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Abstract

This thesis explores the automatic extraction of musical information from

live performances – with the intention of using that information to create

novel, responsive and adaptive performance tools for musicians.

We focus specifically on two forms of musical analysis – harmonic anal-

ysis and beat tracking. We present two harmonic analysis algorithms –

specifically we present a novel chroma vector analysis technique which

we later use as the input for a chord recognition algorithm. We also

present a real-time beat tracker, based upon an extension of state of the

art non-causal models, that is computationally efficient and capable of

strong performance compared to other models. Furthermore, through a

modular study of several beat tracking algorithms we attempt to establish

methods to improve beat tracking and apply these lessons to our model.

Building upon this work, we show that these analyses can be combined

to create a beat-synchronous musical representation, with harmonic infor-

mation segmented at the level of the beat. We present a number of ways

of calculating these representations and discuss their relative merits.

We proceed by introducing a technique, which we call Performance

Following, for recognising repeated patterns in live musical performances.

Through examining the real-time beat-synchronous musical representa-

tion, this technique makes predictions of future harmonic content in mu-

sical performances with no prior knowledge in the form of a score.

Finally, we present a number of potential applications for live perfor-

mances that incorporate the real-time musical analysis techniques outlined

previously. The applications presented include audio effects informed by

beat tracking, a technique for synchronising video to a live performance,

the use of harmonic information to control visual displays and an au-

tomatic accompaniment system based upon our performance following

technique.
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Chapter 1

Introduction

This thesis investigates the automatic analysis of musical audio in live

performances and the use of such analysis to inform decision-making ma-

chines controlling multimedia applications. The implication is of machines

aware of the nature of their immediate musical surroundings, able to con-

textualise them within the temporal development of the performance and

capable of producing a coherent response. Our focus will be upon the

degree to which machines can be made to recognise changes in the salient

characteristics of musical performances, such as rhythmic and harmonic

developments.

In the same way in which a human musician may ‘listen’ and ‘respond’,

our approach will be based upon an analysis of musical surroundings, the

result of which will inform one of a number of live performance applica-

tions. We first develop a number of real-time signal processing algorithms

to extract musical information from live performances. We then combine

these algorithms to extract information about temporal developments in

musical performances. Finally, we use these analysis techniques to inform

a number of applications for use in live performances.

We focus upon live performance because it presents a number of chal-

lenges different to the case of processing entire audio files. Firstly, live

performances are fast moving and variable and there is no time to provide

meta-data about changes in the performance. Furthermore, there is a lack

of future information in a live performance. The result is that any tech-

niques to track a live performance must either be instantaneous (or have

acceptable latency) in their extraction of information or be predictive of

future information in some way. Finally, the time constraints provided by

17



1.1. MUSIC AND MACHINES 18

the real-time nature of a performance require any analysis to be compu-

tationally efficient. This differs from the case of processing an audio file

where future information is available and we have no time constraints for

processing the sound.

1.1 Music and Machines

By giving some musical ‘understanding’ to machines in a live performance,

we can have them control musically sensitive applications – responding

automatically to changes in tempo, or harmonic developments in a piece

of music.

However, this implies a degree of autonomy on the part of the ma-

chine – it will make decisions in response to musical changes with no hu-

man interference. While others have spoken of the discomfort that some

may have with an autonomous machine partaking in a live performance

[Collins, 2007], this is certainly not a new idea.

There is already a rich tradition of autonomous decision making in

music. While experiments with rule-based composition date back for hun-

dreds of years [Nierhaus, 2009, Chapter 2], the first experiments with

automated composition using computers began in the 1950s [Ames, 1987].

These saw digital computers used to generate pieces of music according

to sets of rules or using statistical processes. There continues to be much

interest in the algorithmic composition of music [Miranda and Biles, 2007;

Nierhaus, 2009]. Furthermore, the development of more powerful tech-

nology has allowed the development of ‘interactive’ music systems [Rowe,

1993; Collins, 2006b] that collaborate with human performers in real-time,

generating or transforming musical material in response to changes in mu-

sic.

There also exist cross-disciplinary examples of autonomous decision-

making in creative fields [Boden, 2004]. The Painting Fool [Colton, 2008,

2009] is a computer program capable of painting, interpreting through key-

words the artistic style of the picture including the level of abstraction, the

colours to be used, the physical materials to be simulated and the paint-

ing style itself. The system won the British Computer Society Machine
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Intelligence Competition in 2007. Systems for the automatic generation

of poetry also exist [Gervás, 2002].

Technology in general has had a huge influence on the development of

musical styles and practices during the 20th century [Braun, 2002]. De-

velopments in analog and digital recording technology have changed the

relationship between people and music – allowing music to be taken home

to be played repeatedly, leading to new musical practices and concepts

such as the DJ [Prendergast, 2000]. The studio itself has become a musi-

cal instrument, with the creative use of musical production now commonly

used in popular (as well as classical) music, including The Beatles (work-

ing with George Martin), Pink Floyd, Nine Inch Nails and much modern

electronica and hip hop [Moorefield, 2005]. Live performances in music

now often involve a range of analog and digital technology, such as audio

effects units, synthesisers and software sequencers [Roads, 1996, Chapters

14 and 15].

In this thesis we investigate how the automatic analysis of musical au-

dio can facilitate new applications for live musical performances. We now

consider the practical use of such technology and its potential to improve

the relationship between musicians and machines in live performances.

1.1.1 Empowering Musicians through Machine Autonomy

In recent years, it has become more common to see laptops and other

computing technology on stage with musicians [Collins et al., 2003; Stuart,

2003; Zadel and Scavone, 2006]. We focus in this thesis on the use of a

machine within a live performance involving one or more human musicians.

There are some clear benefits to using computer technology in a per-

formance. For example, it gives us the ability to use powerful software to

manipulate sound samples and create textures, in real-time, that would

be difficult to create with instrumentation alone. We can also play back

recorded material with ease during performances.

These advances have created new problems, however. The first major

problem is the lack of performativity (the visual stimulus of the physi-

cal movements of performers) associated with using a personal computer
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during a live performance [Stuart, 2003; Zadel and Scavone, 2006]. The

second is that there is a ‘semantic gap’ between computers and humans –

computers do not have a musical ‘understanding’ of the sounds made by

their human counterparts. To perform with computer technology on stage,

human performers must adhere to the often inflexible mechanisms of the

computer, which can restrict human performance and expression through

the need to manually enter performance information or to synchronise

with computer timing. For example, in order to synchronise rhythmically

with a computer, musicians must play to a computer defined sequence of

pulses, or ‘click track’. This can lead to an expressionless and mechanical

performance.

By giving some musical ‘understanding’ to machines in performance,

we can actually allow greater freedom for musicians by placing the musi-

cians in control through musical expression, having the machine follow the

musical developments of human performers. An example of this is work

to allow a recorded accompaniment to synchronise with a human drum-

mer playing an expressive performance [Robertson and Plumbley, 2007].

This is achieved by tracking the tempo variations in the performance and

adapting the rate of playback of the accompaniment accordingly.

Furthermore, by allowing the machine to automatically follow the hu-

man performance, human maintenance of the computer during perfor-

mance is not necessary, improving the performer’s relationship with the

audience. As Young [2009] has argued, “[w]ould any musical effect nec-

essarily be lost if those apparently ineffectual laptop-focussed actions are

substituted by the machinations of a ‘creative’ algorithm?”.

By accepting that computers are already a commonplace part of musi-

cal performance, we can see that allowing them some musical understand-

ing and autonomy can actually give greater control to musicians, and allow

them to perform as if playing with human musicians while still making

use of the sonic potential of computer technology in performance.
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1.2 Objectives and Motivation

The motivating force behind this thesis is the belief that if we can au-

tomatically decipher human musical concepts – such as beat, harmony,

rhythm and melody – from real-time musical signals, then we can create

an infrastructure upon which novel, responsive and seemingly ‘intelligent’

music and multimedia applications can be created.

The broad aim of this work is to develop a number of real-time analysis

algorithms to create a live performance musical ‘information framework’

upon which applications can be developed.

Scope of the Work

Given the diversity of music across time and between different cultures,

producing technology able to respond equally to all forms of music would

be an immense challenge. As a result it makes sense to restrict the scope

of our research.

The music under consideration in this thesis is Western music and

within that, broadly music from the Rock and Pop genres [Frith et al.,

2001; Everett, 2009]. We choose Western music because the use of tonality,

rhythm and other characteristics often conform to well understood models

of music theory – and it is also the music of choice of a great deal of

other research in the field of musical audio analysis. We choose Rock and

Pop music because while musicians from all disciplines are interested in

computer music, we believe that it is musicians performing in those genres

that would be most interested in applications for connecting musicians and

technology.

Finally, we will focus specifically on two aspects of music in this thesis

– beat and harmonic information. Within the scope of the research, we

have the following specific objectives:

1. To develop musical audio analysis algorithms to provide information

about the beat and harmonic information in real-time. These al-

gorithms must be both robust, in terms of being reliable, and also

computationally efficient.
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2. We will explore the combination of these algorithms to produce har-

monic information segmented by the beat in real-time.

3. We will develop a technique for following temporal developments in

musical performances, based upon the beat and harmonic analysis

techniques.

4. We will present a number of live performance applications based

upon the information from the musical audio analysis algorithms.

1.3 Outline of Thesis

The work in this thesis is focused upon developing techniques for analysing

music in real-time before using the results of that analysis to inform live

performance applications. The work is split into the following chapters:

Chapter Two

In Chapter 2 we present a review of the relevant theoretical background

and related research necessary to contextualise the work in subsequent

chapters. We begin with a discussion of musical interaction and live per-

formance systems, examining paradigms for their classification and out-

lining a number of live performance systems presented by others.

As many of these live performance systems are built using some form

of musical audio analysis, we proceed to discuss the two forms of musical

audio analysis relevant to the work in this thesis. First, we discuss beat

tracking – examining why it is a difficult problem and discussing the details

of a number of different prior approaches. We then examine harmonic

analysis – in particular chroma analysis techniques and chord recognition

– outlining the various techniques presented previously.

Finally, we present an overview of the existing technology infrastruc-

ture that is useful in implementing real-time performance applications.
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Chapter Three

In Chapter 3 we present several techniques for real-time analysis of musical

audio signals. We present a real-time beat tracking model based upon an

extension of a non-causal dynamic programming based approach. We

show that our approach is comparable with other state of the art causal

models and close in performance to state of the art non-causal models.

Finally, we show that our approach is computationally efficient compared

to other state of the art models.

We then present a real-time chroma analysis technique for live perfor-

mances based upon mapping the energy in spectral peaks to pitch classes

of the chromagram. This chroma analysis technique is then used as part of

a real-time chord recognition technique, by classifying the real-time chro-

magram output as one of a number of chord labels through a template

matching approach that minimises the energy in the chromagram when

expected note positions are masked out.

Finally, we present a number of methods for combining our beat track-

ing and harmonic analysis techniques to produce a beat-synchronous har-

monic representation in real-time. We then show how these methods can

be used to compute a beat-synchronous spectrogram, chromagram and

chord sequence in real-time.

Chapter Four

In Chapter 4 we investigate methods for improving beat tracking through

a modular evaluation of five state of the art beat tracking algorithms. Our

motivation is to apply any lessons learned to our real-time beat tracker in

order to improve its performance.

We split five beat tracking models into their input feature and tracking

model. The resulting 20 combinations of four input features and five track-

ing models are then evaluated on two databases and the results discussed.

We then proceed to compare the best single feature to an ‘oracle’ feature,

where the best feature for each file is used. The considerable performance

gains imply that the use of a variety of signal dependent features, rather

than a single feature for all files, would increase performance. We find



1.3. OUTLINE OF THESIS 24

evidence that the same may be true of the parameters of tracking models.

Finally, we review the findings of the chapter before proceeding to

apply some of the lessons learned to our real-time beat tracker.

Chapter Five

In Chapter 5 we present a technique for predicting harmonic content in

musical performances with no prior knowledge in the form of a score.

This ‘performance following’ technique makes use of the real-time beat

synchronous harmonic analysis technique presented in Chapter 3.

We show that by comparing, in real-time, the most recent few seconds

to the most recent few minutes – contextualising recent developments in

the performance within the larger piece – we are able to predict the future

harmonic content of performances in the presence of the repetition of

musical patterns.

We present an objective evaluation of our technique compared to other

models, including an N-gram model, Factor Oracle and random predictor,

and show that our model is able to predict a large proportion of repeated

content in 32 pieces for acoustic guitar – and more than any other model.

Chapter Six

Having presented – in Chapters 3, 4 and 5 – a number of techniques for the

analysis of musical signals, in Chapter 6 we present a number of real-time

applications that make use of this analysis.

We present a number of beat-synchronous audio effects – where au-

dio effect parameters are informed by the tempo and beat of a real-time

beat tracker. Also making use of our real-time beat tracker, we present a

technique for automatically synchronising a video to a live performance,

automatic beat-synchronous lighting patterns and the automatic synchro-

nisation of audio samples to the beat and tempo of a live performance.

Making use of our real-time chroma analysis technique we present an

application whereby harmonic information is mapped to the colour tone of

a video. Finally, we demonstrate that our performance following technique

can inform a simple music accompaniment system by using information
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in the chromagram to deduce a root note through our chord recognition

technique, which is then output as a bassline accompaniment.

Chapter Seven

In Chapter 7 we conclude with an overview of the work in this thesis,

a review of the key contributions, a summary of third party use of this

research and the directions for future work.

1.4 Publications

The work in this thesis has been published in a number of journal and

conference papers:

Journal Paper

• Adam M. Stark and Mark D. Plumbley, “Performance Following:

Real-Time Prediction of Musical Sequences Without A Score,” IEEE

Transactions on Audio, Speech and Language Processing, Accepted

for Publication, 2011, [Stark and Plumbley, 2011]

Conference Papers

• Adam M. Stark and Mark D. Plumbley, “Performance Following:

Tracking a Performance Without a Score”, In Proceedings of The

International Conference on Acoustics Speech and Signal Processing

(ICASSP 2010), Dallas, TX, USA, pp 2482-2485, March 2010. [Stark

and Plumbley, 2010]

• Adam M. Stark, Matthew E. P. Davies and Mark D. Plumbley,

“Real-Time Beat-Synchronous Analysis of Musical Audio”, In Pro-

ceedings of the 12th International Conference on Digital Audio Ef-

fects (DAFx-09), Como, Italy, 1-4 September, 2009. [Stark et al.,

2009]

• Adam M. Stark and Mark D. Plumbley, “Real-Time Chord Recogni-

tion For Live Performance”, In Proceedings of the 2009 International
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Computer Music Conference (ICMC 2009), Montreal, Canada, 16-21

August 2009. [Stark and Plumbley, 2009]

• Adam M. Stark, Matthew E. P. Davies and Mark D. Plumbley,

“Rhythmic Analysis For Real-Time Audio Effects”, In Proceedings of

the 2008 International Computer Music Conference (ICMC 2008),

Belfast, UK, 2008. [Stark et al., 2008]

• Adam M. Stark, Matthew E. P. Davies and Mark D. Plumbley,

“Real-Time Beat-Synchronous Audio Effects”, In Proceedings of New

Interfaces for Musical Expression (NIME 2007), New York, NY,

USA, pp 344-345, June 6-10, 2007. [Stark et al., 2007b]

• Adam M. Stark, Matthew E. P. Davies and Mark D. Plumbley, “Au-

dio Effects for Real-Time Performance Using Beat Tracking”, In Pro-

ceedings of the the 122nd Audio Engineering Society (AES) Conven-

tion, Vienna, Austria, paper 7156, May 58 2007 [Stark et al., 2007a]

1.5 Thesis Contributions

The main novel contributions of this thesis are:

• Chapter 3: An efficient and robust real-time beat tracking algorithm

developed by extending a previously non-causal technique based

upon dynamic programming.

• Chapter 3: An efficient and robust real-time chord recognition tech-

nique based upon: 1) a chromagram calculation technique based

upon mapping only the energy in spectral peaks to pitch classes

rather than all spectral bins within a certain range; and 2) a chord

classification technique based upon masking out expected note posi-

tions in the chromagram and minimising the residual energy.

• Chapter 4: A modular study of five state of the art beat tracking

models, splitting them into their input feature and tracking model



1.5. THESIS CONTRIBUTIONS 27

and examining the effect of all possible combinations of input features

and tracking models.

• Chapter 5: A technique – which we call ‘Performance Following’ –

for automatically predicting harmonic content in polyphonic music

performances based upon the identification of repeated musical pat-

terns.

• Chapter 6: A number of live performance applications including

beat-synchronous audio effects, an algorithm for the synchronisa-

tion of video to a live performance and the use of harmonic analysis

to control video colour tone in real-time.

We turn now to a review of previous work in systems for live musical

performances and musical audio analysis techniques.



Chapter 2

Background

In this thesis we aim to develop ways in which technology can be easily

integrated into live musical performances. The intention is to develop live

musical performance systems that are aware of their musical surroundings

through information provided by real-time musical audio analysis.

In this chapter we will discuss related research in this area. In par-

ticular we will discuss a number of different techniques for musical audio

analysis – specifically beat tracking and harmonic analysis. We will also

discuss existing technology infrastructures that can be used to implement

live performance tools. First of all, however, we turn to a study of related

research into live musical performance systems.

2.1 Musical Interaction

In much previous literature on the use of computer systems in live per-

formances, a useful paradigm has been the concept of interaction and the

description of these computer systems as interactive music systems.

Rowe [1993] defines interactive music systems as “those whose behav-

ior changes in response to musical input”. He goes on to say that this

responsiveness allows such systems to participate in live performances of

both notated and improvised music. This implies that two broad processes

take place in an interactive system. The first is some analysis of the input,

which may be in a symbolic form, such as MIDI, or a raw audio signal.

The second process is the creation of some response based upon the result

of that analysis.

28
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However, others have considered other criteria key to an interactive

music system. Much has been written on the subject – a review is pre-

sented in Jordà [2005] – and we will not attempt to cover it all here.

Rather, we focus on two commonly visited notions which we refer to as

complexity and mutualism, discussing each in turn.

Complexity

The first criteria, which we call complexity, is that the response should

seem sufficiently autonomous and unpredictable – perhaps using the gen-

eration of pseudo-random numbers or a knowledge-based system in the

process of the response.

Chadabe [1984] introduced the concept of “interactive composing”,

describing it as a two stage process. He says that it involves “(1) creating

an interactive composing system and (2) simultaneously composing and

performing by interacting with that system as it functions”. Furthermore,

he argues that the interactive composing system is a form of “intelligent

instrument” that “responds to a performer in a complex, not entirely

predictable way”. Dobrian [2004] has drawn a distinction between systems

that are interactive and systems that are simply reactive. He states that

systems that respond “instantly to the sound or gestures of a live performer

based on a programmed algorithm” are simply “reacting to its input in

a pre-determined way”. He continues, adding that “[t]he computer can

only be purported to be acting autonomously if it is programmed to make

some decisions of its own that are not fully predicted by the algorithm”.

Spiegel [1992] has also indicated that the “predictability and repeata-

bility (versus randomness from the user’s viewpoint) of musical result from

a specific repeatable human interaction” is an important dimension of in-

teractive music systems.

Mutualism

The second criteria we shall refer to as mutualism – the requirement that

both the human performer and computer system are able to ‘hear’ one

another and influence one another’s performance in some way.
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Figure 2.1: Human-Machine Interaction (from Bongers [1999])

Chadabe [1984] has described an interactive relationship between a

performer and a computer system in a live performance as one where

the “computer responds to the performer and the performer reacts to the

computer, and the music takes its form through that mutually influen-

tial, interactive relationship”. Bongers [1999] has also identified mutual

influence as important, arguing that “[m]any interactive systems in new

media arts are in fact reactive systems. Ideally, interaction between a hu-

man and a system should be mutually influential”. His depiction of such

a “human-machine interaction loop” has been reproduced in Figure 2.1.

As can be seen, both parties – the human and the machine – are able to

‘sense’ one another’s outputs in some way and respond, based upon some

thought or processing.

Jordà [2005] has suggested that the quantity and nature of the inter-

action between two subjects could be represented in a two-dimensional

space. The x-axis represents the degree of influence of the human per-

former on the computer, while the y-axis represents the influence of the

computer on the human performer. It is indicated that the area of inter-

est for interactive systems are those that have both high x and y values –
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situations with mutual influence.

