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Abstract

Syncopation is a fundamental feature of rhythm in music. However, the

relationship between theory and perception is currently not well under-

stood. This thesis is concerned with characterising this relationship and

identifying areas where the theory is incomplete. We start with a review of

relevant musicological background and theory. Next, we use psychophysi-

cal data to characterise the perception of syncopation for simple rhythms.

We then analyse the predictions of current theory using this data and iden-

tify strengths and weaknesses in the theory. We then introduce further

psychophysical data which characterises the perception of syncopation for

simple rhythms at different tempi. This leads to revised theory and a new

model of syncopation that is tempo-dependent.
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Chapter 1

Introduction

Music is a temporal phenomenon; it unfolds over time. Rhythm describes

how musical events are structured in time. A key feature of musical

rhythm is regularity; periodicities in rhythms are perceived by human

listeners as beats. We naturally infer structure, known as meter, from

these underlying periodicities. Meter allows us to anticipate future events

and to engage with music, for example by dancing in time to the music.

Deliberate violations of meter in music can provide a curious, often disori-

enting sensation known as syncopation, and can occur with even a single,

carefully placed note in an otherwise regular stream. Hence, syncopation

provides a channel through which we may investigate the broader nature

of meter.

Syncopation is widely used in music and is even a central feature of

many music styles and cultures such as Jazz, Cuban Son and African

drumming. Various compositional techniques have been established to

achieve an effect of syncopation, but essentially they all undermine the

perception of meter by adding conflicting components onto the rhythm

surface. Syncopation can enhance the complexity and richness of rhythm;

it subtly teases our expectations and provides a mechanism to counter the

orderly nature of music. In this thesis, we explore the factors that give

rise to the perception of syncopation and test how well the established

theories of syncopation can explain our observations.

17
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1.1 Motivations

The need for syncopation measurement

Syncopation is one of the fundamental rhythmic features in music and a

crucial aspect of character in many music styles and cultures. Having a

more complete understanding of syncopation and comprehensive models to

capture syncopation perception allows us to better understand the broad

aspects of music perception.

For example, the link between syncopation and beat or meter per-

ception has been widely investigated [HO81, SK01, KR01, TS03, FR07].

Multiple approaches to modelling the way that meter is perceived and

encoded from syncopated rhythm-context have been proposed [LHL84,

PE85, Par94, Eck01, VL11]. It has been found that syncopation has an

effect on rhythm identification [Moe12] and rhythm memorisation [FR07].

In addition to rhythm perception, the phenomenon of syncopation is

also linked to more elusive and subjective feelings and responses to music.

For example, one of the recent topics of debate explores whether syn-

copation facilitates or inhibits groove. Groove refers to the sensation of

wanting to move some part of the body to music [Mad06]. Some evidence

has suggested that adding syncopation led to stronger groove [MSD+13],

whereas some evidence has suggested their relationship is inverted-U-

shaped where the sensation of groove and pleasure is optimised at medium

syncopation, but decreased towards the extreme ends of degree of synco-

pation [WCW+14]. More than that, syncopation seems to affect human

emotion [KS11, Hur06] and some physiological responses, e.g. increased

heart rate [Slo91].

With the development of brain sciences in recent years, there has been

a growing interest in collecting neuroscientific evidence from both humans

and animals when listening to music. One particular focus is in what kinds

of neurophysiological responses are elicited by syncopation and how they

correlate with the sensations that syncopation arouses [MFD+01, LH09,

HLHW09, TK03, VOP+09]. For example, some evidence suggest that

syncopation elicits brain activity associated with violating sensory expec-

tations, and this effect is found from both adult listeners and newborn
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infants which support the view that beat perception is innate [WHL+09,

HLHW09]. There is also evidence suggesting the link between meter in-

terpretation in a polymetric context and the activation of language ar-

eas [VWOR11]. These studies complement our understanding of the brain

mechanisms and functions in processing rhythm.

In the field of music information retrieval, syncopation has been consid-

ered a contributory feature in the computation of rhythm similarities be-

tween rhythm-patterns [Smi10, PRBH14, PT11]. Psychological evidence

has supported the relationship between syncopation and the perceptual

judgement of rhythmic similarities [Lad09, Str06, SH93]. Some evidence

has suggested that by involving perceptual features, instead of merely

building upon lower-level rhythmic features, the computation of rhythm

similarity improves the performance of rhythm classification tasks [GDPW04].

Thus a measure that captures perceptual syncopation will directly ben-

efit the development of algorithms for estimating rhythm similarity and

general rhythmic description.

In brief, syncopation interacts with a range of musical concepts and has

broad effects on music perception and cognition. Investigations on these

effects of syncopation need quantitative measures of syncopation that can

correctly reflect human perception. This provides the major motivation

for us to closely examine the existing theory and models for syncopation.

Lack of direct investigation on syncopation perception

It is clear that there is a need for a reliable, validated measure of synco-

pation. However, current approaches have either been based on indirect

perceptual measures or theoretical models that have not been formally

tested. As Figure 1.1 shows, studies that investigate the link between

syncopation and broad music perception and cognition rely on measures

of rhythm-complexity or predictions of syncopation by theoretical models,

i.e. links A - C in the figure.

For example, Fitch and Rosenfeld [FR07] controlled the degree of syn-

copation quantified by Longuet-Higgins and Lee’s syncopation model [LHL84]
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Figure 1.1: Tested and untested relationships between theory and perception.
Music perception studies have been utilising indirect measures of syncopation
such as rhythm-complexity, or theoretical models of rhythm-complexity and
syncopation (indicated by links A - C). These models have only been tested
against perceptual datasets of rhythm-complexity (links D and E). However,
the relationship between syncopation perception and rhythm (link F) is still
unknown. A perceptual dataset for syncopation would be valuable for the eval-
uation of theoretical models of syncopation and the linkage to music perception
and cognition in general (link G).

(which will be discussed in detail in Sections 2.3 and 3.2.1) to test beat in-

duction, rhythm reproduction and rhythm memorisation. Likewise, Witek

et al. [WCW+14] tested the relationship between groove and predictions

of syncopation generated by Longuet-Higgins and Lee’s model. Similarly,

Keller and Schubert designed a model which they then used in experiments

to test the effect of syncopation on emotional responses [KS11].

There has been no attempt yet to directly measure syncopation per-

ception (Figure 1.1, link F). However, such an investigation is required in

order to allow a formal and systematic evaluation of the theory and mod-

els (link G). It is therefore questionable whether current music theory or

models can accurately predict the strength of syncopation as how human

listeners perceive it.

The concept of syncopation has often been fused with rhythm-complexity

(Figure 1.1, Links D and E) [Tou02, Thu08, SG11, Pre97, WCW+14], re-

sulting in ambiguities in the modelling of both percepts. As illustrated



CHAPTER 1. INTRODUCTION 21

in Figure 1.1, syncopation models have previously only been evaluated

against datasets of rhythm-complexity [GTT07, Thu08, SH07], such as the

perceptual dataset collected by Shmulevich and Povel [SP00] that com-

prises perceptual ratings of rhythm-complexity for 35 rhythm-patterns.

In summary, diverse theories and modelling approaches for syncopa-

tion have been heavily used in studies in multiple disciplines, yet, they

have not been proven to be entirely reliable so far. A direct investigation

of syncopation perception is therefore needed to test how well the theo-

ries and models capture perception, and to clarify the confusion between

syncopation and rhythm-complexity.

1.2 Methodology

To address the missing information on direct syncopation, we will use ap-

proaches from psychophysics to collect human data on syncopation per-

ception. Psychophysics applies psychological methods to quantify the re-

lationship between perception and stimulus [Ste75]. A fundamental postu-

late of psychophysics is that perception should have underlying objective,

physical correlates which may be quantified as features of the stimulus.

For example, intensity is the objective correlate of loudness (i.e. perceived

intensity).

The music score is a symbolic encoding that describes the set of events

comprising a piece of music. For the purposees of this thesis, we will deal

only with scores that describe Western common practice art music. Before

these notated events can be perceived as music by a listener, they must be

rendered (e.g. by the performer) as an acoustic pressure signal that varies

over time (Figure 1.2). The rendering process mediates the transformation

between the score and the perception. By manipulating the score, we can

find out what features of the score correspond to features of perception.

Main method and rationale

To directly investigate the perception of syncopation, we asked musicians

to provide ratings on a limited scale to indicate the perceived strength
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Figure 1.2: Transformation: from the music score to perception. Before the
notes on the score can be perceived as music by the listener, the score must
be rendered (e.g. by a performer) as an acoustic (pressure) signal which varies
over time.

of syncopation elicited by designed rhythm-stimuli. This method is suit-

able for the purpose because the most direct method to identify human

perception is by letting them describe what they have perceived (assum-

ing it can be explicitly and accurately described). Other methods, such

as measuring objective biophysical responses and behaviour, effectively

separate sensation and verbalisation and are therefore viewed as indirect

methods [BZ06].

In addition, we believe that scaled rating is the optimal approach to

collect subjective measures for our task. It is easy to implement and

provides well-specified and unified descriptors [BZ06]. It also allows quan-

tifiable subjective descriptions, which suits the concept of syncopation. In

contrast to other methods, such as quantifying the difference in syncopa-

tion between a pair of stimuli or ranking multiple stimuli by the degree of

syncopation, scaled rating does not require comparisons between stimuli

thus is simple for the listeners.

In contrast, previous studies adopted indirect methods that focus on

the objective measures, such as the difficulty in rhythm reproduction [PE85,

FR07], quality of rhythm recognition [FR07, Moe12], the consistency of

beat synchronisation [PE85, FR07] and brain activities [HLHW09, LH09].

These methods are based on the assumed relationship between perceived

syncopation and the indirect measure, but this assumption has not been

verified yet.
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Experiment subjects

We selected musicians for our experiments. All of the participants had

several years of music training and experience, and thus they all under-

stand syncopation and felt confident about their perceptual ratings. Non-

musicians may not have been suitable for the task because there is no

guarantee that they are familiar with the concept of syncopation in the

same way as musicians would be.

Another reason to choose musicians is that some evidence suggest non-

musicians have a weaker ability to synchronise to the beats and organise

metrical structure than musicians [CPZ08, RD07, PK90]. Hence they may

be less sensitive to the perception of syncopation, because the sensation of

syncopation is built upon a firm grip on mental representations of meter.

General design of experiments

We conducted two experiments that involved collecting musicians’ ratings

on perceived syncopation. Experiment 1 focused on manipulation of the

rhythm-score as the objective correlate of perceived syncopation. In par-

ticular, we focused on testing the effect of location and distribution of

notes on syncopation. We used a monophonic, unaccented, and percus-

sive sound in creating rhythm-stimuli, in order to rule out the potential

confounding effects, such as dynamic, melodic and duration factors. A

metronome was played simultaneously with rhythm-patterns to experi-

mentally control the metrical interpretation [PE85]. Method and results

will be discussed in more detail in Chapter 4.

In Experiment 2, we selected a set of syncopated rhythm-patterns from

Experiment 1. These were played at different tempi (Section 2.1.4) to test

the relationship between tempo and perceived syncopation. The method

and results of this experiment will be discussed in Chapter 6.

In summary, we asked musicians to rate the degree of syncopation they

perceived in response to a rendering of each rhythm-stimulus. This serves

to directly investigate the perception of syncopation in a way that has not

been achieved by previous approaches. It is worth mentioning here that a

track of metronome is added into the rhythm-patterns to provide explicit
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cues to the meter. This is a unique feature that differentiates our work

from previous approaches [PE85, SP00, FR07].

1.3 Goals and objectives

In this thesis, we address the following two main research questions:

• Research Question 1: What are the factors in rhythm influencing on

perceived syncopation?

• Research Question 2: To what extent do current theoretical models

of syncopation and music theory in general capture the perception,

and what elements are missing?

To find answers to these questions, our main objectives are:

• To conduct experiments that investigate the contributing factors to

perceived syncopation. In particular, the rhythmic attributes that

we target are: rhythm-components (i.e. micro units to form rhythm-

patterns), the combinations of different rhythm-components, time-

signature1 and tempo.

• To review and clarify the existing theory and models of syncopation.

• To evaluate syncopation models against human perceptual data.

1.4 Thesis outline

The main purpose of this thesis is to provide a step towards unifying

music theory with music perception in terms of syncopation. Figure 1.3

shows the overall arrangement of contents and the connections between

chapters. Chapters 2 and 3 explore the theory and models of syncopation.

Chapter 4 presents Experiment 1, which enables the formal evaluation

of the models in Chapter 5. Chapter 6 presents Experiment 2, which,

combined with findings in covered in Chapter 5, leads to the improvement

1In this thesis, we limit the tested time-signatures to isochronous 4/4 and 6/8 (see Sec-
tion 2.1.3 for more details), and exclude non-isochronous (NI) meters [Lon04]
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Figure 1.3: Thesis outline.

of the modelling of syncopation in Chapter 7. The following sections

provide a brief overview of the individual chapters.

Chapter 2

In this chapter, we start with presenting fundamental rhythmic concepts

that are directly relevant to the understanding of this thesis, including

rhythm, beat, meter and tempo. We then review how syncopation is

explained in music theory and summarise the main streams of thought in

the literature. Finally, we give a brief overview of the existing syncopation

models and categorise them by theoretical basis.

Chapter 3

This chapter provides a comprehensive review of syncopation models and

introduces a consolidated mathematical notation that unifies the field.

We first introduce some general mathematical terms and operations for

representing rhythm and meter. We then describe the mechanism of each

syncopation model with mathematical notations and illustrative examples.

Chapter 4

In this chapter, we address Research Question 1 by conducting an experi-

ment, which will be referred to as Experiment 1. This experiment involved

manipulating rhythm-patterns by choosing different rhythm-components

and time-signatures to produce audio stimuli. Using this stimuli, we col-

lected the subjective ratings of perceived syncopation for each stimulus.
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Chapter 5

In this chapter, we address Research Question 2 by implementing the first

formal and direct evaluation of the models described in Chapter 3 using

perceptual data established from Experiment 1. Based on the evaluation

results, the strengths and weaknesses of the various theoretical approaches

are then identified.

Chapter 6

In this chapter, we further investigate Research Question 1 to test if syn-

copation is tempo-dependent. We present Experiment 2, in which we col-

lected perceptual ratings of syncopation of same rhythm-pattern played

at different tempi. In the beginning of the chapter, we provide a thorough

review of relevant studies in the literature. We then introduce the method

for the experiment, analyse the results and finally seek connections be-

tween our observations and the findings of related studies.

Chapter 7

This chapter explores ways to improve the modelling of syncopation per-

ception. Building on the findings in Chapter 5, we consolidate the most

successful elements piecemeal into new combined models. In addition, we

incorporate the findings from Chapter 6 into the new models, attempting

to capture the tempo-dependent nature of syncopation.

Chapter 8

We conclude the thesis with a revision of the answers to the research

questions. We focus on the major findings from our perceptual studies

and the areas where current theory explains perception and where it falls

short. We also propose research topics for the further investigation on

syncopation perception.



Chapter 2

Syncopation in music theory

In this chapter, we review the fundamentals of rhythm, including the

notions of beat, meter and tempo. We then investigate different definitions

given for syncopation in music theory, and collect them into four major

hypotheses. We follow this with a brief introduction of eight syncopation

models from current literature, which we will cover in more detail in later

chapters.

2.1 Fundamentals of rhythm

In order to introduce the concept of syncopation in music theory, we need

to start with some musical terms that describe fundamental aspects of

rhythm.

2.1.1 Rhythm

The word rhythm has been loaded with multiple meanings, some of which

are only vaguely related to each other. Some refer to rhythm as the regular

recurring patterns in time that can be structured (i.e. close to meter)

or grouped [LH78, LHL84, LJ83]. Some view it as the organisations of

events with different perceptual emphasis, as Cooper and Meyer state:

“the way in which one or more unaccented beats are grouped in relation

to an accented one” [CM60, p.6]. Some propose definitions for rhythm

in a broader sense, for example, the Oxford Dictionary of Music defines

rhythm as “everything pertaining to the time aspect of music, as distinct

from the aspect of pitch” [Ken94, p.724]. Similarly, London states that

27
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Table 2.1: Basic note-values and the corresponding music notations. The note-
values are relative to a whole-note.

Note Rest Note-value American name British name

! £
1 Whole-note Semibreve

@ £ 1
2 Half-note Minim

A ) 1
4 Quarter-note Crotchet

$ * 1
8 Eighth-note Quaver

% + 1
16 Sixteenth-note Semiquaver

“rhythm involves the pattern of durations that is phenomenally present

in the music” [p.4][Lon04].

Throughout this thesis, we follow the school of thought that defines

rhythm in the relatively objective and broad sense [Ken94, Lon04, Gou05]:

it is the sequence of durations of the musical events. Such a concept

of rhythm is detached from the subjectively processed products of the

patterns of event durations, such as grouping [LJ83, p.13] and periodic-

ity [LH78]. Instead, it simply refers to the physical distributions of musical

time.

Note-values

In Western classical music theory, a sounded event is called a note [Ken94,

p.626], and a silent event is called a rest [Ken94, p.722]. Each note or rest

has its duration (i.e. the time between the start or onset and the end or

offset). In music notation, a scored note-value denotes the duration of the

note or rest event. Some instruments and techniques to play instruments

can control the onset and offset independently, thus allowing direct control

of note duration. For example, when you press a key on an organ, the

sound starts and will continue sounding until the key is lifted. In contrast,

a purely percussive sound, such as a side-stick on a snare drum, which has

a very fast decay time, affords no control over duration. Therefore, while

a note-value defines the abstract onset and offset times of an event, it

does not necessarily mean the sound will actually continue for the entire
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Figure 2.1: The equation of note-values. A half-note is equivalent in note-value
to two quarter-notes, four eighth-notes or eight sixteenth-notes. The curly tails
of two or more eighth-notes can be jointed together by a beam [Tay89, p.3]; two
or more sixteenth-notes can be joined together by two beams.
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Figure 2.2: Examples of triplets. (a) Three triplet quarter-notes are of the
same length as a half-note. (b) Three triplet eighth-notes are equivalent to a
quarter-note. (c) A triplet can be a group of notes and rests.

duration.

Table 2.1 lists a set of basic note-values commonly used in music nota-

tion. It should be noted that these note-values do not represent absolute

time durations (e.g. seconds). Instead, they are relative durations with

respect to the whole-note which is treated as the reference. For exam-

ple, a half-note has a note-value of 1/2, which is half the duration of a

whole-note.

Each note-value shown in Table 2.1 can be divided by two to give the

value on the row below (the sixteenth-note can be further divided in two,

giving a thirty-second) and so on. In terms of durations, these note-values

then form the relationship shown in Figure 2.1: a half-note is equivalent in

note-value to two quarter-notes, four eighth-notes or eight sixteenth-notes.

The note-values in Table 2.1 are all halved to produce the row below

but a note-value may also be divided by some values other than a power of

two. In this case, the desired subdivision needs to be specified explicitly.

For example, we commonly see a group of three equal-duration events

played in the time of two, and this is known as a triplet figure [Ken94,

p.901]. The notation convention for this is to add the number 3 above the

group of events to be played as a triplet (Figure 2.2).
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Figure 2.3: Examples of tied notes. (a) The final sixteenth-note is tied to
the first eighth-note, which creates a single note with duration equivalent to
three sixteenths. (b) An eighth-note, a half-note and a quarter-note are all tied
together, forming a total duration of seven eighths.
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Figure 2.4: Examples of dotted notes. (a) A dotted half-note is equivalent to
joining a half-note with a quarter-note (i.e. half of a half-note). (b) A dotted
quarter-note is equivalent to an eighth-note tied to a quarter-note. (c) A double-
dotted quarter-note is equivalent to a quarter-note tied to an eighth-note (half
of quarter-note), then further tied to a sixteenth-note (half of the preceding
eighth-note).

Tied notes and dotted notes

In music notation, it is possible to indicate that separate musical notes

(with the same pitch) should be played as a single note, by connecting

them with a tie; the duration of this single note is equal to the sum of the

note-values of individual notes [Tay89, p.33]. To illustrate, in Figure 2.3a,

the curved line connecting the fourth sixteenth-note and the first eighth-

note is the tie. The tied-note can also be further tied to following notes

such as in Figure 2.3b.

Another notational method to extend a note-value is to add one or

more dots after a note or a rest. Each dot extends the duration by half of

the preceding note-value. Examples of dotted notes and their associated

durations are shown in Figure 2.4.
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2.1.2 Beat

Some musical events give rise to moments of perceptual emphasis in the

musical flow; these are known as accents [CM60, p.7]. Accents can arise

from the contrast between rest and note, a change in dynamics (e.g. soft

to loud), a contrast in duration, or a change in pitch, or from a mixture

of these.

Perceived accents serve as the cues for human listeners to extract an

underlying periodic pattern [LJ83, p.17]. This perceived regular pattern

is known as the beat1 [Tra07], or the pulse [CM60, p.3]. Like the ticking

of a clock, a series of beats are equally spaced in time2.

Tactus

The perception of beat arouses synchronised movements in the form of

tapping, nodding and dancing [Lon04, pp. 9 - 12]. There can be multiple

periodicities (forming multiple beat sequences) perceived from a given mu-

sical excerpt, but usually only one or two of which are primarily tracked by

listeners for synchronising (e.g. tapping or dancing). This beat sequence

is referred as the tactus [LJ83, p.21].

2.1.3 Meter

In some music cultures, particularly in western music, recurring patterns

underlying a sequence of beats are usually strongly perceived. For exam-

ple, when listening to marching music, we intuitively count the beats as

‘one-two-one-two’ or could be said to feel ‘strong-weak-strong-weak’. Like-

wise, when listening to waltz, the beats are naturally structured as ‘one-

two-three-one-two-three’ or ‘strong-weak-weak-strong-weak-weak’. In this

way, the beat groupings form higher levels of periodicity, giving rise to a

multi-level structure, known as meter [Lon04, p.17].

1In this thesis, we focus only on the case of isochronous beats, as Parncutt’s notion of a
layer of pulsation [Par94]

2The time intervals between successive beats are theoretically identical, but this is not
always desirable in expressive musical performance where the interval may be varied by the
performer for musical effect.
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Beat    1   2   3   4   1   2   3   4   1   2   3   4 

S  W  S  W S  W  S  W

Beat    1   2   1   2   1   2   1   2   1   2   1   2 

S  W  S  W S  W  S  W

1   2   3   1   2   3   1   2   3   1   2   3 

S  W  WS  W  S  W S  W  W S  W  W S  W  W

S  W  S  W

1   2   3   4   5   6   1   2   3   4   5   6 

S  W  W S  W  W S  W  W S  W  W

(a) (b)

(c) (d)

Figure 2.5: Examples of beat groupings and the resulting beat salience. The
grey box indicates the group, or bar. S and W refer to strong and weak. (a) A
two-beat grouping. (b) A three-beat grouping. (c) A four-beat grouping. (d)
A six-beat grouping.

Beat grouping and beat salience

Lerdahl and Jackendoff state that “fundamental to the idea of meter is the

notion of periodic alternation of strong and weak beats” [LJ83, p.19]. The

‘strong’ or ‘weak’ here describes the perceptual beat salience. Recalling

the examples of marching music and waltz, patterns of beat organisation

may be illustrated in dot notation as in Figure 2.5a-b. Here, the two-

or three-beat groupings form two levels of periodicities, and the first beat

marks the coincidence of these two periodicities. If the beat at a particular

level of periodicity also exists in the next larger level, it is called a strong-

beat, otherwise is a weak-beat.

Additionally, the non-prime beat groupings give rise to equal size sub-

groups of beats (i.e. the prime factors), hence forming multi-level metrical

structures. For example, the four-beat grouping in Figure 2.5c forms two

groups of two beats. Likewise, the six-beat grouping in Figure 2.5d forms

two groups of three beats. It is also possible to subdivide a group of six

into three groups of two beat, and this gives a metrical structure with

different rhythmic emphases. It should be noted that for meter to be well-

formed [LJ83, pp.69-72], we may only group elements that are of equal

length. For example, while a six-beat grouping can be two threes or three

twos, it cannot be divided into a group of two and a group of four.
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Figure 2.6: Duple versus triple, simple versus compound. Meter can be cate-
gorised by patterns of beat grouping and beat subdivision. Two-beat group-
ing and three-beat groupings are referred to as duple and triple respectively.
Binary- and ternary-beat subdivisions are referred to as simple and compound.

Bar

When composing, particularly when notating music, composers will gen-

erally try to choose an appropriate primary beat grouping. This serves

as an indication to the performers of how to count beats, and thus how

to interpret the score. Each complete cycle of this primary beat grouping

is called a bar (or measure) and in musical notation is enclosed between

two bar lines [Ran86, p.506] (represented by the grey boxes in Figure 2.5).

The first beat in a bar is called the down-beat, corresponding to all the

beats labelled 1 in Figure 2.5.

Time-signature

A time-signature is used for notating meter in the musical score. It is

usually indicated by a fraction where the denominator indicates the basic

note-value counted in a bar, and the numerator indicates the number

of such note-values making up the bar [Ran86]. For example, a time-

signature of 2/4 means a bar consists of two units, each of which has

a note-value of 1/4, i.e. a quarter-note (Table 2.1). Similarly, a time-

signature of 6/8 means a bar comprises six units, each of which is an

eighth-note.

