
The in-plane elastic properties of hierarchical composite
cellular materials: synergy of hierarchy, material heterogeneity

and cell topology at different levels - Appendices

Appendix A. Relation between the Young’s modulus of the filling material
and the corresponding Winkler foundation constant

As stated in Section 2, the Euler-Bernoulli beam on Winkler foundation model sim-
ulates the composite hexagonal microstructure at all levels. Specifically, a sequence of
closely spaced independent linear-elastic springs approximates the cells filling material.
Note that representing the material within the cells by a Winkler foundation is a simpli-
fication to obtain a more mathematically tractable problem. However, notwithstanding
the limitations introduced, the analysis in [1] reveals the validity of the modeling ap-
proach based on the Winkler model. A suitable relation between the Young’s modulus

of the filling material, E
(i)
f and the Winkler foundation constant, k

(i)
w , is also provided

[1]:

E
(i)
f =

5
√

3

8
K(i)
w , i = 1, 2, 3, (A.1)

been K
(i)
w = k

(i)
w `(i) and `(i) the length of the cell walls.

Assuming that the material inside the cells is a honeycomb made of an aluminum alloy
as the whole hierarchical composite cellular structure analyzed in the present paper, leads
to [2]

ρ
(i)
f

ρs
=

2√
3
λ
(i)
f , i = 1, 2, 3 (A.2)

E
(i)
f

Es
=

4√
3

(
λ
(i)
f

)3
, i = 1, 2, 3 (A.3)

with ρ
(i)
f , E

(i)
f and ρs, Es, respectively, the density and the Young’s modulus of the

honeycomb and of the constituent material. Also, λ
(i)
f is the ratio between the thickness

and the length of the cell arms. From (A.2)

λ
(i)
f =

√
3

2

(
ρ
(i)
f

ρs

)
, i = 1, 2, 3. (A.4)

Substituting (A.4) into (A.3) gives, in view of (A.1),

K(i)
w =

4
√

3

5
Es

(
ρ
(i)
f

ρs

)3

, i = 1, 2, 3. (A.5)
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Finally, from the self-similar condition

ρ
(i)
f = ρf = αρs i = 1, 2, 3 (A.6)

and the assumption

λ
(i)
f = λf , i = 1, 2, 3, (A.7)

follows

K(i)
w = Kw =

4
√

3

5
α3Es, i = 1, 2, 3. (A.8)

In particular, assuming α = 0.4, 0.2, 0.1, 0.05, (A.8) provides, on order, Kw = 10−1Es,
10−2Es, 10−3Es, 10−4Es.
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Figure A.1: Equivalence between the elastic moduli of the filling material and corresponding
spring. (a) Filling material as a classical continuum, (b) Filling material as a
Winkler foundation.

Appendix B. A continuum model for composite cellular material with square
microstructure

Appendix B.1. Elastic energy

As Figure (B.2a) shows, a sequence of elastic beams of length ` forming a periodic ar-
ray of square cells reproduces a cellular composite material with a square microstructure.
Also, an elastic foundation represents the elastic material filling the cells. In particular,
the Winkler foundation model simulates each beam, as in [1]. The unit cell of the peri-
odic array (Fig. (B.2b)) is composed by the central node (0) and the four external nodes
(1), (2), (3), (4), linked by the elastic beams (0)-(1), (0)-(2), (0)-(3), (0)-(4), represented
by the vectors

b1 = (`, 0) , b2 = (0, `) , b3 = −b1, b4 = −b2. (B.1)

Finally, the area of the unit cell is A0 = `2.
The analysis of the representative cell of the microstructure provides, firstly, the strain

energy density of the discrete structure. Its continuum approximation is the consequence
of particular assumptions.
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Figure B.2: (a) The square microstructure, (b) The unit cell, (c) The beam on Winkler elastic
foundation.

First of all, the elastic energy of each beam

we =
1

2
(ue)T · kebue +

1

2

(
1

2
(∆ ue,a)T · kewf∆ ue,a

)
+

1

2

(
1

2
(∆ ue,b)T · kewf∆ ue,b

)
,

(B.2)
derives by superposition principle due to the assumption of linear elastic beam. In
particular, ue = [ui,uj ]

T
= [ui, vi, ϕi, uj , vj , ϕj ]

T
is the generalized vector of nodal dis-

placement expressed in the local reference and

∆ ue,a =
[
∆ uai ,∆ uaj

]T
=
[
∆uai ,∆ vai ,∆ϕai ,∆uaj ,∆ vaj ,∆ϕaj

]T
, (B.3)