Others have also stressed the importance of mutual influence, includ-

ing Dobrian [2004] who has claimed that “the prefix inter- in the word

interactivity implies mutual influence between agents”.

There is clearly no standard definition of an ‘interactive music system’,

and we shall not attempt to offer one here. The work in this thesis is aimed

predominantly at exploring the musical audio analysis techniques which

may inform an interactive music system. We explore some example appli-

cations in Chapter 6, some of which may be considered to be interactive

to an extent. We also find equally interesting those systems which may

be considered “reactive” by others such Bongers [1999] or Dobrian [2004].

For example, the automatic control via audio feature extraction of video

– which may be viewed by an audience rather than the human performer

and thus provides no mutual influence – is still an exciting application.

We now proceed with a paradigm for classifying these interactive music

systems (introduced by Rowe [1993]) before considering the state of the

art in the field.

2.1.1 Classification of Interactive Music Systems

Rowe [1993] considers three dimensions as the basis for differentiating

different forms of interactive music system, which we now discuss in turn.

Score-driven vs. Performance-driven

Score-driven systems attempt to match a musical input to a stored score or

stored music fragments. Performance-driven systems, on the other hand,

do not anticipate that the musical input will correspond to a specified

score or stored representation. Rather the input is unexpected and is

processed it as it arrives.

Musical Response: Transformative, Generative or Sequenced?

Transformative systems take some existing musical material and apply

transformations to it to produce variants. Generative systems generate
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their own output by using sets of rules to produce musical output using

only fragmentary stored information, such as scales or phrases. Sequenced

systems use pre-recorded musical accompaniments whose parameters, such

as tempo, dynamics or rhythm, are varied in real-time in response to the

input signal.

Instrument Paradigm vs. Player Paradigm

A system belonging to the instrument paradigm will seem like an extension

of a musical instrument while a system belonging to the player paradigm

will produce an output that seems like a separate musical entity, or an

accompaniment.

It should be noted that Rowe’s is not the only model for classifying and

describing interactive music systems and that others have been presented,

such as that of Spiegel [1992].

2.1.2 Prior Work

The field of interactive music systems is wide, varied and the subject of

numerous books and PhD theses. Here we present a selection of work to

illustrate the nature of recent and past research in the area. For more

comprehensive reviews of work on interactive music systems, the reader

may wish to consider Rowe [1993], Roads [1996, Chapter 15], Rowe [2001],

Jordà [2005] and Collins [2007]. We now present a number of interactive

music systems and some areas of interest within the field.

Cypher

Rowe [1992] has presented Cypher, an interactive music system that is

composed of a ‘listener’ and a ‘player’. Taking as input a MIDI stream,

the listener is a multi-agent system that extracts musical features from

the input. Incoming MIDI events are classified within a feature space

where the dimensions include loudness, duration, harmony, register and

density. The user can then configure the player to react to these features in

certain ways, using a graphical interface. The player can either: transform
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material arriving from some MIDI source; sequence stored stored material

for playback; or generate new material. An internal critic examines the

output and ensures a consistency of style based upon pre-programmed

aesthetic preferences.

Voyager

Jazz trombonist George Lewis [2000] developed the interactive system

Voyager between 1986 and 1988. The system is conceived in the ‘player’

paradigm (in the sense of the taxonomy of Rowe [1993]), although Lewis

describes the system as having 64 asynchronous players, generating single

voice MIDI outputs. These players are then organised into ensembles,

with associated behaviours. A function is called internally every 5 to 7

seconds to organise the players into new ensembles with new behaviours,

specifying characteristics such as timbre, choice of melody algorithm, pitch

set and tempo. This means that the system is capable of generating music

in the absence of human input.

To interact with human performers, the system takes input from ei-

ther a MIDI keyboard or uses pitch-to-MIDI conversion to track Lewis’s

trombone. The input MIDI stream is analysed for information such as

pitch averages, velocity and note spacing and this is used to decide in

greater detail how each ensemble responds to the input – defining output

characteristics such as tempo, note spacing, octave range and volume.

Lewis stresses the degree of equality between human and computer

sound generations in Voyager, describing it as “a nonhierarchical, im-

provisational, subject-subject model of discourse, rather than a stimu-

lus/response setup”.

William Hsu and John Butcher

Hsu [2005] has presented an interactive music system that improvises with

British saxophonist John Butcher, emphasising the analysis of musical

timbre. The system extracts a number of timbral features from the in-

put sound – Butcher’s saxophone – including noisiness, the presence of

inharmonic partials, the sharpness of attacks and roughness. A number
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of non-timbral features are also extracted including the pitch range and

density of note onsets.

The musical response of the system is generated by a number of agent

improvisers. Each agent controls a module that may be a transformation

of the sound (such as an audio effect) or a synthesis module. Each module

receives information about the characteristics of the sound and then uses

a set of internal rules to determine a musical response (or whether to play

at all). Each module can perform independently or in conjunction with

some of the other modules.

Eighth Nerve

Ciufo [2003] has presented the interactive system Eighth Nerve for pre-

pared electric guitar and computer. The electric guitar is fitted with a

number of sensors mounted on the guitar, including toggle switches and

a pressure sensor on the neck. Audio analysis is also performed on the

signal from the guitar, including onset detection, amplitude monitoring

and the extraction of timbral features. The features from the audio anal-

ysis and outputs from the mounted sensors are then combined to control

signal processing manipulations of the guitar signal and of recorded audio

buffers in real-time.

The Continuator

The Continuator by Pachet [2002] is a system capable of imitating musical

style. A Markov model is used to represent sequences and sub-sequences

of notes either from a performance or from data stored in a MIDI file.

The Markov model is then used to generate new material in real-time by

traversing a prefix tree according to transition probabilities. The Markov

model is augmented to account for elements such as rhythm and beat and

is adapted to be able to handle imprecision.

Score Following

Much research in the area of musical interaction focuses upon score fol-

lowing [Orio et al., 2003]. These systems attempt to match a human
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performance to a stored version of that performance in the form of a mu-

sical score. Based upon this information an accompaniment is provided

to the human musician that increases or decreases its tempo in order to

stay synchronised with the human performer.

The first work on score following was presented, separately, by Vercoe

[1984] and Dannenberg [1984]. Vercoe [1984] presented a ‘synthetic per-

former’, which attempts to match notes played by a flautist to a score,

with the intention of automatically playing an accompaniment. The ap-

proach was comprised of three main stages. The first was a ‘listen’ stage,

where optical sensors were installed on the keys of the flute and used in

combination with audio pitch analysis to determine the pitch and attack

times of notes. The second stage, ‘perform’, involves using the information

about the pitch and attack times of notes to identify the position of the

flautist on the score. The flautist score position is then compared to the

score position of the ‘synthetic performer’ and a ‘catch-up’ action is then

determined to align the two. The third and final stage is ‘learn’, where it

is suggested that the performance of the system could be improved if it

could learn the musical response of performers to certain scores.

Dannenberg [1984] considers the problem of matching a solo perfor-

mance to a score. He considers the solo performance as a real-time stream

of musical events, and the score as a stored, ordered list of expected events.

The problem of matching the performer to the score is then approached

as one of finding the best match between the two streams. To achieve this

a dynamic programming sequence alignment technique is used to find the

position in the score of each arriving musical event from the performance.

The system is implemented using pitch detection (assisted by hardware for

reasons of limited processor speed) of a trumpet sound. Baird et al. [1993]

presented a similar system based upon MIDI input that uses a short time

window to align performer and score and allows for missed notes, extra

notes and notes held for longer than expected.

Raphael [1999] presented a probabilistic approach to the problem of

partitioning an acoustic signal of a monophonic instrument into notes and

rests, given a score. Using hidden Markov models [Rabiner, 1989], he

models the notes in the score as a sequence of hidden states that will
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produce a series of observations – in practice, audio frames. The score

following problem is then approached as one of recovering the sequence

of hidden states (i.e. notes in the score) that produced the observations

(audio frames). This technique was later used to track a live performer in

the automatic accompaniment system ‘Music Plus One’ Raphael [2001],

where a probabilistic model is used to match an accompaniment to the

performance of a soloist.

Cont [2010] has presented a probabilistic model for score following

based upon two coupled agents for audio and tempo. With states repre-

senting events in the symbolic score, the agents work together to decode

the best sequence of states given the observation of the input audio. The

result is a real-time determination of the both the score position and cur-

rent tempo.

Generative Systems

The possibility of computers generating music independently of humans

has been of interest to many in recent years. Generative music involves

the automatic generation of music, for example by algorithms, sets of rules

or statistical techniques. We shall present some illustrative examples here,

but for deeper studies see Miranda and Biles [2007] or Nierhaus [2009].

A notable example is the work done in Experiments in Musical Intel-

ligence by Cope [1996] where new pieces in a certain style are composed

automatically from analysis of two or more pieces in that style. This is

achieved by identifying patterns common in pieces from that style and

using an augmented transition network to re-arrange these patterns to

create a new piece. However, these pieces are generated offline and are

not used in a live performance system.

Conklin [2003] argues that increased attention should be given to the

use of analytical statistical models for the purpose of generating music.

He claims that the goal of analytic statistical models is to assign high

probabilities to new pieces in a given style. This process can then simply

be used to evaluate a number of candidate musical generations, with those

of low probability eliminated. Therefore the problem of music generation



2.1. MUSICAL INTERACTION 37

can be reduced to sampling from a statistical model.

Blackwell and Young [2004] introduced the ‘swarm granulator’ for

generating parameter settings for granular synthesis. Inspired by de-

centralised organisational processes in nature such as those exhibited by

swarms of bees or shoals of fish, the authors present a particle swarm model

where each particle moves around a 6-dimensional space. The particles

have no centralised control, and each particle is only aware of a number of

other nearby particles, rather than the whole swarm. ‘Attractors’, loca-

tions in the space, are created by some external interpreting system – in

some cases a human musician. This is achieved by extracting parameters

from an incoming audio stream. Organisation is then achieved through

behavioural rules for each particle including moving towards ‘attractors’

at locations in the space, matching the speed of other particles and avoid-

ing collisions. The position of the particles in the space determine the

sound characteristics of individual sound ‘grains’ of a granular synthe-

sis technique – specifically pitch, amplitude, duration, the time between

successive grains and grain attack and decay times.

Biles [1994] has presented GenJam – a system for improvising jazz so-

los based upon a genetic algorithm. Performing over a standard rhythm

section, the system outputs solo material which is then rated as either

‘good’ or ‘bad’ by its human counterparts. Based upon this feedback, cer-

tain phrases attain higher fitness values than others. The system can then

use these measures to choose phrases from which to produce ‘offspring’,

gradually learning to play better solos (from the perspective of its human

counterparts).

The majority of the live performance systems we have described here

process some form of musical input – either symbolic or an audio signal.

We are concerned in this thesis with the development of live performance

technology that is capable of processing real audio signals. Raw audio sig-

nals only contain information about the physical characteristics of sound.

More ‘musical’ notions such as pitch, beat and rhythm are not explicitly
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expressed but rather interpreted by human listeners. As a result, raw au-

dio signals are insufficient in themselves for providing information to live

performance tools – rather the ‘semantic’ information must be extracted

from them through some form of analysis.

We now turn to recent work in two areas of musical signal analysis –

beat tracking and harmonic analysis.

2.2 Beat Tracking

Beat tracking is the identification of a regular pulse in a piece of music,

similar to the informal task of tapping ones foot ‘in time’ to a piece. To

a human, even a non-musician, this is often a trivial task that can be

achieved with little conscious effort. However, as we shall describe here,

the automation of this process in computer systems has proved difficult

to solve comprehensively.

The musical input to a beat tracker will be characterised by musical

events. These events will often coincide with beat locations, however many

will also occur at non-beat locations and many beat locations will be

marked by no event. The regular beat is therefore implicit, rather than

explicit. As Goto [2001] has noted, “[a]lthough in the brains of performers

music is temporally organized according to its hierarchical beat structure,

this structure is not explicitly expressed in music”. Continuing he claims

that “[t]he principal reason that beat tracking is intrinsically difficult is

that it is the problem of inferring an original beat structure that is not

expressed explicitly”.

In this section we outline a number of beat tracking approaches, from

early models to the current state of the art.

Early Approaches

Early beat tracking models attempted to find a regular beat from sym-

bolic onset times. Allen and Dannenberg [1990] introduced a model that

selects between multiple possible interpretations of each note onset – each

interpretation corresponding to a state with a different metric position,
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beat period and beat phase. An evaluation function evaluates each state

according to musical heuristics. The most credible state is chosen and

used to make beat predictions.

Rosenthal [1992] has presented a technique that, given symbolic onset

times from MIDI data, finds sets of regularly spaced onsets corresponding

to ‘rhythmic levels’. These levels are studied to see if they can be classed

into families before various criteria based upon human musical listening

traits are used to rank the various hypotheses.

Large [1995] developed a method whereby the period and phase of

an oscillator are modified in order to synchronise it with a sequence of

incoming pulses, corresponding to onset times.

The detection of beats directly from audio signals can be achieved by

using onset detection functions (reviewed in Bello et al. [2005]) – a mid-

level representation large at the onset of musical notes and small elsewhere.

We proceed by reviewing several approaches to audio beat tracking.

Scheirer

Scheirer [1998] suggests that human perception of rhythmic information

is based upon an analysis of multiple frequency bands. Based upon this

he splits the input signal into 6 octave spaced frequency bands. For each

band, the amplitude envelope is calculated and the derivative taken. The

resulting signal is then half wave rectified.

Each envelope derivative is then passed into a comb filterbank where

each comb filter has a different delay. Comb filters with delays matching

the periodicities of each derivative signal will respond more strongly than

others. The outputs of the filterbank for each envelope derivative are then

summed. The result is then examined for the comb filter resonator that

produced the maximum energy. Once identified, the delay of this filter is

used as the tempo estimate of the signal.

Then, the approach makes use of delay vectors used to implement the

comb filters. These delay vectors contain delayed samples and their output

can be interpreted as the predicted output of a given resonator. The delay

vectors from the frequency channels for the resonators corresponding to
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the tempo are summed. Finally, the beat phase is extracted through

reference to the peak of the resulting signal.

Dixon

Dixon [2001] has introduced BeatRoot, a system that can operate upon

audio or symbolic MIDI data. The system is composed of a tempo induc-

tion stage and a beat tracking stage. In the tempo induction stage onset

times are extracted from the input. In the case of MIDI, the onset times

of individual notes are known but as the signal may be polyphonic, onsets

that are close together are classed as the same event. A salience value

is also given to each onset based upon the MIDI data on the duration,

density, dynamics and pitch of each note.

In the case of audio, an amplitude envelope is calculated and a peak

picking algorithm used to identify local maxima in the slope of the enve-

lope. Peaks within 50ms of greater peaks are rejected to retain only the

most salient onsets – with a salience value calculated for each onset as a

function of the amplitude envelope value.

Once onsets have been calculated, the times between onsets or ‘inter-

onset intervals’ (IOI), are extracted. The inter-onset intervals are then

assigned to clusters of IOIs of a similar length. The resulting clusters are

ranked according to the number of elements they contain – with the top

clusters representing a set of hypotheses of the basic tempo of the music.

The beat tracking stage compares several beat tracking ‘agents’, ini-

tialised with different tempo hypotheses and choses the one that best fits

the onset data from the input. This decision is based upon the regular-

ity of beat times, how often beat times match rhythmic events and the

salience of matched rhythmic events.

The model was later updated [Dixon, 2007], with improvements in-

cluding replacing the original amplitude envelope input feature with a

spectral flux onset detection function [Dixon, 2006b] to allow better rep-

resentation of non-percussive onsets and a re-implementation in the Java

programming language.
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Goto

Goto [2001] presents a system that is able to recognise beats at multiple

metrical levels. The system, assuming a steady tempo and a time signature

of 4/4, examines onset times, chord changes and drum patterns in the

input signal.

Onsets are extracted through a peak-picking process based upon the

rate of power increase across 7 sub-bands. The auto-correlation of the

onset sequence is used to calculate the tempo before cross-correlation is

used to predict quarter-note level beat times.

Two kinds of musical knowledge are then used to extract beat informa-

tion at higher metrical levels. Firstly, the quarter-note beat times are used

to derive a measure of chord change probability by comparing the dom-

inant frequencies present in each inter-beat interval. This chord change

probability is then combined with several musical assumptions – for ex-

ample, that chord changes are more likely at the measure level than at

lower metrical levels – to estimate half-note and measure level beat times.

Secondly, bass and snare drum onsets are extracted through analysis

of the onset sequence, examining the width of noise spread across the

frequency axis. These drum onsets are then compared to a number of

pre-stored drum patterns, with matching patterns used to infer half-note

beat times through the musical assumption that the start of a pattern

indicates a half-note beat time.

To deal with ambiguity, beat tracking is performed by multiple agents

with competing hypotheses of the beat structure. These are selected be-

tween based upon which agent is most reliable according to an evaluation

function.

Dannenberg

Dannenberg [2005] has presented a beat tracker that makes use of infor-

mation about musical structure to inform beat placement. Onset times

are extracted from the audio signal through a thresholding process on an

onset detection function that emphasises changes in the high frequency

content of signals. Initial estimates of the beats are then calculated by
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evaluating beat pattern templates at each onset location and using some

smoothing to avoid sharp changes in tempo.

To improve these beat estimates, musical structure is incorporated into

the model with the hypothesis that if two sections of music are similar (in

terms of their harmonic development), we would expect them to have a

similar beat structure. The technique compares the “structural consis-

tency” of harmonically similar regions – determined by a self-similarity

matrix calculated from harmonic information in the form of chroma vec-

tors.

By using structural information to inform beat estimates, substan-

tial improvements in performance are demonstrated over the ‘basic’ beat

tracker (without structural information) – although the database used for

evaluation was small in comparison to other studies and the evaluation

subjective, rather than objective.

Klapuri, Eronen and Astola

Klapuri et al. [2006] present a model that builds upon the comb filter

approach of Scheirer [1998]. While the Scheirer model analyses the tempo

at each of six wide sub-bands, this leaves it unable to detect harmonic

changes as the bands are not narrow enough to identify specific frequency

components. Klapuri et al. also observe that using a number of bands

sufficient to identify harmonic change would render each of those bands

too narrow to be analysed for rhythmic periodicity.

As a solution, 36 sub-bands are calculated, the derivatives of power

envelopes are taken and then each nine adjacent sub-bands are summed to

produce a four channel onset detection function. Each of the four channels

contains information about harmonic change due to the initial approach

with the narrower 36 bands, but they now represent four broader frequency

ranges and are suitable for the tracking of periodic rhythmic components.

The four channels are passed through a bank of comb filter resonators

and the outputs are summed to produce an observation function. This

observation function is then passed to a probabilistic model for jointly

estimating the period at three metrical levels – the tatum, the fastest
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metrical level [Bilmes, 1993], the tactus, the ‘beat’ or ‘foot-tapping’ rate

and the measure level.

Finally, these period observations are used, in combination with the

outputs of the resonators, to estimate the phase of the beats in the sig-

nal using two parallel hidden Markov models for the tactus and measure

phases respectively. The tatum phase is estimated from the tactus phase.

Laroche

Laroche [2003] has presented an approach based upon dynamic program-

ming. First an ‘energy flux’ onset detection function is calculated by

summing the first order differences between corresponding bins in adja-

cent audio frames – and half-wave rectifying the resulting signal in order

to keep only positive differences.

For each analysis frame, the cross-correllation is calculated between

the energy flux signal and a number of ‘expected’ energy flux signals (cre-

ated by spacing discrete pulses by a given beat period hypothesis and

started from a given hypothesis of the downbeat location). The result is

a matrix of correlation values over various tempi and downbeat locations.

The number of candidates is then reduced: After normalising the matrix

a tempo likelihood function is created by taking the best downbeat can-

didate for each tempo candidate. The local maxima of this function are

searched for the 10-15 best candidate tempi. Then, for each of these, the

10-15 best candidate downbeat locations are selected.

The result of this processing is a number of tempo and downbeat candi-

dates at each analysis frame. A dynamic programming technique is then

used to select the best sequence of candidates, using a transition score

that enforces the constraints that the tempo changes are smooth and the

downbeat locations are consistent with the tempo.