As shown in Figure 2.6, the basic types of beat grouping include two

beats per bar and three beats per bar. These groupings are referred to as

duple and triple respectively [Ran86, p.506]. Two types of beat subdivision

are also distinguished: simple refers to a binary beat subdivision, and
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Figure 2.7: Time-signatures and their hierarchical structures, patterns of beat
groupings and beat subdivisions. (a) A 2/4 time-signature. (b) A 4/4 time-
signature. (c) A 3/4 time-signature. (d) A 6/8 time-signature.

compound refers to a ternary subdivision [Ran86, p.506].

Figure 2.7 presents four time-signatures commonly adopted in music

notation, in the form of a tree structure. The time-signature of 2/4 and

4/4 are counted as simple-duple meters3, because both feature two-beat

groupings and binary subdivisions. The time-signature of 3/4 features

a three-beat grouping and binary subdivision, therefore is known as a

simple-triple meter. In contrast, in 6/8 time, a two-beat grouping and

ternary-beat subdivision constitute a compound-duple meter.

There is a common misinterpretation that the denominator in the frac-

tion of time-signature refers to the note-value of the beat, and the numer-

ator indicates the number of beats. This may be true for simple meters,

but cannot work for compound meters [Lon04, p.18]. Take 6/8 for exam-

ple (Figure 2.7d), the beat level is carried by dotted notes with note-value

3/8, instead of the eighth-notes with note-value 1/8.

Metrical levels

So far, we have discussed the origin of meter, which manifests in the higher

levels of periodicities structured from the fundamental periodicities (i.e.

beats) in a rhythm sequence. We have also introduced concepts related to

3As a special case of duple meter, 4/4 is sometimes termed quadruple meter for its four-beat
recurrence.
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meter, including bar, time-signature, and categories of metrical structure

in terms of patterns of beat grouping and beat subdivision. But why do

we need to know these? What is meter for? Essentially, meter is used for

providing a framework to structure rhythm. Borrowing from London, the

relationship between rhythm and meter can be described thus: “meter is

a mode of attending, and rhythm is that to which it attend” [Lon04, p.4].

Earlier, in Figure 2.7, we employed tree diagrams to present the metri-

cal structure of different time-signatures. Throughout this thesis, we refer

to each (horizontal) layer in the tree as a metrical level, representing the

units in this level of periodicity. Each node in the tree is referred as a

metrical position.

Different rhythms in the same time-signature are fitted into in the

same framework of meter, but they may project different sets of metrical

levels. As shown in Figure 2.8, the three one-bar rhythm-patterns are

in a time-signature of 2/4 but have different number of metrical levels.

Defined by the time-signature, their bar levels all locate at the half-note

level, and all beat levels locate at the quarter-note level. However, the

lowest metrical level for the three rhythms are different, because it is

carried by the shortest note-values presented in the rhythm. This leads

to the concept of tatum, which is formally defined in [Bil93, p.22] as “the

regular time division that most highly coincides with all note onsets”4.

Therefore the tatum levels for three rhythms in Figure 2.8 are the a)

quarter-note level, b) eighth-note level and c) the sixteenth-note level.

Finally, tactus is the periodicity that human listeners naturally tap to or

dance to (Section 2.1.2). Which metrical level will be selected as tactus

depends on tempo. In the following section, we introduce the concept and

notation of tempo in music, and we will continue to review the relationship

between tactus and tempo in Chapter 6.

4It should be noted that there is not always a tatum solution for all types of music;
hardanger fiddle music for example [Lon04]
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Figure 2.8: Metrical hierarchies projected by rhythm-patterns in a given time-
signature. Metrical hierarchy is presented as a tree structure as in Figure 2.7.
The bar level and beat level are determined by the time-signature, and are
indicated in grey and pink respectively. The tatum level, indicated in green, is
the smallest metrical level. Any level could be selected as the tactus, indicated
in blue.

2.1.4 Tempo

Tempo describes the speed of a musical excerpt. Before the invention of

the metronome, composers would indicate the speed of a piece of music

using Italian musical terms (e.g. allegro means fast, quick and bright,

Moderato means moderately). These terms would be interpreted by the

musician in order to perform to piece. With the invention of metronome,

it became possible for composers to specify precisely what speed the music

should be played at by linking a note-value to a specific beat rate, with

a metronomic indication. This is defined as the rate per unit of time

of a given metrical level [Ran86, p.873]. Figure 2.9 shows an example

of tempo indication in beginning of a musical score. By convention in

musical notation, the tempo is indicated in beats per minute, where the

beat is defined by a certain note-value.

A number of concepts are closely linked to tempo in the perceptual

domain, such as the pulse rate that people would tap or dance to, called

the tactus rate (Section 2.1.2). It is also related to the notion of preferred

tempo (or indifference interval) that refers to the rate when music sounds

neither too fast nor too slow but just right [QW06, MJH+06, Fra63]. In
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Figure 2.9: Example of tempo indication in the beginning of the musical score.
The tempo of a music excerpt, shown here in red by the metronomic indication,
is indicated to be 120 beats per minute (BPM), counting each quarter-note as
a beat. Therefore, each quarter-note has a duration of 0.5 seconds.

this thesis, we will refer to tempo only as the defined beat rate in the music

notation (Figure 2.9), as opposed to the subjective judgement of tempo.

2.2 Definitions for syncopation

So far, we have introduced the concepts of beat and meter. From the com-

poser’s or performer’s perspective, they serve as the fundamental struc-

ture for various interesting rhythm-patterns to be built upon. From the

listener’s perspective, they are the underlying precepts extracted from the

temporal patterns in the music. Sometimes, however, composers or per-

formers may deliberately set up rhythm-patterns to undermine the estab-

lished meter structure, and create a situation where the meter may not be

readily perceived from the rhythm surface for listeners. This phenomenon

is known as syncopation.

The classic definition of syncopation is the “momentary contradiction

of the prevailing meter or pulse” [Ran86, p.861]. Music theorists have

attempted to explain the effect of syncopation using a range of prototypical

rhythm configurations. Thus, we see diverse opinions of the scopes of

syncopation in terms of rhythmic instances. In the following sections,

we are going to review the definitions and explanations of syncopation

in music theory, and try to classify the main schools of thought on the

subject.
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Figure 2.10: Examples of syncopation aroused from violation of regular beat
salience. (a) A rhythm-pattern that has rests (indicated in red) placed on
the down-beats (i.e. strong-beats). (b) The note on the second strong-beat
(indicated in red) is tied to the previous note, causing an absence on the down-
beat. (c) The rhythm-pattern contains an onset and agogic (durational) accent
on the second weak-beat, and absence of note on the following strong-beat. (d)
The reggae drum-pattern in “Stir It Up” by Bob Marley. It is also a mixture
of missing down-beat and accented weak-beat.

2.2.1 Violation of the regular beat salience

A metrical structure is inbuilt with allocations of metrical weight (strong

or weak) at each beat position (see Section 2.1.3). All explanations of syn-

copation share the consensus that it involves the violation of the regular

succession of strong- and weak-beats, by creating an absence of sounded

note on the strong-beats, and/or by shifting accents to notes on the weak-

beats (Figure 2.10 provides some rhythm examples to demonstrate these

two effects). The majority of sources refer syncopation to both occa-

sions [Ran86, Ken94, Hur06, LHL84, HO06, Tem99, Tem01], with the

exception of Cooper and Meyer who exclude the occasion of accented

weak-beats from the scope of syncopation [CM60, p.100].

Huron [Hur06, pp. 295-297] specifies five types of syncopation af-

fected by accenting weak-beats in different ways (see Section 2.1.2). These

are: onset syncopation (due to note/rest positions), dynamic syncopation

(sounding notes loudly on weak-beats), agogic syncopation (placing longer
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(b) On-beat notes tied to the previous off-beat notes

Figure 2.11: Examples of off-beat notes that followed by a rest or a tied-note on
the next beat. Two short pieces of rhythm in 4/4 are presented. The grey dots
indicate the beat location. In (a), there are four notes (in red) enter between
the beats and the following beat is placed with a rest note. In (b), two notes
occur off-beat and are tied by the notes on the following beat. Both are thought
to arise syncopation [CM60, LHL84, HO06].

notes on weak-beats), harmonic syncopation (changes in pitch/harmony

on weak-beats) or mixed syncopation (a combination of the above).

2.2.2 Off-beat

When a note is placed on the beat, it is called on-beat ; otherwise it is

off-beat. Off-beat events are thought to cause a shift of the emphasis away

from the strong-beats, hence producing syncopation. However, theories

diverge here where some state that only an off-beat event followed by an

unfilled beat gives rise to syncopation, while some do not.

Cooper and Meyer were exponents of the idea that syncopation is

aroused from shifting the note on the beat backward in time (i.e. move

it to be earlier). They defined syncopation as “a tone which enters where

there is no pulse on the primary metric level (the level on which beats are

counted and felt) and where the following beat on the primary metric level

is either absent (a rest) or suppressed (tied)” [CM60, p.100]. Examples

are shown in Figure 2.11. Longuet-Higgins and Lee [LHL84] expressed the

same notion, which was then formalised in their mathematical model, the

mechanisms for which will be further discussed in Section 3.2.1.
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Figure 2.12: Syncopation types as defined in [Kei91]. Grey dots indicate beats.
(a) presents hesitation, where a note (in red) ends off-beat; (b) presents antic-
ipation, where the note starts off-beat; and (c) presents syncopation, where it
both starts and ends off-beat.

In contrast, some believed that an off-beat event would result in syn-

copation regardless of the rhythmic context it is in. For instance, Keith

stated that “syncopation occurs when events start or end off the beat” [Kei91],

specifying three types of syncopated event, named hesitation, anticipation

and syncopation (examples of which are shown in Figure 2.12). The de-

gree of syncopation is differentiated by the rhythmic context in which

the off-beat event is placed, and is thought to increase from hesitation to

anticipation then to syncopation. Nevertheless, they are all regarded as

manifestation of syncopation, whereas hesitation is not defined as a form

of syncopation by other theorists [CM60, LHL84].

A similar notion can be found in [Tou05, GMRT05], where capturing

off-beat events is the major focus in the modelling of syncopation. Gómez

et. al [GMRT05] posit that the sense of syncopation is aroused by the

effect of imbalance, and that this is a result of lopsided placing of the off-

beat events. The essence of their syncopation model, the Weighted Note-

to-Beat Distance model, is that the strength of syncopation is inversely

related to the distance of each note to its nearest beat, i.e. the closer the

note is to the beat, while it is still off-beat, the higher syncopation it gets.

2.2.3 Transformation of meter

Some theories state that syncopation can be aroused by a sudden trans-

formation of the fundamental character of the meter [Ran86, Ken94]. For

example, a change of feel from duple to triple, as affected by alteration

of accents in the rhythm (Figure 2.13a) or a change of time-signature in

the score (Figure 2.13b). The transformation of meter can give rise to
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Figure 2.13: Examples of transformation of meter.

the effect of shifting the bar line, and may cause one of the weak-beats to

function as a strong-beat [Ran86].

2.2.4 Polyrhythm

A large set of rhythms that result in a sense of competing meters is

polyrhythms (or cross-rhythms). Polyrhythm has been defined as “the

simultaneous use of two or more rhythms that are not readily perceived

as deriving from one another or as simple manifestations of the same me-

ter” [Ran86, p.669]. A common use of polyrhythm in composition is a

triplet over a binary subdivision of the beat, e.g. Figure 2.14a. This type

of polyrhythm is often referred as 3:2 polyrhythm or hemiola5 [Ken94,

p.398]. Another example is 4:3 polyrhythm, shown in Figure 2.14b, where

the periodicities of four events (from the eighth-notes) and three (from

the triplet) cannot resolve to a single grouping of events. Krebs [Kre99]

described this phenomenon as metric dissonance, aroused by conflicting

periodicities.

From the perspective of meter, polyrhythms present the situation where

two (or more) different metrical hierarchies have to co-exist at the same

time. In other words, one metrical hierarchy that is only allowed a single

type of subdivision at each level cannot capture the conflicted groupings

in a polyrhythm. For example, in Figure 2.14a, the rhythm-pattern on

the top line suggests that the bar should be equally subdivided into three

(i.e. three groups of two eighth-note beats), whereas the bottom line sug-

gests a subdivision of the bar by two (i.e. two groups of three eighth-note

beats). These two different groupings of eighth-note in the bar cannot be

resolved into one metrical hierarchy. Similarly, in Figure 2.14b, the tree

5More specifically, this is known as vertical hemiola. The alternative, horizontal hemiola,
refers to the transformation from duple to triple [Ran86, p.389], e.g. Figure 2.13a.
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Figure 2.14: Examples of polyrhythms and the resulting competing metrical
hierarchies. (a) A 3:2 polyrhythm (often referred to as a hemiola). (b) A 4:3
polyrhythm.

structure of the eighth-notes rhythm-pattern on the top line fits the met-

rical hierarchy implied by the scored time-signature 2/4 (two groups of

two). However, the triplet pattern on the second line suggests a separate

hierarchy with a subdivision of three that cannot fit with groupings of

four.

In the literature, there appears to be no clean cut between syncopation

and polyrhythm. Many theorists do not treat polyrhythm as a form of syn-

copation [Ran86, Ken94, LHL84, Lon04, CM60, HO06, Pre97], while some

think polyrhythms strongly challenge metric construals, therefore feature

syncopation [HO81, GMRT05]. London [Lon04] described polyrhythm

as a “full-blown metric ambiguity”, whereas syncopation was a “short-

term mismatch” between meter and rhythm. Indeed, compared to the ef-

fects aroused by emphasising weak-beats over strong-beats or by a sudden

change of time-signature, polyrhythms produce a more constant mismatch

between rhythm and meter; this seems to violate the widespread notion

that the effect of syncopation is “momentary” [Ran86]. We have chosen

to follow the broader interpretation of syncpation ( i.e. that it includes

polyrhythms), in our experiment design in Chapter 4.
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Figure 2.15: Models used for predicting syncopation, which are categorised by
theoretical basis and main methodolgy.

2.3 Overview of syncopation models

Ambiguity in the definition of syncopation has led to a number of differ-

ent models [LHL84, GMRT05, SG11, Tou05, Kei91, KS11], representing

multiple competing hypotheses. Additionally, models of rhythm complex-

ity [Pre97, Tou02] have also been applied to syncopation prediction in

a number of previous studies in the literature [GTT07, Thu08] and as a

result we include them in this thesis as well.

2.3.1 Categories of models

Figure 2.15 presents the models in categories for syncopation and the

development of these models tracing back to 1984. In general, hypotheses

for these syncopation models fall into four broad categories: hierarchical,

off-beat, classification and autocorrelation.
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Hierarchical models are designed to capture the violation of the regular

succession of beat salience or metrical weights (Section 2.2.1 and 2.2.2).

Four models fall into this category: Longuet-Higgins and Lee’s model

(LHL) [LHL84], Pressing’s model (PRS) [Pre97], Toussaint’s Metric Com-

plexity model (TMC) [Tou02] and Sioros and Guedes’s model (SG) [SG11]

that is developed from TMC.

Another approach is to classify individual notes or rhythm sequences

into a number of pre-determined syncopation types. We will refer to

this category of modelling hypothesis as classification models. Keith’s

model [Kei91] (KTH) and the PRS model adopted this approach.

Off-beat models ignore metrical hierarchy and instead attempt to cap-

ture note onsets that fall in between strong-beat positions (Section 2.2.2).

Two models fall into this category: Gómez et al.’s Weighted Note-to-

Beat Distance (WNBD) [GMRT05] and Toussaint’s off-beatness measure

(TOB) [Tou05].

Finally, Keller and Schubert’s autocorrelation-based model [KS11] (KSA)

differs from the other categories, and we refer to this approach as an auto-

correlation model. This model measures the accent strength (the sum of

durational and melodic accents weights [Dix01, MPF09, Par94, Tho82]) of

each musical event in a rhythmic sequence, then calculates the two-beat-

autocorrelation coefficients. The hypothesis is that the more different

events separated by two beats are in terms of accent strength, the greater

the violation of metric structure is, hence resulting in higher syncopation.

2.3.2 Capabilities of models

The various models for syncopation represent different hypotheses in terms

of rhythmic features that contribute to syncopation and therefore possess

different capabilities in the modelling. Table 2.2 summarises the eight

models in terms of category and the musical features that they can capture.

All the models use temporal features (i.e. onset time point and/or

note duration) in the modelling. The SG model also process dynamic

information of musical events in rhythms (i.e. dynamic accents), and the

KSAmodel takes account of temporal, dynamic and melodic information
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Table 2.2: Comparisons of the properties of syncopation models. Basis: H -
Hierarchical-based, C - Classification, O - Off-beat-based, A - Autocorrelation-
based.

Model Basis Onset Duration Dynamics Melody Mono Poly Duple Triple
LHL H X X X X
KTH C X X X X X
PRS H,C X X X X
TMC H X X X X
TOB O X X X X X

WNBD O X X X X X X
SG H X X X X X

KSA A X X X X X

of musical events.

In this thesis, we will use the term monorhythm to refer to any rhythm-

pattern that is not polyrhythmic. All the models can measure syncopation

of monorhythms, but only the KTH, TOB and WNBD models can deal

with polyrhythms.

Finally, all the models can deal with rhythms (notated) in a duple

meter, but only six models can cope with rhythms in a triple meter. They

are the LHL, PRS, TMC, TOB, WNBD and KSA models.

2.4 Summary

In this chapter, we have reviewed the theoretical underpinnings of rhythm

and introduced the definitions for syncopation and how it is explained in

the music theory literature. We have explained the note-values that are

used in western music notations, and demonstrated the construction of

rhythm-patterns from combinations of notes and rests with various note-

values. We have also discussed the concepts of beat, meter, and tempo.

Based on these fundamental elements of rhythm, we have outlined four

main schools of thought on the manifestation of syncopation, and intro-

duced eight theoretical models of syncopation from literature to provide

a broad picture of the state of the art.



Chapter 3

Review of syncopation models

In this chapter, we take a step further in reviewing the models of syncopa-

tion. In order to provide an explicit representation of the models, we con-

solidate the notations into mathematical equations, and walk through ex-

amples to assist readers in understanding the mechanisms of these models.

By doing this, we benefit from unambiguous explanations of the models

(as opposed to describing models in prose), and a smoother step towards

programming codes of models implementation.

In the chapter, we introduce and define some relevant mathematical

terms and operations. Then, we apply these mathematical notations in

formalising some rhythmic concepts we mentioned in Chapter 2. Finally,

we review each of the seven well-known syncopation models in depth by

providing unified representation of mathematical equations.

3.1 Background

In order to review the models in detail, we will first define some general

mathematical terms and operations with which we will represent rhythm

and meter. A key to the set notation symbols we use can be found in the

Glossary of Symbols.

3.1.1 Sequences

We use the term sequence to refer to a finite, ordered set that may con-

tain duplicated elements. A sequence Q of individual elements qn will be

46
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notated

Q = 〈q0, q1, · · · , q|Q|−1〉 (3.1)

where |Q| denotes cardinality (the number of elements in a set) of Q.

We define a concatenation operator1 ∗ on two sequencesQ and Q́ giving

a new sequence Q̂ such that

Q̂ = Q ∗ Q́ = 〈q0, q1, · · · , q|Q|−1〉 ∗ 〈q́0, q́1, · · · , q́|Q́|−1〉

= 〈q̂0, q̂1, · · · , q̂|Q|+|Q́|−1〉 (3.2)

where each element q̂n of the new sequence is defined as

q̂n =

{
qn for 0 ≤ n < |Q|, qn ∈ Q;

q́n−|Q| for |Q| ≤ n < |Q|+ |Q́|, q́n−|Q| ∈ Q́.
(3.3)

To illustrate, if 〈M〉 and 〈H〉 are sequences then

〈M〉 ∗ 〈H〉 = 〈M,H〉.

Using the concatenation operator, we can define a repetition operation

Qα where α specifies the number of times to repeat sequence Q such that

Qα =


∅, if α = 0;

α−1⊙
a=0

Q, otherwise.
(3.4)

where
⊙

denotes the iterated concatenation operator2. We may apply

this operation to the result of our earlier example to repeat it three times:

〈M,H〉3 = 〈M,H,M,H,M,H〉.

We also define a subdivision operation Q‖λ for |Q| mod λ = 0, whereby

a sequence of elements may be split to form a sequence of λ equal-length

sub-sequences:

Q‖λ =
〈
〈·〉0, 〈·〉1, ..., 〈·〉λ−1

〉
=

λ−1⊙
a=0

〈
〈·〉a
〉

(3.5)

1The concatenation operator has signature ∗ : S× S→ S where S is the set of all possible
sequences.

2⊙ is to ∗ as
∑

is to +.
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Figure 3.1: An example note sequence.

Two note events y0 and y1 occur in the time-span between time origin torg and
end time tend. The time-span duration tspan is three quarter-note periods. The
rests at the start and end of the bar are not explicitly represented as objects in
their own right here but as periods where no notes sound.

where the ath sub-sequence 〈·〉a takes the form

〈·〉a =

Θ−1⊙
θ=0

〈qθ+aΘ〉 where Θ =
|Q|
λ

, qθ+aΘ ∈ Q. (3.6)

As an example, we may subdivide our repeated example from above into

two sub-sequences

〈M,H,M,H,M,H〉‖2 =
〈
〈M,H,M〉, 〈H,M,H〉

〉
.

3.1.2 Rhythm in continuous time

The term time-span has been defined as the period between two points

in time, including all time points in between [LJ83]. To represent a given

rhythm, we must specify the time-span within which it occurs by defining

a reference time origin torg and end time tend, the total duration tspan of

which is

tspan = tend − torg (3.7)

A single, note event y occurring in this time-span may be described

by the tuple (ts, td, ν) as shown in Figure 3.1, where ts represents start or

onset time relative to torg, td represents note duration in the same units

and ν represents the note velocity (i.e. the dynamic; how loud or accented

the event is relative to others) ,where ν ≥ 0.

This allows us to represent an arbitrary rhythm as a sequence of notes

Y , ordered in time

Y = 〈y0, y1, · · · , y|Y |−1〉. (3.8)
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We will use superscript notation to index individual elements of tuples so

ytsn for example will represent the onset time for the nth note in Y .

Rests, time periods where there is an absence of sounded notes in

music, are as important as the note events themselves. The representation

detailed here allows a rest to occur at the start of the rhythm where yts0 ≥ 0

i.e. the first note starts after torg, a rest may occur in between notes where

ytsn + ytdn < ytsn+1 and there may also be a rest at the end of the pattern

if the final note finishes sounding before the end of the time-span i.e.

yts|Y |−1 + ytd|Y |−1 ≤ tspan.

3.1.3 Discrete time representation

So far, ts and td have been considered to be continuous variables in time.

However, for the purposes of music theory it often serves to quantise them

such that they are given as integer multiples of some discrete time unit

∆t. Discretising time in this way, we may represent the time-span of Y

as a sequence T comprising |T | equally spaced time points:

T =

|T |−1⊙
m=0

〈m∆t〉 = 〈t0, t1, · · · , t|T |−1〉. (3.9)

where

|T | = tspan

∆t
. (3.10)

With the exception of Keith [Kei91], the syncopation models reviewed

here only take account of note onsets ignoring notated duration. We may

therefore choose ∆t (and thus |T |) for a given time-span sequence depen-

dent upon onset times of notes in Y ; the choice of value being arbitrary

provided that every note onset ytsn can be precisely expressed as an integer

multiple m∆t where m < |T |. For any particular sequence Y , there will

be a minimum-length time-span sequence Tmin for which

Tmin = arg min
T

|T | (3.11)

where

T ∈ {T̂ : ∀ yn ∈ Y, ∃ tm ∈ T̂ : tm = ytsn } (3.12)
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Figure 3.2: Example rhythm-patterns with their minimum-length time-span
and velocity sequences. Each of the rhythm-patterns above is a single bar in
4/4 meter and we will assume a tempo of 120 quarter-note BPM (i.e. 2 beats
per second). Example (a) contains four equally spaced quarter-notes with the
first and third notes accented (refer to Section 2.1.2), so |Tmin| = 4 with ∆t
of half a second. Example (b) contains both quarter-notes and quarter-note
triplets thus |Tmin| = 12 with ∆t = 1/6s and (c) the Son clave rhythm contains
an onset in the fourth 16th note position so |Tmin| = 16 with ∆t = 1/8s.

i.e. Tmin is the shortest possible time-span sequence for which the start

time ytsn of every note in Y has a corresponding time point tm.

With the time resolution of T determined, we may represent the notes
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in Y as a sequence V of sampled velocity values

V =

|T |−1⊙
m=0

〈vm〉 (3.13)

where

vm =

{
yνn

max(yν :yν∈Y )
, ∃yn ∈ Y : ytsn = m∆t;

0, otherwise.
(3.14)

i.e. each element vm in V corresponds to the velocity at time point tm in

T . The value of vm is the normalised velocity yνn of a note in Y if an onset

is present at m∆t or zero where there is none. Figure 3.2 shows example

minimum-length time-span sequences for three one-bar rhythm-patterns

and their associated minimum-length velocity sequences. The rhythm-

pattern shown in Figure 3.2a is represented with Vmin = 〈1, 0.8, 1, 0.8〉. An

equally valid velocity sequence could be produced with values |T | = 8 and

∆t = 0.25s giving V = 〈1, 0, 0.8, 0, 1, 0, 0.8, 0〉, but every second element

is redundant in this case.