∆ ue,b =
[
∆ ubi ,∆ ubj

]T
=
[
∆ubi ,∆ vbi ,∆ϕbi ,∆ubj ,∆ vbj ,∆ϕbj

]T
(B.4)

is the elongation of the springs a, the first, and of the springs b, the second (Fig. (B.3)).
Note that the factor 1/2 in the second and third term of (B.2), is due to the fact that the
springs are shared by two opposite beams and contribute only half of its strain energy
to the unit cell. See Appendix D for further details.
The terms keb and kewf in (B.2) are, respectively, the stiffness matrix of the classical
elastic beam and of the Winkler foundation [3], denoted by lowercase letters since they
are expressed in the local reference (see [1] for a detailed description). Their components
are

keb =


C`/` 0 0 −C`/` 0 0

0 12D`/`
3 6D`/`

2 0 −12D`/`
3 6D`/`

2

0 6D`/`
2 4D`/` 0 −6D`/`

2 2D`/`
−C`/` 0 0 C`/` 0 0

0 −12D`/`
3 −6D`/`

2 0 12D`/`
3 −6D`/`

2

0 6D`/`
2 2D`/` 0 −6D`/`

2 4D`/`

 (B.5)
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Figure B.3: Square microstructure: (a) Springs a, (b) Springs b.

and

kewf =


0 0 0 0 0 0
0 3Kw/35 11Kw`/210 0 9Kw/70 −13Kw`/420
0 11Kw`/210 Kw`

2/105 0 13Kw`/420 −Kw`
2/140

0 0 0 0 0 0
0 9Kw/70 13Kw`/420 0 13Kw/35 −11Kw`/210
0 −3Kw`/420 −Kw`

2/140 0 −11Kw`/210 Kw`
2/105

 , (B.6)

with Kw = kw`, kw the Winkler foundation constant per unit width, C` = Es h
1−ν2

s
and

D` = Es h
3

12(1−ν2
s )

, respectively, the tensile and bending stiffness (per unit width) of the

beams, h the thickness of the arms, Es and νs the Young’s modulus and the Poisson’s
ratio of the cell walls material.

As it can be seen, the elastic energy is the sum of three terms. The first one,

1

2
(ue)T · kebue, (B.7)

corresponding to the classical elastic beam, while the second and the third,

1

2

(
1

2
(∆ ue,a)T · kewf∆ ue,a

)
,

1

2

(
1

2
(∆ ue,b)T · kewf∆ ue,b

)
, (B.8)

related to the Winkler foundation and, in particular, to the elongation of the springs a,
the first, and of the springs b, the second (Fig. (B.3)).

The elastic energy of the unit cell, W , derives from that of the four beams it consists
of. In particular, expressing (B.2) in the global reference and summing the elastic energies
of the four beams, leads to

W =
W 1 +W 2 +W 3 +W 4

2
. (B.9)

The presence of the factor 2 in (B.9) is related to the fact that each beam is shared by
two adjacent cells. So, each member contributes only half of its strain energy to the
representative cell.
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The assumption that in the limit `→ 0 there exist the continuous displacement and
microrotation fields û(·) and ϕ̂(·), and that the discrete variables previously introduced
to represent the degrees of freedom (displacements and rotations) of the external nodes
of the unit cell can be expressed by [4]:

uj = û0 +∇û bj+
1

2
∇2û b2

j , ϕj = ϕ̂0 +∇ϕ̂bj+
1

2
∇2ϕ̂b2

j , j = 1, 2, 3, 4, (B.10)

provides the continuum description of the discrete structure. In (B.10), bj are the vectors
formerly defined, û0 and ϕ̂0 are the values of û(·) and ϕ̂(·) at the central point of the
cell in the continuum description. The substitution of (B.10) into (B.9) gives the strain
energy of the unit cell as a function of the fields û(·) and ϕ̂(·). Finally, dividing the
expression that turns out by the area of the unit cell, A0, leads to the strain energy
density in the continuum approximation

w =
C``

2
(
ε211 + ε222

)
+ 24D`

(
ε212 + (ω − ϕ̂)

2
)
− 2D``

2
(
ϕ̂2
,1 + ϕ̂2

,2

)
− 12D`` ε12ϕ̂,2

2 `3
+

Kw

(
210

(
ε211 + ε222

)
+ `2

(
ϕ̂2
,1 + ϕ̂2

,2

))
420

, (B.11)

been εαβ = 1
2 (ûα,β + ûβ,α) the infinitesimal strains, ω = 1

2 (û1,2 − û2,1) the infinitesi-
mal rotation, ϕ̂,α the microrotation gradients. Note that in (B.11) only the first order
derivatives are retained, except for the terms of the form ϕ̂ ϕ̂,αα that can be integrated
by parts and result in first order derivative terms. Retaining this terms, in particular, is
important to maintain joint equilibrium, as pointed out in [4], [5], [6].

