4t ≤ C and (1.4),

E|S′n| ≤ C
n∑
t=1

|att| = o(||An||), ES′2n ≤ C(

n∑
t=1

|att|)2 = o(||An||2).(2.24)

Now we show that

c1||An||2 ≤ ES2
n ≤ c2||An||2.

The lower bound follows by using (1.3) and (1.5) because of the fact that c > 0:

ES2
n = 4

n∑
t=2

E
[
η2t (

t−1∑
s=1

atsηs)
2
]

= 4

n∑
t=2

E
[
E[η2t |Ft−1](

t−1∑
s=1

atsηs)
2
]

(2.25)

≥ 4c

n∑
t=2

E(

t−1∑
s=1

atsηs)
2 = 4c

n∑
t=2

t−1∑
s=1

a2ts

= 2c
n∑

t,s=1

a2ts − 2c
n∑
t=1

a2tt = 2||A||2 − o(||A||2) ≥ ||A||2,

for large n.

To prove the upper bound, notice that

ES2
n = 4

n∑
t=2

E
[
η2t (

t−1∑
s=1

atsηs)
2
]

(2.26)

≤ 4

n∑
t=2

(Eη4t )
1/2(E(

t−1∑
s=1

atsηs)
4)1/2

]
≤ C

n∑
t,s=1

a2ts = C||A||2

by (2.18) and assumption Eη4t = Eη41 <∞. To obtain (1.7), note that

Var(Qn) ≤ 2ES2
n + 2ES′n

2 ≤ C||A||2 + o(||A||2) ≤ 2C||A||2
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by (2.24) and (2.26). In addition, (2.22)-(2.26) imply

Var(Qn) = (ES2
n)(1 + o(1)), n→∞.(2.27)

Indeed, by (2.22),

|Var(Qn)−Var(Sn)| = |Var(S′n) + 2Cov(Sn, S
′
n)| ≤ Var(S′n) + 2

(
Var(Sn)Var(S′n)

)1/2
= o(||A||2) +

(
O(||A||2)o(||A||2)

)1/2
= o(||A||2)

so that Var(Qn) = Var(Sn)+o(||A||2) and by (2.25) we have ES2
n ≥ ||A||2, which leads to (2.27).

• Proof of (1.10). We now prove the asymptotic normality of Qn. Let B2
n = Var(Qn), Xnt =

B−1n znt and X ′t = B−1n z′nt. Then, by (2.22)

B−1n (Qn − EQn) =
n∑
t=2

Xnt +
n∑
t=1

X ′nt.(2.28)

Observe that by (1.7) and (2.24), E|
∑n

t=1X
′
t| = B−1n E|

∑n
s=1 z

′
nt| ≤ C||An||−1

∑n
t=1 |att| = o(1).

Therefore, to prove (1.10) it remains to show that

n∑
t=2

Xnt
d→ N(0, 1).(2.29)

Since Xnt is a m.d. sequence, then by Theorem 3.2 of Hall and Heyde (1980), it suffices to show

(a)Emax1≤j≤nX
2
nj → 0, (b) max1≤j≤n |Xnj | →p 0, (c)

∑n
j=1X

2
nj →p 1.(2.30)

•• To verify (a) and (b), it suffices to show that for any ε > 0,

n∑
j=1

EX2
njI(|Xnj | ≥ ε)→ 0,(2.31)

which clearly implies (a), while (b) follows from (2.31) noting that

P
(

max
1≤j≤n

|Xnj | ≥ ε
)
≤ ε−2

n∑
j=1

EX2
njI(|Xnj | ≥ ε)→ 0.

To prove (2.31), let K > 0 be large. We consider two cases: η2t ≤ K and η2t > K. Then,

EX2
ntI(X2

nt ≥ ε)I(η2t ≤ K) ≤ ε−1EX4
njI(η2t ≤ K) ≤ ε−124K2B−4n E

( t−1∑
s=1

atsηs
)4

≤ Cε−1K2B−4n (
t−1∑
s=1

a2ts)
2 ≤ Cε−1K2B−4n ||A||2sp

t−1∑
s=1

a2ts

by (2.18) and (2.19). Recall that by (1.7), B−2n ≤ C||A||−2. Thus, for any ε > 0 and K > 0,

n∑
t=2

EX2
ntI(X2

nt ≥ ε)I(η2t ≤ K) ≤ Cε−1K2B−4n ||A||2sp
n∑
t=2

t−1∑
s=1

a2ts(2.32)

≤ Cε−1K2(||A||sp/||A||)2 → 0
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by (1.6) as n→∞ for any finite K.

We now focus on the case η2t ≥ K. Since Eη4t < ∞ and, by stationarity of ηt, δK :=

Eη41I(η21 > K)→ 0 as K →∞, this implies

EX2
ntI(X2

nt ≥ ε)I(η2t > K) ≤ EX2
ntI(η2t > K) ≤ B−2n 22E

[
η2t I(η2t > K)

( t−1∑
s=1

atsηs
)2]

≤ C||A||−2δ1/2K (E
( t−1∑
s=1

atsηs
)4

)1/2 ≤ C||A||−2δ1/2K

t−1∑
s=1

a2ts

by (2.18). Hence,

n∑
t=2

EX2
ntI(X2

nt ≥ ε)I(η2t > K) ≤ Cδ1/2K ||A||
−2

n∑
t=2

t−1∑
s=1

a2ts(2.33)

≤ Cδ1/2K → 0, K →∞.