In Figure 3.2a, two notes are accented, therefore velocities in V vary

in magnitude (in our example, between arbitrary values of 0.8 or 1). In

some cases, we are concerned with whether a note onset is present at a

particular time point rather than what its velocity value is, so we will

introduce a binary sequence B of bits bm given by

B = 〈b0, b1, · · · , b|B|−1〉 =

|T |−1⊙
m=0

〈
dvme

〉
, vm ∈ V (3.15)

where d·e denotes the ceiling function. Thus, for the rhythm-pattern in

Figure 3.2a B = 〈1, 1, 1, 1〉. In Figure 3.2b and c, no dynamics or accents

are shown, so all notes are assumed to be of the same velocity, thus B will

be equal to V .

A useful property of this binary sequence representation is that simple

combinational logic can be employed to analyse the matching of rhythm-

patterns by specifying masking sequences [Lew72].For example, a binary

sequence B with onsets in every position (as in Figure 3.2a) would be
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matched by the expression 〈1〉|B|; a sequence containing |B| ones. Like-

wise, a sequence with no onsets (i.e it contains only a rest) would be

equivalent to |B| zeros which may be written 〈0〉|B|. We may express a

mask pattern that contains a single onset at the very start of the time-

span followed by rests as 〈1〉 ∗ 〈0〉|B|−1. We also utilise the digital logic

notion of a don’t care notated as X. This type of value can be used in a

mask pattern to signify that both 1 and 0 can be matched in that position.

For example, if we want to match any rhythm-pattern that starts with a

rest, we could express this as the mask pattern 〈0〉∗〈X〉|B|−1 (the sequence

shown in Figure 3.2b would match this pattern).

3.1.4 Metrical hierarchy

The previous section defined the atomic representation of note events in

time. As listeners however, the way we perceive the grouping of those

events is of huge importance in the analysis of syncopation. An isolated

note event cannot be syncopated; for syncopation to exist, it is necessary

for the listener to have already developed a sense of meter. In Section 2.1.3,

we have introduced the concept of isochronous-meter from the perspec-

tive of music theory. The following sections formalise the mathematical

expression of this type of meter, especially metrical level and metrical

weight.

Metrical level

Each metrical level in a metrical hierarchy represents a level of periodicity

in the rhythm sequence, such as bar level, beat level or tatum level. Here

we will define a metrical level index L ∈ [0, Lmax] with index 0 being the

top level, i.e. the root node in the tree. Throughout this thesis, we set the

bar level as the top level in the metrical hierarchy, and the lowest level as

the tatum level (with the atomic period determined by ∆t).

The metrical hierarchy may be described with a sequence of subdivi-

sions Λ = 〈λ0, λ1, ..., λLmax〉 such that in each level L, the value λL specifies

how nodes in the level above (i.e. L−1) should be split to produce the cur-

rent level. Analysing down to Lmax = 2, a single bar in 4/4 simple-duple
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meter has subdivisions Λ = 〈1, 2, 2〉 as shown in Figure 3.3a. The simple-

triple meter 3/4 and compound-duple 6/8 both have six eighth-notes in

a bar but their subdivisions are different; the 3/4 meter has three groups

of two Λ = 〈1, 3, 2〉 whereas the 6/8 has two groups of three Λ = 〈1, 2, 3〉
(Figure 3.3b and c).

Metrical weight

Events at different metrical positions vary in perceptual salience or met-

rical weight [PK90]. These weights may be represented as a sequence

W = 〈w0, w1, ...wLmax〉. As mentioned in Section 2.1.3, the prevailing hy-

pothesis for the assignment of weights in the hierarchy is that a time point

that exists in both the current metrical level and the level above is said

to have a strong weight compared to time points that are not also present

in the level above [LJ83]. As Figure 3.3 shows, the left-most child of any

node is considered to be a strong position and takes the weight of its par-

ent while the remaining child nodes are considered to be weak, weighted

with wL according to the current metrical level. The choice of values for

the weights in W can vary between different models but the assignment

of weights to nodes is common to all.

We define a sequence HL which contains the metrical weights at a given

level in the hierarchy. The initial sequence for L = 0 is built as follows

H0 = 〈w0〉λ0 for λ0 ≥ 1. (3.16)

HL for all subsequent levels may be calculated from sequence HL−1:

HL =
⊙

hj∈HL−1

〈hj〉 ∗ 〈wL〉λL−1 for L > 0, λL ≥ 2. (3.17)

For example, using equations 3.16 and 3.17, a 6/8 meter as shown

in Figure 3.3c with metrical weights W = 〈w0, w1, w2〉 and subdivisions

Λ = 〈1, 2, 3〉 would yield

H0 = 〈w0〉

H1 = 〈w0, w1〉

H2 = 〈w0, w2, w2, w1, w2, w2〉.
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Figure 3.3: Metrical hierarchies for different time-signatures. (a) A simple-
duple hierarchy dividing the bar into two groups of two (as with a 4/4 time-
signature). (b) A simple-triple hierarchy dividing a bar into three beats, each
of which is subdivided by two (e.g. 3/4 time-signature). (c) A compound-duple
hierarchy dividing a bar into two beats, each of which is subdivided by three
(e.g. 6/8 time-signature). Reading the weights from left to right in any level L
gives the elements in sequence HL (see Equations 3.16 and 3.17).

To keep the representation as general as possible, we allow λ0 ≥ 1 (i.e.

it is possible to have more than one top-level node). For L > 0, nodes

must be subdivided so λL ≥ 2.
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3.2 Syncopation models

In Section 2.3.1, we categorised the models for syncopation into four broad

groups: hierarchical, off-beat, classification and autocorrelation. Hierarchi-

cal models include Longuet-Higgins and Lee [LHL84], Pressing [Pre97],

Toussaint’s metric complexity [Tou02] and Sioros and Guedes [SG11].

They all relate syncopation to the metrical hierarchy (Section 2.1.3).

Off-beat models mainly focus on capturing off-beat events. Two models

in our study fall into this category: Gómez et al.’s Weighted Note-to-Beat

Distance [GMRT05] and Toussaint’s off-beatness [Tou05].

Finally, Pressing’s and Keith’s model can be grouped as classification

models, as they classify individual note or rhythmic sequence into prede-

fined syncopation types. In the following sections, we review each of the

models mentioned above3.

3.2.1 Longuet-Higgins and Lee 1984 (LHL)

The hypothesis of Longuet-Higgins and Lee’s [LHL84] model is that a

syncopation occurs when a rest (R) in one metrical position follows a note

(N) in a weaker position. Where such a note-rest pair occurs, the difference

in their metrical weights is taken as a local syncopation score. Summing

the local scores produces the syncopation prediction for the whole rhythm

sequence.

Mathematically, the model decomposes the pattern into a tree struc-

ture using the metrical hierarchy from Section 3.1.4 with metrical weights

wL = −L for all wL ∈ W i.e. W = 〈0,−1,−2, ...〉 (Figure 3.4). In [LHL84],

Longuet-Higgins and Lee describe a set of realisation rules, which are ap-

plied recursively to generate the tree structure for a rhythm-pattern before

calculating syncopation values; we follow this approach to formulate our

description of the process here. In contrast, implementations described

elsewhere in [FR07, Thu08, SG11] have recast the LHL algorithm as an

3Another syncopation model, Keller and Schubert’s autocorrelation-based model, will be
excluded in this review and the evaluation in Chapter 5, because it is designed to handle music
sequences with melodic and durational variation. The evaluation process in this thesis uses
un-pitched percussive stimuli so it is not appropriate to include their model here.



CHAPTER 3. REVIEW OF SYNCOPATION MODELS 56

iterative process, starting by generating a complete metrical hierarchy

down to Lmax, irrespective of the given rhythm-pattern. While this ap-

proach is equally valid, it introduces a problem of redundant rest nodes

that must be dealt with before syncopation can be calculated; this caveat

is dealt with in [Thu08] but omitted in [FR07] and [SG11].

Each terminal node ψ in the tree can be notated as a duple (η, w) where

η ∈ {N, R} represents the node type (i.e. note N or rest R) and w is its

metrical weight. We define a function κ(B,w, L) that will recurse the tree

for binary sequence B and return a sequence Ψ containing the terminal

nodes in time order. For each node, if its individual binary sequence does

not fall into one of the two terminal categories then it will be split into

λL+1 sub-sequences. These sub-sequences can be analysed in the same

fashion recursively until all the terminal nodes are identified:

κ(B,w, L) =



〈
(N, w)

〉
, if B = 〈1〉 ∗ 〈0〉|B|−1;〈

(R, w)
〉
, if B = 〈0〉|B|;

λL+1−1⊙
a=0

κ
(
〈·〉a, ŵa, L+ 1

)
, otherwise

for 〈·〉a ∈ B‖λL+1
and ŵa ∈ 〈w〉 ∗ 〈wL〉λL+1−1. (3.18)

For a given sequence B, the sequence of terminal nodes Ψ is calculated

starting with w0 and L = 0:

Ψ = κ(B,w0, 0).

For a given node ψi ∈ Ψ, we will use the notation ψwi denote its metrical

weight and ψηi its node type. Having calculated Ψ, we now find each rest-

note pair for which ψj is the nearest note node preceding rest node ψi. If

metrical weight ψwi ≥ ψwj then we obtain a local syncopation value ψwi −ψwj
for that pair. The total syncopation score for node sequence Ψ is the sum

of all local scores given by the function

SLHL(Y ) =
∑
i

(ψwi − ψwj ) (3.19)

for all ψi such that ψi, ψj ∈ Ψ : (ψηi = R, ψηj = N) and (ψwi ≥ ψwj ) where

j = max(j < i) .
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Figure 3.4: Tree decomposition of the Son clave rhythm for the LHL synco-
pation measure. For this rhythm-pattern from Figure 3.2c, the sequence of
terminal nodes Ψ = 〈 (N,0), (R,-3), (N,-4), (R,-2), (N,-3), (R,-1), (N,-3), (N,-2)
〉. For each R (rest) node ψi, the preceding N (note) node ψj must be identified
and where the metrical weight ψwi ≥ ψwj a local syncopation of value ψwi −ψwj is
said to have occurred (in this example there are two such cases, both of which
score 2). The total syncopation score for a rhythm sequence Y is the sum of
all local scores, in this case SLHL(Y ) = 2 + 2 = 4.

A practical point to consider for Equation 3.19 is that the absence of

a syncopation score is not the same as a score of zero. A zero score will

be produced where both nodes in a rest-note pair have the same weight4.

In practice, when calculating the final sum, we check for the case where

there are no rest-note pairs for which ψwi ≥ ψwj and in that case return

SLHL(Y ) = −1.

Each non-terminal node is split into the number of sub-sequences de-

fined by λL so the LHL algorithm does not handle polyrhythmic sequences

(such as in Figure 3.2b) because they contain nodes with rhythmic subdi-

visions outside that defined by the sequence Λ.

A special case that should be noted is a rhythm sequence that starts

with a rest (e.g. of the form 〈0〉 ∗ 〈X〉|B|−1 ). The first R node will have no

4This can easily occur in a 6/8 meter for example where consecutive weak-beats have the
same weight i.e. H2 = 〈0,−2,−2,−1,−2,−2〉
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preceding N in this case, so calculating a local syncopation here requires

an extra rule. One approach is to treat the sequence as a cycle so the local

syncopation can be calculated by wrapping around and using the weight

of the final N node. In the case of the rhythm-stimuli used to collect

our human ratings however, a bar of metronome was presented before

the rhythm-pattern under test (see Figure 5.1 in Section 5.1). For our

purposes we will therefore use the final metronome beat as the preceding

N node in this calculation instead.

3.2.2 Pressing 1997 (PRS)

Pressing’s cognitive complexity model [Pre97, PL93] specifies six proto-

type binary sequences and ranks them in terms of cognitive cost. The

model analyses the cost for the whole rhythm-pattern and its sub-sequences

at each metrical level determined by λL. The final output will be a

weighted sum of the costs in each level.

Unfortunately the description of the prototype patterns is incomplete

in the original papers. The sub-beat prototype (cost = 4) is not defined

in [PL93] and has only the description “this type cannot occur in a cycle of

length four” in [Pre97], so we omit it here. The descriptions and examples

for the remaining prototypes are clear but do not cover all possible rhythm-

patterns so we extend their definitions slightly in order to make a complete

implementation possible.

The null prototype (cost = 0) has either a note or a rest in the first

position of the sequence and rests thereafter (i.e. a pattern that would be

considered a terminal node in the LHL algorithm.). The pattern is defined

as follows

〈null〉 = 〈X〉 ∗ 〈0〉|B|−1 (3.20)

e.g. and

The filled prototype (cost = 1) has a note in every position of the

sequence:

〈filled〉 = 〈1〉|B| (3.21)

e.g.
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The run prototype (cost = 2) has a note in the first position followed

by a run of other notes (but not filled). We will define two prototype

patterns that match this definition, first run 1 ends with a 0 in the final

position of the sequence (this is a generalisation of the pattern described

in [PL93]):

〈run 1〉 = 〈1〉 ∗ 〈X〉|B|−2 ∗ 〈0〉 (3.22)

e.g.

Second, we define a pattern run 2 that starts with a note in the first

position, followed by a run of other notes but a 0 in the first position of

the following sequence. It is necessary to define this second prototype in

order that the set of all possible patterns can be matched.

〈run 2〉 =
〈
〈1〉 ∗ 〈X〉|B|−1 , 〈0〉 ∗ 〈X〉|B|−1

〉
(3.23)

e.g.

The upbeat prototype (cost = 3) ends with a 1 in the final position

of the sequence but also requires that the first position of the following

sequence also be a 1.

〈upbeat〉 =
〈
〈1〉 ∗ 〈X〉|B|−2 ∗ 〈1〉 , 〈1〉 ∗ 〈X〉|B|−1

〉
(3.24)

e.g.

The syncopated prototype (cost = 5) has a 0 in the first position (i.e.

the strongest metrical position):

〈syncopated〉 = 〈0〉 ∗ 〈X〉|B|−1 (3.25)

e.g.

We may now define a function g(B, B̂) that will determine the cost

for a given binary sequence B by comparing it to the above prototypes.

However, to compare against these prototypes, we must first convert the
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sequence B to its minimum-length representation Bmin. To illustrate, B =

〈1, 0, 1, 0〉 matches Pressing’s description of a filled pattern in [Pre97] but

is not equivalent to the prototype as defined in Equation 3.21; reducing the

sequence to Bmin = 〈1, 1〉 allows the correct match to be made. Because

prototypes run 2 and upbeat require knowledge of the following sequence’s

first element, this function takes a second sequence B̂ as an argument as

well.

g(B, B̂) =



0, if Bmin = 〈null〉;
1, if Bmin = 〈filled〉;
2, if Bmin = 〈run 1〉;
2, if 〈Bmin, B̂〉 = 〈run 2〉;
3, if 〈Bmin, B̂〉 = 〈upbeat〉;
5, if Bmin = 〈syncopated〉

(3.26)

The prototype definitions are not mutually exclusive, so comparisons

are evaluated in order of precedence from low cost to high.

At each metrical level, the binary sequence B of the input rhythm Y is

divided into L sub-sequences. Each sub-sequence is evaluated by function

g
(
〈·〉1, 〈·〉2

)
, the resulting costs summed and then the total normalised by

L:

q(B,L) =

∑L−1
a=0 g

(
〈·〉a, 〈·〉(a+1 mod L)

)
L

for 〈·〉a ∈ B‖L . (3.27)

The calculation of the total score over all levels may be expressed

recursively as follows:

f(B,L,L) =

{
0, if |B| < 2;

q(B,L) + f(B,L+ 1,L · λL+1) otherwise.
(3.28)

where λL ∈ Λ. At each level, the value of q(B,L) is evaluated and then

summed with f(B,L,L) for the next level until all levels in Λ have been

evaluated. On each recursion, the current value of L is multiplied by the

current value of λL which means that in any given level L, L =
∏L

l=0 λl.

The overall syncopation value for a given note sequence Y is therefore:

SPRS(Y ) = f(B, 0, λ0) (3.29)

An example of how this algorithm is applied to the Son clave rhythm

sequence is shown in Figure 3.5. The minimum-length time-span for the
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Figure 3.5: Example calculation of the Pressing syncopation measure for the
Son clave rhythm-pattern. In each metrical level, the matching prototypes for
each subdivision are shown.

sequence has |T | = 16. The results are summed in each level and nor-

malised by L giving SPRS(Y ) = 2
1

+ 7
2

+ 12
4

+ 5
8

= 9.125. Note that for

this analysis Λ = 〈1, 2, 2, 2〉, we do not need to analyse at levels lower

than eighth-notes because all spans would be nulls at lower levels for this

rhythm-pattern.

3.2.3 Toussaint 2002 ‘Metric Complexity’ (TMC)

Toussaint’s metric complexity measure [Tou02] is another model that uses

metrical hierarchy to calculate a syncopation prediction. In this model,

the metrical weights are defined as wL = Lmax − L + 1 so the highest

weight will be w0 and the lowest will be wLmax = 1.

The model first defines a measure of metricity (metrical simplicity)

ϕ(B,HLmax) for binary sequence B which is the sum of the weights for

each note; simpler rhythm sequences will have notes at stronger time

positions in the hierarchy and hence a higher metricity score

ϕ(B,HLmax) =

|B|−1∑
m=0

bmhm (3.30)

where HLmax is the sequence of metrical weights as defined in Equation 3.17

and Lmax is chosen such that |HLmax| = |B|. The hypothesis of the model

is that the level of metrical complexity (i.e. syncopation) is the difference

between the metricity for B and the maximum possible metricity for a
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sequence containing the same number of notes

STMC(Y ) = max
(
ϕ(B̂,HLmax)

)
− ϕ(B,HLmax) (3.31)

∀B̂ ∈ {B̂ :
∑
m

b̂m =
∑
m

bm} where b̂m ∈ B̂, bm ∈ B

For example, the Son clave rhythm from Figure 3.2c has 4/4 time-

signature and |Bmin| = 16 so we require L ∈ [0, 4] to represent its metrical

hierarchy. The parameters for the calculation are therefore

W = 〈5, 4, 3, 2, 1〉, Λ = 〈1, 2, 2, 2, 2〉,

H4 = 〈5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1〉,

Bmin = 〈1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0〉.

The metricity will therefore be 5 + 1 + 2 + 2 + 3 = 13 while the maximum

metricity score for a five-note rhythm would be 5+4+3+3+2 = 17. The

syncopation prediction STMC for the Son clave rhythm would therefore be

17− 13 = 4.

3.2.4 Sioros and Guedes 2011 (SG)

The most recent model in our study, Sioros and Guedes [SG11, SHG12]

also uses metrical hierarchy to determine syncopation. This model has

three main hypotheses: First, accenting of notes affects perceived syn-

copation and should be included in the model (the only model in this

study to do so, but it should be noted that the implementation of the

SG model used in the evaluation in Chapter 5 does not include it because

our chosen rhythm stimuli have equal velocity notes throughout). Second,

humans try to minimise the syncopation of a particular note relative to

its neighbours in each level of the metrical hierarchy. Third, syncopations

at the beat level are more salient than those that occur in higher or lower

metrical levels so the outcome should be scaled to reflect this [SMC+13].

The metrical weights for this model are wL = L for all wL ∈ W . To

calculate the syncopation score5, we first define a function ϑ(m, m̂) that

5The original description of the algorithm in [SG11, SHG12] is mostly given in prose but
a Max/MSP patch and C++ source code for a Max/MSP external has been made available
online at [Sio11] from which our mathematical formulation has been derived.
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calculates a difference level factor between two notes in velocity sequence

V with indices m and m̂,

ϑ(m, m̂) = (vm − vm̂)

(
β|hm − hm̂|

4
+ 1− β

)
(3.32)

where v ∈ V , h ∈ HLmax and β is a weighting factor.

To obtain the syncopation score for a note at a given metrical level `,

we define a function u(m, `) that calculates the average of the difference

between the note at index m and its neighbours in the same metrical level:

u(m, `) =
γ.ϑ
(
m, %(m, `)

)
+ ϑ
(
m, ρ(m, `)

)
γ + 1

(3.33)

where a weighting factor γ is included to reduce the contribution of the

previous note, a function %(m, `) calculates the index of the previous note:

%(m, `) = arg max
m̂ mod |V |

(h(m̂ mod |V |) ≤ ` , m̂ < m) (3.34)

and a second function ρ(m, `) calculates the index of the next note:

ρ(m, `) = arg min
m̂ mod |V |

(h(m̂ mod |V |) ≤ ` , m̂ > m). (3.35)

Values for the weighting factors are reported in [SG11] as β = 0.5 and

γ = 0.8.

A note may exist in multiple levels of the hierarchy and thus the syn-

copation score sm is calculated by finding the minimum value of u(m, `)

for each level of the hierarchy for which the note is a member:

sm =

{
0, if vm = 0;

min
(
u(m, `)

)
∀
{
` : ` ∈ [hm, hmax]

}
otherwise.

(3.36)

where

hmax = max(hm ∈ HLmax) (3.37)

Figure 3.6 demonstrates calculation of syncopation scores for the Son clave

rhythm from Figure 3.2c. After personal communication with George

Sioros [Sio14] we have used Λ = 〈1, 2, 2, 2, 2〉 as our metrical hierarchy

to implement the SG algorithm. It should be noted, however, that an

alternative hierarchy Λ = 〈2, 2, 2, 2〉 has been used in examples in [SG11]
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Figure 3.6: Sioros and Guedes syncopation scores and potentials for the Son
clave rhythm. The metrical hierarchy is generated and the minimum syncopa-
tion score sm for each note is calculated by comparing it against its neighbours
in each of the metrical levels in which it resides (see Equation 3.36). Each
score is then multiplied by the syncopation potential φm and the results are
summed to give the total syncopation value for the rhythm-pattern, in this
case SSG = 1.698.

and [SHG12] which produces a tree with two top-level nodes. This is

explained in [SMC+13] as an attempt to correct for the effect of tempo on

syncopation; an effect that has yet to be studied formally.

Once the syncopation scores have been calculated for each note in the

sequence, they are weighted by a syncopation potential φm according to

their metrical level:

φm = (1− 0.5hm) (3.38)

The total syncopation prediction from this model for a given sequence is

the sum of all weighted scores for individual notes:

SSG(Y ) =

|V |−1∑
m=0

smφm (3.39)

Separate normalisation approaches for this model are reported in [SG11]

and [SHG12] but, on the advice of [Sio14], we use the absolute value for

our evaluation in Chapter 5.
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3.2.5 Keith 1991 (KTH)

The hypothesis of Keith’s model [Kei91] is that syncopations occur where

notes start or end at off-beat positions. Two individual types of syncopated

event are defined and given a weight k. These two types are hesitation,

where a note ends off the beat (k = 1) and anticipation, where a note

begins off the beat (k = 2). Where a note exhibits both a hesitation and

an anticipation, a syncopation is said to occur and the weights are summed

to give k = 3. (See Figure 2.12 for examples.) Keith constrains the model

to time-signatures where the number of beats per bar is a power of two.

The first step in calculating this model is to find ∆t for time-span T

such that:

|T | = arg min
2ξ

(2ξ ≥ |Tmin|) (3.40)

We may then calculate a value cn for each note yn which is the highest

power of two less than or equal to its duration:

cn = arg max
2ξ

(2ξ ≤ ytdn
∆t

) (3.41)

In this model, the onset ytsn or end time (ytsn + ytdn ) are considered off

beat if they are not a multiple of cn∆t. Note that Keith’s model assumes

note duration to be the inter-onset interval between consecutive notes i.e.

ytdn = ytsn+1 − ytsn . Using this rule, we may define ‘off-beat’ functions on

and en that determine whether the onset or end of note yn are off the beat

respectively:

on =

{
0, if ytsn

∆t
mod cn = 0;

2, otherwise (anticipation)
(3.42)

and

en =

{
0, if (ytsn +y

td
n )

∆t
mod cn = 0;

1, otherwise (hesitation)
(3.43)

The Keith syncopation weight for note yn is therefore

kn = on + en. (3.44)

For a sequence Y comprising |Y | notes, the Keith syncopation score SKTH(Y )
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Figure 3.7: Geometric representation of B for the three rhythm patterns in
Figure 3.2. The solid lines inside each cycle show the regular subdivisions for
each time-span. Positions in a time-span that contain note events are shown
filled in black on the circumference of each circle. The off-beat positions are
shown in light blue on the circumference of each cycle. The four consecutive
quarter-notes (|V | = 4) in sequence (a) can only be divided evenly by 2 so the
first and third positions will be considered off-beat, giving STOB = 2 for this
rhythm. The binary sequence for sequence (b) has |T | = 12 so positions 1, 5, 7
and 11 are off-beat; as a result STOB = 0. The Son clave rhythm-pattern in (c)
has |T | = 16 and can therefore be subdivided by factors 2, 4 and 8 thus all the
odd indices are considered ‘off-beat’. There is only one event on an odd index
(m = 3) so STOB = 1 for this rhythm.

is the sum of all k values for the notes in the sequence:

SKTH(Y ) =

|Y |−1∑
n=0

kn (3.45)

For example, the k values for the notes of the polyrhythm pattern Fig-

ure 3.2b are 3 and 2 respectively, therefore the total syncopation value is

5.