Moreover, after rewriting (B.11) in terms of c ≡ C`/` = Es (h/`)
1−ν2

s
and d ≡ D`/`

3 =

Es (h/`)3

12(1−ν2
s )

, it emerges that in the resulting energy the coefficients scale with different order

in `, as in [7], [1]. Specifically, the microrotation gradients scale with first order in `, while
the others coefficients are independent of `. Accordingly, in the limit ` → 0 the contri-
bution of the microrotation gradients is missing and, as in [1], the equivalent continuum
is non-polar. Consequently, the strain energy density in the continuum description is

w =
c
(
ε211 + ε222

)
+ 24d

(
ε212 + (ω − ϕ̂)

2
)

2 `3
+
Kw

(
210

(
ε211 + ε222

)
420

. (B.12)

Appendix B.2. Constitutive equations

The constitutive equations

σ =
1

A0

∂W

∂∇û
, (B.13)

with σ the Cauchy-type stress tensor, follows from (B.12).
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In particular, it emerges that σ is a non-symmetric tensor and its components are

σ11 = σsym11 =

(
C`
`

+Kw

)
ε11,

σ22 = σsym22 =

(
C`
`

+Kw

)
ε22,

σsym12 = σsym21 =
12D`

`3
ε12,

σskw12 = −σskw21 =
12D`

`3
(ω − ϕ̂) ,

σ12 = σsym12 + σskw12 , σ21 = σsym21 + σskw21 ,

(B.14)

with σsymγδ and σskwγδ , in turn, the symmetric and skew-symmetric parts of σ. See [1] for
further details.

Appendix B.3. Elastic constants

Simple mathematical manipulations lead to the elastic constants in the continuum
approximation. Specifically, the stress state σ11 6= 0, σ22 = σ12 = σ21 = 0 provide, in
view of (B.14) and Hooke’s law σsym11 = E∗

1 ε11, the Young’s modulus in the e1 direction:

E∗
1 =

σ11
ε11

=
Es λ

(1− ν2s )
+Kw, (B.15)

with Es and νs, respectively, the Young’s modulus and the Poisson’s ratio of the cell
walls material, λ = h/` the ratio between the thickness and the length of the beams.
The related Poisson’s ratio ν∗12 = −ε22/ε11 is

ν∗12 = 0. (B.16)

Similarly, the stress state defined as σ22 6= 0, σ11 = σ12 = σ21 = 0 gives the Young’s
modulus in the e2 direction:

E∗
2 =

σ22
ε22

=
Es λ

(1− ν2s )
+Kw, (B.17)

and the related Poisson’s ratio ν∗21 = −ε11/ε22 = 0.
As it can be seen, it emerges that E∗

1 = E∗
2 ≡ E∗ and ν∗12 = ν∗21 ≡ ν∗, with E∗ and

ν∗ stands for the Young’s modulus, the first, and the Poisson’s ratio, the second, of the
approximated continuum.

The tangential elastic modulus, G∗ = σsym12 /2 ε12, it is easily obtained by considering
the stress state σsym12 6= 0, σ11 = σ22 = 0:

G∗ =
σsym12

2 ε12
=

Es λ
3

2 (1− ν2s )
. (B.18)
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It should be noted that the elastic moduli derived do not satisfy the classical relation

for isotropic materials, G∗ =
E∗

2 (1 + ν∗)
. The effective elastic constants are equal only in

the e1 and e2 direction [2], [8].
Analogous calculations, in conjunction with the classic transformation equations for

stress and strain, provide the effective elastic moduli associated with different axis. In
particular, denoting with E∗

θ , ν∗θ , G∗
θ, respectively, the Young’s modulus, Poisson’s ratio

and shear modulus associated with the axis rotated counterclockwise through an angle
of θ from (e1, e2), it emerges:

E∗
θ =

λ3Es(Kw

(
1− ν2s

)
+ λEs)

(1− ν2s ) (c4λ3Es + λ3s4Es + 2c2s2(Kw (1− ν2s ) + λEs))
, (B.19)

ν∗θ =
2c2s2(Kw

(
1− ν2s

)
+ λEs − λ3Es)

c4λ3Es + λ3s4Es + 2c2s2(Kw (1− ν2s ) + λEs)
, (B.20)

G∗
θ =

λ3Es(Kw

(
1− ν2s

)
+ λEs)

4 (1− ν2s ) ((c2 − s2)2Kw (1− ν2s ) + λ(c4 + 2c2(−1 + 2λ2)s2 + s4)Es)
. (B.21)

To simplify the notation, c and s stand, respectively, for cos θ and sin θ.

Appendix B.4. Comparison between the analytical and numerical approach

Writing the constitutive equations derived in Section B.2 in a compact way, provide σsym11

σsym22

σsym12

 =

 C11 C12 C13

C21 C22 C23

C31 C32 C33

  ε11
ε22
ε12

 , (B.22)

been

C11 = C22 =
C`
`

+Kw =
Es λ

(1− ν2s )
+Kw,

C33 =
12D`

`3
=

Es λ
3

(1− ν2s )
,

C12 = C21 = C13 = C23 = C31 = C32 = 0. (B.23)

In terms of stress,  ε11
ε22
ε12

 =

 C∗
11 C∗

12 C∗
13

C∗
21 C∗

22 C∗
23

C∗
31 C∗

32 C∗
33

  σsym11

σsym22

σsym12

 (B.24)

where

C∗
11 = C∗

22 =
C22 C33

C2
22 C33 − C2

12 C33
=

(1− ν2s )

Kw(1− ν2s ) + Es λ
,

C∗
33 =

C2
22 − C2

12

C2
22 C33 − C2

12 C33
=

(1− ν2s )