Ellis

Ellis [2007] has also presented an algorithm for beat tracking based upon
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dynamic programming. An onset strength envelope is extracted by re-

sampling the input audio to 8kHz and extracting short-time Fourier trans-

form frames. These are converted to an “approximate auditory” represen-

tation with 40 bands on the Mel scale – a perceptual frequency scale. The

first-order difference in each band is taken and the positive differences

summed across all bands and the final function smoothed.

From this function a global tempo estimate for the signal is calculated

from the weighted output of an auto-correlation function. This global

tempo estimate is then used with the onset strength envelope to create a

transition cost function which in turn is used in the calculation of a recur-

sive function with peaks at likely beat locations. Finally, a “backtrace”

step is performed to identify the optimal beat sequence.

Davies and Plumbley

Davies and Plumbley [2007] present a system that calculates an onset

detection function based upon the complex spectral difference between

adjacent Fourier transform frames. The auto-correlation of the onset de-

tection function is then calculated and passed through a weighted comb

filterbank. The output of this comb filterbank has peaks at lags that

match the periodicities in the auto-correlation function and is used to es-

timate the beat period (or time between beats). Analysis of the most

recent single beat period of the onset detection function is then performed

to extract the beat phase. Based upon this information beat times can

either be estimated offline or predicted into the future in real-time.

Two different states are used for beat tracking that have different

tempo weightings that bias the choice of tempo from the output of the

comb filterbank. The general state has a wide weighting that favours

common tempi. Should a reasonably consistent tempo be observed

then a context-dependent weighting is created using a narrow Gaussian

that favours tempi close to the current observation. Should the general

state observe a consistent tempo at one different to that of the context-

dependent state, then a new context-dependent state is created based

upon this tempo.
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Collins

Collins [2005] has presented a beat tracker specifically focused upon the

real-time tracking of an acoustic drum kit. The approach is based upon a

causal implementation of the approach of Laroche [2003]. However, stress-

ing the difficulty of consistently determining the phase position of beats,

higher level information is incorporated into the dynamic programming

stage. Specifically, information about kick drum and snare drum events

– inspired by Goto [2001] – is compared to a number of drum patterns,

resulting in a pattern score. Also, the hypothesis that the beat will often

coincide with the presence of low frequency energy is used to calculate a

bass cost. To prevent spurious tempo changes, a tempo/phase candidate

must be selected twice consecutively before being accepted.

The model was implemented in SuperCollider and used in a system for

matching algorithmically generated drums to a human drummer.

Robertson and Plumbley

Robertson and Plumbley [2007] present a system designed specifically for

a live performance situation and for the analysis of drums. The system

assumes an approximately steady tempo, that the approximate tempo is

known beforehand and that the bass drum signal is rhythmical and rea-

sonably uncomplicated. Onsets are extracted through the analysis of the

bass drum and compared to the expected beat times using a Gaussian

weighting. Should an onset be accurate enough and exceed a threshold

then the system tempo is updated according to the difference between the

expected and actual onset time. The system is capable of automatically

adjusting the width of the gaussian based upon the accuracy of the drum-

mer. The system is able to speed up and slow down to remain in time

with a live performance in a way that allows the implementation of an

auto-accompaniment system for live performance

Degara el al.

Degara et al. [2011] present a probabilistic technique that explicitly models

both beat and non-beat states – and provides an accompanying reliability



2.2. BEAT TRACKING 46

measure to automatically estimate the reliability of tracked beats.

The first step uses a complex spectral difference onset detection func-

tion as to calculate a beat period salience signal – the output of the comb

filter bank in the tempo estimation phase of the Davies and Plumbley

[2007] approach. This signal is calculated at time instants throughout

each audio file and is used to calculate a beat period path – expected to

be a slowly varying process.

A hidden Markov model is then used to estimate beat times – with

states representing the amount of elapsed time since the last beat in

frames. For any given state there are only two possible transitions – to

the next state or to the first state (the ‘beat state’). The most likely state

sequence is decoded using the Viterbi algorithm and the beat times taken

to be when the beat state was visited in the state sequence.

The authors note that if the beat period salience signal is poor, then

beat tracking quality can also be poor. This observation is used to create

a reliability measure for beat tracking. By using a k-Nearest Neighbour al-

gorithm to learn the relationship between three features of the beat period

salience signal and beat tracking performance, a beat period salience sig-

nal from an arbitrary input signal can be assessed for likely beat tracking

quality.

Real Time vs. Offline Beat Tracking

Of the approaches discussed here, a number are purely ‘offline’ in that they

are non-causal solutions whereby future information is used to estimate

current beat times. These include Dixon [2007], Ellis [2007] and Degara

et al. [2011]. For estimating beats in a live performance, we need a model

that operates causally and in real-time. Of the models discussed here,

several are either causal or present causal versions of their algorithms

including Scheirer [1998], Goto [2001], Collins [2005], Klapuri et al. [2006],

Robertson and Plumbley [2007] and Davies and Plumbley [2007].

For more information on beat tracking, reviews are presented in

Gouyon and Dixon [2005], Gouyon [2005], Hainsworth [2006] and McKin-

ney et al. [2007].
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2.3 Harmonic Analysis

Harmonic developments in polyphonic music can provide much informa-

tion about a live performance. In the immediate sense, information about

the harmonic content of audio signals allows musicians to play coherent,

harmonically relevant accompaniments with one another. Furthermore,

changes in the harmonic content over time can indicate structural proper-

ties of a piece of music, including bar boundaries and the dominant themes

of a piece.

This harmonic and structural information can be automatically ex-

tracted by analysis algorithms in real-time and may be used to develop

effective live performance tools and increase the ability of computer sys-

tems to participate in live performances with musicians.

In this section we present a review of previous research on the ex-

traction of harmonic information from musical signals. We first detail a

number of techniques for extracting harmonic information in the form of

chroma features from audio signals. We then proceed to discuss the use

of these features in automatic chord recognition.

2.3.1 Chroma Features

In the majority of previous approaches to automatic chord recognition

[Harte and Sandler, 2005; Bello and Pickens, 2005; Mauch and Dixon,

2008], the first step has been to convert audio frames into a 12× 1 vector

representation with values representing the energy present in each of the

12 semitone pitch classes found in western music. This feature is called

a chroma vector, and is also commonly referred to as a pitch class profile

(PCP) or chromagram [Fujishima, 1999]. An example chroma vector can

be seen in Figure 2.2.

Constant-Q Based Chroma Features

Several different techniques have been used to calculate chroma vectors.

Some systems [Bello and Pickens, 2005; Harte and Sandler, 2005; Lee

and Slaney, 2008] make use of the constant-Q transform [Brown, 1991].
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Figure 2.2: An example of a chroma vector or chromagram.

The constant-Q transform is a frequency domain representation with log-

arithmically spaced frequencies that follow those of the equal tempered

scale. The constant-Q transform is generally calculated from some base

frequency and for a number of octaves. A chromagram can be simply

calculated by summing each pitch class over all octaves.

A variations on this technique has been presented by Harte and Sandler

[2005] who have accounted for the problem of instruments deviating in

tuning from standard concert pitch. To achieve this, a 36 bin chromagram

is calculated to which a tuning algorithm is applied to create a 12 bin

chromagram that accounts for tuning variations.

Chroma Features Calculated From the DFT

Other techniques calculate the chromagram directly from the Discrete

Fourier Transform (DFT) of the input signal. Fujishima [1999] calculates

each bin of the chroma vector by summing all spectral bins in the DFT

that belong to that pitch class. Sheh and Ellis [2003] employ a similar

technique but use a quarter-tone resolution for the chromagram to allow

for differences in tuning.

A particular problem identified by several authors has been the pres-

ence of energy from the harmonics of pitched notes – tones at integer

multiples of the fundamental frequency – in the chromagram. For ex-

ample, the 3rd harmonic will add energy to the chroma bin of the note

an interval of a fifth above the fundamental – even if that note was not

sounded in the signal.

Potential improvements have been suggested by Lee [2006], who has
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proposed an ‘enhanced pitch class profile’. By multiplying the energy at

each frequency in the magnitude spectrum by its harmonics, the Harmonic

Product Spectrum (HPS) of the DFT is calculated. In this representation

the fundamental frequencies are emphasised over harmonics of those fun-

damentals. The HPS is then used to calculate the chromagram rather

than the DFT itself. Cremer and Derboven [2004] present a technique

that uses a frequency warped FFT followed by the erasing of overtones

of fundamental frequencies and the separation of tonal components from

transients.

Peeters [2006] proposes the use of a ‘harmonic peak subtraction func-

tion’ to reduce the influence of higher harmonics of each pitched note when

calculating the chromagram. This process is applied to the magnitude

spectrum of the signal and the result mapped to a chroma representation.

In other work, Gómez [2006] has suggested a Harmonic Pitch Class Profile

where only spectral peaks are mapped to chroma bins and the contribu-

tion of harmonics to the fundamental frequency that produced them is

accounted for.

Other Approaches

Müller et al. [2009] has suggested a technique for increasing the robustness

of chroma features to timbral changes. The approach is based upon the

observation that lower mel-frequency cepstral coefficients (MFCCs) are

closely related to timbre. The energy in 120 frequency bands correspond-

ing to MIDI pitches is calculated from the input signal. The Discrete Co-

sine Transform (DCT) is then taken of these 120 pitch values. The result

is similar in nature to the MFCCs. By discarding the lower coefficients,

performing an inverse DCT and mapping the resulting pitch values to a

chroma scale, the authors create a chroma feature with reduced sensitivity

to changes in timbre.
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2.3.2 Chord Classification

Once the chromagram has been calculated, several techniques can be used

to classify the chromagram and thus give it a chord label. These ap-

proaches can be largely grouped into template matching techniques and

statistical approaches.

Statistical Approaches

Several attempts have been made to classify chords using statistical tech-

niques, in particular hidden Markov models (HMMs). Sheh and Ellis

[2003] use Expectation-Maximization (EM) trained HMMs to recognise

chords and chord boundaries with a single Gaussian used to model the

observations. The recognition performance is poor, possibly due to the

small size of the training set, but when the sequence of chords is provided

to the system, it can recognise chord change boundaries with relative ac-

curacy.

Bello and Pickens [2005] present a HMM-based technique that incor-

porates musical knowledge into the initialisation of the model. The state

transition matrix is informed by the circle of fifths, making transitions to

chords related in this way more likely than others. Also, the mean and

covariance matrix of the multi-variate Gaussian used to model each obser-

vation is informed by music theoretic notions of the relationship between

musical pitches. The HMM operates upon beat-synchronous segments –

created using the Davies and Plumbley [2007] beat tracker – based upon

the hypothesis that chord changes are more likely to occur at beat loca-

tions. Increased performance is demonstrated for the beat-synchronous

approach over a frame-by-frame approach where no beat information is

used.

Lee and Slaney [2008] make use of the fact that knowledge of the mu-

sical key – the harmonic centre of the music – implies that certain chords

are more likely than others. They implement 24 different HMM-based

chord detectors for the 12 major and 12 minor keys. Each HMM has a

unique set of state transitions and uses a single multivariate Gaussian to

model each observation. This approach is used to simultaneously estimate
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chord and key information. The performance of the model using two dif-

ferent types of features is examined. The first feature is a 12-dimensional

chroma vector similar to those used by other models. The second is a

6-dimensional tonal centroid vector (used by Harte et al. [2006] for the

purpose of detecting harmonic changes in audio signals). The tonal cen-

troid vectors result in better performance than the chroma features for

this approach.

Papadopoulos and Peeters [2007] compared and contrasted several dif-

ferent techniques for defining observation probabilities and state transition

matrices when using HMMs for chord recognition. The best results were

for modelling the observation probabilities through correlations with a set

of chord templates and using a state transition matrix based upon the

proximity of musical keys derived through perceptual tests.

Many of the above models use a single multivariate Gaussian to model

the observation distribution. Others, such as Mauch and Dixon [2008],

have used Gaussian mixtures to model a chord as being made up of a

number of sonorities. Bass and treble chromagrams are used as observa-

tions for a HMM-based approach. Gaussian mixtures have also been used

for modelling observations by Khadkevich and Omologo [2009]. However,

it has been shown by Cho et al. [2010] that the benefits brought by more

complex models are limited and largely offset by appropriate parameteri-

sation and pre- and post-filtering strategies.

Elsewhere, artificial neural networks have been used to classify chords

directly from a chromagram [Zhang and Gerhard, 2008]. In this particular

case, the specific voicing constraints of a guitar are taken into account

when considering the likelihood of a given chord.

Template Matching Approaches

Several pattern matching techniques have been used to classify chroma

features as one of a number of chords. These generally compare how

similar the chroma vector is to a set of chord profiles, usually in the form

of a bit mask. The bit mask representation is a 12-dimensional vector

containing a 1 where notes are present and 0 elsewhere. A C Major triad
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would thus be represented as [1,0,0,0,1,0,0,1,0,0,0,0]. The nature of this

representations allows direct comparison with chroma vectors.

Fujishima [1999] compares two chord classification techniques. The

first is a ‘nearest neighbour’ method where the selected chord is the one

that minimises the distance, δi, between the ith bit mask Ti and the

chromagram, C:

δi =
P−1∑
p=0

(Ti(p)− C(p))2 (2.1)

where P = 12, the number of notes in an octave.

The second technique is a ‘weighted sum’ method where the selected

chord maximises ∆i – the dot product between the chromagram, C, and

a weighted version of the ith bit mask, Wi:

∆i =
P−1∑
p=0

(Wi(p) · C(p))2 (2.2)

where P = 12, the number of notes in an octave. The weighting of the

bit mask allows chords with different numbers of notes to be compared

effectively (given that chords with more notes – and hence more ‘1s’ in

the bit mask – will naturally produce larger sums than chords with fewer

notes). The weighting also allows more common chords to be favoured

over those that are less common.

Harte and Sandler [2005] use a similar classification technique to the

weighted sum presented by Fujishima [1999], however the chords that the

algorithm attempts to classify are all three note chords, so no weighting

is used. A technique similar to the weighted sum has also been used by

Cremer and Derboven [2004] for chord recognition.

Oudre et al. [2009] experiment with chord models that deviate from a

pure bit mask, adding energy to account for either 1, 4 or 6 harmonics.

Also, a number of different measures of fit are considered – the Euclidean

distance, Itakura-Saito divergence and the Kullback-Leibler divergence.

The authors found that the single harmonic chord model and Kullback-

Leibler divergence were the best choice for an evaluation on 13 Beatles

albums.
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Non-Chromagram Approaches

One exception to the chromagram approach is that of Nawab et al. [2001].

Using the result of a constant-Q transform, the authors consider the prob-

lem as one of identifying all resolvable and unresolvable fundamentals. Re-

solvable fundamentals are those that are not obscured by the harmonics

of other fundamentals occurring lower in frequency. Should a harmonic

occur too close in frequency to another fundamental, it is considered un-

resolvable. The approach presented considers the lowest fundamental to

be resolvable, stores it and then removes its harmonics. The process is

repeated until all resolvable fundamentals have been found. Should more

than one chord be possible given the resolvable fundamentals, then various

test cases are used to look for evidence of unresolvable fundamentals.

Of the chord detection techniques presented here, MIREX 2010 Chord

Description weighted overlap ratio scores were: Cho et al. [2010] (0.78),

Khadkevich and Omologo [2009] (0.78), Oudre et al. [2009] (0.74) and

Papadopoulos and Peeters [2007] (0.68). The highest scoring model was

presented by Mauch and Dixon [2010] (0.79). The results are available

online1.

2.4 Existing Technology Infrastructure

There already exists a wide range of commercial and non-commercial soft-

ware environments that allow the design of systems for live musical per-

formance. We will discuss the ones relevant to this thesis here.

Max/MSP

Max/MSP2 is a real-time graphical programming language for music and

multimedia. With a range of functionality the user can create a program

by moving connectable ‘objects’ around a ‘patch’. The environment allows

the processing of MIDI, audio, video, images and sensor information.

1MIREX 2010: Audio Chord Description: http://nema.lis.illinois.edu/nema out/

mirex2010/results/ace/summary.html (Accessed 18/08/2011)
2Max/MSP: http://cycling74.com/products/maxmspjitter/ (Accessed 27/02/2011)
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A key benefit of Max/MSP from our perspective is the ability to design

‘externals’ (or third party objects) using programming languages such as

C++. We can design an external to take any form of input (audio, MIDI

or other data) and send any form of output. As a result, and combined

with its real-time functionality, this makes it highly useful as a tool for

designing musical audio analysis tools as modular units within real-time

musical applications.

It is important to note that there are several environments similar in

capability to Max/MSP including SuperCollider 3, Pure Data4, CSound5

and Chuck 6. We choose Max/MSP for reasons of familiarity with the

language and its external programming API.

Ableton Live

Software sequencer Ableton Live7 differs to many others in that it has

an interface for live performance, allowing easy sound manipulation and

triggering of samples. In particular it has built in capabilities for time-

stretching audio samples. Due to easy integration with Max/MSP through

MIDI communication it is (for our purposes) a useful tool for audio sample

playback. Furthermore, Max/MSP has now been fully integrated within

Ableton Live with the Max for Live8 extension to Ableton Live.

openFrameworks

Software library openFrameworks9 allows easy control and manipulation

of video and graphics through the C++ programming language. Through

MIDI and OSC it can communicate with Max/MSP, making it very useful

for visual applications informed by music.

3SuperCollider: http://supercollider.sourceforge.net/ (Accessed 27/02/2011)
4Pure Data: http://puredata.info/ (Accessed 27/02/2011)
5CSound: http://csound.sourceforge.net/ (Accessed 27/02/2011)
6Chuck: http://chuck.cs.princeton.edu/ (Accessed 27/02/2011)
7Ableton Live: http://www.ableton.com/live-8/ (Accessed 27/02/2011)
8Max For Live: http://www.ableton.com/maxforlive (Accessed 16/07/2011)
9openFrameworks: http://www.openframeworks.cc/ (Accessed 27/02/2011)
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2.5 Summary

In this chapter we have outlined research relevant to the work in this

thesis. In particular we have studied technologies for use in interactive

performances involving human musicians and machines and outlined a

means for classifying such systems. We have also discussed two forms

of musical audio analysis – the extraction of the dominant metrical pulse

from musical signals, or beat tracking, and harmonic analysis, in particular

chroma analysis and chord recognition.



Chapter 3

Real-Time Musical Audio Analysis

While sound is essentially a physical phenomenon, it is the ways in which

it manifests itself in the mind of the listener that allows us to describe

some sounds as ‘musical’ [Lerdahl and Jackendoff, 1983]. If the listener is

a musician, then such interpretation of sound is fundamental to partici-

pating in a musical performance.

In order to be able to take part in a musical performance, one must

first be able to listen to – and comprehend in some way – the developments

of the piece in question. There must be some underlying understanding

of musical concepts such as tempo, beat and harmony, amongst others.

For computer systems, the ability to make the conversion from raw sound

waves to ‘musical information’ is vital if these systems are to be able to

adapt their behaviour in a way that is related to musical developments

in a performance. Therefore, we first turn our attention to the topic of

extracting high level musical features from audio. Our focus is on develop-

ing techniques for analysis that are real-time, robust and computationally

efficient.

In this chapter we focus upon two characteristics of music in particular:

beat and harmony. We present an efficient real-time beat tracker capable

of discovering and following the beat in musical performances. We then

describe an efficient algorithm for calculating a harmonic representation

known as a chromagram in order to represent harmonic developments

in musical performances. Building upon this, we use the chromagram

representation as input to a chord recognition algorithm to append high

level musical labels to ‘chunks’ of harmonic information.

56
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Finally, we integrate these elements, presenting a technique for calcu-

lating, in real-time, beat-synchronous sequences of harmonic information

or labels. These sequences represent information about the temporal and

harmonic structure of a performance and give us a framework upon which

we can build musical applications.1

3.1 A Real-Time Beat Tracker

Beat tracking is the automatic determination of the dominant pulse in

music. The difficulty of the task is inferring a regular beat from a signal

in which the beat is implicit – the musical events in the music may often

occur on the beat, but they will also occur at other times and some beats

will be marked by no event.

In developing an automatic beat tracker for live performance, we

present ourselves with two further challenges. Firstly, we wish to detect

beats in real-time, and consequently we have no access to future infor-

mation. Therefore, we must develop a causal approach where past and

present information alone are used to inform predictions of future beat

locations. Secondly, in order to actually run in real-time the algorithm

must be computationally efficient.