3.2.6 Toussaint 2005 ‘Off-Beatness’ (TOB)

The off-beatness measure [Tou05] is a geometric model that treats the

time-span of a rhythm sequence as a |T |-unit cycle. The hypothesis, as

applied to syncopation, is that syncopated events are those that occur in

‘off-beat’ positions in the cycle; the definition of off-beatness in this case

being any position that does not fall on a regular subdivision of the cycle
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length |T |. The off-beatness ςm of a position can be calculated as follows:

ςm =


0, if m mod z = 0

∀ {z : |T | mod z = 0 : 1 < z < |T |}
1, otherwise

(3.46)

For example, a time-span sequence of |T | = 12 can be evenly subdivided

by the values two, three, four and six. Therefore the dimensions of the

sequence for which ςm 6= 0 are those that are not divisible by these factors

(i.e. dimensions 1, 5, 7 and 11) and so these are considered to be off-beat

positions. Using this model, the total syncopation score for a sequence

Y may be calculated by summing the number of syncopated events it

contains:

STOB(Y ) =

|B|−1∑
m=0

bmςm (3.47)

Figure 3.7 shows a visual representation of the off-beatness measure ap-

plied to the three rhythm-pattern examples introduced in Figure 3.2.

3.2.7 Gómez 2005 ‘Weighted Note-to-Beat Distance’ (WNBD)

The WNBD model of Gómez et al. [GMRT05] defines note events that

start in between beats in the notated meter to be ‘off-beat’ thus leading

to syncopation. The syncopation value for a note is determined by its

distance from the nearest beat6, notes being assumed to be contiguous in

time with one ending as the next begins.

The position of a note yn may be defined in terms of a distance measure

d relative to its nearest beats µi and µi+1 (i.e. the onset of yn falls between

µi and µi+1, see Figure 3.8).

µi ≤ ytsn ≤ µi+1 (3.48)

d(yn, µi) =
ytsn − µi
µi+1 − µi

(3.49)

6Gómez et al. use the term ‘strong-beat’ in their paper but clarify that they mean the met-
ric pulse, rather than strong-beats as defined with respect to metrical hierarchy as discussed
in Section 3.1.4
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Figure 3.8: Illustration of the relationship between note yn and the beats from
µi to µi + 2.

To calculate the WNBD measureW(yn) for note yn, we first find T (yn),

the distance from yn to its closest beat.

T (yn) = min(d(yn, µi), d(yn, µi+1)) (3.50)

The value of W(yn) can then be found by

W(yn) =


0, if d(yn, µi) = 0
2

T (yn)
, if µi+1 < ytsn + ytdn ≤ µi+2

1
T (yn)

, otherwise

(3.51)

For a note that starts on the beat (i.e. d(yn, µi) = 0), W(y) will be

0. For a note that starts off the beat ( i.e. d(yn, µi) 6= 0) and ends on

or before the next beat µi+1, W(yn) will be 1
T (yn)

. Where a note is held

on past µi+1 but ends on or before µi+2, W(yn) is 2
T (yn)

, weighting tied

notes more highly than others. For notes that end after µi+2, W(yn) is

set to 1
T (yn)

. If Y is a sequence of |Y | notes, the WNBD score for Y is the

normalised sum of the W values for each note in the sequence:

SWNBD(Y ) =
1

|Y |

|Y |−1∑
n=0

W(yn) (3.52)

To illustrate, the W values for the notes of the Son clave example in

Figure 3.2c are 0, 8, 4, 2 and 0 respectively, so the WNBD predicted

syncopation is 0+8+4+2+0
5

= 2.8.

3.3 Summary

This chapter developed a consolidated mathematical representation for

rhythm, metrical hierarchy and seven syncopation models. The main
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purpose of this is to provide an in-depth review and to clarify ambigu-

ities of the syncopation models that are frequently used in other stud-

ies. The secondary purpose is to implement these syncopation models

into programming codes by transferring the corresponding mathematical

equations. The implementation of the models facilitates the evaluation of

these models in the later chapters. In the next chapter, we will switch to

the investigation of syncopation in the area of perception, which enables

a direct and formal evaluation of the syncopation models reviewed in this

chapter.



Chapter 4

Syncopation and the score

In this chapter, we begin to explore syncopation perception: we manipu-

late the rhythmic score as an objective correlate of perceived syncopation.

The main method in our experiment was to ask listeners to rate the de-

gree of syncopation they perceived in response to a rendering of each score.

Section 4.1 specifies the materials and the procedure in the experiment.

We test the hypothesis that the following will have a degree of influence

on perceived syncopation: i) time-signature, ii) whether the down-beat is

present or missing, iii) presence of polyrhythms or monorhythms (which

we will define here as any rhythm-pattern which is not polyrhythmic)

and finally iv) within-bar location of rhythm-components. Results are

discussed in Sections 4.2 and 4.3.

4.1 Experiment 1: Score

We asked musicians to give informed ratings of perceived syncopation for

renderings of various three-bar scores. The ratings were taken over a

fixed, five-point rating scale. In this experiment we required the listen-

ers to judge a large number of rhythms, with a potentially large range

of syncopation ratings. The fixed rating scale was intended to provide

the minimum complexity in the experimental interface and the maximum

efficiency during the procedure; the aim being that listeners would not

be hampered by unnecessary precision in the interface and would be able

to focus on their immediate perceptual response. We acknowledge that

such methods may be prone to minor biases (e.g. range bias, end-point

bias [Pou89]) but we argue that such biases are offset by the overall scale

70
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of the syncopation continuum and stimuli. In other words, the stimuli

we employed ranged between not syncopated and highly syncopated, so we

trade finer detail in the data for an efficient method. All listeners used

the whole range of the scale (i.e. each listener gave at least one minimum

and one maximum rating).

4.1.1 Participants

We recruited ten participants, nine male and one female, with an average

age of 30 years (standard deviation 5.8 years). All participation was vol-

untary (unpaid). In order to maximize the degree of homogeneousity of

the group, all participants are trained musicians.Their musical training in-

cluded formal performance and theory over a range of instruments, music

production and engineering. All participants had trained for an average

of 15 years (standard deviation 5 years). Six of them reported proficiency

in multiple instruments. All participants confirmed that they were con-

fident in their understanding and rating of syncopation. All participants

reported normal hearing.

4.1.2 Stimuli

Each score, rendered to produce a single stimulus, was constructed of

three bars. The first bar was always metronome alone (either 4/4 or

6/8). The second and third bars were repetitions of a one-bar rhythm-

pattern constructed from concatenation of two basic, half-bar rhythm-

components. Figure 4.1 provides a schematic diagram which illustrates the

steps taken when generating the stimuli. First, various half-bar rhythm-

components (Figure 4.1a) were paired to produce one-bar rhythm-patterns

(Figure 4.1b). The rhythm-components were categorised as either binary

(two notes) or ternary (three notes). Next, the rhythm-patterns were

concatenated and a metronome was added to produce the final score (Fig-

ure 4.1c). Finally, the stimulus was rendered to produce the acoustic wave-

form (Figure 4.1d) which was ultimately heard by the listener. Rhythms

were played concurrently with the metronome (following the single bar of

introductory metronome) (Figure 4.1c).



CHAPTER 4. SYNCOPATION AND THE SCORE 72

)) ))A)))A E I

) A ) AA) A)B F J

A ) A )AA ))C G K

A A A AAA A)D H L

Binary Ternary

Rhythm-components

Complete scores

Rhythm-patterns

A A A )DCBinary + Binary

A ) A ) AyCJBinary + Ternary

A )AA A)HKTernary + Ternary

AIIII W W W W W W W W W
'
W W W

A

metronome

rhythm

DC DC

A ) A )A A
A=140bpm = 429.6ms 

X
'

KM X X X X X X X X X X X X X X X X X
$ $ *$ $* $ $ *$ $*KM

HK HK
=280bpm = 214.3ms $

Missing down-beat

AII )
II W W W W W W W W W

' A ) A

W W W
y A ) A ) A

yCJ CJA=140bpm = 429.6ms 

Polyrhythm

Rendered stimulus

Example CJ: duration = 5.1 seconds

(a)

(b)

(c)

(d)

Figure 4.1: Construction of stimuli. A schematic diagram illustrating the pro-
cess of generating the stimuli. (a) Rhythm-components. Ten basic rhythm-
components are created, categorised into binary or ternary depending on the
number of events. (b) Rhythm-patterns. Half-bar rhythm-components are
paired to create one-bar rhythm-patterns. (c) Complete scores. Rhythm-
patterns (and metronome) are used to produce a three-bar score, including
rhythm-patterns featuring missing down-beats and polyrhythms. The combi-
nations of two binary or one binary and one ternary rhythm-components are
notated with a time-signature of 4/4; two ternary rhythm-components fit into
6/8. The tempo for both signatures is 140 quarter-note per minute (QPM). (d)
Rendered stimulus. The score is rendered as a waveform.
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Figure 4.1a shows the ten half-bar rhythm-component notations (A-

L) from which concatenated whole-bar pairs were produced in all possible

combinations. These base rhythm-components include notations featuring

rhythmic structures that are anticipated to result in syncopation: missing

down-beats, off-beat notes and polyrhythms when presented in relation to

a metronome. Example rhythm-pattern pairings are given in Figure 4.1b.

Rhythm-patterns composed of a given pair of rhythm-components were

presented separately in both forward and reverse order (e.g. CJ and JC).

By comparing such pairs, we are able to investigate the effect of location

(e.g. of missing strong-beats) within the bar.

Scores for example stimuli, including metronome, are given in Fig-

ure 4.1c. There were 99 unique pairs, after excluding redundant patterns

E and I, which were replaced with A and C respectively (which are equiv-

alent in 4/4). The time-signature was set to 6/8 for all combinations of

two ternary rhythm-components and 4/4 for the rest. As a result, the

overall stimuli comprises three rhythm-categories: 4/4 monorhythms, 6/8

monorhythms and (3:2) 4/4 polyrhythms. The potential combinations

that result in (2:3) 6/8 polyrhythms are excluded in order to limit the

length of the required listening test. While this combination of stimuli

provides a representative range of rhythm-patterns in two time-signatures,

it should be noted the proportions of examples between 4/4 and 6/8 time-

signatures, and between monorhythms and polyrhythms differ.

The stimuli were rendered (synthesised) at a sampling rate of 44.1 kHz

16-bit using MIDI sequencing (see Figure 4.1d for an example waveform).

A percussive snare drum sample was used for the musical rhythm and a

‘cow-bell’ sample was used for the metronome. We chose a uni-tone per-

cussive drum sound for rhythm-patterns in order to avoid the interaction

between pitch and rhythm, and to remove confounding factors such as

note duration [Lon04, p.28].

The snare drum sample was approximately 700 milliseconds (ms) in

duration, with approximately 7 ms attack, 130 ms sustain and 450 ms

decay. The metronome sample was relatively impulsive and of approxi-

mately 20 ms duration. The metronome was dynamically accented on the



CHAPTER 4. SYNCOPATION AND THE SCORE 74

first beat of the bar and was also accented in pitch; the fundamental fre-

quency of the accented note was 940 Hz and the remaining notes were of

680 Hz. Thus, our metrical cue (metronome) was clearly differentiable (by

timbre and pitch) from the overlaid drum rhythm. By accenting the first

beat of metronome in 6/8, we do not explicitly rule out a 3/4 grouping of

beats.

The tempo of the metronome was set to 140 BPM for all rhythm-

patterns in a time-signature of 4/4 and 280 BPM for those in 6/8. This

corresponds to an interval of 428.6 ms per quarter-note in both time sig-

natures. In 4/4 the metronome beat quarter-notes at this interval and in

6/8 it beat eighth-notes (i.e. an interval of 214.3 ms per beat). Hence, in

4/4 stimuli that contained polyrhythmic components, the interval between

triplet quarter-notes was 285.7 ms. The resulting stimuli durations (per

trial) were 5.1 seconds in 4/4 (i.e. three bars of four quarter-note beats)

and 3.9 seconds in 6/8 (i.e. three bars of six eighth-note beats).

4.1.3 Procedure

Stimuli were presented individually and at the instigation of the listener.

All stimuli were presented within a single block. For each trial, the listener

gave a rating between zero and four, where zero indicated no syncopation

and four indicated maximum syncopation. The listener was free to lis-

ten to each pattern repeatedly before giving their rating. The stimuli

were presented in randomised order (i.e. a different order for each lis-

tener). Before the experimental session, the listeners heard a broad range

of example stimuli and were given a practice run (the resulting data was

discarded). Each participant was free to adjust the sound level at any time

so as to be comfortable. Headphones were used to present the stimuli. All

presentation was dichotic (the same in both ears). Tests were completed

in approximately 30-50 minutes. Listeners were encouraged to take breaks

during the session.
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(a)

(b)

Figure 4.2: Group mean syncopation ratings for rhythm-patterns. (a) A matrix
showing group mean syncopation ratings for rhythm-patterns. The upper tri-
angle of the matrix refers to rhythm-patterns where the horizontal axis denotes
the first rhythm-component of the rhythm-pattern, and where the vertical axis
denotes the second rhythm-component. For the lower triangle of the matrix the
reverse is true. This provides a general way to compare the mean ratings be-
tween the two orders of presentation for any given pair of rhythm-components.
Same rhythm-component pairs (e.g. BB) are shown in grey. Note that the
pair AA is excluded because it represents a full bar of rests. (b) A map of
the matrix shown in (a), broken down into regions corresponding to score fea-
tures: polyrhythmic and monorhythmic patterns in both 4/4 and 6/8. This
map illustrates how the data is categorised in the subsequent analyses.
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Figure 4.3: Categorical analysis. Group mean and 95% confidence intervals for
pooled ratings, averaged for each listener, composed (selectively) for compari-
son of ratings for all stimuli categorised within the following paired conditions:
monorhythms in 4/4 versus those in 6/8 (see Figure 4.2b), polyrhythms ver-
sus monorhythms, down-beat missing versus down-beat present, strong-beat
missing versus strong-beat present. * denotes significance (p < 0.05, Wilcoxon
Signed-Rank Test, uncorrected).

4.2 Results

Figure 4.2a broadly summarises the syncopation ratings in a matrix rep-

resentation of the group mean ratings for each rhythm-pattern. The hor-

izontal axis shows the first rhythm-component of the respective rhythm-

pattern, and the vertical axis shows the second rhythm-component. There-

fore, the upper-left triangular area of the matrix corresponds to the op-

posite pair-wise ordering of rhythm-components within the same rhythm-

pattern to those in the lower-right triangular area of the matrix. Fig-

ure 4.2b provides a ‘map’ corresponding to Figure 4.2a, which illustrates

grouping of the ratings for subsequent analyses. The average correlation

coeffecient (Spearman) between each pair of listeners in the group is 0.47,

suggesting that the ratings are reasonablly consistent between listeners.

Figures 4.3 and 4.4 show various selective groupings of the ratings data

(across all listeners), where the data (N =10 listeners) were selected to

test the following hypotheses: 1) 6/8 is more syncopated than 4/4; 2)

polyrhythms are more syncopated; 3) missing down-beats result in synco-

pation; and 4) switching component order affects syncopation.
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Figure 4.4: Syncopation by rhythm-component. Mean and 95% confidence
intervals for ratings pooled by rhythm-component. For each distribution, all
ratings for rhythm-patterns featuring each respective rhythm-component were
selected and separated into groups by location of the rhythm-component within
the rhythm-pattern (e.g. AB + AC + AD versus BA + CA + DA.). Grey
indicates the location of the rhythm-component is on the first half of the bar,
and pink indicates that on the second half. * denotes significance (p < 0.05,
Wilcoxon Signed-Rank Test, uncorrected).

4.2.1 6/8 is more syncopated than 4/4

For each listener, all ratings were separately pooled and averaged for all

stimuli featuring time-signatures of 4/4 and 6/8. This gives a pair of
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ratings distributions which may be compared to see whether either time-

signature was more or less highly rated (for syncopation). Figure 4.3 shows

that 6/8 is more highly rated than 4/4 (W = 1, Z = −2.55, p < 0.01, r =

0.81, Wilcoxon Signed-Rank Test).

4.2.2 Polyrhythms are more syncopated

Next, for each listener, all ratings were separately pooled and averaged for

all stimuli that constituted a polyrhythm (i.e. in 4/4 see Figure 4.2b and

all stimuli that did not. The resulting ratings distributions are likewise

compared to establish the existence of significant differences that may

indicate a pre-disposition of polyrhythms to result in the perception of

syncopation. Figure 4.3 shows that polyrhythms are much more highly

rated than monorhythms (W = 55, Z = 2.8, p < 0.01, r = 0.89, Wilcoxon

Signed-Rank Test).

4.2.3 Missing down-beats result in syncopation

For each listener, ratings for all rhythm-patterns featuring ‘missing down-

beats’ were pooled and averaged. The same pooled averages were cal-

culated for rhythm-patterns not containing missing down-beats. The re-

sulting group ratings distributions are compared in Figure 4.3 and show

that rhythm-patterns featuring missing down-beats are more highly synco-

pated than those not featuring missing down-beats (W = 54, Z = 2.7, p <

0.01, r = 0.85, Wilcoxon Signed-Rank Test). A similar analysis was per-

formed for all pairs featuring missing strong-beats, with a similar (albeit

not significant) outcome (p > 0.05, Wilcoxon Signed-Rank Test).

4.2.4 Switching component order affects syncopation

In order to investigate the effect of location of each rhythm-component

within the rhythm-pattern, the ratings resulting from each of the two

possible orders were compared. Where certain rhythm-components are

associated with high degrees of syncopation (e.g. rhythm-components

which feature a missing down-beat), we can observe the effect of loca-

tion within the rhythm-pattern (bar). For each listener, ratings for all
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rhythm-patterns featuring a given rhythm-component were pooled and

averaged for both possible locations of a given rhythm-component (within

the rhythm-pattern). The group mean and 95% confidence intervals for

the resulting distributions are plotted in Figure 4.4. Only rhythm-patterns

featuring rhythm-components A (W = 34.5, Z = 2.31, p < 0.05, r = 0.73),

G (W = 44, Z = 2.57, p < 0.05, r = 0.81), H (W = 41, Z = 2.15, p <

0.05, r = 0.68) and J (W = 0, Z = −2.67, p < 0.05, r = 0.85) showed sig-

nificant differences (Wilcoxon Signed-Rank Test, uncorrected) which held

regardless of the other rhythm-components within the various rhythm-

patterns. The average ratings were larger when A, G and H were in the

first half of the bar, but the opposite was true for J. The overall shape of

the graph is consistent with the comparison of missing down-beats shown

in Figure 4.3, in that rhythm-patterns featuring rhythm-components A,

B, F, G and H show higher mean syncopation ratings.

In order to find out exactly which rhythm-patterns were sensitive to

location of the rhythm-components, the analysis was refined to focus on

the pair-wise comparison of ratings for each rhythm-pattern between the

two possible orders of the rhythm-components. Figure 4.5 shows a matrix

plot of the difference in group mean rating for each rhythm-pattern, caused

by change in the rhythm-component order (i.e. within the bar). Signif-

icant changes in rating are indicated with overlaid triangles (p < 0.05,

Wilcoxon Signed-Rank Test, uncorrected). Rhythm-components which

significantly changed when the rhythm-component order was switched

were: AC (W = 28, Z = 2.56, p < 0.05, r = 0.81), AD (W = 15, Z =

2.21, p < 0.05, r = 0.7), BH (W = 0, Z = −2.21, p < 0.05, r = 0.69), FG

(W = 0, Z = −2.22, p < 0.05, r = 0.7), GJ (W = 34, Z = 2.28, p <

0.05, r = 0.72) (see Figure4.5b). Again, significant changes occur for

rhythm-patterns featuring rhythm-components A, B, F, G, H, all of which

feature missing down-beats. In other words, rhythm-components resulting

in missing down-beats contribute significantly more to the perception of

syncopation than the same rhythm-components in the second half of the

bar (rhythm-pattern).
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(a)

(b)

Figure 4.5: Pair-wise changes in ratings when rhythm-component order was
switched. (a) The change in group mean rating (for each rhythm-pattern)
caused by switching the rhythm-component order (i.e. this is equivalent to a
subtraction of the lower-triangle ratings of Figure 4.2a from the upper-triangle
ratings of Figure 4.2a). Triangles denote significance (p < 0.05, Wilcoxon
Signed-Rank Test, uncorrected). Interestingly, the significant changes (when
order was switched) correspond to missing down-beat rhythm-patterns. (b)
The notations for each pair of rhythm-patterns that reached significance.

4.3 Discussion

In this chapter, we have shown that there is more potential for syncopation

in 6/8 in polyrhythms and in rhythms featuring a missing down-beat. We

have also shown that the location of rhythm-components that give rise to
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syncopation is critical to its perceived degree. These results demonstrate

that syncopation cannot simply be predicted (i.e. in a model) by summa-

tion of ‘syncopation values’ calculated for individual notes according to

the relationship between each note and the assumed metrical structure.

We also identify three questions for further investigation: i) Is syncopa-

tion tempo-dependent? ii) Why do the 4/4 monorhythm patterns exhibit

lower syncopation levels than monorhythms in 6/8? iii) Do listeners re-

interpret the meter of a given rhythm-pattern in order to reduce the level

of perceived syncopation?

4.3.1 4/4 versus 6/8

We employ the standard terminology for meters (i.e. time-signatures)

in Western music [Lon04]; the terms duple and triple to refer to two-

and three-beat bars respectively, and the terms simple and compound to

refer to the binary and ternary subdivision of beats in a bar. Here, we

investigated the signatures 4/4, which is simple-duple meter (i.e. two

groups of two quarter-notes), and 6/8 which is compound-duple meter

(two groups of three eighth-notes).

6/8 monorhythmic patterns were rated as more syncopated than those

in 4/4 (Figure 4.3). There are several potential explanations for this obser-

vation. First, given that a time-signature must be rendered (or performed)

according to a specified tempo, a major difference between the stimuli in

these two time-signatures is their speed. The beat rate in the 6/8 stimuli

was twice as fast as those in 4/4 because eighth-notes are half as long as

quarter-notes and the tempi were chosen to maintain the same duration

for quarter-notes in both.

It has been shown that tempo influences various aspects of music per-

ception, such as rhythm recognition [Han93], pitch perception [DGM88],

music preference [LeB81] and perception of emotion in music [vZWvdB11].

In particular, the ability to discriminate differences between rhythms [Han93],

perception of meter from polyrhythms [HO81, HL83] and production of

rhythmic timing [RWD02, DH94] all appear to be influenced by tempo.

Therefore, we expect that tempo may affect the perceived syncopation
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and this may explain the higher ratings in 6/8 than in 4/4.

Another possible reason for higher ratings in 6/8 than 4/4 may be

that the rhythmic structure of 4/4 is inherently less ambiguous – 4/4 is

simple-duple meter (duple subdivision of duple) and 6/8 is compound-

duple meter (triple subdivision of duple). Several studies have shown that

listeners of all ages naturally show bias towards processing (and preference

for) rhythms that incorporate binary rather than ternary metrical subdi-

visions [LJ83, PE85, Dra93, BT06]. Indeed, it has been shown that the

accuracy of rhythm reproduction in binary subdivisions of beat is higher

than ternary subdivisions [Dra93]; people are inclined to tap on the bi-

nary subdivisions to isochronous auditory sequences when they are asked

to tap at a fast rate [Dra97]; also, both adults and infants react more

quickly and accurately to the alterations in pitch, melody and harmony

in binary meter than in triple meter [BT06, SC89].

Syncopation has been associated with human metrical processing [FR07,

SP00, SK01, TS03], and metrical processing has also been related to

time-signature [LJ83, PE85, Dra93, BT06, SC89]. Our finding, that 6/8

monorhythms are perceived as more syncopated than those in 4/4, sug-

gests that time-signature and perceived syncopation are inherently related

and hence may explain the previously reported relationship between met-

rical processing and time-signature.

4.3.2 Missing down-beats

Syncopation models predict that missing strong-beats (the absence of

events at strong metrical positions) result in syncopation [LHL84]. The

models also predict that a missing down-beat (the first beat of the bar)

generates a higher degree of syncopation than a missing strong-beat in

a lower metrical level (e.g. the third quarter-note in 4/4 or the fourth

eighth-note in 6/8) result in syncopation.

In general, our results agree with the modelling predictions; the pat-

terns with missing down-beats tend to have higher average ratings (Fig-

ure 4.3). This is also clear in Figure 4.4, which shows that rhythms starting

with a rest (components A, B, F, G and H) contribute to higher average
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ratings, while patterns including components C, D, K or L have relatively

low average ratings (these do not start with a rest). However, we did not

find strong evidence suggesting that rhythms that feature missing strong-

beats have an effect on syncopation. This may be due to the small number

of participants in the study.