Es λ3
,

C∗
12 = C∗

21 = C∗
13 = C∗

23 = C∗
31 = C∗

32 = 0. (B.25)
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Finite element simulations on a computational model of the microstructure evaluate
the accuracy of the theoretical model. In particular, the Euler-Bernoulli beam on Winkler
foundation elements model the composite square microstructure. The cell wall material,
isotropic linear elastic for assumption, has Young’s modulus Es = 79 GPa, Poisson’s
ratio νs = 0.35 and thickness h = 0.1`. In terms of Winkler foundation, Kw = 10−2Es.
The numerical analysis involve a 50x50 mm square domain discretized in an increasing
number of square cells of gradually smaller length `. As done in [1], the load conditions
are the uniaxial compression, uniaxial traction and in-plane shear. Specifically, forces of
the same intensity acting at the boundary, unconstrained nodes of the domain simulate
the loading states. The corresponding effective stiffness components are derived as the
ratio between the average volume strain,

εij =
1

V

∫
V

εij dV, i, j = 1, 2, (B.26)

and the applied stress. Referring the interested reader to [1] for a comprehensive descrip-
tion, in the case of forces acting horizontally, (B.24) takes the form

ε(1) =

 ε
(1)
11

ε
(1)
22

ε
(1)
12

 =

 C∗
11 C∗

12 C∗
13

C∗
21 C∗

22 C∗
23

C∗
31 C∗

32 C∗
33

  σ11
0
0

 =

 C∗
11σ11

C∗
21σ11

C∗
31σ11

 , (B.27)

been σ11 the applied stress, ε(1) the corresponding strain vector,

ε
(1)
ij =

1

V

∫
V

ε
(1)
ij dV, i, j = 1, 2, (B.28)

and V is the volume of the domain. Accordingly,

C∗
11 =

ε
(1)
11

σ11
, C∗

21 =
ε
(1)
22

σ11
, C∗

31 =
ε
(1)
12

σ11
, (B.29)

Note that the present analysis involve a domain with unitary width, composed by a
sequence of discrete beams having the same length ` and the same thickness h. Conse-
quently, denoting by s the parametric coordinate along the length of the beam (0 ≤ s ≤ `)
and remembering that

εij(s) =
1

2

(
∂ui(s)

∂xj
+
∂uj(s)

∂xi

)
, (B.30)

ε
(1)
ij =

∑nb

m=1
1
2

(
(ui(`)− ui(0)) ∂s

∂xj
+ (uj(`)− uj(0)) ∂s

∂xi

)
m

nb `
. (B.31)

been nb the number of the beams. Furthermore, the classical continuum mechanics
provides the Young’s modulus, E∗

1 , and the related Poisson’s ratio ν∗12:

E∗
1 =

σ11

ε
(1)
11

, ν∗12 = −ε
(1)
22

ε
(1)
11

. (B.32)
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Similarly, when the forces act vertically,

ε(2) =

 ε
(2)
11

ε
(2)
22

ε
(2)
12

 =

 C∗
11 C∗

12 C∗
13

C∗
21 C∗

22 C∗
23

C∗
31 C∗

32 C∗
33

  0
σ22
0

 =

 C∗
12σ22

C∗
22σ22

C∗
32σ22

 , (B.33)

and, consequently,

C∗
12 =

ε
(2)
11

σ22
, C∗

22 =
ε
(2)
22

σ22
, C∗

32 =
ε
(2)
12

σ22
. (B.34)

Also,

E∗
2 =

σ22

ε
(2)
22

, ν∗21 = −ε
(2)
11

ε
(2)
22

. (B.35)

with σ22 the applied stress, ε(2) the corresponding strain vector and ε
(2)
ij the average

volume strain given by (B.26).
Lastly, the shear loading condition provides

ε(3) =

 ε
(3)
11

ε
(3)
22

ε
(3)
12

 =

 C∗
11 C∗

12 C∗
13

C∗
21 C∗

22 C∗
23

C∗
31 C∗

32 C∗
33

  0
0
σ12

 =

 C∗
13σ12

C∗
23σ12

C∗
33σ12

 , (B.36)

C∗
13 =

ε
(3)
11

σ12
, C∗

23 =
ε
(3)
22

σ12
, C∗

33 =
ε
(3)
12

σ12
. (B.37)

and
G∗ =

σ12

2 ε
(3)
12

(B.38)

As before, σ12 and ε(3) are, in turn, the applied stress and the corresponding strain

vector, while ε
(3)
ij is the average volume strain defined in (B.26).

Tables (B.1) and (B.2) present the outcome of the present study. In Table (B.1),
in particular, the comparison involves the theoretical and numerical C∗

ij constants. In
Table (B.2), the theoretical and numerical elastic moduli. Both Table (B.1) and Table
(B.2) show that the analytical quantities are in accordance with the numerical results.