In this section we present btrack∼ – a real-time beat tracking model.

The model draws on two existing systems – the tempo induction of the

Davies and Plumbley [2007] method and the dynamic programming ap-

proach of Ellis [2007].

3.1.1 Input Feature

The first stage of our algorithm is to compute an input feature from the

incoming audio signal. We choose as an input feature the complex spec-

tral difference onset detection function [Bello et al., 2004] as it has been

shown previously to be the strongest in a comparison of 172 different in-

put features [Gouyon et al., 2007]. This feature is large when signals are

unstable and small for steadier state signals. The onset of musical notes

1The work in sections 3.1 and 3.4 was completed collaboratively with Matthew E. P. Davies
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Figure 3.1: An example of a complex spectral difference onset detection function

are often marked by attack transients, which are short and unpredictable

segments of sound [Bello et al., 2004]. As a result, this function produces

peaks at likely note onset locations. The following is a description of the

calculation of this function.

We calculate the input feature with a temporal resolution of 11.6ms,

following both Davies and Plumbley [2007] and Gouyon et al. [2007]. Tak-

ing an input signal with a sampling frequency of 44.1kHz, we achieve this

by processing audio frames of 1024 samples in length with a 512 sample

hop size.

For the mth audio frame, we calculate a spectral frame Xk(m), where

k is the bin number, by first multiplying the frame by a hanning win-

dow and then performing a Fourier transform. We then calculate the

mth complex spectral difference onset detection function sample Γ(m) as

the Euclidean distance between the observed spectral frame Xk(m) and a

predicted spectral frame X̂k(m):

Γ(m) =
K∑

k=1

√{[
<(Xk(m))−<(X̂k(m))

]2
+
[
=(Xk(m))−=(X̂k(m))

]2}
(3.1)

where K = 1024, the number of samples in the audio frame. The predicted

spectral frame X̂k(m) is based upon the energy and expected phase values

derived from the previous spectral frame Xk(m − 1). See Bello et al.

[2004] for a full derivation. An example complex spectral difference onset

detection function can be seen in Figure 3.1.
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Figure 3.2: An example of an input feature and the corresponding cumulative
score

3.1.2 Phase Determination: Recursive Feature

The aim of our beat tracking technique is to causally decode the sequence

of beats from the input feature. The basis for this technique is a recursive

feature, C∗, called the cumulative score [Ellis, 2007], which is calculated

from the input feature, Γ(m). At a given point C∗(m), the cumulative

score represents the best possible score of all possible beat sequences end-

ing at the point m. It is a regular function with peaks at likely beat

locations. An example of a cumulative score calculated from an input

feature can be seen in Figure 3.2.

The cumulative score is calculated as a weighted sum of: 1) the current

input feature sample Γ(m) as defined in section 3.1.1; and 2) the beat

likelihood at the current input feature sample, Φ(m), which we turn to

now.

Specifically, to determine the beat likelihood at the current input fea-

ture sample, we examine the past values of the cumulative score over the

interval [m − 2τb, m − τb/2] where m is the current input feature sample

and τb is the beat period – the time between beats in detection function
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samples at the time of beat b. We firstly define a log-Gaussian transition

weighting that favours the time exactly τb samples in the past:

W1(v) = exp

(
−(η log(−v/τb))

2

2

)
(3.2)

where v = −2τb, ...,−τb/2, η is the ‘tightness’ of the transition weighting

and τb is the beat period or time between beats. We shall return to the

calculation of τb in section 3.1.4. We then calculate the beat likelihood at

the current sample, Φ(m), by choosing the maximum value of the cumula-

tive score over the period [m− 2τb, m− τb/2] after applying the transition

weighting W1:

Φ(m) = max
v

(W1(v)C∗(m + v)) (3.3)

where m is the current detection function sample and v = −2τb, ...,−τb/2.

This process is depicted in Figure 3.3.

Figure 3.3: Using a log-Gaussian transition weighting (solid line) over the past
of the cumulative score (dotted line) to determine the beat likelihood at the
current detection function sample, m. τb is the beat period in detection function
samples.

Finally, we calculate the current sample of the cumulative score,

C∗(m), using a weighted sum of the current detection function sample

Γ(m) and the beat likelihood at the current detection function sample,

Φ(m):

C∗(m) = (1− α)Γ(m) + αΦ(m) (3.4)

where α determines the weighting of the two components.

We choose the parameter settings α = 0.9 and η = 5. We will present

a detailed explanation of these choices in section 3.1.7.
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Figure 3.4: The generation of the cumulative score (solid line) into the future
(dotted line) from the point m0 for one beat period τb into the future. γb is the
most recently predicted beat.

The cumulative score C∗ is now updated with every new detection

function sample Γ(m), allowing calculation in real-time.

3.1.3 Phase Determination: Predicting Future Beats

The approach of Ellis [2007] is non-causal because, as described in Chapter

2, it first calculates the cumulative score for the entire signal – storing

the location of the best previous beat for each sample m – before finally

performing a backtrace from the final beat identified as the maximum value

in the final beat period of the cumulative score. In order to implement a

beat tracker in real-time, we must make predictions of future beat locations

without observing the entire signal.

In order to achieve this, our approach takes advantage of the fact that

the cumulative score C∗ is a recursive feature. This causes it to maintain

some periodic momentum even in the presence of silence. We make use

of this property by continuing to generate the cumulative score, C∗, into

the future. We do this at a fixed point, m0, after the most recent beat, γb,

has elapsed, m0 = γb + τ/2 and we generate this ‘future cumulative score’

– the dashed line in Figure 3.4 – for one beat period into the future.

To this one-beat window of the future cumulative score, we apply a

Gaussian weighting, W2, with µ = τb

2
and σ = τb

2
so that it is centred on

the most likely beat location (i.e. m0+τb/2), generating a beat expectation

function, Ψ:

Ψ(v) = Φ(m0 + v)W2(v) (3.5)
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Figure 3.5: a) The future of the cumulative score (solid line) and the Gaussian
weighting W2(v) (dotted line). b) The beat expectation function Ψ(v) – the
index of the maximum value of this function determines the location of our beat
prediction.

where v = 1, ..., τb specifies the future one-beat window, Φ is equivalent to

setting α = 1 in equation 3.4 and W2 is the Gaussian weighting defined

by:

W2(v) = exp

(
−(v − τb/2)2

2(τb/2)2

)
. (3.6)

The future cumulative score and Gaussian weighting W2 can be seen in

Figure 3.5 a). The resulting beat expectation function Ψ can be seen in

Figure 3.5 b).

Finally, we predict the next beat, γb+1, to be:

γb+1 = m0 + arg max
v

Ψ(v) (3.7)

where v = 1, ..., τb.
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3.1.4 Tempo Induction

In the approach presented by Ellis [2007] a global tempo estimate is used

for each audio signal. We are not able to observe the entire signal as we

are presenting a real-time algorithm. Furthermore, we wish to be able

to track beats in signals that vary in tempo. As a result, we incorporate

the tempo estimation stage of the Davies and Plumbley [2007] model to

estimate the value of τb, the beat period estimate at the bth beat γb.

At the bth beat, γb, we take the previous six seconds worth of samples

from the onset detection function Γ(m). This is a ‘snapshot’ of the recent

past of the audio signal long enough to determine the tempo from and

short enough to be relevant to the time at which the tempo is being

estimated.

The peaks in this function are preserved using an adaptive moving

mean threshold – a local average is subtracted from each sample and

negative values set to zero, resulting in a modified detection function Γ̃(m).

The auto-correlation of this function is then taken and passed through

a shift-invariant comb filterbank weighted by a tempo preference curve.

The output of this comb filterbank, R(l), has peaks at likely candidates

for the beat period. Initially, we select the beat period as the lag with

the maximum value in R(l) (see top of Figure 3.6). For a more detailed

description of the calculation of R(l), see Davies and Plumbley [2007].

It has been previously observed that humans may tap the tempo at

different metrical levels [McKinney et al., 2007]. Furthermore, previous

beat trackers have suffered from the problem of switching metrical levels

[Davies and Plumbley, 2007]. As a result, we restrict the range of possible

tempi to a single tempo octave from tmin = 80 beats per minute (bpm) to

tmax = 160 bpm. We map the output of the comb filterbank R(l) from the

lag domain to the tempo domain between tmin and tmax to give Rb(t) by:

Rb(t− tmin) = R(|60/(fr × t)|) (3.8)

where t = tmin, ..., tmax and fr is the temporal resolution of the onset

detection function in seconds, in this case fr = 0.01161 seconds. Plots of

both R(l) and Rb(t) can be seen in Figure 3.6.
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Figure 3.6: Top: The output of the comb filterbank R(l). Bottom: Rb(l) – the
result of mapping R(l) into the tempo domain.

While sharp tempo changes in music do occur, tempo in music is largely

a slowly changing process. As a result we place transition costs on possible

tempo changes to make sharp changes in tempo less likely. We achieve

this by making the decision on the current tempo tb dependent on the

previous tempo estimate tb−1.

We wish to favour changes in tempo – from the current tempo ti to a

new tempo tj – that are small so that the new tempo is close to the current

tempo. In order to achieve this, we use a transition matrix A(ti, tj) where

each column contains a Gaussian of fixed standard deviation σ:

A(ti, tj) =
1

σ
√

2π
exp

(
−(ti − tj)

2

2σ2

)
(3.9)

where ti, tj = 1, ..., (tmax − tmin) and σ = (tmax − tmin)/8 so that each

Gaussian is wide enough to capture small changes in tempo but narrow

enough to favour the hypothesis that tempo is a slowly changing process.

The resulting transition matrix can be seen in Figure 3.7.

At each step, we store the previous tempo likelihood ∆b−1. An example

can be seen in Figure 3.8. The stored tempo likelihood ∆b−1 is multiplied

by the transition matrix A and the maximum value from each column is

taken to create a tempo probability distribution θb:
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Figure 3.7: The transition matrix A(ti, tj).
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Figure 3.8: The stored tempo hypothesis probabilities from the previous itera-
tion ∆b−1.

θb(tj) = max
ti

(A(ti, tj)∆b−1(ti)) (3.10)

for tj = 1, ..., (tmax− tmin). An example of the resulting tempo probability

distribution θb – created using the transition matrix shown in Figure 3.7

and the example ∆b−1 displayed in Figure 3.8 – can be seen in Figure

3.9(b).

We then calculate the tempo likelihood for the current iteration, ∆b,

(see Figure 3.9(c)) by multiplying the current tempo domain comb filter-

bank output Rb (Figure 3.9(a)) by the tempo probability distribution θb

(Figure 3.9(b)):

∆b(tj) = Rb(tj)θb(tj). (3.11)
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Figure 3.9: a) The output of the comb filterbank Rb showing tempo candidates;
b) A tempo probability distribution θb; and c) The tempo likelihood for the
current iteration, ∆b, calculated by multiplying Rb and θb.

for tj = 1, ..., (tmax − tmin). Finally, to prevent ∆b approaching zero, we

normalise it to sum to unity. We then find the current tempo tb as the

index of the maximum value of ∆b:

tb = tmin + arg max
tj

(∆b(tj)). (3.12)

Finally, we convert the tempo (in bpm) tb to the beat period τb in

detection function samples by:
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Figure 3.10: a) The creation, for the purposes of a tempo initialisation, of an
artificial tempo likelihood for the previous beat ∆b−1 by setting all values to
zero except for a ‘1’ at the desired tempo of 140bpm. b) The resulting tempo
probability distribution after operations with the matrix. As can be seen, it is
biased around the new tempo.

τb =

∣∣∣∣∣ 60

fr × tb

∣∣∣∣∣ (3.13)

where fr is the resolution of the detection function, in our case 512/44100

= 0.01161 seconds.

3.1.5 Using Prior Knowledge

‘Count In’ Feature

We are attempting to design a real-time beat tracker for live performance.

In such a performance situation a useful piece of functionality would be

the ability to have some form of ‘count in’ – an initialisation of the first

beat and the tempo. This would allow musicians to indicate to the beat

tracker the initial state of any performance, avoiding the process of the

beat tracker taking several seconds to find the correct beat. We implement

such functionality as follows, updating parts of the model in three steps:

1. We described in section 3.1.4 how the previous tempo likelihood is
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used in the calculation of the new tempo. Therefore, to set a tempo

artificially for a count in, we change the state of the previous tempo

likelihood ∆b−1 so that when the tempo is next calculated it is biased

to the new tempo. We set every value in ∆b−1 to zero except for a

‘1’ in the bin indicating the desired tempo. Figure 3.10 shows ∆b−1

from such a tempo initialisation and the result of operations with

the matrix, resulting in a tempo probability distribution θb biased

around the new tempo.

2. As the initialisation is happening at the very first beat, we indicate

that the current detection function sample m is a beat. This means

that the next beat prediction will take place at m + τb/2.

3. Finally, the cumulative score should contain peaks at likely beat lo-

cations and so we must artificially create such a circumstance to

reflect the new tempo and beat phase. We therefore fill the cumula-

tive score C∗ with delta functions spaced at intervals of the desired

beat period. If the current sample is m, we will have delta functions

at [..., m− 2τ,m− τ,m] in such a way that they indicate that a beat

should occur at the present detection function sample m.

Fixed Tempo Version

It is possible that we will know in advance that the music we wish to

beat track in real-time will occupy a narrow tempo range, for example

120–130bpm. If this is the case, then it may make sense to instruct the

beat tracker not to search all other tempi as possible candidates.

In practice, we achieve this in a similar way to step 1 in the tempo

update for the ‘count in’ feature in section 3.1.5. We update ∆b−1 with

zeros except for a ‘1’ indicating the desired tempo. The difference to the

‘count in’ feature is that we do this for every tempo update, rather than

as a one off, thus permanently restricting the possible tempo estimates to

those around some given tempo.
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3.1.6 Evaluation

We evaluated our beat tracking model on an existing annotated database

[Hainsworth, 2004] comprised of 222 audio files each approximately 60

seconds in length. Each file is accompanied by a sequence of beat annota-

tions, recorded as beat times in seconds and created by a human listener

tapping in time to the piece. The genre breakdown of the database is as

follows: Rock and Pop (68), Dance (40), Jazz (40), Classical (30), Folk

(22) and Choral (22). We evaluated three versions of our model – one

with no initialisation (RT), one initialised with a ‘count in’ as described

in section 3.1.5 (RTcount) and one initialised with both a ‘count in’ and

restricted to a narrow tempo range around the main tempo of the song

according to section 3.1.5 (RTcount,fix).

We conducted the evaluation by comparing, for a given audio file, a

sequence of beat predictions in seconds γ1, ..., γB from the beat tracker to

a sequence of beat annotations at the metrical level λ given by aλ
1 , ..., a

λ
J ,

also in seconds. We assessed the performance of our technique using a

number of evaluation measures.

Evaluation Measures: AMLc

The AMLc (Allowed Metrical Levels, with Continuity required) evaluation

measure – developed by Hainsworth [2004] and Klapuri et al. [2006] –

requires that there be some continuity in the beats output by the beat

tracker. Firstly, each beat γb is considered as correct based upon three

conditions. Given the nearest annotation aλ
j (at the metrical level λ),

the inter-beat interval Iγ
b = γb − γb−1 and the inter-annotation interval

Iaλ

j = aλ
j − aλ

j−1:

1. The distance from the beat γb to the annotation aλ
j must be within

±ρ% of the inter-annotation interval Iaλ

j .

2. The distance from the previous beat γb−1 to the previous annotation

aλ
j−1 must be within ±ρ% of the previous inter-annotation interval

Iaλ

j−1.
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3. The inter-beat interval Iγ
b must be within ±ρ% of the inter-

annotation interval Iaλ

j .

where ρ = 17.5%. The AMLc measure calculates, for each metrical level,

the number of correct beats in each continuously correct segment Υλ
z where

Z is the total number of segments found. The accuracy score for the

metrical level λ is then calculated as the ratio of the longest continuously

correct segment to the number of annotated beats Jλ in the annotations:

AMLλ
c =

max(Υλ
z )

Jλ
× 100% (3.14)

The above score is calculated for several versions of the annotations at dif-

ferent metrical levels - the original annotations, the annotations at double

and half the tempo and the annotations on the off-beat (the π-phase error

described by Goto and Muraoka [1997]). Then the final score is taken as

the highest score of comparisons with all metrical levels:

AMLc = max
λ

AMLλ
c (3.15)

Evaluation Measures: AMLt

The AMLt (Allowed Metrical Levels, total number of correct beats) eval-

uation measure is a measure of the total number of correct beats, regard-

less of continuity. Also developed by Hainsworth [2004] and Klapuri et al.

[2006], AMLt uses the same three conditions for accepting beats as correct

as AMLc. However, the score for each metrical level λ is determined by

taking the ratio of the total number of correct beats to the number of

annotations, Jλ:

AMLλ
t =

∑Z
z=1(Υ

λ
z )

Jλ
× 100% (3.16)

We then take the final score to be the maximum score across all metrical

levels:

AMLt = max
λ

AMLλ
t (3.17)
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Evaluation Measures: LML

The evaluation measures AMLc and AMLt determine a beat to be correct

if it falls anywhere within a specified range of an annotation so that re-

gardless of the distance of the beat from the annotation it is considered

equally correct. This unfortunately takes no account of the accuracy of

beats in terms of localisation. Cemgil et al. [2001] have presented an evalu-

ation measure that penalises beat location with a Gaussian error function

– however it does not allow comparison at multiple metrical levels meaning

that relevant beats at a different metrical level may be unfairly punished.

We present here our own evaluation measure, LML (Localisation with

Allowed Metrical Levels), an extension of the Cemgil et al. [2001] measure,

taking into account both localisation of beats and annotations at multiple

metrical levels. When comparing each beat, γb, to each annotation, aλ
j at

metrical level λ, localisation is penalised using a Gaussian error function,

W :

W (x) = exp(−x2/2σ2
e) (3.18)

where x = γb − aλ
j and we use σe = 40ms (note that σe is fixed regardless

of tempo) following Cemgil et al. [2001]. The accuracy score is then given

by:

LMLλ =

∑Jλ

j=1 maxb(W (γb − aλ
j ))

(B + Jλ)/2
. (3.19)

As with AMLc and AMLt, we then choose the maximum score over all

metrical levels as the final result:

LML = max
λ

LMLλ (3.20)

Evaluation Measures: Information Gain

The use of tolerance windows to accept beats as either correct or otherwise

involves a somewhat arbitrary choice of the size of that tolerance window.

Responding to this, Davies et al. [2011] have introduced an ‘information

gain’ measure that does not rely on tolerance windows.
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For each annotation aj, all beats γb that fall inside a one beat window

centered on aj are considered. The timing error of each of these beats to

the annotation is then normalised relative to the one beat annotation win-

dow (from half way between annotations aj−1 and aj to half way between

aj and aj+1). This is performed for all beats, resulting in the error of the

sequence of beats, given the annotations. In order to deal with the case

of the under-detection of beats (where some annotations would have no

beat errors to consider) the error of the sequence of annotations according

to the beats is also calculated. Based upon this information, two beat

error distributions are calculated over the range [-0.5,0.5] of a normalised

beat period – one for the timing error of beats to annotations and one for

annotations to beats.

If we were to place beats at randomly assigned times in the signal,

we would expect little coherence in terms of a regular spacing. As a

result, we would expect the beat error distribution to be approximately

uniform – with errors evenly distributed. The information gain measure is

calculated by measuring the Kullback-Leibler (KL) divergence between the

observed beat error distribution and a uniform distribution. The resulting

measurement indicates how related the two distributions are – lower values

indicating that the observations are closer to the uniform distribution and

unrelated to the signal, higher values indicate that there is some degree

of coherence to the beat error distribution. In more simple terms we have

a measure of how much better than random the sequence of beats are.

The lowest KL divergence of the two distributions is taken as the final

information gain score. For a full derivation, see [Davies et al., 2011].