The latter modelling prediction, that missing down-beats will have a

higher degree of syncopation than equivalent missing strong-beats, is par-

tially supported in Figure 4.4: Rhythm-patterns beginning with rhythm-

components A, G and H (which contain missing down-beats) have higher

average ratings than those with A, G or H respectively in the second half

(Figure 4.4). The pair-wise comparisons (in Figure 4.5) for pairs AC/CA,

AD/DA and GJ/JG also support this.

4.3.3 Possible interpretation of 6/8 as 3/4

In Figure 4.5, we can observe a significant difference in syncopation rat-

ings for the 6/8 patterns FG/GF and GJ/JG depending on component

order. We might expect to see this for GJ/JG because GJ has a missing

down-beat whereas JG does not. Note, however, that this does not explain

why other similar 6/8 patterns do not show an equivalent significant dif-

ference. In contrast, FG and GF both exhibit a missing down-beat so it is

interesting that there should be a significant difference (due to switching

order) in this case and prompts further explanation. In listening tests,

Povel and Essens [PE85] found that, given a choice, listeners select the

meter which minimises metrical contradiction (i.e. syncopation). Looking

at the rhythm-patterns in question (notated in Figure 4.5), we can see

that for FG and JG, all the notes fall on strong-beats in 3/4 (i.e. eighth-

note positions 1, 3 and 5 in 6/8) whereas in GF and GJ, this is not the

case. Indeed, using the clock model of Povel and Essens [PE85], patterns

FG and JG are strongly predicted to be interpreted as 3/4 time whereas

GF and GJ would be predicted as 6/8. It is possible therefore that the

listeners are interpreting some 6/8 patterns as 3/4, which would thus re-

duce the anticipated level of syncopation. The clock model also makes

similar predictions with regards to the results shown in Figure 4.4d. The
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ternary components G, H and J show significant differences according to

their location in the bar where other ternary components do not. The

component order corresponding to low syncopation ratings in these cases

may be explained as being a result of listeners interpreting the meter as

3/4. Such metrical interpretation is broadly consistent with the findings

of Hannon et al. [HSEK04], who showed that when judging meter, listen-

ers were more likely to choose 6/8 when the tempo the was fast but more

likely to choose 3/4 when the tempo was slow.

4.3.4 Polyrhythms

Polyrhythms were rated as more syncopated than monorhythms (Fig-

ure 4.3). In music psychology, polyrhythms are usually dealt with as

a separate concept to syncopation [Lon04, LHL84]. However, if we accept

the definition of syncopation as being a contradiction to the prevailing me-

ter, then the introduction of a competing meter (i.e. within a polyrhythm)

would clearly also give rise to this phenomenon. The fact that we found

polyrhythms to be more syncopated than monorhythms suggests that the

challenge to the prevailing meter, from a counter meter, is more sub-

stantial than that caused by emphasising weak-beats over strong-beats in

monorhythms.

In Figure 4.5, one pattern containing a polyrhythm, BH/HB, shows

significant difference when the order of rhythm-components is switched.

Both components of BH/HB are missing the strong-beat yet HB was rated

as significantly more syncopated than BH. This may be explained by the

fact that component B is a monorhythm in 4/4 but H is a polyrhythm

in that meter. When H is placed in the first half of the pattern it is a

polyrhythm that has a missing down-beat, which implies that the synco-

pation is compounded in this case.

4.4 Summary

In this chapter, we evaluated the relationship between notated rhythm

and perceived syncopation. We used a metronome to provide explicit cues
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to the prevailing rhythmic structure (as defined in the time-signature).

Three-bar scores with time-signatures of 4/4 and 6/8 were constructed

using repeated one-bar rhythm-patterns, with each pattern built from ba-

sic half-bar rhythm-components. Our manipulations gave rise to vari-

ous rhythmic structures, including polyrhythms and rhythms with miss-

ing strong- and/or down-beats. Listeners were asked to rate the degree

of syncopation they perceived in response to a rendering of each score.

We observed higher degrees of syncopation in time-signatures of 6/8 for

polyrhythms and for rhythms featuring a missing down-beat. We also

found that the location of a rhythm-component within the bar has a sig-

nificant effect on perceived syncopation.

This experiment also forms a dataset that consists of 99 rhythm-

patterns and the corresponding humans perceptual ratings on syncopa-

tion. In the following chapter, we will give in-depth reviews of several

well-known syncopation models and evaluate them against this dataset.



Chapter 5

Evaluation of the models

The studies in which the syncopation models have previously been evalu-

ated [GTT07, Thu08, SH07] have been tested against measures presumed

to be indirectly related to syncopation; these include rhythmic complexity

and difficulty in rhythm reproduction or rhythm recognition [PE85, Ess95,

SP00, FR07]. In this chapter, we introduce a complete dataset for synco-

pation perception and test the models directly on it. The dataset, detailed

in Section 5.1, is an extension of the work from Chapter 4 where the per-

ception of syncopation was investigated explicitly by asking musicians to

rate the degree of perceived syncopation in response to rhythm-patterns

in time-signatures of 4/4 and 6/8.

Our evaluations in Section 5.2 follow Chapter 4 by splitting the data

into three rhythm-pattern categories: 4/4 monorhythm, 6/8 monorhythm

and 4/4 polyrhythms. Some models are not designed to handle all three

categories, so we present individual results for each model as appropriate.

Finally, we analyse the respective strengths and weaknesses of each model.

5.1 Dataset 1

In Chapter 4, we introduced Experiment 1, in which we asked ten experi-

enced musicians to give informed ratings over a five-point rating scale, of

perceived syncopation for renderings of 99 three-bar scores. We then ex-

tended this experiment to include 12 more rhythm-patterns at the eighth-

note level for a total of 111 rhythms by replicating the methodology in

Section 4.1.

86
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We recruited a further ten trained musicians, eight male and two fe-

male, with an average age of 32 years (standard deviation 5.2 years). All

participants had trained for an average of 18.5 years (standard deviation

7.9). All of them reported proficiency in multiple instruments. All par-

ticipants confirmed that they were confident in their understanding and

rating of syncopation. Four of them had participated in the previous ex-

periment. All participants reported normal hearing.

As in the part of Experiment 1 that we explored in Chapter 4, each

score, rendered to produce a single stimulus, was constructed of three bars.

The first bar was always metronome alone. The second and third bars

were repetitions of a one-bar rhythm-pattern constructed from concatena-

tion of two basic, half-bar rhythm-components out of ten (see Figure 4.1

for an illustration of the steps taken when generating the stimuli). The

combination of a binary and a ternary rhythm-component in 4/4 meter

creates a polyrhythm. In contrast, a monorhythm is any rhythm-pattern

which is not polyrhythmic, which means that it is constructed from ei-

ther two binary rhythm-components in 4/4 meter or two ternary in 6/8.

The extended 12 rhythm-patterns (4/4 monorhythms) were constructed

from binary rhythm-components A-D (after removing the duplications of

rhythm-patterns formed in the experiment described in Chapter 4), and

each of which was scaled down to a quarter-note-duration in a time sig-

nature of 4/4 to generate eighth-notes (example in Figure 5.1).

The stimuli were rendered (synthesised) at a sampling rate of 44.1 kHz

16-bit using MIDI sequencing. As described in Chapter 4, a percussive

snare drum sample was used for the musical rhythm and a ‘cow-bell’ sam-

ple was used for the metronome. The tempo of the metronome was set to

140 BPM.

The procedure exactly followed that set out in Section 4.1.3; Partic-

ipants were unpaid volunteers and gave informed verbal consent before

the experiment. Participants were free to withdraw at any point. Tests

were arranged informally and conducted at the convenience of the partic-

ipants. Written consent was not deemed necessary due to the low (safe)

sound pressure levels employed in the test. The experimental protocol

(including consent) was approved by the ethics committee of Queen Mary
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Figure 5.1: The example score of rhythm-pattern BCBC. Rhythm-components
B and C are paired to create a half-bar rhythm-pattern BC; BC is then re-
peated once to produce a one-bar rhythm-pattern BCBC. The three-bar score
is generated from one bar of metronome alone, and two bars of repetitions of
the one-bar rhythm-pattern BCBC.
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Figure 5.2: Group mean syncopation ratings for the extended stimuli. This
matrix shows the group mean syncopation ratings for the 12 extended 4/4
monorhythms. The horizontal axis denotes the first and third rhythm-
components of the rhythm-pattern, and where the vertical axis denotes the
second and forth rhythm-components. The empty elements in the matrix are
either full-rest rhythm (e.g. AAAA) which is excluded or duplicated rhythm-
patterns as in the existed stimuli (e.g. ACAC is identical with BB).

University of London.

The group mean ratings for the extended rhythm-stimuli are shown

Figure 5.2. Overall, Dataset 1 includes 27 4/4 monorhythms, 36 6/8

monorhythms and 48 polyrhythms, altogether 111 rhythm-stimuli. Look-

ing at Figures 5.2 and 4.2 together, we can form an idea of the averaged

ratings for Dataset 1. The complete dataset is plotted in ranked order of
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Figure 5.3: The ranked mean ratings of entire dataset. The dark-red shows
the increasing degree of perceived syncopation across stimuli that contains 111
rhythms patterns. The light-colour represents the 95% confidence intervals.

mean syncopation rating in Figure 5.3, including 95% confidence intervals.

The overall distribution is relatively linear between zero syncopation and

maximum syncopation and hence provides a good means to evaluate the

predictions of the models.

5.2 Evaluation results

The human ratings are not normally distributed, therefore we have calcu-

lated the Spearman’s rank correlation coefficient between each model and

the perceptual data. The predictions of each model were tested against

the human ratings data; each prediction of the model for a given stimulus

was compared to the mean of the human ratings for that stimulus. Cor-

relation coefficients (Spearman) were used to quantify the quality of the

predictions for each model and were performed for subsets of the human

data as appropriate to the scope of each model.

Figure 5.4 plots the predictions of the models as a function of the mean

human ratings for 4/4 monorhythms, including the regression line (±95%

confidence intervals). The PRS model performed best (r = 0.95, p < 0.01)

and the TMC model also performed well (r = 0.92, p < 0.01). In contrast,



CHAPTER 5. EVALUATION OF THE MODELS 90

the TOB model performed poorly (r = 0.36, p > 0.05).

Figure 5.5 shows the same plots for 6/8 monorhythms. Again, the best

predictions were made by the PRS model (r = 0.95, p < 0.01). The LHL,

SG and TMC models performed similarly while the TOB model again

performed poorly (r = 0.17, p > 0.1).

Figure 5.6 shows that polyrhythms have generally been overlooked in

design of the models: only three are applicable and only the WNBD model

performed modestly well (r = 0.41, p < 0.01).

5.3 Discussion: strengths and weaknesses of models

In order to compare the syncopation models, evaluation results in terms

of the correlations between model predictions and human ratings have

been presented within each subset of our data (Figures 5.4 - 5.6). In this

section, we will discuss the strength and weaknesses of the models with

reference to the categories we introduced in Section 2.3.1.

5.3.1 Hierarchical models

The hierarchical models include LHL (Equation 3.19), TMC (Equation 3.31),

PRS (Equation 3.29) and SG (Equation 3.39). They generally work better

for monorhythms than the other classes of model, suggesting that metri-

cal hierarchy is critical in explaining the perception of syncopation. They

can detect a missing down-beat, which is known to give rise to synco-

pation (Section 4.2.3). The PRS model stands out in this group. Its

main advantage may be the result of the model integrating rhythm over a

larger window (rather than considering momentary events) and classifying

rhythmic structure at different levels of hierarchy as defined syncopation

types.

The inherent limitation of these models is that they are only applicable

to monorhythms. In polyrhythms, competing groupings of events give

rise to more than one metrical hierarchy, but only one of them can be

presented in the hierarchical models. Therefore, there will be some notes

that fall outside the metrical positions defined in the presented metrical



CHAPTER 5. EVALUATION OF THE MODELS 91

hierarchy, and hence these cannot be captured. Take Figure 2.14b for

example, hierarchical models will form the metrical hierarchy of the time-

signature of 2/4 (the tree structure of the top line), but the second and

third triplet quarter-notes do not fall on the metrical positions on this

metrical hierarchy (see Figure 2.14).

Another potential limitation is their application of theoretical metrical

hierarchy (Figure 3.3, Equations 3.16 and 3.17) instead of a perceptual

hierarchy1. The hierarchy weights may be considered as free parame-

ters, and reflect hypotheses about the perceptual importance of note posi-

tions [PK90]. Therefore, in principle, the modelling fits of the hierarchical

models could be optimised by adjusting these weights. This optimisa-

tion process would then yield predictions of the perceptual importance

of note positions which could be compared to measures of perceptual hi-

erarchies [PK90]. Smith and Honing have implemented a version of the

LHL model that incorporates perceptual hierarchies and compares these

against the theoretical hierarchy [SH07]. Their results show that percep-

tual hierarchy did not help LHL’s syncopation prediction get closer to

Shmulevich and Povel’s dataset of rhythm complexity [SP00]. However,

this set of rhythm-stimuli lacks metrical context which controls perceived

meter to be the same as the defined metrical structure when modelling,

which may introduce errors in the model’s prediction.

The LHL model adopts a unique modelling approach, which is to search

N-R pairs and take the difference in weights within the N-R pair as the

syncopation measurement (Equation 3.19). Regardless of the rationale be-

hind it (Section 2.2.2), this method can sometimes result in a type II error,

i.e. a false negative. For example, the rhythm presented in Figure 5.7a

starts with a missing down-beat that is supposed to be syncopated, but

no note is preceded by this rest, therefore no N-R pair can be formed.

The rationale behind this design of LHL model may be that it assumes

human listeners naturally interpret rhythm in a way to avoid syncopation,

1Palmer and Krumhansl reported listeners’ mean ratings of perceptual importance of each
metrical position in different metrical contexts (e.g. 4/4, 3/4, 6/8), which reflect the perceptual
metrical hierarchy of different meters [PK90]. Perceptual hierarchy strongly correlates with
the theoretical hierarchy([PK90], Table 2), but the weights of each metrical position differ.
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Figure 5.4: Comparisons of model predictions for 4/4 monorhythms. The nor-
malised predictions are plotted against the normalised mean human ratings.
Spearman-rank correlation coefficients (r, p) are given for each model. Linear
regression lines (and 95% confidence interval) are plotted for illustration.
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Figure 5.5: Comparisons of model predictions for 6/8 monorhythms. The nor-
malised predictions are plotted against the normalised mean human ratings.
Spearman-rank correlation coefficients (r, p) are given for each model. Linear
regression lines (and 95% confidence interval) are plotted for illustration.
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Figure 5.6: Comparisons of model predictions for polyrhythms. The normalised
predictions are plotted against the normalised mean human ratings. Spearman-
rank correlation coefficients (r, p) are given for each model. Linear regression
lines (and 95% confidence interval) are plotted for illustration.

(a) Rhythm-pattern CD

IA A) $IAII $ $ $* * * *
(b) Rhythm-pattern CBCB

Figure 5.7: Examples of rhythms with syncopation that cannot be captured by
the LHL model. Both (a) and (b), assuming they are the start of a musical
piece, contain rests on strong metrical positions (indicated in red), but are not
preceded by notes and therefore cannot form an N-R pair.
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(a) Rhythm-pattern DDDD
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(b) Rhythm-pattern CDCD
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Figure 5.8: Examples of non-syncopated rhythms that are measured as synco-
pated by off-beat models. Rhythms in (a) and (b) both have all beat positions
filled with notes, and some off-beat notes (indicated in red). They are per-
ceived as non-syncopated but the off-beat notes are counted as syncopation by
the off-beat models.

therefore rhythm does not generally start with a rest. However, it neglects

the known fact that the representations of metrical hierarchy are formed

preattentively in the human auditory system [LH09, PK90], hence starting

with a missing down-beat needs to be detected. Figure 5.7b also shows a

rhythm that contains rests on strong metrical positions and is perceived

as syncopated, but cannot be captured by the LHL model.

5.3.2 Off-beat models

The off-beat models, including TOB(Equation 3.47) and WNBD (Equa-

tion 3.52), start with locating beat (or strong-beat) positions, then search

for notes that fall in between beats. The key strength of these models

is that they are capable of capturing polyrhythms because any note out-

side the metrical positions is treated as ‘off-beat’ and hence contributes

to syncopation.

However, the hypothesis that any off-beat note leads to syncopation

is not consistent with the observation of syncopation resulting from the

accenting of weak-beats and diminishing of strong-beats [Ran86, Hur06].

As in the examples shown in Figure 5.8, there are several cases of rhythms

containing both off-beat notes and filled strong-beats that are not syn-

copated. The off-beat models also cannot detect a missing down-beat

because only sounded notes are captured, not rests.

It has been demonstrated that switching the order of rhythm-components

within the bar can affect syncopation (Section 4.2.4). The WNBD model

cannot capture such details, because it focuses only on the distance of
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(a) Rhythm-pattern KF (b) Rhythm-pattern FK

KM KM$ $ * * * $ $ $ ** * $$ *

Figure 5.9: A specific limitation of the WNBD model. The rhythm-components
in (a) are switched to generate the rhythm-pattern in (b). The short black
lines indicate the metrical positions on tatum level, and the grey dots indicate
the strong-beats as defined by the time-signature of 6/8. After switching the
order of the rhythm-components, the distance of the off-beat note to its nearest
strong-beat remains unchanged. Therefore, these rhythms are predicted by the
WNBD model to be equally syncopated, whereas their perceptual ratings are
not the same.

an off-beat note to its nearest strong-beat without consideration of its

metrical position within the bar (Figure 5.9).

Specific limitations of the TOB model are presented under two con-

ditions. The first is whether the divisors of the dimension of time-span

(|V | ) include more than one prime numbers (e.g. |V | = 12 or 24). Take

Figure 3.7b for example, a 12-unit time-span (|V | = 12) can represent

both a 4/4 and a 6/8 meter. Music theory defines on-beat positions in

4/4 meter as the set {0,3,6,9} on the circle (quarter-notes); and on-beat

positions are the set {0,6} (dotted quarter-notes) in 6/8 meter. However,

the TOB model defines on-beat positions as all positions that can evenly

divide the circle (the divisor is greater than one), {0,2,3,4,6,8,9,10}, which

is the union2 of the on-beat positions of two meters. This is problematic

because on-beat positions {3,9} in 4/4 are known to be off-beat in 6/8,

but are still treated as on-beat when modelling 6/8 rhythms. As a result,

this model confuses time-signatures and ignores metrical structure in the

calculation. This problem directly leads to the incorrect prediction that

polyrhythms are not syncopated (Figure 5.6). The second limitation is

when |V | is 1 or any prime number, the circle cannot be divided by any

divisor that is greater than one. Therefore, the TOB model cannot define

2In set theory, the union of a collection of sets is the set of distinct elements in the collec-
tion [HJ99].
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on-beat and off-beat positions.

5.3.3 Classification models

The classification models, PRS (Equation 3.29) and KTH (Equation 3.45),

generally perform well in predicting the data for 4/4 monorhythms. This

may be because they are able to capture missing down-beats. The PRS

model preforms evidently better than the KTH model (Figure 5.4). This

may be because the PRS model takes account of hierarchical metrical

structure more than the KTH model, and it has a finer categorisation of

syncopation types to capture certain features of a rhythm-pattern, whereas

KTH only differentiates two categories (on-beat and off-beat) to classify

the metrical position of start/end for an event.

In the KTH model, off-beat is defined as instances when the rounded

duration of the note (Equation 3.41) is divisible by the start or end posi-

tion of this note (Equations 3.42 and 3.43) and this definition3 does not

seem complete. For example, any note with duration 1 in time-span rep-

resentation will be measured as starting and ending on-beat because both

starting and ending locations of the note are divisible by 1 (which is also

1’s nearest power of two), even if it is not actually on the beat.

The KTH model performs poorly in predicting the data for polyrhythms,

but it was probably not originally designed to do so. Also, the KTH model

and the off-beat models merely focus on detecting whether a certain event

is on-beat or off-beat. However, the contradiction to the established meter

that polyrhythms elicit is due to incompatible periodicities of rhythm and

meter, not simply due to off-beat events. Because of this, this method

is not suitable for measuring polyrhythms. Another limitation of KTH

model is that it is only designed to capture binary-divisible meters where

the number of beats in a bar is a power of two, therefore the range of its

applicability is restricted.

3It should be noted that the off-beat KTH specifies is in relation to the note duration and
is therefore variable. This is opposed to the off-beat defined in WNBD and TOB, which is
determined by metrical structure and is therefore fixed in a given time-signature.
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5.3.4 General discussion

Overall, all the models predict better at 4/4 monorhythms than 6/8

monorhythms. This can be partially explained by the fact that most of the

models were designed to account for 4/4 monorhythms (in [Pre97, Kei91],

only 4/4 monorhythms examples are given). Secondly, the poor perfor-

mance of 6/8 monorhythms may be due to the adoption of an implicit

6/8 metronome (i.e. only accenting the first beat in a bar), instead of an

explicit one (i.e. accenting the first and the forth beats in a bar). The

implicit metronome allows listeners to interpret a bar of 6 eighth-notes as

three groups of two (3/4) or two groups of three (6/8). Listeners are nat-

urally inclined to choose the meter which minimises syncopation [PE85],

therefore their perceived metrical structure may not necessarily be the

same as the fixed time-signature the model uses to predict.

In conclusion, a comprehensive syncopation model should emphasise

metrical hierarchy so that factors that contribute to syncopation (e.g.

a missing down-beat, the location of rhythm-components within a bar)

will be considered. The model should also to be capable of capturing

polyrhythms. The PRS model has shown a better performance in gen-

eral. This may due to its unique mechanism where a rhythm is analysed

over several larger windows (e.g. bar- or half-bar long window), rather

than merely momentary events, hence syncopation is calculated on a con-

tinuous time-scale, which may be closer to how humans process rhythm

information in a continuous, context-dependent manner.

5.4 Summary

In this chapter, we evaluated the models against Dataset 1, which includes

mean perceptual ratings of 111 rhythm-patterns. We followed Chapter 4

by splitting the data into three rhythm-categories, resulting in 27 4/4

monorhythms, 36 6/8 monorhythmsand 48 polyrhythms, each of which

was tested by all the applicable models. Our results suggest that there is

much room for improvement, particularly in polyrhythms. We have iden-

tified the strengths and weaknesses of the various modelling architectures,
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based on which we conclude that a unified mathematical model of synco-

pation will need to retain both the hierarchical meter structure and the

flexibility of off-beat models.



Chapter 6

Tempo affects syncopation

Tempo describes the speed of a piece of music and typically indicates the

rate of the perceived beats (Section 2.1.4). As a fundamental ingredient of

music, tempo does not only function as a framework for timing to enable

the prediction of future events, but also plays a role in rhythm perception

in general [McA10]. In this chapter, we investigate the effects of tempo

on the perception of syncopation. Particularly, we investigate how the

strength of syncopation perception varies with the change in tempo.

Based on Experiment 1 (Section 4.1), we conducted a second exper-

iment in which we asked musicians to rate the perceived syncopation of

eight rhythm-patterns, each of which played at eight different tempi from

30 to 480 QPM. The eight rhythm-patterns chosen were all rated as synco-

pated at 140 QPM in Experiment 1, comprising a mixture of three rhythm-

categories: 4/4 monorhythms, 6/8 monorhythms and 4/4 polyrhythms.

Our main hypothesis is that tempo will influence the perceived synco-

pation. In addition, we tested whether tempo effects on syncopation are

different for: i) polyrhythms and monorhythms, ii) time-signatures of 4/4

and 6/8 and iii) individual rhythm-patterns.

This chapter starts with a literature review on the known effects of

tempo on some aspects of rhythm perception in Section 6.1. In Section 6.2,

the materials and procedure of Experiment 2 are explained, followed by

the results and discussion in Sections 6.3 and 6.4.

100
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6.1 Background

The manipulation of tempo causes musical events to be transposed in time.

Although this seems to not affect the inner-relationships among the events,

it strongly influences the perception of music in various ways. Putting

aside the numerous reported tempo effects on pitch perception [DGM88],

on physiological responses and emotional state [CH01, vZWvdB11], on

music preference [LeB81] and on biophysical behaviours such as dining

and driving [CH99, Bro02], here we only focus on studies addressing the

relationship between tempo and rhythm perception.

6.1.1 Tactus perception and tempo

Tactus is the beat level that is most naturally tapped or danced to (see

Section 2.1.2). Various studies, reviewed below, have demonstrated that

the perception of tactus (i.e. the perception of the beat level to be selected

as tactus) is tempo-dependent and is bounded within ranges of tempi.

Duke asked musicians to tap with perceived beats in response to isochronous

(i.e. equal time-interval) tones presented at different rates [Duk89]. The

tapping rates range mostly from 60 to 120 BPM regardless of the speed

of the stimulus, and 80 BPM was the most frequently occurring tapping

rate.

Parncutt conducted a beat-tapping experiment using several rhythmic

patterns (of tones) at six different tempi [Par94]. He found the histogram

of tapping periods roughly yielded a log-normal distribution with a mean

around 710 ms (about 85 BPM) and a standard deviation corresponding

to 400 - 1190 ms (about 50 - 150 BPM). Combined with Duke’s finding,

the region from 50 to 150 BPM may be where tactus is mostly likely to be

perceived, and the beat rates from 80 to 100 BPM are preferred for tactus

perception.