Appendix C. A continuum model for composite cellular material with equi-
lateral triangular microstructure

Appendix C.1. Elastic energy

As in Appendix B, a sequence of Euler-Bernoulli beams on Winkler foundation el-
ements model the triangular microstructure (Fig. (C.4). As Figure (C.4b) shows, the
unit cell of the periodic configuration is composed by the central node (0) and the six
external nodes (1), (2), (3), (4), (5), (6), linked by the elastic beams (0)-(1), (0)-(2),
(0)-(3), (0)-(4), (0)-(5), (0)-(6), represented by the vectors

b1 = (`, 0) , b2 =
(
`/2,

√
3 `/2

)
, b3 =

(
−`/2,

√
3 `/2

)
,

b4 = −b1, b5 = −b2, b6 = −b3.
(C.1)
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Table B.1: Square microstructure: comparison between the analytical and numerical approach,
C∗

ij constants

No. cells ` (mm) C∗
11 C∗

22 C∗
33 C∗

12 = C∗
21 = C∗

13 = C∗
23 = C∗

31 = C∗
32

10x10 5 0.08 0.10 9.39 0
50x50 1 0.10 0.11 10.70 0

100x100 0.5 0.11 0.11 10.70 0
200x200 0.25 0.11 0.11 10.74 0
250x250 0.2 0.11 0.11 10.79 0
400x400 0.125 0.11 0.11 10.82 0
500x500 0.1 0.11 0.11 10.95 0

Analytical results 0.11 0.11 11.11 0

Table B.2: Square microstructure: comparison between the analytical and numerical approach,
elastic moduli

No. cells ` (mm) E∗
1 (GPa) E∗

2 (GPa) ν∗12 ν∗21 G∗ (GPa)

10x10 5 12.50 10.00 0 0 0.09
50x50 1 9.57 9.18 0 0 0.05

100x100 0.5 9.28 9.10 0 0 0.05
200x200 0.25 9.15 9.06 0 0 0.05
250x250 0.2 9.12 9.05 0 0 0.05
400x400 0.125 9.08 9.04 0 0 0.05
500x500 0.1 9.08 9.04 0 0 0.05

Analytical results 9.00 9.00 0 0 0.05
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The area of the unit cell is A0 =
√

3 `2/2, with ` the length of the beams [9], [4]. As
before, the elastic energy of each beam is obtained by superposition principle

we =
1

2
(ue)T · kebue +

1

2

(
1

2
(∆ ue,a)T · kewf∆ ue,a

)
+

1

2

(
1

2
(∆ ue,b)T · kewf∆ ue,b

)
,

(C.2)
with ue, ∆ ue,a, ∆ ue,b, keb, kwf , in turn, the vector of nodal displacements, the elonga-
tion of the two sets of springs and the stiffness matrices previously defined. See Appendix
E for further details. The elastic energy of the unit cell, W , derives from that of the
six beams it consists of. Note that each beam is shared between two adjacent cells.
Consequently, each member contributes only half of its strain energy to the unit cell.

It is not difficult to see that the first node of each beam coincides with the central
node (0). So, denoted by u0 the displacements of the node (0) and by ∆ ua0 , ∆ ub0 the
elongation of the springs in (0), follows ui = u0, ∆ uai = ∆ ua0 and ∆ ubi = ∆ ub0.

As done in [7], [1], expressing (C.2) in the global reference, adding up forces at the
central node (0) and condensing the corresponding degrees of freedom to take account
of the forces balance in (0), leads to

W = W (uj ,∆ uaj ,∆ ubj), j = 1, 2, 3, 4, 5, 6. (C.3)

The assumption that in the limit `→ 0 the discrete variables (uj, ϕj) can be expressed
by

uj = û0 + ∇û bj , ϕj = ϕ̂0 + ∇ϕ̂bj , j = 1, 2, 3, 4, 5, 6 (C.4)

provides the continuum description of the discrete structure. The terms û0 and ϕ̂0 in
(C.4) are the values of û(·) and ϕ̂(·) at the central point of the cell in the continuum
description. Substituting (C.4) into (C.3) gives the strain energy of the unit cell as a
function of the fields û and ϕ̂.

Finally, dividing the expression that turns out from the calculation by the area of the
unit cell, A0, gives the strain energy density in the continuum approximation w:

w =

√
3
(
C2
` `

4
(
3ε211 + 4ε212 + 2ε11ε22 + 3ε222

)
+ 48C`D``

2
(
ε211 + ε222 + 2ε212

))
96D``3 + 8C``5

+

6
√

3
(
D2
`

(
3ε211 + 12ε212 − 6ε11ε22 + 3ε222

)
+D`

(
12D` + C``

2
)

(ω − ϕ̂)
2
)

12D``3 + C``5
+

2
√

3
(
D``

2
(
3D` + C``

2
) (
ϕ̂2
,1 + ϕ̂2

,2

))
12D``3 + C``5

+

Kw

(
39
(
59ε211 + 96ε212 + 22ε11ε22 + 59ε222

)
+ 70`2

(
ϕ̂2
,1 + ϕ̂2

,2

))
4480

√
3

(C.5)

been C` = Es h
1−ν2

s
and D` = Es h

3

12(1−ν2
s )

, respectively, the tensile and bending stiffness (per

unit width) of the beams, h the thickness, Es and νs the Young’s modulus and the
Poisson’s ratio of the cell walls material, Kw = kw`, kw the Winkler foundation constant
per unit width. In particular, the resulting energy density

w = w (εαβ , (ω − ϕ̂), ϕ̂,α) (C.6)
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is a function of the infinitesimal strains εαβ = 1
2 (ûα,β + ûβ,α) and the infinitesimal rota-

tion ω = 1
2 (û1,2 − û2,1) that represent, respectively, the symmetric and skew-symmetric

part of ∇û, as in the classical continuum mechanics, and of the microrotation gradients,
ϕ̂,α.