Comparison to Other Beat Tracking Models

We also compared our beat tracking technique to several others described

in Chapter 2. These were the approach of Scheirer [1998] (SC), both the

causal (KLc) and non-causal (KLnc) approaches of Klapuri et al. [2006], the

BeatRoot algorithm (BR) presented by Dixon [2006a] and the approach of

Ellis [2007] (EL).
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Beat Tracker AMLc AMLt LML Info. Gain

(%) (%) (%) (bits)

Non-Causal DP 70.5 79.1 66.6 1.91

KLnc 69.7 79.3 67.2 1.96

BR 52.3 73.1 63.0 1.56

EL 50.4 71.6 61.3 1.48

Causal KLc 65.7 76.5 65.3 1.88

SC 28.9 53.3 55.9 1.39

Proposed RT 66.0 74.9 63.7 1.73

RTcount 68.0 77.2 65.5 1.83

RTcount,fix 69.2 79.9 65.8 1.87

Human 57.3 87.0 63.2 1.69

Table 3.1: The results of our evaluation on 4 different evaluation measures.

We also compared our algorithm to an offline equivalent of our algo-

rithm developed by Davies and Plumbley (DP) and available to download

as a Sonic Visualiser plug-in2. Like our model, the DP model combines

the tempo estimation phase of the earlier two-state Davies and Plumb-

ley [2007] model and the dynamic programming approach of Ellis [2007].

However, the difference between the DP model and our approach, RT, is

that the DP model determines the beat times according to the backtrace

approach of Ellis [2007] rather than our predictive approach, causing the

DP model to be a non-causal algorithm.

Finally, we included the results of a human annotator (in this case Dr.

Matthew Davies) tapping along to each piece of music in real-time.

3.1.7 Results

The results of the evaluation on the 222 files in the database can be seen

in Table 3.1. As can be seen, our technique with no initialisation (RT)

outperforms the Scheirer model (SC) and is comparable to the causal

Klapuri et al. [2006] (KLc) technique. It also outperforms two of the non-

causal models on all evaluation measures – Dixon’s BeatRoot (BR) model

2http://isophonics.net/QMVampPlugins
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Beat Implementation Time Taken

Tracker Language For Evaluation

KLc Matlab & C++ 2224 seconds

SC C++ 1484 seconds

RT C++ 429 seconds

Table 3.2: The time taken for each of the three causal beat tracking models to
complete the evaluation. As can be seen, our model (RT) was the quickest.

and the Ellis (EL) model.

The initialisation of our model with a ‘count in’ (RTcount) results in a

small increase in performance followed by another increase when the fixed

tempo constraint is included too (RTcount,fix).

Efficiency

We are building a real-time system and so computation time is limited.

This means that the computational efficiency of the algorithms is of impor-

tance when considering the quality of a real-time algorithm. As a result,

we recorded the computation time of the causal models (KLc, SC and

RT) by examining how long they took to process the 222 audio files in the

database used for the evaluation (around 200 minutes worth of audio)3.

Our model (RT) took the least time (429 seconds) compared to the causal

Klapuri (KLc) model (2224 seconds) and the Scheirer (SC) model (1484

seconds). Our model and the Scheirer model were implemented in C++

while the Klapuri model was a mixture of Matlab and C++. These results

can be seen in Table 3.2.

Parameterisation

We chose the values of two of the parameters of our model – η, the ‘tight-

ness’ of weighting W1, and α, the mixing component used in the calculation

of the cumulative score C∗ – by evaluating various settings on a database

of 60 audio files (a different database to that used in the evaluation and

the second database used in Chapter 4). We examined values of η between

3We tested the algorithms on a 2 GHz Intel Mac running OS X 10.5 with 1 GB of RAM
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Figure 3.11: Beat tracking accuracy surfaces for different parameter settings of
α and η. All evaluation measures indicate that the ideal parameter settings are
α = 0.9 and η = 5. The parameter α appears to have a much greater effect on
performance than η.

1.0 and 10.0 in steps of 1.0 and values of α between 0.1 and 1.0 in steps of

0.1. We examined the results of all 100 combinations of these settings. We

chose our parameter settings according to the LML measure as it takes

into account localisation as well as just the number of correct beats and

the localisation of beats is likely to be affected by these parameter settings.

We have plotted the beat tracking accuracy surfaces in Figure 3.11.

The data shows that the effect of varying α is greater than varying η. We

found that for this database the optimal settings for the parameters were

α = 0.9 and η = 5.

Our real-time beat tracker was implemented in C++ as a Max/MSP

external called ‘btrack∼’.
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3.2 Chroma Analysis

We have seen the presentation of a real-time beat tracking model in section

3.1. However, in order to inform real-time applications we also wish to

extract information about the harmonic developments in a performance.

Therefore, in order to represent harmonic information in audio signals, in

this section we outline a real-time chroma analysis technique.

A chroma vector is a 12× 1 vector with values representing the energy

present in each of the 12 semitone pitch classes found in western music.

Others have presented techniques to calculate similar features in the past.

Some [Bello and Pickens, 2005; Harte and Sandler, 2005; Lee and Slaney,

2008] have made use of the constant-Q transform [Brown, 1991]. Others

[Fujishima, 1999; Sheh and Ellis, 2003] have calculated the chroma vector

directly from the discrete Fourier transform (DFT) of the input signal by

mapping the energy in spectral bins to one of a number of pitch classes.

Many of the techniques that calculate chroma vectors directly from the

DFT tend to map the energy from all frequency bins in a range around

a given pitch class frequency to a pitch class in the chroma vector. A

disadvantage of this is that while pitched notes produce harmonics at a

single frequency, energy from a number of bins – potentially containing

unwanted noise – is included in the chroma vector. As an alternative to

these approaches, we present here a technique based upon identifying only

the energy within certain harmonics within a given range.

When considering the range of frequencies to examine, we must take

into account that lower frequencies require greater frequency resolution

to differentiate between semi-tone pitch classes. Furthermore, larger fre-

quency resolutions mean larger frame sizes and in turn larger (and more

time consuming) spectral transforms. As a result there is a trade-off be-

tween the lowest examinable frequency and the complexity of the model.

We choose to examine two octaves of the spectrum, from fC3 = 130.81Hz

to fC5 = 523.25Hz.

We can reduce the complexity of the transform needed by reducing

the resolution of the signal. Therefore, we first downsample the audio

to 11025Hz, taking audio frames of 8192 audio samples (0.74s) in length.
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This allows us to comfortably achieve quarter-tone frequency resolution

at 130.81Hz. We use a hop size of 1024 samples to achieve around 10

estimates per second.

Each audio frame is multiplied by a Hamming window to reduce the

‘edge’ effects resulting from finite frame sizes [Harris, 1978] before the

magnitude spectrum, X(k), is calculated using the discrete Fourier trans-

form (DFT). We then take the square root of the magnitude spectrum in

order to reduce the amplitude difference between harmonic peaks.

Next, the fundamental frequencies of the notes in the two octaves we

consider, starting from fC3 = 130.81Hz are calculated by:

f(n) = fC3 · 2(n/12) (3.21)

for n = 0, ..., P − 1 where P = 24, the number of notes in the two octaves

we are examining.

For each fundamental frequency f(n) we consider two harmonics –

the fundamental frequency itself and the second harmonic which is an

octave above the fundamental at a frequency of around 2× f(n). In real

instruments, there tends to be some degree of inharmonicity and so the

frequency of harmonics will deviate slightly from exact integer multiples

of the fundamental.

Some approaches deal with this uncertainty by summing the energy in

a number of frequency bins around where the harmonic is expected to be.

A key part of our approach is that rather than summing all the energy

in a spectral range (a ‘bin mapping’ technique) which can add unwanted

noise to our chroma vector, we instead find the maximum value in each

range. Should a harmonic tone be present in this range, the maximum

value will likely identify the harmonic. If one is not present, we expect

the maximum value to correspond to a relatively low noise value. Figure

3.12 compares our approach to that of a ‘bin mapping’ approach.

We first calculate energy values for each note in the two octaves we are

considering:

S(n) =
H∑

h=1

(
max

k0≤k≤k1

X(k)
)(

1

h

)
(3.22)
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Figure 3.12: a) The ‘bin mapping’ technique: energy in spectral bins is mapped
to a certain pitch class. b) Our technique: the maximum value in a given range
is used as the amplitude value for the harmonic contributing to that pitch class.

where n = 0, ..., P − 1 where P = 24, h is the number of the harmonic,

H ≥ 1 and is the number harmonics under consideration for each note (we

investigate values of H = 2 and 3), k0 = k′(n,h)−(r ·h), k1 = k′(n,h)+(r ·h),

where the value r, for which we choose 2, is the number of bins to search

either side of a frequency for a maximum value and

k′(n,h) = round

(
f(n) · h
(fs/L)

)
(3.23)

where fs is the sampling frequency and L is the frame size, in our case

8192 samples. As r is multiplied by the number of the harmonic h, a wider

search is performed for higher harmonics than lower ones. Finally, the 12

values of the chroma vector, C, are calculated by summing bins of S from

the same pitch class in each octave:

C(n) =
D−1∑
d=0

S(n + (12 · d)) (3.24)

where d is the number of the octave in question and D = 2, the number of

octaves under consideration. An example of a chroma vector can be seen
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in Figure 3.13. This chroma analysis technique was implemented in C++

as a Max/MSP external – ‘chroma∼’ – for real-time use.

C C# D D# E F F# G G# A A# B
0

0.2

0.4

0.6

0.8

1

Pitch Class

Figure 3.13: An example of a chroma vector from a C] minor chord. Strong
energy can be seen for the C], E and G] pitch classes and a residual noise floor
in the rest.

3.3 Chord Recognition

A chord is the simultaneous sounding of two or more musical notes. The

interval relationships between these notes determine the type of chord.

The process of chord recognition is one of assigning a label to a section

of audio. In this section we build upon our chroma vector analysis tech-

nique presented in section 3.2 by presenting a technique to classify a given

chroma vector into one of a number of chord types.

Cho et al. [2010] have identified that offline (i.e. non real-time) chord

recognition techniques can use some pre-filtering of the chroma vectors

over time to dampen the effect of transients and noise. Furthermore, post-

filtering of annotated chord labels can also be used to deal with spurious

chord labels that only last for a short time. Such processing is not possible

in a real-time context as we must attach a chord label to an audio frame

with no information on future chroma vectors or chord labels. As a result,

the approach presented here focuses on developing a chord recognition

technique that can accurately identify chords from single frames without

using pre and post-filtering techniques.
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A shortfall of some previous approaches to chord recognition is the

limited number of chords classified. Some systems [Bello and Pickens,

2005; Papadopoulos and Peeters, 2007] only consider major and minor

triads, leading to problems when certain chords are encountered. For

example, a C Major 7 chord (the notes C, E, G and B) contains both a

C Major triad (C, E and G) and an E minor triad (E, G and B) and so a

model only modelling major and minor triads would be too simplistic in

this case.

We present a technique capable of classifying chroma vectors as one

of 108 chords – specifically the 12 variations of major, minor, diminished,

augmented, suspended 2nd, suspended 4th, major 7th, minor 7th and

dominant 7th chords. These are more chords than have been considered

by the majority of approaches in the literature. We believe that this is

necessary if chord recognition on real-world signals is to be achieved.

3.3.1 Chroma Vector Classification

Following much of the literature, we approach chord recognition as a prob-

lem of classifying chroma vectors into a number of classes. Many existing

approaches use template matching techniques to compare how similar a

chroma vector is to a set of chord profiles. These chord profiles are usually

in the form of ‘bit masks’. A bit mask is a 12 x 1 vector containing a 1

where a note is present and a 0 elsewhere, with the bits representing the

presence of notes from C to B in semi-tone steps. A C Major chord would

be represented as [1,0,0,0,1,0,0,1,0,0,0,0].

Most existing template matching approaches either i) choose the bit

mask with the minimum Euclidean distance to the chroma vector [Fu-

jishima, 1999] or ii) find the bit mask that maximises the dot product

with the chroma vector [Fujishima, 1999; Cremer and Derboven, 2004;

Harte and Sandler, 2005]. For the latter case a weighting can be used to

distinguish between chords containing different numbers of notes.

When using the above approaches with bit masks some problems can

be encountered. A bit mask representation implies that the energy in a

chroma vector bin for a note that is present will be both close to 1 and
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similar in value to that of other sounded notes. In reality, the energy

in bins for sounded notes is variable - as can be seen in the example

chroma vector in Figure 3.13. Furthermore, the relative amplitude of

notes can vary, making the pre-calculation of more ‘realistic’ chord profiles

problematic.

When using bit masks, an approach based upon the Euclidean distance

will yield best results for a chroma vector that has values of exactly 1 for

all notes present and 0 otherwise – but our experience has shown that

this is unlikely to be the case. Using a dot product we have a problem

when classifying between chords that contain different numbers of notes

as chords containing more notes will inherently produce larger values.

Others using such techniques [Fujishima, 1999] have employed a weighting

to differentiate between chords that contain three notes and those that

contain four or more. As the energy of notes represented in the chroma

is variable, the setting of such a weighting is difficult to decide on. Based

upon this we wish to develop a technique that avoids the problem of the

variable amplitude of notes in chords.

3.3.2 Minimising Residual Energy

In order to solve this problem, we classify chords by masking out the

notes that are hypothesised to be in the chord by each bit mask. We

then choose the template that minimises the residual energy. We achieve

this by finding the minimal dot product between the chroma vector and

a ‘complimentary’ bit mask:

δi =

√∑P−1
n=0 T̄i(n)(C(n))2

P −Ni

(3.25)

where C is the chroma vector, T̄i(n) = 1 − Ti(n) where Ti is the ith

bit mask, Ni is the number of notes in the ith bit mask and P = 12,

the number of notes in an octave. We divide by (P − Ni) in order to

prevent chords with fewer notes having a natural advantage over others.

This is in effect a ‘weighting’ between chords – however we are setting a

weighting based upon the energy of the noise floor which we hypothesise

will be more consistent than weighting between the energy of sounded
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notes. Our reasoning for this is that noise, by its very nature, should not

appear disproportionately within certain pitch classes and so pitch classes

where there is not a sounded note should have similar levels of energy. We

choose the chord that minimises δi.

3.3.3 Chromagram-Unresolvable Chords

Certain chords, when represented using a chromagram, are indistinguish-

able from other chords as they contain exactly the same notes. From the

set of chords that we are attempting to classify, this happens between some

suspended 2nd and suspended 4th chords and between augmented chords.

When represented via a chroma vector, our algorithm has no way of distin-

guishing between these chords and so we accept as correct the equivalent

chord labels. For example, we accept as equivalent C augmented 5th, E

augmented 5th and G] augmented 5th chords as they all contain the same

three notes (C, E and G]). An example within suspended chords is that

Csus2 contains the same notes as Gsus4 (C, D and G).

Each augmented chord has 2 possible equivalents (resulting in 4 aug-

mented chords rather than 12) and each suspended 2nd chord has an equiv-

alent suspended 4th chord and vice versa (12 sus2/sus4 chords rather than

24). This means that 20 of the chords we are classifying are equivalent

to others. This reduces the number of unique chords we are considering

slightly from 108 to 88.

3.3.4 Evaluation

We evaluated our chord recognition technique through assessing its ability

to classify individual audio frames from recordings of guitars. We created

a test set of real world examples of 180 chords played on two different

guitars and extracted 4 audio frames randomly from the recording of each

chord. Each frame was 8192 samples in size and the audio was at a

sampling frequency of 11025Hz. The result was 1440 audio frames with

accompanying labels totalling over 17 minutes of audio. For each chord

type (major, minor, etc.) there was at least a whole octave in the data

set, with some types having 2 octaves. This evaluation assesses the ability
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for H = 2

Chord Type R(%) RQ(%) RQI(%)

Major/Minor 100 97.1 86.2

Diminished 100 100 100

Augmented 73.6 73.6 73.6

Sus2 / Sus4 100 99.2 97.4

Major 7 99.3 99.3 99.3

Minor 7 94.4 94.4 94.4

Dominant 7 100 100 100

Total (Over Examples) 96.7 95.8 92.4

for H = 3

Chord Type R(%) RQ(%) RQI(%)

Major/Minor 78.6 77.1 76.6

Diminished 95.8 95.8 95.8

Augmented 88.9 88.9 88.9

Sus2 / Sus4 100 99.7 98.7

Major 7 99.3 99.3 99.3

Minor 7 98.6 98.6 98.6

Dominant 7 100 95.8 95.8

Total (Over Examples) 92.7 91.8 91.4

Table 3.3: The results of evaluating our chord recognition technique on the
database. We present results for two different values of H, the number of har-
monics in the chromagram calculation technique. Results are given for correct
root note (R), correct root note and chord quality (RQ) and correct root note,
quality and other intervals (RQI).

of our technique to identify chords in single polyphonic instruments and

so our evaluation and results will differ from more generic evaluations on

large databases of commercial recordings such as those who have evaluated

on the collected Beatles recordings [Mauch and Dixon, 2008; Oudre et al.,

2009].

We evaluated our model using values of H – the number of harmonics to

consider for each note – of 2 and 3. The label of each audio frame consists

of the root note of the chord, the quality (major, minor, diminished, etc.)
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and any other intervals present in the chord (e.g. minor 7th). We recorded

the performance of our technique at all three levels.

The results of the evaluation can be seen in Table 3.3. As can be seen

from the results, our technique is able to classify most chord types with

high accuracy. While some chords types, such as augmented chords, show

better performance with H = 3, the technique performs most reliably

across chord types when H = 2. In particular, for H = 3 many more

major and minor chords are misclassified than for H = 2. Performance is

also higher overall for 2 harmonics and so we take it to be the best choice

for our model, given the dataset.

In the table of results for which H = 2, the score for major and minor

chords is lower when considering all intervals compared to the other two

levels as many major and minor chords were incorrectly classified as major

7th and minor 7th chords. The reason for this is that the third harmonic

of the major or minor 3rd note in the chord causes energy to be brought

into the chroma vector in the pitch class that is necessary to make a major

or minor chord a 7th chord. For similar reasons the incorrectly classified

augmented chords were all misclassified as major chords.

Comparison To Other Techniques

We also compared our technique to the work of others. We compared

against two other chroma calculation techniques – the technique used by

Bello and Pickens [2005] (an adaptation of the constant-Q based technique

presented by Harte and Sandler [2005]) which we refer to as CQ, and

another technique largely related to the techniques used in [Fujishima,

1999; Sheh and Ellis, 2003] where spectral bins are mapped to chroma

bins. We refer to this latter technique, based upon ‘bin mapping’, as BM.

We also compared our chord classification technique to two others.

The first was a nearest neighbour classifier (NN) and a weighted sum

(WS) technique. We use the shorthand SA (from Stark chromA) for our

chroma calculation technique and SD (from Stark chorD) for our chord

classification technique.

The results of this comparison can be seen in Table 3.4. Results are
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Chord Classifier Chroma R(%) RQ(%) RQI(%)

BM 79.5 74.5 68.4

WS CQ 73.9 68.8 64.7

SA 87.0 83.8 76.5

BM 92.5 88.8 85.4

NN CQ 81.2 77.6 73.3

SA 96.8 95.8 94.6

BM 92.4 89.7 80.1

SD CQ 84.9 80.1 67.2

SA 96.7 95.8 92.4

Table 3.4: A comparison of the different combinations of three chroma calcula-
tion techniques and three chord classification techniques. The chroma analysis
techniques are a ‘bin mapping’ technique (BM), a constant-Q based approach
(CQ) and our approach (SA). The chord classification techniques are a weighted
sum approach (WS), a nearest neighbour algorithm (NN) and our approach
(SD). We have shown the results for three levels - the correct root note (R),
the correct root note and chord quality (RQ) and the correct root note, chord
quality and other intervals (RQI).

given for just the correct root note, the correct root note and chord quality

and for the correct root note, chord quality and other intervals. The best

combination at all three levels is of our chroma analysis technique (SA)

combined with the nearest neighbour classifier (NN). Our chord classifi-

cation technique (SD) combined with our chroma analysis technique (SA)

is slightly behind this best score but comparable to it at all three levels.

Our chroma analysis (SA) technique yields the strongest result for each

classifier.