The beat-tapping paradigm was further investigated in the broader

context of a large corpus of musical pieces heard on the radio and in

recordings of several styles [vNM99]. Unlike the experimental studies in-

troduced above that involve controlling tempo, this study was observa-

tional because it aimed to measure the beat-tapping rates from listeners
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Figure 6.1: Histogram of beat-tapping rates. A schematic histogram of beat-
tapping rates, combining the findings from a number of studies [Fra63, Duk89,
Par94, vNM99]. The preferred tapping rates of listeners are in the range of
80 - 120 BPM (indicated with the darkest shading). Listeners tend to retain
the tapping rate between 50 and 162 BPM (medium shading). The extremes
between 30 to 50 and between 160 to 300 BPM (lightest shading) can afford
tactus perception, but are much less likely to be tapped.

to existing music without manipulating the tempo of the music. The dis-

tribution of tapping rates also roughly yielded a log-normal distribution

that was consistent with Parncutt’s findings (see [vNM99] for compar-

isons of distributions of tempi from several sets of experimental data).

The peak of the distribution is located around 120 BPM (500 ms) and

the ‘octave’ 81-162 BPM (370 - 740 ms) generally covers the region of

commonly perceived tactus rates.

We have reviewed several studies that investigated the relationship

between tempo and tactus perception by tapping experiments. Figure 6.1

illustrates the range of beat-tapping rates from converging evidence [Fra63,

Duk89, Par94, vNM99]. Overall, the histogram of tapping rates (on a

logarithmic scale of BPM) approximately yields a normal distribution.

Listeners prefer to tap in a region from 80 to 120 BPM (500 - 750 ms),

and generally retain the tapping rate within 50 to 162 BPM (370 - 1190

ms).
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6.1.2 Tempo limits of tactus and meter perception

Intuitively, the perception of beat or meter must be bounded in time: we

cannot separate two sounds if the inter-onset interval is too short [HM90],

and we cannot subjectively group events separated by long intervals and

form an anticipation of between the future events [Hur06].

The range of 200 - 2000 ms is generally accepted to cover the existence

region of tempo for tactus perception [Lon04]. This is estimated by com-

bining observations from several tapping experiments (Section 6.1.1) [Par94,

vNM99, HO81]. However, the tempo range that enables the perception of

meter is far wider than for tactus. Forming a sense of meter requires listen-

ers to organise beats into groups and to synchronise with the beats [Lon04].

Several studies have investigated the limits of tempi for subjective rhythmi-

sation, i.e. perceived groupings of identical and isochronous events. Repp

found a lower limit for tapping in phase with every fourth tone by musi-

cians at 100 ms [Rep03]. Fraisse found that 1800 ms is the upper limit for

subjective rhythmisation [Fra82]. Mates et al. found that above 2400 ms

listeners can no longer synchronise and anticipate accurately [MMPR93].

London suggested an even higher upper boundary for meter perception,

which may extend to 5 or 6 seconds. As noted in [Lon04, p. 30]:

... if 2 seconds is the limit for hearing successive events as tem-

porally connected outside of a metric hierarchy, then it makes

sense that the absolute value for a measure might be from about

4 to 6 seconds (that is, twice or three times the length of the

slowest possible beat).

To summarise, evidence from several experiments has indicated that

the range 200 to 2000 ms (30 - 300 BPM) may cover the boundaries of

tempi that afford a tactus perception. The perception of meter may be

bounded within a wider range of tempo, roughly from 100 ms to 5 or

6 seconds (10 - 600 BPM). Therefore, tactus perception appears to be

consistently inside the range of meter perception.
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6.1.3 Dynamic meter perception influenced by tempo

Multiple studies suggest that the relationship between meter perception

and tempo is two-way. On one hand, the perception of tempo is affected

by the construction of metrical structure, for example subdivided inter-

beat intervals are perceived as longer (i.e. having a slower tempo) than

unfilled intervals [Rep08, WK00], and performers exhibit systematic varia-

tion in tempo when they shift attention to different metrical levels [MP01].

On the other hand, change of tempo affects the perception of metrical

structure and directs the ‘selection’ of primary rhythmic level [CM60] (i.e.

tactus) from a multi-level metrical structure.

Figure 6.2 illustrates the process of shifting tactus between metrical

levels in response to the variation of tempo. The selection of tactus level

is biased towards the preferred tempi where listeners tend to tap (Sec-

tion 6.1.1). When the tempo of the beat level (defined by time-signature)

is outside of the suitable tempo range for tactus, any other beat level with

a periodicity that is closer to the preferred region of tempo will be per-

ceived as the tactus. It is also possible that more than one beat level may

be located in the tempo region that allows a tactus perception, resulting

in multiple acceptable tapping rates that are related by simple integer

ratios [MM04].

This phenomenon has been demonstrated in a number of studies [Fra63,

Par94, Duk89, LCH06, MS99]. Duke found subjects perceived a subdivi-

sion of the stimulus tones as a beat when they were presented slower than

60 tones-per-minute (TPM), and perceived alternative tones as the beats

at presentation rates faster than 120 TPM [Duk89]. London’s study on

the perception of anacruses (i.e. up-beats, one or more notes prior to the

first down-beat) also suggested a tendency to shift the perceived tactus

to higher metrical levels at faster tempo [LCH06]. He found that listen-

ers were significantly more inclined to perceive anacruses in the short-

short-long (SSL) rhythm-pattern as tempo increases. This is a result of

perceiving the higher metrical levels as the tactus level at faster tempo,

which caused the longer note in SSL rhythm-pattern to be perceived as

the down-beat.
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Figure 6.2: Dynamic adjustment of tactus level with change in tempo. A
schematic diagram illustrating how change in tempo (QPM) affects the selection
of tactus level within the metrical hierarchy. The shaded area indicates the
perceptual strength of tactus as in Figure 6.1. The beat level that falls in the
range of 50-150 BPM is likely to selected as tactus; the closer to the ‘hottest’
area from 80-120 BPM, the more likely to be selected. Therefore at 30 QPM,
both the eighth-note and sixteenth-note levels fall in the suitable range for
tactus, but the sixteenth-note level (120 BPM) is more likely to be tapped at.
At 50 QPM, the eighth-note level (100 BPM) is most likely to be selected as
tactus. At 90 QPM, the quarter-note level is most likely to be selected; but at
180 QPM, only the half-note level falls in the range suitable for tapping.

In addition to the rhythms that project an unambiguous metrical struc-

ture, tempo also plays a role in rhythms that elicit an ambiguous metrical

interpretation. For example, in the experiment of Honnon et. al, listen-

ers heard short metrically ambiguous melodies, and were asked to choose
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whichever meter they perceive between 3/4 and 6/8 meter, and to rate

how firm their perception was [HSEK04]. The melodies were played at two

tempi, either 200 ms per note (fast) or 300 ms per note. The results suggest

that listeners tend to perceive the meter which has an inter-beat interval 1

of 600 ms. This is consistent with Fraisse’s findings [Fra63, Fra82].

Similarly, for highly conflicting rhythm constructions, Handel and Os-

hinsky tested several two-train polyrhythms at a broad range of tempi,

e.g. 3×4 polyrhythm, 2×5 polyrhythm [OH78, HO81]. In this paradigm,

global tempo determines the inter-onset intervals within each train of

rhythms. At slow tempi, the onsets of a pulse train with intervals above

600 - 800 ms are perceived unconnected. At fast tempi, the onsets with

intervals below 200 - 300 ms are perceived as grouped because they are

too fast to be heard separately, therefore are unsuitable to serve as meter

in either case. In general, these findings suggest that listeners tend to

choose the train of pulses as tactus whose inter-onset intervals fit within

the window of 200 - 800 ms; but, if neither train of pulses satisfies these

time constraints, the listeners would use other cues to assist in meter

perception (such as pitch).

In summary, how human listeners perceive the primary rhythmic level

and the entire metrical structure dynamically adapts to the variation of

tempo. This closely relates to the natural preference for a certain range of

beat rates (Section 6.1.1). The mental representation of meter influences

various aspects of rhythm perception, because it is the fundamental step

in the processing of temporal patterns. Thus the investigation of tempo

and meter may help us understand the relationship between tempo and

the broader rhythmic perceptions.

6.1.4 Hypotheses for tempo effects on syncopation

Previous studies have examined the tempo effects on tactus perception

(Section 6.1.1) and meter perception (Section 6.1.3). What has not been

systematically tested is the relationship between tempo and syncopation.

1This inter-beat interval indicates the time-span of three eighth-notes that is consistent
with how ‘beat’ is defined in the time-signature of 6/8.
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From a music-theory perspective, Cooper and Meyer predicted the

tempo-dependent feature of syncopation:

... whether there is syncopation or not depends upon how the

beat or pulse continuum is felt and hence upon the tempo of

the piece as well as the performer’s articulation of the meter. If

the tempo is too slow or if the performer overarticulates lower

metric levels, the effect of syncopated notes may be weakened.

Or if the tempo is too fast, what should be a higher metric level

is felt to be primary metric level, and notes not intended to be

syncopated become so. ([CM60, p. 100])

Here Cooper and Meyer were approaching syncopation and tempo from

the perspective of the effects of tempo on perception of metrical structure.

Listeners naturally adapt the primary rhythmic level to fit in a certain

range of tempi (Section 6.1.3). As a result, increase in tempo induces a

shift of tactus to a higher metrical level and leads to more off-beat events,

resulting in more syncopation; conversely the decrease in tempo shifts the

tactus to lower metrical level and merges the notes that were intended to

be off-beat into the beat level, resulting in less syncopation.

To our knowledge, Sioros et. al made the first attempt to incorporate

the tempo effect in syncopation modelling [SMC+13]. They assumed that

syncopation exists within a range of beat rates, and arbitrarily set the

lower and higher bounds at 500 and 1000 ms. However, this was entirely

drawn on their intuitions, and this has not yet been scientifically verified.

Relevant behavioural experiments have been conducted by Handel and

colleagues (Section 6.1.3). They correlated syncopated polyrhythms and

tempo, and found that the patterns of metrical interpretation depend on

tempo and the rhythmic construction of polyrhythms. However, the in-

tensity of syncopation perception of polyrhythms in relation to the change

of tempo was not addressed in their experiments.

In the following sections, we aim to investigate the following questions.

Is syncopation perception a function of the global tempo? How is the

relationship between syncopation and tempo characterised if there is one?

Are the temporal limits on meter perception applicable to syncopation,
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such that the perception of syncopation will disappear beyond the limits

of meter?

In order to address these questions, we tested the degree of perceived

syncopation of several syncopated rhythm-patterns being presented at dif-

ferent tempi. Our hypothesis is that a similar relationship between tempo

and beat perception would be reflected in syncopation, where maximum

syncopation is perceived at the moderate range of tempi, but less or none

is perceived at slow and fast tempi.

6.2 Experiment 2: Tempo

We replicated the method of Experiment 1, as described in Section 4.1, by

asking musicians to give subjective ratings of syncopation for renderings

of syncopated rhythm-patterns at a wide range of tempi. This method

addresses our objective to investigate whether and how syncopation per-

ception varies with tempo. All the selected rhythm-patterns were (on

average) rated as syncopated at a fixed tempo (140 QPM) in Experiment

1. In Experiment 2, we changed the same rhythm-patterns to different

global tempi and observed the elicited syncopation perception. Our hy-

pothesis will be corroborated by evidence that the relationship between

syncopation and tempo forms an inverted-U-shaped curve, i.e. the aver-

age syncopation ratings appear high within the middle range of tempi and

decrease for very slow or very fast tempi.

6.2.1 Participants

We recruited fifteen trained musicians, eleven male and four female, with

an average age of 32 years (standard deviation 6 years). Their musical

training included formal performance and theory over a range of instru-

ments, music production and engineering. All participants had trained

for an average of 19.5 years (standard deviation 8.5 years). Six of them

reported proficiency in multiple instruments. All listeners reported nor-

mal hearing and the procedure was approved by the ethics committee of

Queen Mary University of London. All listeners reported that they were
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comfortable with the ratings scales, confident about what was meant by

the terms and in their ability to estimate and rate the intensity of their

perception.

6.2.2 Stimuli

Figure 6.3 shows the musical scores for eight perceptually syncopated

rhythm-patterns selected from Experiment 1 (Sections 4.1 and 5.1). This

set of rhythms represents a wide range of perceived intensity of synco-

pation (mean ratings range from 1.4 to 3.8 at 140 QPM on the 0 - 4

rating scale); and covers three categories of rhythms: monorhythms in a

time-signature of 4/4, 3:2 polyrhythms in 4/4 and monorhythms in 6/8.

In order to provide listeners with a stronger meter cue especially at fast

tempi, the introductory metronome of the stimuli was extended to two bars

(in contrast to only one bar in Experiment 1, Section 4.1), followed by the

concurrent two-time-repetitions of a one-bar rhythm-pattern.

Each rhythm-score was rendered at each of eight tempi: 30, 60, 90,

120, 180, 240, 360 and 480 QPM. These chosen tempi cover a broad

range of rates, past the temporal limits of tactus and meter percep-

tion. In this range, they are roughly logarithmically spaced. It should

be note that QPM is different from how tempo is commonly described,

in BPM. However, the metronome beat quarter-notes in 4/4 meter and

in 6/8 it beat eighth-notes. Because of the difference of beat level in

the hierarchical metrical levels, using BPM would have made it more

difficult to compare the rhythms in these two time-signatures. Another

common practice is to describe tempo is inter-beat intervals in time do-

main [Fra63, Par94, HSEK04]. Table 6.1 lists the corresponding time

intervals between quarter-notes of each tempo in QPM.

We adopted the same synthesising method as in Section 4.1.2. The

same snare drum sound sample and the pitched ‘cow-bell’ sound samples

were used here again for rhythm and metronome respectively. The du-

rations of stimuli varied depending on the time-signature and the tempo.

The shortest trials were 1.5 seconds (i.e. four bars of three quarter-notes

at 480 QPM) and the longest trials were 32 seconds (i.e. four bars of four
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Figure 6.3: Rhythmic scores for Experiment 2. Eight rhythm-patterns taken
from the established rhythm set (Experiment 1), including monorhythms and
polyrhythms in a time-signature of 4/4, and monorhythms in 6/8. Each stim-
ulus always starts with two bars of metronome introduction and followed by
two-time-repetitions of a one-bar rhythm-pattern with concurrent metronome.
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Table 6.1: Tempo (QPM) in relation to quarter-note time interval (ms).

Quarter-note
Tempo (QPM) time interval (ms)

30 2000
60 1000
90 667
120 500
180 333
240 250
360 167
480 125

quarter-notes at 30 QPM).

6.2.3 Procedure

Blocks of 64 stimuli (8 rhythm-patterns × 8 tempi) were presented in ran-

dom order. The procedure remained the same as in Experiment 1 (Sec-

tion 4.1.3). In brief, listeners were initially asked to complete a practice

session to familiarise themselves with the computer interface and listening

materials. Then in the experimental session, listeners gave a rating be-

tween zero and four to indicate the intensity of their sense of syncopation

for each stimulus, where zero indicated no syncopation and four indicated

maximum syncopation.

6.3 Results

We adopted a top-down approach for data analysis, by starting with an

overview of the relationship between tempo and ratings averaged across

all rhythm-stimuli, then moving to group comparisons categorised by ei-

ther time-signature or rhythm-category, and finally examining the tempo

effects on individual rhythm-patterns. The following sections are struc-

tured in the same order. It should be noted that the focus of all analysis

is on the relative ratings, i.e. how the ratings of syncopation perception

may vary with tempo, instead of absolute ratings, i.e. how strong the

syncopation perception is for certain rhythms at a particular tempo.
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Figure 6.4: Grand mean syncopation ratings as a function of tempo. The
group mean syncopation ratings at different tempi (on a logarithmic scale) are
represented by the dots. The shaded area represents 95% confidence intervals.
The blue curve indicates the regression line that fits a log-quadratic relationship
between the mean ratings and tempi. * denotes significant (p < 0.05, Friedman
Rank Sum Test).

6.3.1 Syncopation is a function of tempo

Syncopation ratings were collapsed across all rhythm-stimuli at each tempo

and averaged for each listener. These grand mean ratings with 95% confi-

dence intervals are plotted in Figure 6.4. As the ratings are not normally

distributed, a Friedman Rank Sum Test was performed with the mean

ratings as the dependent variable and the tempo conditions as the inde-

pendent variable. The result suggests that there is an effect of tempo

on syncopation ratings (χ2(7) = 48.03, p < 0.001, Friedman Rank Sum

Test). As Figure 6.4 shows, the relationship between syncopation and

tempo seems to yield an inverted-U-shape but not entirely symmetrical

relationship with tempo.

In order to characterise the relationship between syncopation and tempo

(i.e. how the syncopation rating varies with tempo) and compare this

tempo effect between rhythms, we applied log-quadratic fits to the grand

mean ratings as shown in Figure 6.4. This function provides a good fit

to the data (r = 0.86, p < 0.01, Spearman’s Rank Correlation).The use of
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Figure 6.5: Peak and width of a quadratic curve. The peak is the x-coordinate
of vertex, referring to the tempo value in QPM where it arouses the maximum
syncopation perception. The width refers to the range of tempi that corresponds
to top range of syncopation perception. The threshold is arbitrarily set to 5%
below the vertex.

quadratic fits to characterise the shape of the data allows the comparisons

of merely two parameters, the peak and the width. It is much simpler

to compare these than histograms of ratings. Compared to an alternative

procedure, the log-normal distribution fit, the log-quadratic fit is more

robust as it can be applied to non-normally distributed data, hence it is

a better choice for characterising the shape of the data.

In the next section, we give a brief review of quadratic functions to

serve a better understanding of the further analysis.

6.3.2 Quadratic function

If the general form of the equation for a quadratic function is:

f(x) = ax2 + bx+ c,with a 6= 0 (6.1)

The turning point on a quadratic curve is referred to as the vertex,

which has an x-coordinate that is also the axis of symmetry of the curve.
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The location of the vertex is:

(− b

2a
,−b

2 − 4ac

4a
) (6.2)

This is derived by converting the quadratic function into vertex form:

f(x) = a(x+
b

2a
)2 − b2 − 4ac

4a
(6.3)

The roots of a quadratic function are known as the two values of x

for which f(x) = 0. The distance between roots reflects the width of the

curve, i.e. with a fixed vertex, the further apart the roots are, the wider

the curve is. The equation for calculating roots is:

f−1(0) =
−b±

√
b2 − 4ac

2a
(6.4)

Similarly, given any number y with y ∈ f(x), we can calculate the two

values of f−1(y) notated as x1 and x2:

x1 =
−b+

√
b2 + 4a(y − c)

2a

x2 =
−b−

√
b2 + 4a(y − c)

2a
(6.5)

Based on Equations 6.3 and 6.5, we define two variables summarising

a quadratic curve: the peak and the width. The peak is the correspond-

ing tempo value of the vertex (Equation 6.2). It estimates the ‘sweet

spot’ of tempo that maximises syncopation perception; in this study, it is

constrained to vary within the tested range of tempi from 30 to 480 QPM:

peak = e−
b
2a ,with peak ∈ [30, 480] (6.6)

The width refers to the absolute difference between the two tempo val-

ues of f−1(y) where y is set to the 5% lower than the vertex (Equation 6.2),

which constrains the curve itself to open downwards. The upper bound of

width is set to the maximum tested tempo 480 QPM.

y = 0.95 ∗ (−b
2 − 4ac

4a
),

width = |x1 − x2|, with width ∈ [0, 480] (6.7)
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Figure 6.6: Tempo effects between rhythm-categories. The group mean
syncopation ratings in two rhythm-categories are plotted: circles mark the
monorhythms, triangles mark the polyrhythms. * denotes significant (p < 0.05,
Friedman Rank Sum Test). The red curve indicates the regression line that
fits a log-quadratic relationship between the mean ratings of monorhythms and
tempi. The purple curve indicates the same for the polyrhythms group.

6.3.3 Polyrhythms are more resistant to tempo changes

All ratings of monorhythms were separately pooled from those of polyrhythms,

then averaged for each listener at each tempo. Figure 6.6 presents the

mean ratings in both rhythm-categories, and the corresponding fitted log-

quadratic curves. Again, the mean ratings in both rhythm-categories vary

significantly across eight tempi conditions, and the effect of tempo (i.e. the

effect size χ2) appears to be stronger for monorhythms (χ2(7) = 47.92, p <

0.001, Friedman Rank Sum Test) than polyrhythms (χ2(7) = 16.84, p <

0.05, Friedman Rank Sum Test).

Then, for each listener (N = 15), ratings of all monorhythms and

polyrhythms were separately pooled, and within each group of rhythm-

categories ratings were averaged across rhythm-patterns. The same log-

quadratic fitting procedure (see Sections 6.3.1 and 6.3.2) was applied to

each listener’s data in each group. This resulted in 15 fitted curves for

mean ratings of all monorhythms and 15 fitted curves for mean ratings of

all polyrhythms.
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Some outliers emerged during this procedure, where the fitted curves

for some listeners’ data failed to meet the constraints defined in Equa-

tions 6.6 and 6.7. This reflects the imperfect nature of the data where it

shows more variance at the level of the individual listener, and that the

quadratic modelling is not ideal when being applied to specific sub-groups

of data. In this circumstance, outlier exclusion is a way to remove noise

in the data when it gets down to specific categorical comparisons.

Two strategies were adopted to remove outliers, leading to two ways

of implementing group comparison. The first is referred to as unpaired-

subject group comparison. Outliers within each group were removed sepa-

rately, resulting in different remaining subjects (unpaired) between monorhythms

group (N = 13) and polyrhythms group (N = 8). Following this procedure,

the mean tempi (and 95% confidence intervals) of peaks and widths for

both groups were plotted in Figure 6.7. It shows that no significant dif-

ference in peaks between two groups is evident (p > 0.05, Mann-Whitney

U Test). The average peak of fitted curves for both monorhythms and

polyrhythms is around 133 QPM. Yet, the fitted curves for polyrhythms

are generally wider than monorhythms (U = 24, Z = −2.03, p < 0.05, r =

0.44, Mann-Whitney U Test) by about 30 QPM on average.

The alternative is paired-subject group comparison, which requires re-

moving outliers across groups, i.e. the listener who constituted an outlier

in either monorhythms or polyrhythms group will be removed from both

groups. This results in paired subjects (N = 8) in both groups. Fig-

ure 6.8 presents the comparison of peaks and widths between groups.

We observed the same results as the unpaired-subject procedure: the

peaks of the tempo effects between two groups appear not significantly

different (p > 0.05,Wilcoxon Signed-Rank Test), but the tempo effect

for monorhythms is again significantly stronger than polyrhythms (W =

0, Z = −2.52, p < 0.01, r = 0.89, Wilcoxon Signed-Rank Test).

6.3.4 No evidence of an effect of time-signature

All ratings were categorised by time-signatures at each tempo then aver-

aged for each listener. Figure 6.9 shows the group mean ratings in both
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Figure 6.7: Unpaired-subject comparisons of peaks and widths between rhythm-
categories. Red and purple indicate monorhythms and polyrhythms respec-
tively. (a) The group means and 95% confidence intervals of the peaks of the
fitted log-quadratic curves averaged for each listener. (b) The group means
and 95% confidence intervals of the widths of the fitted log-quadratic curves
averaged for each listener. * denotes significance in difference for pair-wise
comparison(p < 0.05, Wilcoxon Signed-Rank Test).
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Figure 6.8: Paired-subject comparisons of peaks and widths between rhythm-
categories. Red and purple indicate monorhythms and polyrhythms respec-
tively. (a) The group means and 95% confidence intervals of the peaks of the
fitted log-quadratic curves averaged for each listener. (b) The group means
and 95% confidence intervals of the widths of the fitted log-quadratic curves
averaged for each listener. * denotes significance in difference for pair-wise
comparison(p < 0.05, Wilcoxon Signed-Rank Test).

groups of time-signature, and the fitted log-quadratic curves. The effects

of tempo on the mean ratings in both groups are significant, and the effect
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Figure 6.9: Tempo effects between time-signatures. The group mean syncopa-
tion ratings under two conditions of time-signature are plotted: circles mark the
4/4 group, triangles mark the 6/8 group. The red curve indicates the regression
line that fits a log-quadratic relationship between the mean ratings in the 4/4
group and tempi. The green curve indicates the same for the 6/8 group. *
denotes significance (p < 0.05, Friedman Rank Sum Test).

in 6/8 group (χ2(7) = 39.47, p < 0.001, Friedman Rank Sum Test) seems

to be stronger than 4/4 group (χ2(7) = 25.11, p < 0.001, Friedman Rank

Sum Test).