After rewriting (C.5) in terms of c ≡ C`/` = Es (h/`)
1−ν2

s
and d ≡ D`/`

3 = Es (h/`)3

12(1−ν2
s )

, it

emerges, as before, that the coefficients are independent of `, with the exception of the
microrotation gradients that scale with first order in `. Consequently, in the limit `→ 0
the contribution of the microrotation gradients is missing and the equivalent continuum
is non-polar. Accordingly, the strain energy density in the continuum approximation
takes the form:

w =

√
3
(
C2
` `

4
(
3ε211 + 4ε212 + 2ε11ε22 + 3ε222

)
+ 48C`D``

2
(
ε211 + ε222 + 2ε212

))
96D``3 + 8C``5

+

6
√

3
(
D2
`

(
3ε211 + 12ε212 − 6ε11ε22 + 3ε222

)
+D`

(
12D` + C``

2
)

(ω − ϕ̂)
2
)

12D``3 + C``5
+

Kw

(
39
(
59ε211 + 96ε212 + 22ε11ε22 + 59ε222

)
)

4480
√

3
. (C.7)

Appendix C.2. Constitutive equations

The constitutive equations ensue from (C.7):

σ11 = σsym11 =

(√
3
(
3C``

2 + 12D`

)
4 `3

+
767Kw

2240
√

3

)
ε11 +

(√
3
(
C``

2 − 12D`

)
4 `3

+
143Kw

2240
√

3

)
ε22,

σ22 = σsym22 =

(√
3
(
3C``

2 + 12D`

)
4 `3

+
767Kw

2240
√

3

)
ε22 +

(√
3
(
C``

2 − 12D`

)
4 `3

+
143Kw

2240
√

3

)
ε11,

σsym12 = σsym21 =

(√
3
(
C``

2 + 12D`

)
2 `3

+
39Kw

140
√

3

)
ε12

σskw12 = −σskw21 =
12
√

3D`

`3
(ω − ϕ̂) ,

σ12 = σsym12 + σskw12 , σ21 = σsym21 + σskw21 .

(C.8)

σsymγδ and σskwγδ are, in turn, the symmetric and skew-symmetric part of the not-symmetric
Cauchy-type stress tensor.

Appendix C.3. Elastic constants

Let us consider the stress state σ11 6= 0, σ22 = σ12 = σ21 = 0. From (C.8) and
Hooke’s law, σsym11 = E∗

1 ε11, the Young’s modulus in the e1 direction is:

E∗
1 =

σ11
ε11

=

√
3
(
13Kw(1− ν2s ) + 32Es λ

) (
39Kw(1− ν2s ) + 70Es λ

(
1 + λ2

))
2(1− ν2s ) (767Kw(1− ν2s ) + 560Es λ (3 + λ2))

, (C.9)
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Figure C.4: (a) The equilateral triangular microstructure, (b) The unit cell.
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Figure C.5: Equilateral triangular microstructure: (a) Springs a, (b) Springs b.
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while the related Poisson’s ratio ν∗12 = −ε22/ε11 is:

ν∗12 =
143Kw(1− ν2s )− 560s

(
λ2 − 1

)
767Kw(1− ν2s ) + 560s (λ2 + 3)

. (C.10)

Similarly, the stress state σ22 6= 0, σ11 = σ12 = σ21 = 0 leads to the Young’s modulus
in the e2 direction, E∗

2 = E∗
1 ≡ E∗, and to the related Poisson’s ratio, ν∗21 = −ε11/ε22 =

ν∗12 ≡ ν∗.
Finally, the stress state σsym12 6= 0, σ11 = σ22 = 0 yields the tangential elastic modulus,

G∗ = σsym12 /2 ε12:

G∗ =

√
3
(
39Kw(1− ν2s ) + 70s

(
λ2 + 1

))
280(1− ν2s )

. (C.11)

Appendix C.4. Comparison between the analytical and numerical approach

In terms of stress, the compact expression of the constitutive equations derived in
Section C.2 is  ε11

ε22
ε12

 =

 C∗
11 C∗

12 C∗
13

C∗
21 C∗

22 C∗
23

C∗
31 C∗

32 C∗
33

  σsym11

σsym22

σsym12

 , (C.12)

with

C∗
11 = C∗

22 =
C22 C33

C2
22 C33 − C2

12 C33
, C∗

12 = C∗
21 =

C12 C33

C2
22 C33 − C2

12 C33
,

C∗
33 =

C2
22 − C2

12

C2
22 C33 − C2

12 C33
, C∗

13 = C∗
23 = C∗

31 = C∗
32 = 0. (C.13)

and

C11 = C22 =

√
3
(
3C``

2 + 12D`

)
4 `3

+
767Kw

2240
√

3
=

√
3Esλ(3 + λ2)