Efficiency

We also analysed the efficiency of both the three chroma analysis tech-

niques and the three chord classification techniques. We analysed how

long it took to process all the examples in the database used for the eval-

uation. All techniques were implemented in Matlab. The results can be

seen in Table 3.5. As can be seen, our chroma analysis technique is faster

than the other two approaches, calculating chroma vectors for all 1440
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Chroma Time Taken

Technique For Evaluation

BM 12.9 seconds

CQ 15.1 seconds

SA 6.5 seconds

Chord Time Taken

Classifier For Evaluation

WS 14.2 seconds

NN 8.3 seconds

SD 5.1 seconds

Table 3.5: The time taken for the chroma analysis techniques (top) and the
chord classifiers (bottom) to complete the evaluation of all 1440 examples. The
chroma analysis techniques are our approach (SA), a constant-Q based approach
(CQ) and a ‘bin mapping’ technique (BM). The chord classification techniques
are our approach (SD), a nearest neighbour algorithm (NN) and a weighted
sum approach (WS). All techniques were implemented in Matlab and tested on
a 2 GHz Intel MacBook running OS X 10.5 with 1 GB of RAM.

examples in 6.5 seconds.

Our chord classification technique is also faster than the other two

techniques, classifying chroma vectors for all 1440 examples in 5 seconds.

This contrasts with the 8.3 seconds taken by the nearest neighbour (NN)

technique for which we achieve comparable scores.

Our real-time chord recognition technique was implemented in C++

as a Max/MSP external called ‘chorddetect∼’.

3.4 Beat-Synchronous Analysis

For music with a strong beat, it is desirable to create a representation

whereby harmonic sequences can be represented in the same way regard-

less of changes in tempo. We also wish to calculate this representation

in real-time. As a result, we present here three techniques for real-time

beat-synchronous analysis by combining the real-time beat tracking sys-

tem presented in section 3.1 with our harmonic analysis techniques – the
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chroma analysis technique presented in section 3.2 and our chord recog-

nition technique from section 3.3. In addition to these we also present

a beat-synchronous spectrogram – where a single magnitude spectrum is

calculated for each inter-beat interval.

3.4.1 A Model for Beat-Synchronous Analysis

In creating a beat-synchronous representation, we wish to calculate one

feature representation (a symbol or vector) per inter-beat interval, the

time between beats. We define L to be the length of each inter-beat

interval in audio samples. This is calculated using the time between beats

in seconds, and the sampling frequency fs, with L = (γb − γb−1) · fs.

Each inter-beat interval will contain a number of audio frames, Q =

b L
N
c, where N is the length of each audio frame in audio samples. In

order to obtain a beat-synchronous representation, we wish to process

these audio frames so that we result in a single harmonic representation

per inter-beat interval of length L.

To achieve this, time domain audio must be converted into the fre-

quency domain via a spectral transform – and this resulting spectral trans-

form used to calculate some form of harmonic representation. Depending

upon whether the spectral transforms and the calculation of harmonic rep-

resentations are carried out together on each audio frame, together on the

larger inter-beat interval of length L or separately, we can identify three

methods for calculating beat-synchronous sequences in real-time. We now

discuss each, and their merits, in turn.

Method 1

The first method accumulates all the audio from the Q audio frames within

an inter-beat interval into a larger buffer. A spectral transform (e.g. the

FFT) is then performed on this larger buffer, followed by a transformation

to some harmonic representation (such as a chroma vector). This process

can be seen in the top row of Figure 3.14.

A first problem with this method is that the amount of audio that

it is necessary to accumulate – and therefore the length of signal upon
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Figure 3.14: Three different methods for beat-synchronous harmonic analysis.
‘Rep.’ stands for ‘Representation’.

which we will perform the spectral transform – varies from beat to beat

according to the tempo.

Furthermore, by performing a spectral transform on a larger buffer

of accumulated audio frames, method 1 is also more computationally de-

manding than performing a spectral transform on each individual frame.

We can demonstrate this as follows.

Assuming the length of each audio frame N is a power of 2, computing

the Fast Fourier Transform (FFT) of a single longer segment of length N

requires more calculations than calculating Q FFTs of length N/Q. Given

that the complexity of the FFT is O(N log(N)), this is demonstrated by:

O(N log(N)) > O(Q · N

Q
log(

N

Q
)) (3.26)

for Q = 2d and 1 ≤ d < r for N = 2r. This reduces to:

O(N log(N)) > O(N log(
N

Q
)). (3.27)

In addition to this, all processing for method 1 is carried out in a sin-

gle step, rather than being distributed across time. A possible benefit

of method 1, however, is that the larger spectral transform would allow

greater frequency resolution for analysis purposes.
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Method 2

The second method for calculating beat-synchonous analysis performs a

spectral transform on each frame of length N before accumulating the re-

sults of these spectral transforms to represent the entire inter-beat interval.

Finally, a transformation to some harmonic representation is performed

on the accumulated spectral frame. This approach (displayed in the mid-

dle row of Figure 3.14) distributes the computation of spectral transforms

across smaller frames and, as was shown during the explanation of method

1, is more efficient than computing a single spectral transform on a larger

buffer of multiple audio frames.

Another benefit is that by only computing a single harmonic repre-

sentation, processor usage is minimised. However, it is possible that our

harmonic analysis algorithm may benefit from the accumulation of multi-

ple harmonic representations.

Method 3

The third method calculates a spectral transform and then a harmonic

representation for each audio frame of length N . The harmonic repre-

sentations are then accumulated to arrive at the single beat-synchronous

harmonic feature vector. The difference between methods 2 and 3 is that

method 2 uses temporal smoothing of the results of the spectral transforms

while method 3 uses temporal smoothing of the harmonic representation.

It is also possible, if the harmonic analysis merely involves a summation

of spectral bins, that methods 2 and 3 could produce identical results.

However, we re-iterate that as method 2 only computes a single harmonic

representation from an accumulated spectral frame, it is more efficient

than method 3.

3.4.2 Frame Overlap

In order to calculate harmonic representations with sufficient frequency

resolution for analysis purposes, it may be necessary to use a relatively

large audio frame size – perhaps over 0.25 seconds long – which can result

in having very few frames per beat (1 or 2). As a solution we can use a
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small hop size (e.g. around 0.1 seconds) and have a number of overlapping

frames. This does, however, present us with a problem as at beat loca-

tions we may start to include audio from the previous inter-beat interval

– blurring the concept of the beat-synchronous approach. As a result, we

suggest clearing the audio buffer at each beat after the analysis by replac-

ing it with zeros so that no audio from the previous inter-beat interval is

considered in the current inter-beat interval.

We now present techniques for calculating a beat-synchronous spectro-

gram, chromagram and chord sequence.

3.4.3 Beat-Synchronous Spectrogram

By producing a single magnitude spectrum for each inter-beat interval,

we can calculate a beat-synchronous spectrogram. To achieve this, we

calculate each spectral frame f using the Fourier transform:

Xf (k) =
N−1∑
n=0

x(n)e−j2πkn/N (3.28)

for 0 ≤ k < N , where x(n) are the samples of the audio frame and N

is the frame size. Then we calculate the Fourier transform for the beat

segment, b, by:

Xb(k) =
F−1∑
f=0

|Xf (k)| (3.29)

for 0 ≤ k < N , where F is the number of frames within the inter-beat

interval [γb−1, γb]. For method 1, F = 1 and for methods 2 and 3 F > 1.

3.4.4 Beat-Synchronous Chromagram

We calculate a beat-synchronous chromagram, Φb(i), using the technique

presented in section 3.2, as follows:

Φb(i) =
H−1∑
h=0

Φh(i) (3.30)

where i is the chroma bin index, i = 0, 1, ..., I − 1 where I = 12 and Φh

is the hth chromagram calculated from H spectral frames. For methods 1
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Figure 3.15: An beat-synchronous chroma vector sequence

and 2, H = 1, while H > 1 for method 3. An example beat-synchronous

chroma vector sequence can be seen in Figure 3.15

3.4.5 Beat-Synchronous Chord Analysis

We implement a beat-synchronous chordal analysis by classifying the beat-

synchronous chromagram presented in section 3.4.4 using the chord recog-

nition technique presented in section 3.3.

3.5 Summary

In this chapter we have presented methods for extracting information from

a musical signal in real-time. These information signals provide a funda-

mental layer upon which interactive applications can be built.

Specifically we have presented a real-time beat tracker that is com-

putationally efficient compared to other approaches while showing robust

performance. We have presented chroma analysis and chord recognition

techniques that show comparable performance to other state of the art

approaches while taking a fraction of the processing time. Finally, we

have shown that we can combine beat tracking and harmonic analysis to

provide real-time sequences of harmonic vectors segmented by the beat.

All the analysis techniques detailed in this chapter were implemented
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in C++ as Max/MSP externals which are publicly available4.

4http://www.eecs.qmul.ac.uk/∼adams/software.html



Chapter 4

Investigating Methods For

Improving Beat Tracking

We have presented, in Chapter 3, several algorithms for extracting har-

monic and temporal information, in real-time, from musical performances.

While none of our analysis algorithms are perfect, informal use of our algo-

rithms in real-time indicates that errors in real-time beat tracking produce

more noticeable and unpalatable errors. Furthermore, in the case of beat-

synchronous analysis, the accurate segmentation of harmonic information

by the beat relies upon accurate beat tracking. In this sense, beat tracking

errors have the potential to propagate to other analysis modules.

As a result we turn in this chapter to a deeper study of beat tracking

systems in order to investigate methods to improve beat tracking that can

be applied to our real-time model.

Specifically, we describe the results of a modular evaluation of five state

of the art beat tracking systems – comparing and contrasting their different

input features and tracking models. While others have conducted evalu-

ations of beat tracking models [McKinney et al., 2007], we consider their

constituent parts separately, examining the effect of varying them. Based

upon this, we draw some conclusions about aspects of the beat tracking

systems such as their input features and parameterisation, returning to

our real-time beat tracker to examine ways to improve performance based

upon these conclusions. It should be noted that we are not presenting

an implemented improvement to our model – rather we present a detailed

93
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investigation into methods for doing so in future1.

4.1 Modular Components

In this chapter we study five beat tracking models which between them

use four different input features. Here we provide a brief summary of the

nature of each modular component. For more detailed explanations, see

the relevant publication (referenced in each description).

4.1.1 Input Features

The four input features used in the modular evaluation are all calculated

from audio signals sampled at 44.1kHz. For completeness we include infor-

mation on the frame sizes, hop sizes and resulting input feature resolutions

used as detailed in the original publications.

Bandwise Accent Signals (BAS)

Introduced by Klapuri et al. [2006], Bandwise Accent Signals are calcu-

lated from 1024 sample frames with a 512 sample hop size. The Fourier

transform of these frames is taken and used to calculate power envelopes

at 36 sub-bands on a critical-band scale. Each sub-band is upsampled by

a factor of two, smoothed and half-wave rectified. A weighted average of

each band and its first order differential is taken. Finally, the 36 bands are

summed to create a four channel input feature with a resolution of 5.8ms.

Spectral Flux (SFX)

Dixon [2006b] has introduced the Spectral Flux input feature, calculated

from audio frames of 2048 samples with a 512 sample hop size – corre-

sponding to a resolution of 11.6ms. The Fourier transform of each frame is

taken, which is in turn used to calculated the magnitude spectrum. Each

input feature sample is then calculated as the sum of the positive dif-

ferences in magnitude for each frequency bin of the magnitude spectrum

1This chapter is based upon work completed collaboratively with Matthew E. P. Davies
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compared to the corresponding bin in the previous frame2.

Mel Auditory Feature (MAF)

The Mel Auditory Feature, introduced by Ellis [2007], is calculated by first

re-sampling the input audio to 8kHz. The Fourier transform is taken from

256 sample frames with a 32 sample hop size, corresponding to a resolution

of 4ms. The resulting frequency domain representations are converted to

an approximate “auditory” representation using a Mel-frequency spaced

40 band grouping. The first order difference is taken and then the result is

half wave rectified. Finally, the result is summed across frequency bands

and then smoothed to create the final input feature.

Complex Spectral Difference (CSD)

The Complex Spectral Difference [Bello et al., 2004] is calculated from 1024

sample frames with a 512 sample hop size. This results in a resolution of

11.6ms. The input feature is large if there is a large change in magnitude

or a deviation from expected phase values. Given that signals tend to be

less stable during the onset of musical notes, we expect to see larger values

at those locations.

4.1.2 Tracking Models

We now summarise the five tracking models used in the modular evalua-

tion.

Klapuri et. al. (KL)

The Klapuri et al. [2006] tracking model takes as an input feature the

Bandwise Accent Signals (BAS). This four-channel feature is passed

through a bank of comb filter resonators. A probabalistic framework based

upon a hidden Markov model is then used to track beats at three metri-

cal levels. Specifically these are the tatum, the fastest metrical level, the

2We re-implemented the Spectral Flux input feature according to Dixon [2006b], using the
stated 512 sample hop size rather than 441 in the paper as this was the resolution accepted
by the software implementation of the corresponding tracking model.
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tactus, the level at which humans are most likely to tap their foot and the

measure level, indicating the first beat of each bar.

BeatRoot (BR)

Dixon [2006a] presented BeatRoot, which takes the Spectral Flux (SFX)

feature as an input feature. Onset times are extracted through peak pick-

ing on the input feature before inter-onset interval (IOI) times of similar

lengths are clustered together. Based upon the number of IOIs in each

cluster and the integer relationships between the lengths of the IOIs in

the clusters, a number of tempo hypotheses are calculated. Then, multi-

ple beat tracking agents initialised with different tempo hypotheses and

phases are passed through an evaluation function which assigns a rating

for each agent based upon how evenly its predicted beat times are spread,

how many of them coincide with onsets and the salience of those onsets.

The beat times of the agent with the highest score are chosen as the output

of the algorithm.

Ellis (EL)

The Ellis [2007] tracking model attempts to find beat locations from the

Mel Auditory Feature (MAF). Using a method based upon dynamic pro-

gramming, a recursive function is calculated which for each sample point

indicates the best possible score for all beat sequences ending at that

point. After this function has been calculated, beat times are recovered

by performing a ‘backtrace’ step.

Davies and Plumbley (DP)

The Davies and Plumbley model is an adaptation of the Ellis [2007]. Based

on the Complex Spectral Difference (CSD) input feature, it retains the re-

cursive feature and backtrace of the Ellis model but replaces the tempo

estimation phase with one similar to that of a previous Davies and Plumb-

ley approach [Davies and Plumbley, 2007]. The algorithm is available as
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a Sonic Visualiser plug-in3.

BTrack (RT)

The BTrack model is our real-time approach, presented in Chapter 3, with

no count in or tempo initialisation.

4.1.3 Summary of Modular Components

In Table 4.1 we present a summary of the four input features, detailing

their resolution, number of channels and the tracking models that were

designed to use them.

Input Feature Resolution # Channels Tracking Model(s)

BAS 5.8ms 4 KL

SFX 11.6ms 1 BR

MAF 4ms 1 EL

CSD 11.6ms 1 DP & RT

Table 4.1: A summary of the four input features, their resolution, number of
channels and the tracking models that were designed to use them.

4.2 A Modular Evaluation: Method

In order to investigate ways to improve beat tracking, we now present

an evaluation that considers their input features and tracking models as

separate modular components. By varying the input features for a given

tracking model (and conversely, the tracking model for a given input fea-

ture) our objective is to identify ways to improve beat tracking, and to

apply these to our real-time beat tracker.

Splitting five beat tracking models into their input feature and track-

ing model, we conduct a modular evaluation of the resulting four input

features and five tracking models.

Reference to Table 4.1 shows that there is variation in the temporal

resolution and number of channels of the input features. The resolution

3http://isophonics.net/QMVampPlugins
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and number of channels expected by each tracking model also varies. This

makes using an arbitrary input feature with an arbitrary tracking model

non-trivial. To overcome these problems, and thereby allow the evaluation

of all 20 combinations of input features and tracking models, we used the

following four steps.

Given an input feature and a tracking model: 1) The input feature is

extracted from the audio file. 2) If the resolution of the input feature does

not match the resolution expected by the tracking model, then the input

feature is re-sampled accordingly. 3). If the number of channels of the

input feature does not match that expected by the tracking model (the

BAS input feature has four channels while the others have just one), then

the number of channels is adjusted as follows. If there is only one channel

and the tracking model expects K channels, then the single channel is

replicated to produce K channels. If the input feature contains multiple

channels and the tracking model only expects a single channel, then the

K channels are summed together. 4) Finally, the tracking model is used

to find beats from the input feature.

4.2.1 Databases

We evaluated each input feature-tracking model pair on two databases.

Rather than combine them into a single larger database, the use of two

databases allowed us to identify trends repeated on both databases, despite

their different compositions, and so draw more general conclusions about

the relative performance of different models. Furthermore, the databases

themselves will be identifiable to those familiar with the literature as they

have been used in several other publications [Hainsworth, 2004; Klapuri

et al., 2006; Davies and Plumbley, 2007; Degara et al., 2011]. It should be

noted that the separate databases were used for comparison, rather than

N-fold cross validation.



4.3. A MODULAR EVALUATION: RESULTS 99

Database 1: The Hainsworth Database

The Hainsworth database [Hainsworth, 2004] consists of 222 excepts of

approximately 60 seconds from commercial audio files. The genre break-

down of this database is as follows: Rock and Pop (68), Dance (40), Jazz

(40), Classical (30), Folk (22) and Choral (22). A full list of the tracks in

the database, with accompanying genre labels, is available in the appendix

of Stephen Hainsworth’s PhD thesis [Hainsworth, 2004].

Database 2: The Klapuri Database

The Klapuri database, used to to evaluate beat tracking techniques in

Klapuri et al. [2006], consists of 474 approximately 60 second excerpts of

commercial audio files as with Database 1. The genre breakdown of this

database is: Electronic/Dance (66), Rock/Pop (124), Jazz/Blues (94),

World/Folk (15), Classical (84), Hip Hop/Rap (37) and Soul/RnB/Funk

(54). A full list of the tracks in the database, with accompanying genre

labels, is available online4.

Both databases contain commercial audio files and as a result are not

publicly available.

4.2.2 Evaluation Measure

We choose as the evaluation measure the LML measure described in Chap-

ter 3 (see page 71 for details) as it takes into account both localisation

and evaluates beat sequences at multiple metrical levels.

4.3 A Modular Evaluation: Results

We ran all 20 combinations of input features and tracking models on both

databases and evaluated the resulting beat times using the LML evaluation

measure. The results can be seen in Table 4.2.

4http://www.cs.tut.fi/∼klap/iiro/meter/database.html (Accessed 14/08/2011)
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Database 1

Tracking Input Feature

Model BAS SFX MAF CSD

KL 67.2 53.7 61.7 57.1

BR 62.8 63.0 52.7 63.7

EL 64.2 57.6 61.3 60.8

DP 63.4 64.7 55.1 66.6

RT 56.7 64.2 47.7 63.7

Database 2

Tracking Input Feature

Model BAS SFX MAF CSD

KL 70.3 53.0 63.3 56.4

BR 67.1 65.2 54.1 66.5

EL 65.8 56.8 63.7 60.1

DP 67.2 63.7 58.2 67.2

RT 60.5 65.9 50.8 66.9

Table 4.2: Results of the modular evaluation of each input feature on each
tracking model on the two databases (%). The original combinations of input
features and tracking models are underlined. The best score on each database
is in bold text.

The distribution of results appears to be similar for both databases.

The best performing combination on both databases was for the Bandwise

Accent Signals input feature and the Klapuri tracking model {BAS, KL}
scoring 67.2% on Database 1 and 70.3% on Database 2.

Other input feature and tracking model combinations also perform

well. These include the {CSD, DP} combination, the {CSD, BR} and

{SFX, BR} combinations (consistent with [Gouyon et al., 2007]) and

{BAS, EL}. Our approach, the {CSD, RT} combination, scores com-

parably well given that it is the only causal model considered.

As one may expect, tracking models generally achieve some of their

higher scores using the input feature that they were designed to use (scores

for these combinations are underlined in Table 4.2). However this is not
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Database 1

Input Feature BAS CSD SFX MAF

Best Score 67.2 66.6 64.7 61.7

Mean Score (µ) 62.9 62.4 60.7 55.7

Std. Dev. (σ) 3.8 3.6 4.8 5.9

Database 2

Input Feature BAS CSD SFX MAF

Best Score 70.3 67.2 65.9 63.7

Mean Score (µ) 66.1 63.4 60.9 58.0

Std. Dev. (σ) 3.6 4.9 5.7 5.7

Table 4.3: The best scores, mean scores and standard deviation of each input
feature across all tracking models (%)

always the case – for example the Ellis (EL) tracking model performs best

using the Bandwise Accent Signals (BAS), rather than its own feature.