Next, for each listener (N = 15) ratings were separately pooled and

averaged for all stimuli in 4/4 and those in 6/8. The same log-quadratic

fitting procedure was applied to each listener’s data in each group. Then

the unpaired-subject comparison between two groups was repeated (see

Section 6.3.3). First, the outliers within each group were removed, lead-

ing to unpaired subjects between the 4/4 group (N = 8) and the 6/8 group

(N = 11). Figure 6.10 plots the mean tempi (with 95% confidence inter-

vals) of the peaks and widths in both groups. We found no evidence to

suggest that the peaks or the widths are significantly different between

two time-signatures (p > 0.05, Mann-Whitney U Test). The mean peaks

are roughly 132 QPM and 147 QPM in 4/4 and 6/8 group respectively.

We then conducted the paired-subject group comparison between the

4/4 and the 6/8 group (N = 7) by removing outliers across groups (see
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Figure 6.10: Unpaired-subject comparisons of peaks and widths between time-
signatures. Red indicates the 4/4 group and green indicates the 6/8 group.
(a) The group mean and 95% confidence intervals of the peaks of the fitted
log-quadratic curves averaged for each listener. (b) The group mean and 95%
confidence intervals of the widths of the fitted log-quadratic curves averaged for
each listener.

Section 6.3.3). Figure 6.11 shows the mean tempi (with 95% confidence

intervals) of peaks and widths of fitted curves in both groups. The dif-

ference in peaks between the two groups remains insignificant (p > 0.05,

Wilcoxon Signed-Rank Test). However, in contrast to Figure 6.10, the

widths of the fitted curves for 4/4 group appear to be significantly wider

than for 6/8. The difference in widths between these two groups is on

average about 23 QPM (W = 27, Z = 2.20, p < 0.05, r = 0.83, Wilcoxon

Signed-Rank Test).

Only the 4/4 group, not the 6/8 group, includes polyrhythms, there-

fore the effect of polyrhythms may be a confounding factor. In order to

rule out the influence of polyrhythms, we replicate the above procedure

but only pooling ratings for monorhythms in 4/4 and monorhythms in

6/8. Two lines of evidence suggest that the effects of tempo are similar

for monorhythms in 4/4 and monorhythms in 6/8. First of all, tempo

strongly affects monorhythms in both signatures as shown in Figure 6.12

(in 4/4, χ2(7) = 23.96, p < 0.001, Friedman Rank Sum Test ; in 6/8,

χ2(7) = 39.47, p < 0.001, Friedman Rank Sum Test). Additionally, Fig-

ure 6.13 plots the comparison of peaks and widths generated by unpaired-

subject group comparison, and 6.14 shows the same by paired-subject
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Figure 6.11: Paired-subject comparisons of peaks and widths between time-
signatures. Red indicates the 4/4 group and green indicates the 6/8 group.
(a) The group mean and 95% confidence intervals of the peaks of the fitted
log-quadratic curves averaged for each listener. (b) The group mean and 95%
confidence intervals of the widths of the fitted log-quadratic curves averaged for
each listener. * denotes significance (p < 0.05, Wilcoxon Signed-Rank Test).

group comparison. Both suggest there is no significant difference in either

peaks or widths of the fitted curves for monorhythms between the two

time-signatures (p > 0.05 for both Mann-Whitney U Test and Wilcoxon

Signed-Rank Test). Thus, we can conclude that there is no strong evi-

dence to suggest that tempo affects rhythms in 4/4 differently from those

in 6/8.

6.3.5 Individual rhythms show different sensitivity to tempo

In order to investigate whether the tempo effect is rhythm-pattern de-

pendent, we compared the relationships between tempo and individual

rhythm-patterns. Ratings of each rhythm-pattern were separately pooled

and averaged for each listener. Figure 6.15 plots the mean ratings and 95%

confidence interval of each of the eight rhythm-patterns against tempi.

The results of Friedman Rank Sum Tests showed in total five rhythm-

patterns have significant differences in ratings at different conditions of

tempo. These rhythms are GD (χ2(7) = 14.98, p < 0.05), FF (χ2(7) =

28.52, p < 0.001), BBBB (χ2(7) = 24.13, p < 0.001), GJ (χ2(7) = 35.29, p <

0.001) and HF (χ2(7) = 18.73, p < 0.01) (Figure 6.15b, 6.15d - 6.15g).
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Figure 6.12: Tempo effects on monorhythms between time-signatures. (a) The
group mean syncopation ratings of monorhythms in two time-signatures: cir-
cles mark the 4/4-mono group, triangles mark the 6/8-mono group. * denotes
significance (p < 0.05, Friedman Rank Sum Test). (b) The regression line
that fits a log-quadratic relationship between the mean ratings in either group
and tempi. The red curve indicates the 4/4-mono group and the green curve
indicates the 6/8-mono group.
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Figure 6.13: Unpaired-subject comparisons of peaks and widths between time-
signatures for monorhythms. Red indicates monorhythms in 4/4 and green
indicates monorhythms in 6/8. (a) The group mean and 95% confidence inter-
vals of the peaks of the fitted log-quadratic curves averaged for each listener.
(b) The group mean and 95% confidence intervals of the widths of the fitted
log-quadratic curves averaged for each listener.

We then narrowed the comparisons down to these five rhythm-patterns

that presented a strong tempo effect. For each listener, the same quadratic
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Figure 6.14: Paired-subject comparisons of peaks and widths between time-
signatures for monorhythms. Red indicates monorhythms in 4/4 and green
indicates monorhythms in 6/8. (a) The group mean and 95% confidence inter-
vals of the peaks of the fitted log-quadratic curves averaged for each listener.
(b) The group mean and 95% confidence intervals of the widths of the fitted
log-quadratic curves averaged for each listener.

fitting procedure was replicated to the ratings separately pooled for each

of the five rhythm-patterns. In parallel to the analyses discussed in Sec-

tion 6.3.3 and 6.3.4, we first implemented the unpaired-subjects compar-

isons. The outliers within each rhythm-pattern were removed, and the

resulting distributions of peaks and widths of fitted curves for GD (N

= 8), FF (N =10), BBBB (N =12), GJ (N = 13) and HF (N = 10)

were compared pair-wise as shown in Figure 6.16. No significant differ-

ence were observed between the peaks for any pair of rhythm-patterns

(p > 0.05, Mann-Whitney U Test). However, the curve generated from

GD is significantly wider than BBBB by about 30 QPM (U = 22, Z =

−2.01, p < 0.05, r = 0.45) and wider than FF by about 24 QPM (U =

17, Z = −2.04, p < 0.05, r = 0.48, Mann-Whitney U Test, uncorrected),

though this significance is only marginal. This result is consistent with the

observation in Section 6.3.3 that the tempo effect on polyrhythms (GD)

may be generally weaker than monorhythms (BBBB and FF).

Then for the paired-subject comparison between pairs of rhythm-patterns,

outliers were removed across each pair of rhythm-patterns. For example,

the group of rhythm BBBB and the group of rhythm FF contain three
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Figure 6.15: Tempo effects between rhythm-patterns. The group means synco-
pation ratings of each rhythm-pattern against tempi are plotted. The shaded
areas indicate 95% confidence intervals. * denotes significance (p < 0.05,
Friedman Rank Sum Test). The rhythms in the first row, (a)-(c), are 4/4
polyrhythms; those in the second row, (d)-(f), are 6/8 monorhythms; and those
in the third row, (g) and (h), are 4/4 monorhythms. The coloured fitted log-
quadratic curves were fitted and plotted for the rhythm-patterns that have
shown a significant tempo effect.
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Figure 6.16: Unpaired-subject comparisons of peaks and widths between
rhythm-stimuli. The colours used represent different the rhythm-stimuli, as
in Figure 6.15. (a) The group means and 95% confidence intervals of the peaks
of the fitted log-quadratic curves averaged for each listener. (b) The group
means and 95% confidence intervals of the widths of the fitted log-quadratic
curves averaged for each listener. * denotes significance in difference for pair-
wise comparison (p < 0.05, Mann-Whitney U Test, uncorrected).

and five outliers respectively, two in common; therefore, six subjects were

removed across two groups in total. Figure 6.17 shows the comparisons of

peaks and widths between each pair of rhythm-patterns. Again, no single

pair presents a significant difference in peak of the fitted curves (p > 0.05,

Wilcoxon Signed-Rank Test). Only one pair shows a significant difference

in width: the fitted curves of rhythm GD is on average wider than GJ

by about 35 QPM (W = 2, Z = −2.03, p < 0.05, r = 0.76, Wilcoxon
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Figure 6.17: Paired-subject comparisons of peaks and widths between pairs of
rhythm-stimuli. The colours used represent different the rhythm-stimuli, as in
Figure 6.15. (a) The group means and 95% confidence intervals of the peaks of
the fitted log-quadratic curves averaged for each listener. (b) The group means
and 95% confidence intervals of the widths of the fitted log-quadratic curves
averaged for each listener. * denotes significance in difference for pair-wise
comparison (p < 0.05, Wilcoxon Signed-Rank Test, uncorrected).

Signed-Rank Test, uncorrected).

An alternative paired-subject comparison requires removing outliers

across all five rhythm-patterns. Yet, this method suffers from too few

common subjects (N = 5) throughout entire rhythm-patterns, resulting in

too weak a power of the analysis. Therefore we choose not to implement
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it.

In summary, we observed a diversity of tempo effects on individual

rhythm-patterns. Syncopation elicited by rhythm-patterns BBBB, FF,

GD, GJ and HF is strongly affected by tempo, whereas the tempo ef-

fect on other rhythms was not significantly affected by tempo. The five

rhythm-patterns have similar estimated tempi that correspond to maxi-

mum syncopation, i.e. the peaks of fitted quadratic curves. However, the

tempo effect on GD seems to be significantly wider than BBBB, FF, and

GJ. This can be interpreted as further evidence supporting the theory that

syncopation aroused by polyrhythms is less sensitive to tempo changes.

6.4 Discussion

We collected ratings of syncopation perception for several syncopated

rhythm-patterns being transposed over a wide range of tempi. Overall,

the results confirm our hypothesis that the strength of syncopation per-

ception is maximised at middle range tempi and weakened towards the

extreme tempi (Figure 6.4). We have also found that monorhythms are

more strongly affected by tempo than polyrhythms (Figures 6.6 - 6.8).

The causes of these phenomena may be two-fold: tempo influences the

perception of tactus and tempo prompts the adjustment of tactus between

metrical levels. Our data show a weaker tempo effect on rhythms in 4/4

meter than 6/8 (Figures 6.9 - 6.11), but this may be mostly due to the

difference in tempo effects between polyrhythms and monorhythms, as

the 4/4 group is a mixture of monorhythms and polyrhythms but the 6/8

group only includes monorhythms. Indeed, after excluding polyrhythms

from the comparison there is no longer any evidence to suggest a significant

difference (Figures 6.12 - 6.14). Therefore, we can conclude that tempo

effect does not appear to differentiate between the time-signatures of 4/4

and 6/8.

Additionally, we found no substantial difference in the tempo effects

among individual rhythm-patterns (Figures 6.15 - 6.17). The marginally

significant difference in widths of fitted curves between GD and FF, be-

tween GD and BBBB (Figure 6.16), or between GD and GJ (Figure 6.17)
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can be interpreted as the difference in tempo effects between monorhythms

and polyrhythms. In Section 6.4.6, we provide possible explanations for

the observations that time-signature and rhythm-patterns do not have an

effect.

6.4.1 The tempo effect on syncopation parallels the tempo ef-

fect on tactus

Based on the evidence reviewed in Section 6.1.1 and 6.1.2, the range of

beat rates known to afford a perception of tactus is approximately from

200 ms to 2000 ms (30 - 300 BPM) [Lon04]. The overall probability

function of beat-tapping rates roughly yields a normal distribution on a

logarithmic-scale of tempo [Par94, Moe02]. The preference of tapping

rates may reflect the perceptual strengths of beat salience [Fra82, Moe02].

In this case, the perception of beat should be maximised at a moderate

range of tempi (500 - 750 ms, 80 - 120 BPM), and decay towards the

boundaries of tactus perception.

Syncopation is the product of rhythm foreground contradicting the

metrical background. When the beat is weakly perceived (or even not

perceivable), then it cannot serve as the background for the contradic-

tion that arouses the perception of syncopation. This could help with

explaining the observed log-quadratic relationship between syncopation

and tempo, which appears similar to the relationship between tactus per-

ception and tempo.

To be more specific, when the metronome is presented at 30 BPM,

which is the lower limit of tactus perception (2000 ms), listeners will have

difficulty in hearing successive beats as a continuous stream [Fra82]. In-

stead, the beats are perceived as unconnected events, imposed onto the

rhythmic events. In this case, it is possible that listeners no longer hear

the rhythm and metronome as two streams that interact with each other,

but rather one sequence of unrelated events.

As the metronome speeds up, the perceptual strength of beat salience

increases, hence the perception of metrical background is better formed.

As a result, the contradiction between rhythm and meter becomes more



CHAPTER 6. TEMPO AFFECTS SYNCOPATION 128

evident, leading to a stronger perception of syncopation.

At very fast tempi (e.g. 360 and 480 BPM in Figure 6.4), the rates of

metronome ticks are beyond the upper limit of tactus perception (about

200 ms, 300 BPM), and are getting close to the limits of meter percep-

tion (about 100 ms, 600 BPM). Then, the metronome is too fast to be

perceivable as a tactus, whereas rhythm-patterns that possess longer inter-

onset intervals than the metronome can still be perceived. Two streams of

events, metronome and rhythm, are rendered as different sounds. This al-

lows listeners to segregate the metronome events from the rhythm events.

However, when the metronome becomes too fast to be perceived, it effec-

tively turns into noise, being superimposed onto the perceivable rhythm.

Then, it is possible that listeners are inclined to only process the infor-

mation in the rhythms and ignore this noise. As a result, the perception

of syncopation will be weakened because listeners are no longer hearing

the contradiction between rhythms and meter, but may either interpret

different meter induced by the rhythm [Lon04] or may process rhythms

in a nonmetric way, i.e. the rhythm interpretation strategy that does not

involve extracting periodic pulses from the rhythms [HL83].

In short, the effect of tempo on the perception of syncopation can be

explained by the known effects of tempo on tactus perception. The ex-

treme slow or fast tempi undermine the perception of tactus, on which

the perception of syncopation depends. While this explains the general

shape of tempo effect on syncopation, it cannot explain why the curve of

the tempo effect on tactus perception does not fully coincide with that of

syncopation. In the following sections, we attempt to provide an explana-

tion for this based on the findings of other studies that show that tempo

influences the adjustment of tactus in between metrical levels.

6.4.2 Adjustable tactus level and syncopation

In Section 6.1.3, we introduced the phenomenon of shifting tactus between

metrical levels to adapt to the change in tempo. To maintain the beat-

intervals of tactus in a preferred range, listeners tend to move it to lower

metrical levels when the tempo (of the defined beat level) is too slow, or
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move it to higher metrical levels if the tempo is too fast. Some evidence

suggests that the selection of tactus level is centred around a beat interval

of 100 BPM (600 ms) [HSEK04, Fra82]; others suggest a range of 60 - 120

BPM (500 - 1000 ms ) [Duk89] or 75 - 300 BPM (200 - 800 ms) [HO81].

As Cooper and Meyer hypothesised (Section 6.1.4), the adjustment

of tactus level may directly affect the perception of syncopation. For

monorhythmic patterns (e.g. BBBB, FF) at 30 QPM, listeners may per-

ceive tactus at a lower rhythmic level than the beat level of metronome

by interpolating beats. In consequence, some notes that were supposed to

be off-beat become on-beat, hence the syncopation is diminished. At the

other end of the tempo scale, when beat rates exceed 120 QPM, listeners

may shift tactus to a higher metrical level by effectively ‘under-sampling’

the metronome ticks. Therefore some notes that were originally on-beat

become off-beat, resulting in syncopation.

6.4.3 Peak tempo of syncopation is lagged to that of tactus

The theory of adjusting tactus level with change in tempo may further

explain why the tempo that corresponds to the maximal syncopation (180

- 240 QPM, Figure 6.4) is faster than the peak tempo for tactus perception

(varying from 80 to 120 BPM, Section 6.1.1) ,and the slightly asymmetrical

shape of the log-tempo curve. When tempo exceeds the upper limit of

preferred tactus rates, the tactus rate moves back to the preferred range by

adjusting the tactus level. This causes the perceptual strength of tactus to

decrease with the increasing tempo, but meanwhile syncopation increases

due to the adjustment of tactus level. This tendency may continue until

tempo becomes too fast to allow the adjustment of tactus level.

6.4.4 Polyrhythms versus monorhythms

Syncopation elicited by polyrhythms is less affected by tempo than monorhythms

(Section 6.3.3, Figure 6.6). For polyhrhythms, but not monorhythms,

shifting tactus to a lower metrical level at slow tempi could not reduce

the contradiction between the polyrhythm and meter. This is because the

nature of polyrhythms is to produce a constant mismatch between rhythm
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and meter at any tempo because polyrhythms contain dissonant period-

icities [HO81, Yes76]. Therefore in polyrhythms, some notes can never

coincide with the metrical positions at any beat level and hence there will

always be a contradiction to the meter.

Nevertheless, polyrhythms still exhibit a mild tendency of diminished

syncopation towards extreme tempi, which may be due to the decreasing

strength of meter perception in general (Section 6.4.1). Handel tested the

relationship between rhythm discrimination and tempo, and found that

the same patterns played at different tempi were perceived as different

rhythms [Han93]. Perhaps at extreme tempi, listeners have more difficulty

in precisely judging the inter-relationships between notes in polyrhythms

compared to patterns played at moderate tempi. It is possible that the

affected timing structure between notes also changes the relationship be-

tween rhythm and meter, making it less contradictory.

6.4.5 Possible meter induction at extremely fast tempi

In Section 6.4.1, we suggested that at extremely fast tempi, rhythm-

patterns may be separately processed from the noise-like metronome.

These rhythm-patterns may induce a different metrical interpretation for

the judgement of syncopation. Interestingly, we found that the syncopa-

tion of rhythms BBBB, GJ and FF decrease more steeply than HF after

peak tempi (roughly 180 - 240 QPM, Figure 6.15). These three rhythms all

contain evenly spaced notes (Figure 6.3), which are more likely to induce

periodic beats that align with the notes [PE85]. In contrast, the notes

in rhythm HF are not evenly distributed. Therefore, it is plausible that

the syncopation perception of rhythms BBBB, GJ and FF decreases more

quickly at fast tempi because they naturally induce a meter that fits well

with the rhythm-patterns, and hence are perceived as less syncopated.

6.4.6 Time-signature

For monorhtyhms, the peak tempi and the widths for the fitted curves are

more or less the same for different time-signatures and individual rhythm-

patterns (Figure 6.12b and 6.15). Although these monorhythms may elicit
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Figure 6.18: Hypothetical explanation for the effect of time-signature in Exper-
iment 1. A schematic diagram showing the fitted curves of tempo effect for the
4/4 and 6/8 rhythms in Experiment 1, and explaining why 6/8 rhythms were
more syncopated in the experiment. Assuming the rhythms with same tatum
rate have the same peak on the curve of tempo effect, then the peak tempo
for 4/4 rhythms will be faster than 6/8 because the tatum rate of 4/4 was half
slower than that of 6/8. As a result, the dashed area shows that at 140 BPM
(in Experiment 1), which is near the peak tempo for 6/8 rhythms (Figure 6.13),
the syncopation of 6/8 rhythms will be higher than the 4/4 rhythms.

different perceptions of beat groupings (that is affected by time-signature)

and note-distribution (affected by the construction of rhythm-patterns),

their lowest metrical levels all happen to be the eighth-note level, therefore

they all have the same tatum rate (Section 2.1.3). Perhaps the identical

tatum rate caused similar tempo effects (in terms of peak and width) for

different time-signatures and rhythm-patterns.

In Experiment 1, we observed an effect of time-signature on syncopa-

tion, where rhythm-patterns in 6/8 are perceived significantly more syn-

copated than those in 4/4 (Figure 4.3). We attempted to explain this

phenomenon by their difference in beat rates, i.e. tatum rates in this case

(Section 4.3.1). If the hypothesis that tatum rate determines the shape

of tempo effect on syncopation is corroborated, it is conceivable that the

fitted curve of tempo effect for 4/4 rhythms (in Experiment 1) would

reside at a higher range on tempo scale than that of 6/8 rhythms (see

Figure 6.18). This is because the tatum rate of these 4/4 rhythms was

half of that of the 6/8 rhythms in the experiment (thus they would have

to be played twice as fast to be the same tatum rate). In this case, the
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syncopation of 6/8 rhythms would therefore be higher than 4/4 because

the former has reached maxima at peak tempo but the latter has not (e.g.

the dashed area shown in Figure 6.18). However, this speculation requires

further investigation into how the syncopation perception of 4/4 rhythms

in Experiment 1 varies with change in tempo.

6.5 Summary

In this chapter, we have evaluated the relationship between tempo and

perceived syncopation by manipulating the tempo of rhythm-patterns that

were known to give rise to syncopation in Experiment 1. Listeners were

asked to rate the degree of syncopation they perceived in response to a

rendering of each of 64 rhythm-stimuli (e.g. eight rhythm-patterns ×
eight tempi). Our main hypothesis that the perception of syncopation is a

function of tempo is confirmed, and such relationship can be well-captured

by a log-quadratic function. We also found that the tempo effect on

monorhythms is significantly stronger than that on polyrhythms. Yet, no

clear evidence was found to suggest a difference in tempo effects between

time-signatures and between rhythm-patterns.

Our observations appear to be related to the known effects of tempo

on tactus perception and meter perception. A weakened sense of beat and

meter at very slow and very fast tempi may simultaneously reduce the

contradiction between rhythm and meter, and hence lead to less synco-

pation. The theory that listeners naturally adjust tactus level to retain a

‘comfort’ tactus rate could explain why the peak tempo for syncopation

is higher than that of tactus, and why polyrhythms are more resistant to

tempo than monorhythms. We also suggest a possible meter induction

from rhythm-patterns over the non-processable metronome, which could

explain some rhythms that are more likely to induce a meter are perceived

as less syncopated at fast tempi than those are not. Finally, the similar

tempo effects between time-signatures and rhythm-patterns might be the

result of the identical tatum rate of all the monorhythms.

The study in this chapter not only presents evidence for some theoreti-

cal speculations of the relationship between tempo and syncopation [CM60],
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but also provides new insight into syncopation modelling that is tempo-

dependent. In the next chapter, to suggest the ways in which the models

may be improved, we combine the findings from evaluation results of ex-

isting syncopation models (Chapter 5) to select the best model(s), and

the curves characterising the tempo effects on syncopation that we found

in this chapter.



Chapter 7

Improving syncopation modelling

The evaluation results of existing syncopation models against Dataset 1

presented in Chapter 5 suggest that no single model can predict this en-

tire dataset well, and there is still much room for improvement for 6/8

monorhythms and polyrhythms. In this chapter, we explore ways to im-

prove current syncopation modelling. Having highlighted the strengths

and weaknesses of the various modelling architectures in Section 5.3, and

considering the limited scope of each model, it would appear that the most

immediate solution to predicting the data as a whole is a combination of

the models.

In Sections 7.1 and 7.2, we introduce three combined models, all of

which adopt techniques of linear regression to seek better fits to Dataset

1. These combined models requires identification of time-signature and

discrimination of rhythm-categories. We then validate them with Dataset

1, compare them with the individual existing syncopation models and

with each other in Section 7.3. Based on that, we attempt to incorpo-

rate the tempo-dependent nature of syncopation found in Experiment 2

to syncopation modelling, and extend the three combined models to cap-

ture Dataset 2. Finally, we validate these three tempo-dependent models

against Dataset 2 and the combination of two datasets in Section 7.5.

7.1 Best-Single Combined models (BSC)

The simplest implementation of a combined model is to select the (single)

model best suited to predicting the particular subset of rhythms that lies

within their scope, then conditionally combine them.

134
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PRS WNBD Intercept

4/4 Mono 0.07*
6/8 Mono 0.14* -0.30
4/4 Poly 0.24* 2.42*

Table 7.1: Linear regression coefficients for the BSC model.

* denotes significance (p < 0.05).

7.1.1 The three-way BSC model (BSC3)

The predictions of individual syncopation models against human ratings

from Dataset 1 were plotted in Figures 5.4 - 5.6. Pressing’s model (PRS)

is the optimal candidate for both 4/4 monorhythms (r = 0.95, p < 0.001)

and 6/8 monorhythms (r = 0.76, p < 0.001), and the WNBD model is

optimal for polyrhythms (r = 0.41, p < 0.001).

Table 7.1 shows all the coefficients estimated by least-square regression

to get the best fit to each subset. The equation for the combination of

this three-way BSC models is as follows:

SBSC3(Y ) =


0.07SPRS(Y ), if 4/4 monorhythms;

0.14SPRS(Y )− 0.3, if 6/8 monorhythms;

0.24SWNBD(Y ) + 2.42, if polyrhythms.

(7.1)

where SPRS and SWNBD were defined in Equations 3.29 and 3.52 respec-

tively.

7.1.2 The two-way BSC model (BSC2)

Alternatively, since the PRS model showed the best performance for monorhythms

in both time-signatures, we can divide the entire dataset into two sub-

categories: monorhythms and polyrhythms, then combine the predictions

of PRS model for monorhythms and predictions of WNBD model for

polyrhythms to capture all.