4(1− ν2s )
+

767Kw

2240
√

3
,

C12 = C21 =

√
3
(
C``

2 − 12D`

)
4 `3

+
143Kw

2240
√

3
=

√
3Esλ(3− λ2)

4(1− ν2s )
+

143Kw

2240
√

3
,

C33 =

√
3
(
C``

2 + 12D`

)
2 `3

+
39Kw

140
√

3
=

√
3Esλ

3

(1− ν2s )
,

C13 = C23 = C31 = C32 = 0. (C.14)

As in Appendix B, finite element simulations assess the analytical model. Specif-
ically, the Euler-Bernoulli beam on Winkler foundation elements model the compos-
ite microstructure. The cell wall material, assumed to be isotropic linear elastic, has
Young’s modulus Es = 79 GPa, Poisson’s ratio νs = 0.35 and thickness h = 0.1`, while
Kw = 10−2Es. The numerical analysis involve a 75x50 mm rectangular domain dis-
cretized in an increasing number of equilateral triangular cells having gradually smaller
length `. As in Appendix B, the load conditions are the uniaxial compression, uniaxial
traction and in-plane shear. Forces of the same intensity acting at the boundary, un-
constrained nodes of the domain simulate the loading states. Again, the corresponding

14



Table C.3: Equilateral triangular microstructure: comparison between the analytical and nu-
merical approach, C∗

ij constants

No. cells ` (mm) C∗
11 C∗

22 C∗
12 C∗

21 C∗
33 C∗

13 = C∗
23 = C∗

31 = C∗
32

15x10 5 6.05 6.08 6.02 6.03 7.50 0
75x50 1 6.13 6.13 6.03 6.03 5.90 0

100x100 0.5 6.25 6.23 6.03 6.05 5.90 0
300x200 0.25 6.27 6.29 6.10 6.09 5.10 0
375x250 0.2 6.35 6.34 6.15 6.13 4.80 0
600x400 0.125 6.38 6.39 6.22 6.21 4.60 0
750x500 0.1 6.38 6.39 6.22 6.22 4.60 0

Analytical results 6.43 6.43 6.40 6.40 4.50 0

Table C.4: Equilateral triangular microstructure: comparison between the analytical and nu-
merical approach, elastic moduli

No. cells ` (mm) E∗
1 (GPa) E∗

2 (GPa) ν∗12 ν∗21 G∗ (GPa)

15x10 5 11.33 11.48 0.42 0.45 4.70
75x50 1 11.33 11.39 0.41 0.40 4.63

100x100 0.5 11.10 11.08 0.41 0.40 4.63
300x200 0.25 10.91 10.90 0.32 0.33 4.51
375x250 0.2 10.70 10.78 0.33 0.33 4.50
600x400 0.125 10.61 10.50 0.33 0.33 4.22
750x500 0.1 10.50 10.47 0.33 0.33 4.10

Analytical results 10.46 10.46 0.33 0.33 3.94

effective stiffness components are calculated as the ratio between the average volume
strain,

εij =
1

V

∫
V

εij dV, i, j = 1, 2, (C.15)

and the applied stress (see Appendix B).
The results of the analysis are presented in Tables (C.3) and (C.4). In Table (C.3)

the analytical and numerical values of the C∗
ij constants are compared, while Table (C.4)

deals with the elastic constants. As it can be seen, the results from the continuum
formulation compare reasonably well with the numerical solutions.

Appendix D. The composite cellular material with square microstructure:
focus on springs

As Figure (D.6) shows, the elongation of the elastic springs is expressed by

- Beam (0)-(1)
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Figure D.6: The unit cell with focus on springs in the square microstructure. (a) Beam (0)-(1),
(b) Beam (0)-(2), (c) Beam (0)-(3), (d) Beam (0)-(4).
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Figure D.7: The bi vectors in the square microstructure.
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In the discrete system

∆ u1,a =


u0 − u4

ϕ0 − ϕ4

u1 − u5

ϕ1 − ϕ5

 , ∆ u1,b =


u0 − u2

ϕ0 − ϕ2

u1 − u6

ϕ1 − ϕ6

 , (D.1)

while in the continuum description

u0 = û, ϕ0 = ϕ̂, (D.2)

ui = û +∇û bi +
1

2
(∇2û b2

i ), (D.3)

ϕi = ϕ̂+∇ϕ̂bi +
1

2
(∇2ϕ̂b2

i ), i = 1, 2, 4, 5, 6. (D.4)

Substituting (D.2)-(D.10) into (D.1) leads to

∆ u1,a =


−∇û b4 − (∇2û b2

4)/2
−∇ϕ̂b4 − (∇2ϕ̂b2

4)/2
∇û b1 + (∇2û b2

1)/2−∇û b5 − (∇2û b2
5)/2

∇ϕ̂b1 + (∇2ϕ̂b2
1)/2−∇ϕ̂b5 − (∇2ϕ̂b2

5)/2

 , (D.5)