Some other tracking models score comparably with other features to how

they perform with their own feature such as {SFX, RT} and {BAS, DP}.

4.3.1 Input Feature Results

In order to draw some more general conclusions about input features we

consider their performance across all tracking models. We present in Table

4.3 for each input feature: the best score using any given tracking model

(labelled ‘best score’), the mean score across all five tracking models and

the standard deviation of those scores.

We can see from the table that the Bandwise Accent Signals (BAS)

feature has both a higher mean score and a higher best score than other

features, on both databases. The higher mean score is accompanied by a

comparably low standard deviation across tracking models indicating that

the tracking models that use BAS as an input feature generally perform

well. We conclude from this that BAS is the strongest of the four input

features.

We find also that the Mel Auditory Feature (MAF) has the lowest
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best score and the lowest mean score on both databases. From this we

can conclude that it is the weakest of the four features.

Of the remaining two input features, the Complex Spectral Difference

(CSD) outperforms the Spectral Flux (SFX) on both best scores and mean

scores for both databases.

Overall, it appears that some input features are more informative than

others with respect to beat tracking. We can see that the BAS feature is

the strongest, implying that it better represents the location of onsets in

music signals than others such as MAF.

Effect of the Input Feature On The Results

The results indicate that some input features such as the Bandwise Accent

Signals (BAS) result in higher beat tracking performance more generally,

and others such as the Mel Auditory Feature result in lower performance.

We now investigate the extent of the effect of the general ‘quality’ of an

input feature – as given by these results – on beat tracking performance.

We take, for each input feature, the mean score across tracking mod-

els to be a measure of the ‘quality’ of that feature. We then calculate

the correlation between the score achieved for each input feature-tracking

model pair on database 1 and the mean score for the input feature used,

calculated from the results of database 2. We also calculate the reverse

situation with databases 1 and 2. The results can be seen in Figure 4.1.

In both examples there is a moderate correlation (correlation coeffi-

cients of 0.52 and 0.51) between the quality of the input feature (extracted

from one database) and the result of using some tracking model with that

feature (on the other database). From this we can conclude that – to an

extent – a good input feature is indicative of good beat tracking perfor-

mance and so the quality of the input feature is a significant part of the

beat tracking process.

The correlation is moderate rather than strong as there is another

variable factor, the tracking model.
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Figure 4.1: The correlation between the quality of an input feature, extracted
as the mean score from one database, and the performance of various tracking
models using that feature on the other database.

4.3.2 Tracking Model Results

We present in Table 4.4, for each tracking model, the best single score

with any given input feature (labelled ‘best score’) and the mean score

and standard deviation across all four input features.

These results tell a different story to those of the input features. The

Klapuri et al. (KL) tracking model achieves the highest score for a single

input feature on both databases – however it has one of the lowest mean

scores across all input features on both databases and a comparatively

high standard deviation. Furthermore, Table 4.2 shows that it achieved

the highest single scores using its own feature (BAS). This indicates that

the Klapuri et. al tracking model has a high degree of feature dependence.

Conversely, the Davies and Plumbley (DP) model has a strong best

single score on both databases and a higher mean score than other track-

ing models. This indicates that the DP model has a degree of feature

independence.

The other three tracking models show varying degrees of dependence
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Database 1

Tracking Model KL BR EL DP RT

Best Score 67.2 63.7 64.2 66.6 64.2

Mean Score (µ) 59.9 60.6 61.0 62.4 58.1

Std. Dev. (σ) 5.8 5.3 2.7 5.1 7.7

Database 2

Tracking Model KL BR EL DP RT

Best Score 70.3 67.1 65.8 67.2 66.9

Mean Score (µ) 60.8 63.2 61.6 64.0 61.0

Std. Dev. (σ) 7.6 6.1 4.0 4.3 7.4

Table 4.4: The best scores, mean scores and standard deviation of each tracking
model across all input features (%)

on their input features in a similar way to the KL and DP models.

A consequence of these results is that the mean score across input

features is not a meaningful measure of the ‘quality’ of a tracking model

overall. Therefore we do not attempt to analyse the correlation between

the ‘quality’ of a tracking model - determined by the mean score on one

database - with the results of the tracking models on the other database.

We can conclude from our results that, for some tracking models, the

choice of input feature is very important to the level of performance and

that tracking models in general have varying degrees of dependence on

their original input features.

4.3.3 Genre Specific Breakdown

In order to explore the response of input features and tracking models to

different types of signals, we proceed with a genre-specific analysis of both

components.

Input Features

Figures 4.2(a) and 4.2(b) show the scores for each input feature on different

genres for each database. The genre breakdown of the two databases is
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not identical but we can draw some conclusions by comparing the two.

On database 1, the “difficult” genres (i.e. performance is generally

low) appear to be Choral, Classical, Folk and Jazz. Better performance

is achieved on Dance and Rock. For database 2, Classical, Jazz/Blues

and World/Folk appeared to be more challenging with better performance

on the Electronic/Dance, Rock/Pop, Hip Hop/Rap and Soul/RnB/Funk

genres.

In terms of the relative performance of different input features, the

Classical genre on both databases shows a clear pattern. The Bandwise

Accent Signals (BAS) and Mel Auditory Feature (MAF) clearly outper-

form the other two features, on both mean scores and best scores.

The Rock genre from database 1 and the Rock/Pop genre from

database 2 show similar distributions. All input features score reason-

ably well with the Bandwise Accent Signals (BAS) and Complex Spectral

Difference (CSD) showing the best performance for both mean and best

scores. Similar relative scores between input features are found for the

Hip Hop/Rap and Soul/RnB/Funk genres on database 2, indicating sim-

ilar instrumentation and tempo dynamics to the Rock/Pop genre.

For the Jazz (database 1) and Jazz/Blues (database 2) genres we can

see that the Spectral Flux (SFX) and Complex Spectral Difference (CSD)

features outperform the Mel Auditory Feature (MAF) for both databases.

However, we can see that on database 1 the Bandwise Accent Signals

(BAS) feature is weaker than SFX and CSD while for database 2 BAS

is the strongest feature overall. This could be due to the fact that the

Jazz/Blues genre contains files from the blues genre while the equivalent

category in database 1 does not.

For the Dance (database 1) and Electronic/Dance (database 2) we see

a similar picture to the Jazz and Jazz/Blues genres - there is a similar

distribution although the scores overall are generally better for the Dance

and Electronic/Dance genres.

The Folk genre on database 1 shows a similar distribution to the Clas-

sical genre. However, we do not see a similar pattern for the World/Folk

genre for database 2.

Finally, on the Choral genre from database 1, all input features show
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(a) Genre Specific Scores for Input Features on Database 1
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(b) Genre Specific Scores for Input Features on Database 2

Figure 4.2: Genre specific breakdown for input features on database 1 (4.2(a))
and database 2 (4.2(b)). The grey bars show the mean score across trackers,
the black bars show the best score for any single tracker. The four bars for each
genre represent different input features, from left to right: Bandwise Accent
Signals (BAS), Spectral Flux (SFX), Mel Auditory Feature (MAF) and Com-
plex Spectral Difference (CSD). The diamond indicates the best input feature
for the given genre and the dotted line is the baseline ‘random’ score for a beat
tracker that simply outputs beats at 120bpm regardless of the signal.

poor performance. The dotted line in Figure 4.2(a) shows the score for

a tracking model that outputs beats at 120bpm regardless of the charac-

teristics of the input signal. For all input features, performance is only

marginally above this line for the best scores and below it in some cases

for the mean scores.

The wider point to be taken from this analysis is that we cannot assume

that one input feature will be more appropriate for all genres of music.
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We can see clearly that an input feature that is strong on one genre (e.g.

the Mel Auditory Feature (MAF) on Classical music) can be weak on

others (e.g. Dance or Electronic/Dance). The increased use of percussion

in some genres (such as Rock and Pop music) or the slower, more tonal

changes present in others (such as Choral music) mean that signals from

each genre are best represented by different types of input features. We

conclude that this is evidence against the use of a universal input feature

for all signal types.

Tracking Models

In Figures 4.3(a) and 4.3(b) we display, for each tracking model, the scores

for the different genres of the two databases.

By inspection we can see that, when comparing the results to the input

feature results shown in Figures 4.2(a) and 4.2(b), in general there is much

less difference in performance between tracking models for a given genre

than there is when using different input features. Specifically, for a given

genre the average standard deviation in the best scores for different input

features is 6.2% for database 1 and 3.9% for database 2. This compares

with the tracking models where we have average standard deviations of

3.1% for database 1 and 2.9% for database 2. It seems that there is much

less variation in performance for a given genre among tracking models

than when using different input features.

A consequence of this result is that it is more difficult to make gener-

alisations about the relative performance of tracking models on different

genres. We can, however, identify some clear trends.

We can see that our real-time tracking model (RT – the right most

bar in each bar graph) performs comparably to the non-causal models

on genres characterised by a strong beat and lower tempo variation, such

as Dance and Rock and Pop music. However, when we consider genres

where tempo variation is more common and percussive instruments less

frequently used – such as Classical, Choral or World/Folk music – then

the real-time model clearly performs worse than the non-causal models.

The implication of this result is that the advantages of a non-causal
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(a) Tracking Model Specific Scores for Input Features on Database 1
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(b) Tracking Model Specific Scores for Input Features on Database 2

Figure 4.3: Genre specific breakdown for tracking models on database 1 (4.3(a))
and database 2 (4.3(b)). The grey bars show the mean score across input
features, the black bars show the best score on any single input feature. The
five bars for each genre represent different tracking models, from left to right:
Klapuri et. al (KL), BeatRoot (BR), Ellis (EL), Davies and Plumbley (DP)
and our real-time model (RT). The diamond indicates the best tracking model
for the given genre and the dotted line shows the baseline ‘random’ score for a
beat tracker that simply outputs beats at 120bpm regardless of the signal.

approach mainly exercise themselves in the presence of tempo variation

and minimal percussion and that for music with a strong beat there is

little difference between causal and non-causal approaches.
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Database 1

Tracking Model KL BR EL DP RT µ

Best Input Feature 67.2 63.7 64.2 66.6 64.2 65.2

Oracle Input Feature 73.7 73.0 75.0 75.6 71.4 73.7

Performance Difference +6.5 +7.3 +10.8 +9.0 +7.2 +8.6

Database 2

Tracking Model KL BR EL DP RT µ

Best Input Feature 70.3 67.1 65.8 67.2 66.9 67.4

Oracle Input Feature 74.4 75.4 75.2 75.8 72.9 74.7

Performance Difference +4.1 +8.4 +9.4 +8.6 +6.0 +7.3

Table 4.5: Results, for each tracking model, comparing the best performance
using a single input feature for the whole database, and an oracle input feature
(%)

4.4 The Effect of Improved or Varied Input Features

In this section we wish to establish two things. Firstly, to what extent can

beat tracking performance be improved by using existing tracking models,

improving the input feature alone? Secondly, we investigate the effect of

diversifying the input features used – if we better choose our input features

for a given signal, how much can we improve performance?

In order to answer these questions, we investigate, for each tracking

model, the difference in performance between with the best single input

feature and an oracle input feature. This oracle input feature is a selection

between all four input features such that, for each file, the input feature

that results in the best performance according to our evaluation measure

is used. The results can be seen in Table 4.5.

On both databases we can see that there is an average improvement in

performance of over 7% when using the oracle input feature rather than

any single input feature. From this we can conclude two things. Firstly,

the results show that existing tracking models could show considerably

better performance if given a more appropriate or informative input fea-

ture. Secondly, that the use of different input features for different types
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of signal has the potential to improve performance. We now discuss these

in detail.

Improving Beat Tracking By Improving the Input Feature

As tracking models appear to be able to show improved performance when

given a more appropriate input feature, research into an improved input

feature seems fertile ground for improving beat tracking. Based upon

this result we decided to investigate how well each tracking model was

able to perform given an artificial input feature that is unequivocal about

the location of the beats in the signal. This hypothetically ‘optimal’ input

feature, which we shall call the ideal delta feature, is simply a series of delta

functions at the locations of beats as specified in the beat annotations. The

results can be seen in Table 4.6.

Database 1

Tracking Model KL BR EL DP RT

Best Score 67.2 63.7 64.2 66.6 64.2

Ideal Delta Score 82.1 95.9 94.8 93.3 77.3

Database 2

Tracking Model KL BR EL DP RT

Best Score 70.3 67.1 65.8 67.2 66.9

Ideal Delta Score 81.2 96.8 97.0 92.9 75.3

Table 4.6: Results, for each tracking model, comparing the best performance
on each database, and the performance using a ‘perfect’ feature derived from
the annotations (%)

The results show that several trackers are able to score in excess of 90%

on both databases, with significant improvements from the others. While

the feature given to the trackers is entirely hypothetical and unlikely to

be derivable from an audio file, these results re-inforce our earlier analy-

sis that significant improvement in performance is possible using existing

tracking models and improving the input feature.

Furthermore, it appears that the tracking models are capable of track-

ing the sequences of beat annotations. This implies that they are not
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under-performing in terms of an untrackable sequence of beats – caused

by characteristic tempo variation (e.g. rubato) – rather it appears that the

beats cannot be distinguished well enough from existing input features.

We stress that this ‘ideal delta feature’ is hypothetical and that the

likelihood of extracting such a feature from a real audio signal is small.

Therefore, the different performances in Table 4.6 do not indicate that cer-

tain tracking models perform better than others – for example a ‘naive’

peak picking algorithm could score 100% on this feature, but it would be

a poor beat tracker given a more complicated feature. Furthermore, some

trackers may find the nature of the input feature – a delta train – very

different to the kind of signals that they were designed for. This may

account for differences in performance. We did not attempt to “design”

tracking model-specific idealised features. The fundamental point to be

taken from the results of an evaluation with such a feature is that exist-

ing tracking models can show large performance gains when given more

information about beat locations in the signal.

Improving Beat Tracking By Using A Variety Of Input Features

The results from Table 4.5 show that if we choose the most appropriate

input feature for each file (an ‘oracle’ input feature), then we can gain a

considerable improvement in performance. It appears that different input

features provide different information about audio signals. Furthermore,

some features are more similar than others. We demonstrate this in Figure

4.4.

Figure 4.4 a) shows the correlation between the results of tracking using

the Davies and Plumbley (DP) tracking model with both the Complex

Spectral Difference (CSD) input feature and the Bandwise Accent Signals

(BAS) input feature on database 2. Both these combinations achieve a

score of 67.2% (see Table 4.2).

We can see clearly from this example that the most suitable of the CSD

and BAS input features depends upon the audio file under consideration.

Indeed, if we were able to choose the best feature for each file we would be

able to improve the results by 6.7%. Rather than being separate competing
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Figure 4.4: a) The correlation between the results of using the Davies and
Plumbley (DP) tracking model with two input features - Complex Spectral
Difference (CSD) and Bandwise Accent Signals (BAS) on the 474 audio files
in Database 2. b) The correlation between the results of using the Davies and
Plumbley (DP) tracking model with Complex Spectral Difference (CSD) and
Spectral Flux (SFX).

techniques, the features contain complementary information that cannot

currently be provided by a single input feature. The ability to select

between these features automatically would allow us to improve average

performance.

Figure 4.4 b) shows the correlation between the results of tracking

using the DP tracking model with the CSD input feature and the Spectral

Flux (SFX) input feature. We can see in this case that there is much closer

correlation between the results of using the two different input features.

This implies that they convey broadly similar information and so there is

less potential for improvements in performance by choosing between these

two features.

Combined Input Features

Our analysis of state of the art beat tracking techniques has shown that

even if a tracking model achieves similar scores with two different input

features this does not mean that the input features are representing the

same information.
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Database 1

Tracking Original Input Comb. Score

Model Feature Score Features Score Difference

KL 67.2 BAS + MAF + CSD 67.0 -0.2

BR 63.0 BAS + SFX 67.3 +4.3

EL 61.3 MAF + CSD 64.8 +3.5

DP 66.6 BAS + SFX + CSD 69.8 +3.2

RT 63.7 BAS + SFX + CSD 65.2 +1.5

Database 2

Tracking Original Input Comb. Score

Model Feature Score Features Score Difference

KL 70.3 BAS + MAF + CSD 69.7 -0.6

BR 65.2 BAS + SFX 68.3 +3.1

EL 63.7 MAF + CSD 64.9 +1.2

DP 67.2 BAS + SFX + CSD 70.7 +3.5

RT 66.9 BAS + SFX + CSD 68.5 +1.6

Table 4.7: The results for each tracking model of using various combinations
of input features compared with the score for its original input feature (%).
Comb. Score refers to the Combined Score.

In order to exploit this finding, we explored all possible combinations of

2, 3 and 4 input features by normalising them by their standard deviations

and summing them together. For example, for two arbitrary input features

Γ1 and Γ2 we calculate the mth detection function sample of a combined

input feature Γc by:

Γc(m) =
Γ1(m)

σ1

+
Γ2(m)

σ2

(4.1)

where σ1 and σ2 are the respective standard deviations of the input fea-

tures Γ1 and Γ2.

We chose the combinations that achieved a balance of both the best

scores on database 1 and conceptual simplicity - for example if a com-

bination of 2 features scored slightly less but comparably to a 4 feature

combination, we chose the 2 feature combination. The combinations were
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then tested on database 2 independently.

The results of this experiment can be seen in Table 4.7. As we can see,

the use of a combination of features rather than a single feature is able to

improve performance on almost all tracking models, on both databases,

with the exception of the Klapuri et al. (KL) model. We hypothesise that

the lack of an improvement for the Klapuri et al. (KL) model may be

due to the highly feature-dependent nature of that tracking model that we

observed earlier. We found that different tracking models responded better

to certain combinations depending on the single features they favoured

initially. However, we were able to show experimental improvements for

almost all tracking models by using a combination of several input features

rather than one on its own.

We can conclude from the results that there is clear scope for improving

beat tracking by either a) combining complimentary information from

multiple features into a single feature or b) selecting between different

types of input features for different types of signal.

4.5 The Effect Of Flexible Parameterisation

In this section we attempt to establish the potential for improving beat

tracking by using existing input features and only improving the tracking

model. We approach this by examining the difference in performance, for

a given input feature, between the best performing single tracking model

and an oracle tracking model. The oracle tracking model selects the best

performing tracking model per file, for a given input feature. The results

are displayed in Table 4.8.

The results show that if we were able to choose the best tracking model

for each file, we could achieve an average improvement of at least 5.6%.

This is evidence of the benefits of a ‘group of experts’ system that somehow

chooses between a number of tracking models depending on the signal in

question. While the use of a ‘voting mechanism’ to select between different

models has been suggested for tempo estimation [Gouyon et al., 2006], se-

lecting between a number of different tracking models is not a particularly
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Database 1

Input Feature BAS SFX MAF CSD µ

Best Score 67.2 64.7 61.7 66.6 65.0

Oracle Tracker Score 73.6 69.5 67.7 71.5 70.6

Performance Difference +6.4 +4.8 +6.0 +5.0 +5.6

Database 2

Input Feature BAS SFX MAF CSD µ

Best Score 70.3 65.9 63.7 67.2 66.8

Oracle Tracker Score 77.0 72.1 71.5 74.2 73.7

Performance Difference +6.7 +6.2 +7.7 +7.0 +6.9

Table 4.8: Results, for each input feature, comparing the best performance
obtained using a single tracking model for the whole database, and an oracle
tracking model (%)

elegant solution due to the amount of memory, processor power and stor-

age necessary to maintain several algorithms simultaneously (particularly

for our real-time case).

Our preference then, in terms of the simplicity of approach to beat

tracking, is to use a single tracking model, but still attempt to take advan-

tage of the benefits of signal dependent processing. Therefore, we decided

to investigate the benefits of signal dependent parameters for tracking

models. We investigated parameter settings in two of the five tracking

models, the BeatRoot (BR) model and our real-time model (RT). We in-

vestigated three parameters of the BR model and two parameters of the

RT model.

For each tracking model we compared the results of the original pa-

rameter settings, the best parameter settings over the database and the

oracle parameter settings – where the best parameter settings for each file

were used.

4.5.1 Parameterisation of Tracking Models: BR Model

For the BeatRoot (BR) model we investigated the following three param-

eters (see Dixon [2006a] for more details):
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• BRα: The parameter determining the rate of decay of a thresholding

function for which the input feature must be greater than to be

considered an onset. The original value of this parameter for the BR

model was 0.84. We investigated values in the range [0.72, 0.96] in

increments of 0.04.