Table 7.2 shows the coefficients estimated by least-square regression to

get the best fit to each of the two subsets of the data. The equation for

the two-way BSC model is as follows:
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PRS WNBD Intercept

Mono 0.10*
Poly 0.24* 2.42*

Table 7.2: Linear regression coefficients for the BSC2 model.

* denotes significance (p < 0.05).

LHL PRS TMC SG TOB WNBD KTH Intercept

4/4 Mono 0.02 0.08* 0.07 -0.29 -0.08 0.003 0.04 -0.10
6/8 Mono 0.47 0.20* -0.81* 0.55* 0.13* 0.11 - -1.92*
4/4 Poly - - - - - 0.31* -0.07* 2.81*

Table 7.3: Coefficients of the full models of multiple linear regression.

- indicates that such model cannot serve as a predictor. * denotes significance
(p < 0.05).

SBSC2(Y ) =

{
0.1SPRS(Y ), if monorhythms;

0.24SWNBD(Y ) + 2.42, if polyrhythms.
(7.2)

7.2 Weighted-Multiple Combined model (WMC)

The weighted-multiple combined model (WMC) utilises two layers of com-

bining. In the inner layer, we employ multiple linear regression to combine

multiple syncopation models that are weighted to get the best fit to each

of the three subsets of the data: 4/4 monorhythms, 6/8 monorhythms

and 4/4 polyrhythms). In the outer layer, the three models best-fitted for

individual subsets of the data are combined into the final model.

Full models

For each subset (i.e. inner layer), a multiple linear regression model is

fitted where all the applicable syncopation models are considered as pre-

dictors. In multiple linear regression, a full model refers to a model that

includes all the possible predictors. Table 7.3 shows the regression coeffi-

cients of each full model for its corresponding subset.
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Reduced models

A full model may contain a large amount of predictors and some of them

may be redundant (i.e. the predictors that are not significant or are given

with small coefficients so that they effectively did not add much to the

model). We then adopt stepwise regression procedure [Mil90] to select

the best set of predictors while retaining a good predictive ability. The

resulting model that contains a subset of predictors in a full model is

referred as a reduced model.

For each subset, we tested two common approaches for stepwise re-

gression, forward selection and backward elimination [Mil90], to select the

most suitable method. The forward selection procedure starts with no

predictor in the model and incrementally adds predictors until there are

no further improvement of the model. In contrast, backward elimination

starts with a full model and gradually removes predictors while keeping

the same level of performance. The criterion for predictor selection we

used is the bayesian information criterion [Aka77], which is designed to

balance the performance and the complexity of the model. To be more

specific, this criterion tries to optimise goodness of fit of the model while

retaining the minimum number of free parameters to avoid over-fitting.

Forward selection and backward elimination produce identical results

for 6/8 monorhythms (R2 = 68.0%, F (4, 31) = 19.58, p < 0.001), and

for 4/4 polyrhythms (R2 = 22.2%, F (2, 45) = 7.69, p < 0.01). However,

forward selection shows a slight advantage over backward elimination for

4/4 monorhythms (forward selection, R2 = 87.7%, F (3, 23) = 62.87, p <

0.001; backward elimination, R2 = 86.6%, F (2, 24) = 85.16, p < 0.001).

We therefore adopt the set of predictors optimised by forward stepwise

regression for each subsets. The updated coefficients of the reduced models

for each subset are shown in Table 7.4.

In the outer layer, the combination of the full models and the combina-

tion of the reduced models have shown basically equal-well performance,

(full model, r = 0.90, R2 = 85.1%, F (1, 109) = 627.8, p < 0.001; reduced

model, r = 0.89, R2 = 84.6%, F (1, 109) = 603.2, p < 0.001), but the re-

duced models for subsets of 4/4 monorhythms and 6/8 monorhythms are
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LHL PRS TMC SG TOB WNBD KTH Intercept

4/4 Mono 0.05* 0.09* -0.08* -0.11
6/8 Mono 0.17* -0.22* 0.67* 0.11* - -1.19*
4/4 Poly - - - - - 0.31* -0.07* 2.81*

Table 7.4: Coefficients of the reduced models of multiple linear regression.

- indicates that such model cannot serve as a predictor. * denotes significance
(p < 0.05).

much simplified than the corresponding full models. We therefore choose

the combination of the reduced models to be the final WMC model, re-

sulting in the following equation:

SWMC(Y ) =



0.05SLHL(Y ) + 0.09SPRS(Y )− 0.08STOB(Y )− 0.11,

if 4/4 monorhythms;

0.17SPRS(Y )− 0.22STMC(Y ) + 0.67SSG(Y ) + 0.11STOB(Y )− 1.19,

if 6/8 monorhythms;

0.31SWNBD(Y )− 0.07SKTH(Y ) + 2.81,

if polyrhythms.

(7.3)

where the equations of individual syncopation models refer back to Sec-

tion 3.2

7.3 Validation of combined models for Dataset 1

Among individual syncopation models, only the WNBD (Equation 3.52)

and TOB models (Equation 3.47) are able to predict the entire Dataset

1. Figure 7.1 plots the predictions of these two models and the three

new combined models, BSC2 (Equation 7.2), BSC3 (Equation 7.1) and

the WMC model (Equation 7.3) against Dataset 1 for comparison.

All three combined models showed a marked improvement over the

WNBD and TOB models (BSC2, r = 0.85, p < 0.001; BSC3, r = 0.87, p <

0.001; WMC, r = 0.89, p < 0.001; WNBD, r = 0.44, p < 0.001; TOB,

r = −0.54, p < 0.001, Spearman’s Rank Correlation). This suggests that

the combined modelling architecture is effective.

The two-way BSC model (BSC2, r = 0.85, R2 = 74.9%, F (1, 109) =
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Figure 7.1: Predictions of combined models for Dataset 1. The normalised
predictions are plotted against the normalised mean human ratings. Red data
points indicate 4/4 monorhythms, blue indicates 6/8 monorhythms and green
indicates 4/4 polyrhythms. Spearman-rank correlation coefficients (r,p) are
given for each model. Linear regression lines (and 95% confidence interval) are
plotted for illustration.
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327.4, p < 0.001) does not perform as well as the three-way BSC model

(BSC3, r = 0.87, R2 = 80.0%, F (1, 109) = 443.5, p < 0.001). This is prob-

ably because the BSC2 model is under-fitted by a singular linear regression

model when trying to accommodate two subsets at the same time. In con-

trast, the BSC3 model generates fewer errors because it uses two separate

models to capture subset.

The WMC model (WMC, r = 0.89, R2 = 84.6%, F (1, 109) = 603.2, p <

0.001) performs better than any of the BSC models. This is not surprising

because multiple regression features a greater number of free parameters,

which on the other hand is likely to cause overfitting.

7.4 Tempo-dependent models

One of the major findings in Experiment 2 is that tempo has a strong effect

on syncopation, and the relationship between syncopation and tempo can

be characterised by a log-quadratic function (Figure 6.4). However, this

has not been considered by any of the existing syncopation models. In

this section, we propose an extension to any syncopation model to allow

it to be tempo-dependent.

7.4.1 General design

Figure 7.2 gives a schematic showing the addition of tempo-dependence

to an existing syncopation model M, forming the tempo-dependent model

M∼ T. Crucially, we assume the prediction given by this syncopation

model corresponds to the maximum syncopation value at peak tempo.

Also, we restrict the tempo to be within the range from 30 to 480 QPM.

7.4.2 Tempo-dependent combined models

In Experiment 2, we found that the fitted curves for mean ratings of

polyrhythms are significantly wider than those for mean ratings of monorhythms

(Figures 6.6 - 6.8, Section 6.3.3). This suggests that when applying tempo-

dependent scaling to syncopation models, monorhythms and polyrhythms
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Rhythm

Figure 7.2: A tempo-dependent model. A schematic diagram showing that a
tempo-dependent model M∼T is generated by applying a tempo-dependent
scaling function F to an existing syncopation model M, providing the final
prediction of syncopation for a rhythm.

need separate scaling functions. Here, we use Fm and Fp to represent the

scaling function for monorhythms and polyrhythms respectively.

The flow chart in Figure 7.3 shows the overall algorithm for tempo-

dependent combined models. For example, the syncopation value of a

monorhythm in 4/4 is calculated by the first sub-equation in Equation 7.1,

and then scaled by scaling function of monorhythms Fm to generate the

final syncopation prediction of BSC3∼T model.

The tempo-dependent scaling functions serve the purpose of moder-

ating syncopation at any tempo in relation to the maximum syncopa-

tion at peak tempo, consistent with the observed tempo effect on syn-

copation in Experiment 2. They are therefore generated by normalising

the log-quadratic functions fitted to the mean ratings of monorhythms

and polyrhythms (Figure 7.4), resulting in the following equations, where

tempo Υ ∈ [30, 480]:

Fm(Υ) = −0.22 ln2(Υ) + 2.18 ln(Υ)− 4.39 (7.4)

Fp(Υ) = −0.08 ln2(Υ) + 0.86 ln Υ− 1.20 (7.5)

Based on the above scaling functions, we can define the equation for

M ∼ T model by multiplying the equation for M model with tempo-

dependent scaling functions. For example, the equation for WMC∼ T

model is as follows:
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4/4?

Figure 7.3: Flow chart of the overall algorithm for tempo-dependent combined
models.

SWMC∼T(Y,Υ) =

{
SWMC(Y )Fm(Υ), if monorhythms;

SWMC(Y )Fp(Υ), if polyrhtyhms;
(7.6)

7.5 Validation of tempo-dependent combined mod-

els for Dataset 2

In this section, we validate the three tempo-dependent combined models,

BSC2∼T, BSC3∼T and WMC∼T, against Dataset 2. For each tempo-

dependent combined model, the prediction of the model for a given stim-

ulus at certain tempo was compared to the mean of the human ratings for

that stimulus at the same tempo. The human ratings are not normally

distributed, therefore we have calculated the Spearman’s rank correlation

coefficient between each model and perceptual data.

Figure 7.5 plots the predictions of the models as a function of the
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Figure 7.4: Separate tempo scaling functions for monorhythms and
polyrhythms. Based on the quadratic functions fitted to the mean ratings of
polyrhythms (purple) and monorhythms (red) given in Figure 6.6, we normalise
these two curves (by their maxima), which turns into the scaling functions Fp
for polyrhythms, and Fm for monorhythms of tempo Υ.

perceptual data, including the regression line (±95% confidence inter-

vals). The BSC3∼T model performed remarkably better than the oth-

ers (r = 0.89, R2 = 69.6%, F (1, 62) = 145, p < 0.001); the BSC2 ∼
T model shows advantage over the WMC ∼ T model (BSC2 ∼ T, r =

0.78, R2 = 61.0%, F (1, 62) = 99.71, p < 0.001; WMC∼T, r = 0.75, R2 =

45.9%, F (1, 62) = 54.38, p < 0.001).

In parallel to the validation result for Dataset 1, where the BSC3 model

performs better than the BSC2 model (Figure 7.1), the BSC3∼T model

also performs better in predicting Dataset 2 than the BSC2∼T model, and

shows an even more obvious advantage. This may mean that BSC2 model

is indeed under-fitted to Dataset 1, and the application of the tempo-

dependent scaling functions to BSC2 have amplified this error.

Another interesting finding is that after applying tempo-dependent

scaling to the combined models, the WMC model did not continue to

retain the advantage over the BSC models in predicting Dataset 1 (Fig-

ure 7.1c-d), but performed a lot worse in predicting Dataset 2, especially
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Figure 7.5: Predictions of tempo-dependent combined models for Dataset 2.
The predictions of each model are plotted against mean human ratings. Red
data points indicate 4/4 monorhythms, blue indicates 6/8 monorhythms and
green indicates 4/4 polyrhythms. Spearman-rank correlation coefficients (r,p)
are given for each model. Linear regression lines (and 95% confidence interval)
are plotted for illustration.

than the three-way BSC model (Figure 7.5). This further suggests that the

multiple combined model is over-fitted to the data from Dataset 1, hence

it does not generalise syncopation modelling to a data from a different

paradigm (e.g. Dataset 2) and possibly a different sample of participants.

To this end, the single combined model seems to be more robust than the

multiple combined model.
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We have also tested the performance of all the combined models with-

out tempo adjustment (Equation 7.1 7.3) in predicting Dataset 2. The

percentage of explained variance (R2) drops 32.7% on average compar-

ing to the tempo-dependent combined models (BSC3, r = 0.74, R2 =

35.6%, F (1, 62) = 35.82, p < 0.001; BSC2 , r = 0.47, R2 = 28.6%, F (1, 62) =

26.2, p < 0.001; WMC, r = 0.43, R2 = 14.1%, F (1, 62) = 11.32, p < 0.01).

This demonstrates that the tempo-adjustment in combined models is ef-

fective in capturing Dataset 2.

7.6 Discussion

Generally, the combined modelling architecture has shown to be effective

in predicting Dataset 1. By adding the tempo-dependence extension to

this architecture, Dataset 2 is also well-captured. However, this approach

does not directly refine the theory for modelling syncopation, instead, it

searches for the best combinations of the elements in different models that

optimise the fit to the data. It also points out two potential directions

toward a more comprehensive mathematical model of syncopation: the

first is to extend the best performing hierarchical models (e.g. PRS model)

to capture polyrhythms and the second is to adapt the off-beat models to

take metrical hierarchy into account.

In addition, the combined modelling architecture is also more difficult

to interpret than an architecture with a single model representing a certain

hypothesis. This is because the multiple parameters in the combined

model need to be individually interpreted.

Another inherent limitation of the combined models is that by trained

only to fit Dataset 1, they do not necessarily provide an equivalent im-

provement for predictions on different rhythms. For example, other time-

signatures (that differ to 4/4 and 6/8) and different types of polyrhythms

(other than 2:3 polyrhythms) may not be well predicted. In other words,

these combined models may not be generalised enough to capture other

aspects in rhythm that can contribute to syncopation. Therefore, the

combined models require validation with datasets that these models are

not fitted to.
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To incorporate the tempo-dependence into syncopation models, we

adopted log-quadratic regression model to generate the tempo-dependent

scaling functions. Despite of the fact that this scaling function is simple

and easy to interpret, fittings of tempo-dependent models to Dataset 2

may be further improved by optimising the scaling functions to capture

Dataset 2. For example, we can extend Dataset 2 (which requires testing

syncopation in more tempi conditions) and optimise the log-quadratic re-

gression to a larger dataset; or we can try adopting different models (e.g.

Gaussian regression or high-order polynomial regression) to the current

Dataset 2.

7.7 Summary

In this chapter, we have provided two effective remedies to improve the

current approaches for modelling syncopation. The first remedy is to

combine the existing syncopation models that best suited to model each

subset of the data. Three new combined models are generated, validated

and all show good predictabilities. The second remedy is to apply tempo-

dependent scaling functions which capture the tempo effects on syncopa-

tion found in Experiment 2, to syncopation models to make them tempo-

dependent.

Generally, the new combined models, themselves and with the exten-

sion of tempo-dependence built in, can both capture the perception of

syncopation better than the current state of the art. However, having

highlighted their inherent limitations, these combined models require more

validation with new datasets that incorporate broader aspects of rhythm.



Chapter 8

Conclusions

In this thesis our objective was to investigate the theory and perception

of syncopation. We have reviewed the literature on the subject and gath-

ered the current models together by introducing a unified mathematical

framework. In order to test how well the theory and models explain the

perception of syncopation we have conducted two main experiments to

collect subjective ratings on perceived syncopation from musicians in re-

sponse to rhythm-stimuli. Using the findings from these experiments, we

have evaluated the previously existing models and built several new ones

that capture the perception of syncopation better than the current state

of the art.

8.1 Thesis contributions

This thesis makes a number of contributions to the understanding of syn-

copation both in terms of theory and perception. We have introduced new

methods for collecting perceptual syncopation ratings and produced two

new datasets using those methods.

Theory

We have reviewed various definitions and theories of syncopation in the

existing literature and summarised them into four main schools of thought

in Section 2.2. We have also examined seven existing models for syncopa-

tion, categorising their hypotheses, and consolidated them into a unified

147
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mathematical framework. Based on this mathematical framework, we

have implemented a syncopation model tool kit in Python [Son14].

We have evaluated the models against perceptual data from Dataset 1,

and discussed the relative strengths and weaknesses of each model. Using

these results, we have produced new combined models which out-perform

the previously existing ones.

We have extended the theory by providing evidence to show that syn-

copation is a function of tempo. Using this observed relationship, we have

extended our combined models so that they capture the tempo-dependent

nature of syncopation.

Method

We have conducted two experiments that investigate the perception of

syncopation using psychophysical methods. In contrast to previous stud-

ies, our experiment provides the first direct investigation on the perception

of syncopation.

Data

We have collected two psychophysical datasets that include perceptual

ratings of syncopation from trained musicians [Son14]. These datasets

have been used to evaluate the existing models in this work. They can

also be used in future studies that investigate a broad range of correlates

of syncopation in multiple disciplines.

8.2 General discussion

In this section, we unify the theory on syncopation and the findings from

our perceptual studies, and discuss what are the aspects captured in the

theory, what are the aspects mentioned in the theory but not verified, and

what are the missing elements in the theory.

All the theories share the consensus that syncopation is aroused by vio-

lating the regular beat salience defined in a certain meter structure [Ran86,
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Ken94, Hur06, LHL84, HO06]. Our results from Experiment 1 in Chap-

ter 4 supported this because we found that missing the down-beat, the

most salient beat in a bar, had a strong effect on syncopation (Sec-

tion 4.2.3). This theory finds further support in the evaluations in Chap-

ter 5, because hierarchical models that take metrical weights into account

were shown to perform better in predicting monorhythms than models

from other categories.

Theories diverge on off-beatness, with some suggesting that only an off-

beat event followed by an unfilled beat gives rise to syncopation [CM60,

LHL84, HO06], while others suggest that any off-beat event will lead to

syncopation [Kei91, Tou05, GMRT05]. The former notion is effectively

a restatement of the violation of regular beat salience, and as such is

supported by the results from Experiment 1 as discussed above. However,

the latter proved to be unsupported because the models based on this

theory (i.e. off-beat models TOB and WNBD) did not perform well in

our evaluations (Section 5.2).

Many theorists treat polyrhythms as something completely separate

from syncopation [Ran86, Ken94, LHL84, Lon04, CM60, HO06, Pre97],

while some include polyrhythms as a category of syncopated rhythms [HO81,

GMRT05]. The results of Experiment 1 strongly support this second

school of thought with polyrhythmic patterns being given high synco-

pation ratings (Section 4.2.2).

Several elements have not been sufficiently considered in current the-

ories or models. First and foremost, the effect of tempo on syncopation

has rarely been addressed in the literature. Cooper and Meyer hypothe-

sised a relationship between syncopation and tempo [CM60], and Sioros

et. al [SMC+13] attempts to take account of tempo in the modelling by

altering weights in their metrical hierarchy. However, until now, no direct

investigation of the relationship between syncopation and tempo has been

carried out. In Experiment 2 (Chapter 6), we directly tested this relation-

ship and found that syncopation is a function of tempo. Our results are

consistent with relationships found in studies between tempo and other

rhythm phenomena such as tactus and meter [Duk89, Par94, vNM99].

In addition, theorists have not considered a link between time-signature
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and syncopation. However, our results in Experiment 1 suggest time-

signature has a possible effect on syncopation (Section 4.2.1). In Sec-

tion 4.3.1, we speculated that such effect may be due to the duple sub-

division of 4/4 being inherently less ambiguous than the triple subdivi-

sion of 6/8 [LJ83, PE85, Dra93, BT06]. On the other hand, the results

from Experiment 2 did not show a significant difference between the two

time-signatures in the tempo effects on syncopation (Section 6.3.4). Our

evidence suggests that the tatum rate of stimuli (which was different for

4/4 and 6/8 rhythm-patterns in Experiment 1 but the same for both in

Experiment 2) may provide an underlying explanation for this effect.

While we have gone some way towards unifying theory with perception,

we must accept that our experiments have been limited to a small sub-

set of western-oriented stimuli in only two isochronous time-signatures and

note that our participants were all trained musicians with western musical

backgrounds. Questions can be raised over how far our results can gener-

alise across common rhythms from other music cultures, polyrhythms with

various competing periodicities, and time-signatures (e.g. non-isochronous

meter). However, our findings suggest that our method provides a good

foundation for further investigation.

8.3 Future work

We conclude this thesis with a discussion of questions raised from our

experiments that lead to possible areas for future work.

Syncopation perception and meter induction

In Chapter 4, we discovered that there were several rhythm-patterns in a

time-signature of 6/8 that, while featuring missing down-beat or missing

strong-beat, were not perceived to be particularly syncopated. This find-

ing runs counter to most of the other results for patterns of this type and

requires further investigation. Why should these particular patterns be

different from the others? A plausible explanation could be that listen-

ers may be adjusting their metrical interpretation to the rhythm-patterns
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in order to reduce syncopation (Section 4.3.3). For example, rhythm-

patterns JG and FG may be heard as 3/4 meter because the pattern of

strong- and weak-beats in 3/4 would suggest lower syncopation than if

they are heard in 6/8 meter. Listeners in our experiments had the free-

dom to interpret meter in this way because the given metronome was

implied 6/8 with an accent only on the down-beat. It is possible that an

explicit 6/8 metronome with accents on both first and fourth beats might

have given different results by forcing a particular interpretation of the

meter. This would be consistent with Povel and Essens’s theory of meter

induction [PE85], but still requires further verification.

Our hypothesis is, given an implicit metronome of 6/8 meter, a lis-

tener’s interpretation of meter is chosen between 6/8 and 3/4 depending

on which minimises the perceived syncopation. We propose two meth-

ods to test this hypothesis by collecting perceptual syncopation ratings of

the same set of 6/8 rhythm-patterns as used in Experiment 1 but played

against an explicit metronome, thereby forcing the metrical interpretation

to be 6/8. We may use P&E’s clock model [PE85] to predict which me-

ter is in theory more likely to be chosen for a specific rhythm-pattern.

If syncopation ratings for the rhythm-patterns that are believed likely to

induce 3/4 meter are higher for the explicit metronome than for implicit

metronome while ratings for the others remains unchanged then it suggests

that listeners naturally select meter that helps with reducing syncopation.

Another method for exploring this hypothesis could use tapping to

directly investigate meter interpretation. With the same set of rhythm-

patterns played against the implicit metronome, we can ask listeners to

tap out the perceived beats from the rhythm. If listeners tapping can

be correctly predicted by P&E’s clock model, then our hypothesis can be

confirmed, because the clock model is designed to select the meter which

minimise metrical contradiction between rhythm and meter.

If our hypothesis is verified, then existing syncopation models may be

further improved by incorporating a meter induction step prior to calcu-

lating syncopation. So far the syncopation models measure syncopation

against the notated time-signature, which is not necessarily the same as



CHAPTER 8. CONCLUSIONS 152

the interpreted meter. Where metrical cues are ambiguous, a meter inter-

pretation step can be applied to provide the syncopation model with the

most-likely-perceived meter to measure against. The candidates for such

a predictive model of meter induction are P&E’s clock model [PE85] and

Essens’s model [Ess95].

Tatum rate and syncopation

From Dataset 1 (Section 4.3.1) we observed that 4/4 and 6/8 meters

elicited different syncopation ratings with 6/8 being the higher of the two.

Later, in Section 6.4.6 we discovered that the tempo curves for these two

meters were not significantly different, and that the difference between the

ratings in Dataset 1 may actually be due to the tatum rate for the 4/4

and 6/8 rhythms being different rather than time-signature. From this we

may hypothesise that the tempo effect on syncopation is affected by the

tatum rate of the rhythm-pattern. To investigate this hypothesis, a new

experiment can be carried out where rhythm-patterns with a fixed tempo

(as defined by their metronome) but differing tatum rates can be rated

for syncopation.

Transition of time-signatures

As discussed in Section 2.2.3, another way in which syncopation can be

produced is via a sudden transformation in the fundamental character of

the meter [Ran86, Ken94] such as a change in time-signature or a hori-

zontal hemiola. To investigate this aspect of syncopation, an experiment

could be conducted with rhythm-stimuli that transition from one meter to

another in order to characterise this relationship. The order in which the

meters are presented can also be varied so that we may discover whether

the percieved syncopation caused by such transitions is symmetrical or

not. For example, would the transition from duple meter 4/4 to triple

meter 3/4 be rated differently from the transition from 3/4 to 4/4?
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Syncopation and rhythm-complexity

In this work we have evaluated various models for syncopation against per-

ceptual data collected in our two main experiments. Past studies [GTT07,

SH07, Thu08] have instead tested models against perceptual data for

rhythm-complexity but a question remains over precisely how this percept

corresponds to syncopation. Some models for rhythm-complexity have

also included syncopation as one factor in a larger calculation [SHG12].

Another area for future work is therefore to investigate the link be-

tween syncopation and rhythm-complexity further. To do so we propose

an experiment using our method from Section 4.1 to collect ratings of

syncopation for each of the rhythms in the datasets of rhythm-complexity

[PE85, Ess95, SP00].
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Sziller, and Henkjan Honing. Newborn infants detect the

beat in music. Proceedings of the National Academy of Sci-

ences of the United States of America, 106(7):2468–2471,

2009.
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