∆ u1,b =


−∇û b2 − (∇2û b2

2)/2
−∇ϕ̂b2 − (∇2ϕ̂b2

2)/2
∇û b1 + (∇2û b2

1)/2−∇û b6 − (∇2û b2
6)/2

∇ϕ̂b1 + (∇2ϕ̂b2
1)/2−∇ϕ̂b6 − (∇2ϕ̂b2

6)/2

 . (D.6)

Similarly, for the beams (0)-(2), (0)-(3), (0)-(4):
- Beam (0)-(j)
Discrete system

∆ uj,a =


u0 − uk
ϕ0 − ϕk
u2 − ul
ϕ2 − ϕl

 , ∆ uj,b =


u0 − um
ϕ0 − ϕm
u2 − un
ϕ2 − ϕn

 . (D.7)

Continuum description
u0 = û, ϕ0 = ϕ̂, (D.8)

ui = û +∇û bi +
1

2
(∇2û b2

i ), (D.9)

ϕi = ϕ̂+∇ϕ̂bi +
1

2
(∇2ϕ̂b2

i ), i = j, k, l,m, n (D.10)

and

∆ uj,a =


−∇û bk − (∇2û b2

k)/2
−∇ϕ̂bk − (∇2ϕ̂b2

k)/2
∇û bj + (∇2û b2

j )/2−∇û bl − (∇2û b2
l )/2

∇ϕ̂bj + (∇2ϕ̂b2
j )/2−∇ϕ̂bl − (∇2ϕ̂b2

l )/2

 , (D.11)
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∆ uj,b =


−∇û bm − (∇2û b2

m)/2
−∇ϕ̂bm − (∇2ϕ̂b2

m)/2
∇û bj + (∇2û b2

j )/2−∇û bn − (∇2û b2
n)/2

∇ϕ̂bj + (∇2ϕ̂b2
j )/2−∇ϕ̂bn − (∇2ϕ̂b2

n)/2

 . (D.12)

In particular,
Beam (0)-(2): j = 2, k = 1, l = 6, m = 3, n = 7,
Beam (0)-(3): j = 3, k = 2, l = 7, m = 4, n = 8,
Beam (0)-(4): j = 4, k = 3, l = 8, m = 1, n = 5.

Finally, the vectors bi (Fig. (D.7)) are

b1 = (`, 0) , b2 = (0, `) , b3 = (−`, 0) , b4 = (0,−`) ,
b5 = (`,−`) , b6 = (`, `) , b7 = (−`, `) , b8 = (−`,−`) . (D.13)

Appendix E. Composite cellular material with equilateral triangular microstruc-
ture: focus on springs

In the case of equilateral triangular microstructure, the elongation of the springs takes
the form (Fig. (E.8), (E.9))

- Beam (0)-(1)
Discrete system

∆ ua1 =

[
u1 − u6

ϕ1 − ϕ6

]
, ∆ ub1 =

[
u1 − u2

ϕ1 − ϕ2

]
. (E.1)

In the continuum description,

ui = û +∇û bi, ϕi = ϕ̂+∇ϕ̂bi, i = 1, 6, 2 (E.2)

that, substituted in (E.1), lead to

∆ ua1 =

[
∇û b1 −∇û b6

∇ϕ̂b1 −∇ϕ̂b6

]
, ∆ ub1 =

[
∇û b1 −∇û b2

∇ϕ̂b1 −∇ϕ̂b2

]
. (E.3)

For the other beams, similar calculations provide
- Beam (0)-(j)
Discrete system

∆ uaj =

[
uj − uk
ϕj − ϕk

]
, ∆ ubj =

[
uj − ul
ϕj − ϕl

]
. (E.4)

Continuum description

ui = û +∇û bi, ϕi = ϕ̂+∇ϕ̂bi, i = j, k, l (E.5)

and

∆ uaj =

[
∇û bj −∇û bk
∇ϕ̂bj −∇ϕ̂bk

]
, ∆ ubj =

[
∇û bj −∇û bl
∇ϕ̂bj −∇ϕ̂bl

]
, (E.6)

with
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Figure E.8: The unit cell with focus on springs in the equilateral triangular microstructure. (a)
Beam (0)-(1), (b) Beam (0)-(2), (c) Beam (0)-(3), (d) Beam (0)-(4), (e) Beam
(0)-(5), (f) Beam (0)-(6).
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Figure E.9: The bi vectors in the equilateral triangular microstructure.

Beam (0)-(2): j = 2, k = 1, l = 3,
Beam (0)-(3): j = 3, k = 2, l = 4,
Beam (0)-(4): j = 4, k = 3, l = 5,
Beam (0)-(5): j = 5, k = 4, l = 6,
Beam (0)-(6): j = 6, k = 5, l = 1.

Finally, as stated, note that each beam is shared between two adjacent beams. So, each
member contributes only half of its strain energy to the representative cell.
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