Since (2.32) holds for any fixed K as n→∞, and since (2.33) holds as K →∞ uniformly in n,

we get (2.31).

•• The verification of (c) in (2.30) is particularly delicate. We want to show that sn →p 1.

Recall that xnt = B−1znt where znt is defined in (2.21). We shall decompose sn =
∑n

s=1X
2
ns

into two parts involving L > 1. Write

(2.34) sn = 4B−2n

n∑
t=1

η2t
( t−1∑
s=1

atsηs
)2

= sn,1 + sn,2,

where

sn,1 := 4B−2n

n∑
t=1

η2t
( t−1∑
s=t−L

atsηs
)2
, sn,2 := sn − sn,1.

Then,

sn = Esn + (sn,1 − Esn,1) + (sn,2 − Esn,2).

We show that as n→∞,

(i) Esn → 1; (ii) sn,1 − Esn,1 →p 0, ∀L ≥ 1;(2.35)

(iii) E|sn,2| → 0, n→∞, L→∞

which proves (2.30)(c) since E|sn| → 0 implies sn →P 0 as n→∞ and L→∞.

• • • The claim (2.35)(i) follows from (2.27),

(ES2
n)/Var(Qn) = B−2n ES2

n → 1,

noting that B−2n ES2
n = Esn, which holds by definition of sn and (2.23).
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• • • To show (2.35)(ii), open up the squares, set s = t− k and s′ = t− u, to get

sn,1 − Esn,1 = 4
L∑

k,u=1

{
B−2n

n∑
t=1

at,t−kat,t−u[η2t ηt−kηt−u − Eη2t ηt−kηt−u]
}

= 4
L∑

k,u=1

gn,ku.

It suffices to verify that for any fixed k and u, gn,ku = op(1). Setting

cnt := B−2n at,t−kat,t−u

and

Vt := η2t ηt−kηt−u − Eη2t ηt−kηt−u,

write

gn,ku =
n∑
t=1

cntVt.

Since the noise {ηt} is stationary ergodic and such that Eη41 < ∞, by Theorem 3.5.8 in Stout

(1974), the process {Vj} is stationary and ergodic, and E|V1| < ∞. Because of the centering,

Egn,ku = 0. Thus, by Lemma 2.1(i), to prove gn,ku = op(1), it remains to show that cnt’s satisfy

(2.17) with αn = 1. Observe that

∑
t∈Z
|cnt| = B−2n

n∑
t=1

|at,t−kat,t−u| ≤ 2B−2n

n∑
t,s=1

a2t,s = 2B−2n ||A||2 ≤ C, n→∞

by (1.7). On the other hand,

∑
t∈Z
|cnt − cn,t−1| = B−2n

n+1∑
t=1

|at,t−kat,t−u − at−1,t−1−kat−1,t−1−u|

≤ B−2n
n+1∑
t=1

{|at,t−k − at−1,t−1−k||at,t−u|+ |at−1,t−1−k||at,t−u − at−1,t−1−u|}

≤ B−2n {(
n+1∑
t=1

(at,t−k − at−1,t−1−k)2)1/2 +
n+1∑
t=1

(at,t−u − at−1,t−1−u)2)1/2}(
n∑

t,s=1

a2t,s)
1/2

= o(B−2n ||A||2) = o(1),

by (1.9), (2.19) and (1.7). Hence (2.17) holds. By Lemma 2.1(i) we conclude that gn,ku = op(1)

and, thus, sn,1 − Esn,1 = op(1). Hence (2.35)(ii) holds.

• • • To verify E|sn,2| → 0 in (2.35)(iii), write

sn,2 = sn − sn,1 = 4B−2n

n∑
t=1

η2t
[( t−1∑

s=1

atsηs
)2 − ( t−1∑

s=t−L
atsηs

)2]
.
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We use the identity a2 − b2 = (a− b)2 + 2(a− b)b, to obtain

|sn,2| = 4B−2n
∣∣ n∑
t=1

η2t {
( t−1∑
s=1

atsηs
)2 − ( t−1∑

s=t−L
atsηs

)2}∣∣
= 4B−2n

∣∣ n∑
t=1

η2t {
( t−L−1∑

s=1

atsηs
)2

+ 2
( t−L−1∑

s=1

atsηs)
( t−1∑
s=t−L

atsηs
)
}
∣∣

≤ 4qn,1 + 4
(
B−2n

n∑
t=1

η2t
( t−L−1∑

s=1

atsηs
)2)1/2(

4B−2n

n∑
t=1

η2t
( t−1∑
s=t−L

atsηs
)2)1/2

≤ 4(qn,1 + q
1/2
n,1 s

1/2
n,1 ),

where

qn,1 := B−2n

n∑
t=1

η2t
( t−L−1∑

s=1

atsηs
)2
.

Hence, E|sn,2| ≤ 4Eqn,1 + 4(Eqn,1Esn,1)
1/2. To bound Eqn,1, we argue partly as in (2.26):

Eqn,1 ≤ C||An||−2
n∑
t=1

t−L−1∑
s=1

a2ts → 0, n→∞, L→∞

by (1.8). We also have

Esn,1 ≤ C||An||−2
n∑
t=1

t−1∑
s=t−L

a2ts ≤ C.

Hence E|sn,2| → 0 as n → ∞ and L → ∞. This completes the proof of (2.35)(iii) and the

theorem. �
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