• BRδ: The threshold above the local mean that a peak must reach to

be considered an onset. The original value of this parameter for the

BR model was 0.35. We investigated values in the range [0.2, 0.5] in

increments of 0.05.

• BRθ: The upper limit of the time difference in milliseconds by which

an inter-onset interval can be considered part of an existing cluster

of inter-onset intervals. The original value of this parameter for the

BR model was 25ms. We investigated values in the range [10ms,

40ms] in increments of 5ms.

4.5.2 Parameterisation of Tracking Models: RT Model

For our real-time model (RT) we investigated two parameters:

• RTα: The mixing coefficient5 between the input feature and the re-

cursive score from Equation 3.4. We investigated values in the range

[0.5, 0.95] in increments of 0.05. The original setting for the RT

model was 0.9.

• RTη: The ‘tightness’ of a log-Guassian transition weighting used in

the search for the most likely previous beat in the recursive score,

from Equation 3.2. We investigated values in the range [3, 7] in unit

increments. The original setting for the RT model was 5.

4.5.3 Parameterisation of Tracking Models: Results

We ran all possible combinations of the parameters of each tracking model

within the stated ranges on database 1. We held back database 2 to check

5Note that BRα and RTα have entirely different meanings, we simply wanted to maintain
a notation consistent with the original description of each algorithm
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Database 1

Tracking Original Best Oracle

Model Parameters Parameters Parameters

BR 63.7 65.6 69.2

RT 63.7 65.2 70.4

Table 4.9: Results of the best possible parameter settings and an oracle param-
eter setting compared to the original parameter settings of two tracking models,
the BeatRoot (BR) model and our real-time (RT) model. (%)

the results of parameter settings on this database independently.

In Table 4.9 we present the results, for each tracking model, of the

original parameter settings, the best single set of parameter settings over

the whole database and the oracle parameter setting – the best parameters

chosen for each file.

For the BeatRoot (BR) model, the best parameter settings on database

1 were BRα = 0.96, BRδ = 0.2 and BRθ = 20ms. This led to a 1.4%

improvement on Database 2 from 66.5% to 67.9%.

For our real-time model (RT), the best parameter settings on database

1 were RTα = 0.75 and RTη = 7. This led to a 0.4% improvement on

Database 2 from 66.9% to 67.3%.

However, the results show that using the oracle parameter – where the

best parameter settings per file are chosen – leads to much higher scores

than optimising a single set of parameters of the database.

The oracle parameter setting for the BR model yield a score of 69.2%

– a performance increase of 3.6% above the best single set of parameter

settings. Similarly, the oracle parameter setting for the RT model resulted

in a score of 70.4% – an improvement of 5.2% over the best single set of

parameters.

We believe that these results are clear evidence of the benefits of im-

plementing some form of automated flexible parameterisation in tracking

models so that the appropriate parameter settings are used in a given

signal.
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4.6 Review Of Key Findings

Our motivation for conducting a modular evaluation of beat tracking mod-

els was to attempt to discover potential ways to improve our real-time beat

tracker. Before returning to our real-time beat tracking model, we proceed

by summarising the key findings of the chapter.

On the relationship between input features and tracking models and

the beat tracking scores they generate:

• We found in section 4.3.1 that for a given input feature a strong

mean score across beat trackers implies a strong best score for that

feature. We also found that a strong mean score on one database is

a moderate determinant of the score of any of the tracking models

investigated using that feature on another database. This implies

that a good input feature is indicative of good beat tracking more

generally.

• We found in section 4.3.2 that tracking models show varying degrees

of feature independence. Some tracking models, such as the Davies

and Plumbley (DP) model, achieve strong scores with a number of

features while others, e.g. the Klapuri et al. (KL) model, clearly

perform better using a certain input feature - offten the one they

were designed to use. As a result, a good tracking model, though a

key component, does not directly indicate good beat tracking per-

formance – an appropriate input feature must be used.

On the relationship between input features, tracking models and genre:

• We found in section 4.3.3 that different input features are better at

representing different types of signals.

• We found in section 4.3.3 that there is less difference in performance

when using different tracking models for a given genre than there is

when using different input features.

• We found that there was only a clear difference in performance be-

tween non-causal models and our real-time model for genres with
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more pronounced tempo dynamics and a lack of a strong beat, such

as Classical and Choral music.

On improving beat tracking by improving input features:

• We found in section 4.4 that we could achieve a hypothetical aver-

age improvement of over 7.3% in beat tracking performance using

existing tracking models just by using an improved input feature.

• Also in section 4.4 we found that when given a hypothetically ‘per-

fect’ input feature, all tracking models show drastic improvements

and three out of the five tracking models examined scored over 90%

on both databases. This implies that there is strong potential for

beat tracking improvement by designing a better input feature.

• We showed in section 4.4 that the input features considered in this

paper contain some complementary information.

On improving beat tracking by improving tracking models:

• We found in section 4.5 that we could hypothetically achieve an

average improvement of over 5.6% in beat tracking performance by

selecting the most appropriate tracking model for a given audio file

– the ‘oracle’ tracking model. We believe that this is evidence that a

‘group of experts’ model that selects automatically between a number

of tracking models could improve performance.

• We found in section 4.5.3 that the use of different parameter settings

for different signals shows considerable improvement over using the

optimal single set of parameters. From this we can conclude that

some form of automatic flexible parameterisation could show an im-

provement over the use of a single set of parameters.

4.7 Real-Time Beat Tracking: Revisited

In this chapter we have identified a number of potential ways to improve

beat tracking including using varied input features and parameters or
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combining the information in two or more input features. We now return

to our real-time beat tracker, introduced in Chapter 3, to attempt to use

these discoveries to improve our model.

4.7.1 Genre Specific Improvements

In this section we attempt to improve our model using genre specific input

features and genre specific parameterisation. For offline beat trackers pro-

cessing large databases of audio files, genre specific processing requires that

genre labels are known for all tracks and so this approach has limited use.

However, when we are using a real-time beat tracker in a live performance

context, the genre of the piece being performed will almost certainly be

known in advance, and so it seems entirely sensible that – given that we

have seen that different genres and signals are best approached with dif-

ferent input features and parameters – the most appropriate input feature

and parameters should be used for the case in hand.

Genre Specific Input Features

Table 4.10 shows a comparison, for each genre, between the performance

of our real-time beat tracker using the original feature (Complex Spectral

Difference or CSD) and with a set of genre specific input features. The

results show that overall we can get a gain of 2.4% in performance – with

some sizeable gains in specific genres (Dance: +2.1%, Folk: +8.1% and

Classical: +6.0%).

Genre Specific Parameters

We investigated the best set of parameters for each genre and recorded the

difference in performance between our model with the original parameters

and with the set of genre specific parameters. The original input feature

was used in all cases. The results can be seen in Table 4.11.

We can see an overall improvement of 2.6% with marginal improve-

ments in all genres. The genres that appear to benefit from this approach

the most are the Classical (+5.5%) and Rock (+3.3%) genres.
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Database 1: Genre Specific Input Features

Genre Original Genre Specific Score

Feature Feature Difference

Dance 82.1 84.2 (SFX) +2.1

Rock 74.9 75.6 (SFX) +0.7

Jazz 70.2 70.2 (CSD) 0.0

Folk 49.9 58 (BAS) +8.1

Classical 44.9 50.9 (BAS) +6.0

Choral 23.5 24.9 (MAF) +1.4

Whole Database 63.7 66.1 +2.4

Table 4.10: A comparison of the performance of our real-time tracking model
(RT) using its original Complex Spectral Difference (CSD) input feature and
using a set of genre specific features (%)

Database 1: Genre Specific Parameters

Genre Original Genre Specific Score

Parameters Parameters Difference

Dance 82.1 83.0 +0.9

Rock 74.9 78.2 +3.3

Jazz 70.2 71.6 +1.4

Folk 49.9 52.2 +2.3

Classical 44.9 50.5 +5.6

Choral 23.5 25.1 +1.6

Whole Database 63.7 66.3 +2.6

Table 4.11: A comparison of the performance of our real-time tracking model
(RT) using its original parameters and using a set of genre specific parameters
(%)

Genre Specific Input Features and Parameters

We tested our beat tracker to find the best combination of input feature

and tracking model parameters for each genre. The results can be seen in

Table 4.12.

We can see that this genre specific arrangement of the beat tracker

gains us an improvement in performance of 4% overall. We also see fairly
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Database 1: Genre Specific Parameters and Input Features

Genre Original Genre Specific Score

Setting Setting Difference

Dance 82.1 84.3 +2.2

Rock 74.9 78.2 +3.3

Jazz 70.2 71.6 +1.4

Folk 49.9 58.4 +8.5

Classical 44.9 53.7 +8.8

Choral 23.5 26.5 +3.0

Whole Database 63.7 67.7 +4.0

Table 4.12: A comparison of the performance of our real-time tracking model
(RT) using its original parameters and input feature and using a set of genre
specific input features and parameters (%)

dramatic increases in performance for the Folk and Classical genres, with

moderate increases for other genres.

4.7.2 Future Work: Automatic Parameter Selection

We have seen in this section that genre specific programming of beat

trackers can increase performance. However, setting input features and

parameters by genre only gives us a moderate increase compared to the

‘oracle’ input features and parameters studied in this chapter. A better

approach would be some way to automate parameter settings based upon

signal characteristics. Indeed, we saw in section 4.5.3 that if we can choose

the optimal parameter settings for each file we can improve performance

from 63.7% to 70.4%. Based upon this result we believe that investigation

into some form of automatic parameter selection is a clear contender for

future work.

4.8 Summary

In this Chapter we have presented the results of a modular evaluation of

five beat tracking systems, considering their input features and tracking

models separately. We have examined the results of combining different
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input features and tracking models. From these analyses we draw several

conclusions about the potential for improving beat tracking systems.

Firstly, we can conclude that the approach of using a single input

feature for all signal types does not adequately take account of the dif-

ferences between signals from different genres.. Our research shows that

by choosing a more appropriate input feature for a given signal we can

achieve considerable improvements in performance. We suggest two possi-

ble improvements, either: a) an automatic selection between input features

based upon signal characteristics; or b) some form of intelligent combina-

tion of input features – or the designing of a new input feature that retains

the characteristics of several existing input features.

Similarly, the use of varied parameter settings for different signals –

rather than a single global parameter setting – can lead to considerable

improvements in performance. A clear challenge for future work will be

developing some way to automatically choose appropriate parameters for

a given signal.

In future we aim to develop a beat tracking system that exploits these

two findings to create a beat tracker that is automatically responsive to

the type of signal in which it is trying to discover beat locations.



Chapter 5

Performance Following

We have presented in previous chapters a number of techniques for extract-

ing information from musical performances – including current harmonic

content and indications of beat locations in real-time. However, there is

more to music than the current state of the performance. In particular,

we turn in this chapter to its contextualisation within the wider piece –

the development of a performance over time.

There has been much research into the field of score following. Score

following is the automatic matching of musical notes in a performance to

those in a score. Through this process we can discover the current position

of a performance within a score which allows us to know the future of the

performance. As a result, automatic accompaniments can be played.

In some cases, however, no score exists. This is often true for many

forms of music, such as rock and pop music. Music may also be improvised,

meaning that the production of a score is not possible.

In this chapter we present a technique for predicting the future of

performances for which no score exists. We refer to this problem as per-

formance following. Our solution takes advantage of the fact that much

music contains repetitions of musical phrases [Ockelford, 2005, Ch. 1].

By developing a technique that is able to recognise repeated musical pat-

terns, we can examine the course of previous occurrences of these patterns

to make predictions about the future.

Our approach attempts to contextualise recent musical developments

(the last few seconds) within the longer term developments of the perfor-

mance (the last few minutes). Through this process we can identify re-

peated patterns and make predictions about the future of the performance.

124
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With knowledge of the future harmonic content of the performance we can

generate some automatic musical accompaniment, such as a bassline or a

melody, with no prior knowledge in the form of a score.

5.1 Background

Many forms of music are characterised by the repetition of musical pat-

terns. In prior research, these musical patterns have been represented as

sequences of notes [Mongeau and Sankoff, 1990], chords [Pardo and Birm-

ingham, 2001] or other musical features such as chroma features [Dannen-

berg and Hu, 2003].

Given that these sequences are partially repetitive, the problem of

modelling these sequences and making predictions based upon repetition

has been an area of interest in recent years.

5.1.1 Musical Prediction and Sequence Modelling

Musical prediction has been approached from a number of directions.

Some have taken an information theoretic [Pearce et al., 2010] perspec-

tive, attempting to model the perceptions of human listeners [Dubnov,

2008; Abdallah and Plumbley, 2009]. Others have made no attempt to

model human cognitive processes, employing predictive techniques purely

for some practical application, such as predicting chords in Jazz music

[Thom, 1995]. In the present work we are also concerned only with solv-

ing a practical problem and therefore make no attempt to model human

cognitive processes.

Some early work on musical prediction attempted to learn production

rules for music from examples. Kohonen [1989] developed a context sen-

sitive grammar which attempts to predict the next element of a sequence

based upon a context of a certain length. Should the context provided

present two or more equally plausible predictions then the length of the

context is dynamically expanded until such conflicts are resolved. In other

work, Thom [1995] has presented a technique for predicting chords in jazz

based upon N-gram models, showing an ability to predict chords 53% of
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the time.

In more recent work, Pachet [2002] introduced the Continuator, a live

performance system that learns the stylistic characteristics of a perfor-

mance in real-time or from a stored MIDI file. The input to the system is

a symbolic music representation which is processed by a model based on

an extension of a Markov model, storing sequences and sub-sequences of

notes. Then, new music can be generated in the same style by traversing

a prefix tree according to transition probabilities.

Conklin [2003] has argued that there is a strong relationship between

analytic and generative models of music and that music generation can

be achieved by sampling from analytic statistical models. He highlights

the limitations of certain models, including N-gram and Markov-based

techniques, that have very specific contexts. Specifically he argues that

training corpora are limited in size, so only a few possible sequences will

be encountered and therefore there is a sparse data problem. He suggests

that transposition of sequences to a common key and smoothing of short

and long contexts can be used to mitigate these problems.

Assayag and Dubnov [2004] have suggested using Factor Orcales [Al-

lauzen et al., 1999] – automata in the form of a linear chain of states capa-

ble of representing all repeated sub-strings in a string – for the analysis and

generation of musical sequences. A strength of the Factor Oracle struc-

ture is that it is able to represent the presence and location of repeated

sub-sequences of variable length. Once a state automata is constructed,

it is able to model sequences of length N with a linear number of states

(N + 1) and transitions (at most 2N − 1). Factor Oracles are the basis

for the automatic accompaniment system OMAX [Assayag et al., 2006]

for polyphonic MIDI and its equivalent for monophonic audio, OFON.

A difficult aspect of Factor Oracles is that they require a single discrete

state for each symbol. For MIDI data and monophonic audio, this is

possible, assuming in the case of monophonic audio that we have a reliable

pitch detector. However, when dealing with polyphonic audio, it is more

complicated to convert musical features, such as spectral vectors, into

single discrete symbols.
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Two suggestions for implementing Factor Oracles using spectral vec-

tors, representing polyphonic audio, have been made. Dubnov et al. [2007]

suggest assigning state transitions based upon thresholding a Euclidean

distance function between spectral vectors. Bloch et al. [2008] suggest

using a “relatively severe quantisation” to reduce spectral vectors into a

small number of discrete classes which can then be processed by a Factor

Oracle model.

In order to implement either of these two approaches for using Factor

Oracles with polyphonic audio, we must use some form of thresholding

of a distance function – in the first case to decide on whether to assign

transitions and in the second case to decide which class a new spectral

vector belongs to. However, due to artefacts, variations in instrumen-

tation, the intensity of performance or the octave at which a particular

pattern is played, spectral vectors from musical audio that humans may

consider harmonically similar may be different in their constitution. As a

result, small values for distance functions are not guaranteed for ‘similar-

sounding’ vectors and so any thresholding of distance functions will be

imperfect in some way. Certainly the problem of classifying harmonic

vectors into discrete classes is related to the problem of chord recognition,

which at present is still an unsolved problem [Cho et al., 2010].

For our application, we wish to be able to recognise repeated musical

patterns from polyphonic audio. Therefore, we need a technique capable

of 1) comparing sequences of spectral vectors extracted from polyphonic

audio; and 2) allowing the comparison of sequences that are non-exact,

possibly containing inserted, deleted or substituted elements. We now

turn to a widely used family of techniques for the alignment of sequences

based upon similar sub-sequences.

5.1.2 Sequence Alignment in Music

While string matching algorithms have been a topic of interest in several

fields [Gusfield, 1997], many existing techniques for comparing musical

sequences are based upon algorithms for comparing sequences of biologi-

cal data. For the global comparison of two non-exact sequences of amino
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acids, Needleman and Wunsch [1970] introduced a technique that first cal-

culates a score matrix based upon the similarity of these two sequences. In

the simplest case, a value of 1 is assigned for matching elements and 0 for

mismatches. Then, a dynamic programming algorithm is used to calculate

all possible pathways through the score matrix. Finally, a traceback step

is performed to calculate the best alignment of the two sequences. As

all possible pathways through the score matrix are considered, the algo-

rithm allows for sequences to be aligned that are non-identical – possibly

containing inserted, deleted or substituted elements.

Building on this work, Smith and Waterman [1981] introduced a tech-

nique for computing local alignments between sequences – that is the

highest scoring sub-sequence match of two longer sequences. The BLAST

algorithm, a faster approximation of local alignment, was presented by

Altschul et al. [1990] – although this did not allow for ‘gaps’ originat-

ing from inserted and deleted elements. A gapped version followed later

[Altschul et al., 1997].

Sequence alignment techniques such as these have been applied to mu-

sic in many cases. Mongeau and Sankoff [1990] used sequence alignment

techniques to calculate a value of similarity between two musical scores.

Monophonic scores were represented as sequences of pitch-duration pairs.

These sequences are then aligned taking into account insertion, deletion

and substitution as in Needleman and Wunsch [1970]. However, two ad-

ditional concepts are considered – the replacement of one note by several

and several by one.

Sequence Alignment In Music Information Retrieval

In the field of music information retrieval, Hu et al. [2003] present a tech-

nique that, given an audio file, attempts to find the corresponding MIDI

file or vice versa. Rather than attempt any transcription, this is achieved

through converting the MIDI file to audio and then computing sequences of

chroma vectors from both audio files. These sequences are then aligned by

computing a score matrix from the Euclidean distance between all chroma
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vectors and then computing the best alignment using dynamic program-

ming techniques and a trace back similar to those described above. The

similarity between the audio file and the MIDI file is determined by the

average distance along the path. Ferraro and Hanna [2007] investigate

various optimisations of alignment algorithms for music through the con-

sideration of different pitch representations, different substitution costs

for notes and consideration of note duration. They also find that local

alignments show increased performance over global alignments in MIR

applications. Robine et al. [2007] suggest improvements to alignment al-

gorithms through the incorporation of some music theory. They consider

tonal information, the presence of ‘passing notes’ – those that do not be-

long to any chords formed by other notes sounding at the time – and give

emphasis to certain beats in the bar by considering ‘strong’ and ‘weak’

beats. A review of techniques for melodic similarity used in MIR, as well

as general MIR topics, has been presented by Casey et al. [2008].

Sequence Alignment For Analysing Music Structure

Some have used sequence alignment techniques for analysing the structure

of musical pieces. Dannenberg and Hu [2002] use dynamic programming

based sequence alignment techniques to discover repeated segments in a

piece of music and therefore to create structural descriptions of a piece

of music. They present three approaches based upon monophonic pitch,

chroma and chord progressions derived from a polyphonic transcription.

Pairs of similar segments are computed and then clustered to identify the

different segments present in the music. Kilian and Hoos [2004] adapt the

widely used BLAST algorithm [Altschul et al., 1990] for use with musical

data and apply it to the problems of analysing the structure of an input

file or for retrieving occurrences of a given search pattern. Meredith et al.

[2003] have presented a number of algorithms able to identify repeated

material in polyphonic music. In other work, a statistical model for the

segmentation of melodies has been presented by Pearce et al. [2008].
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Musical Sequence Alignment In Live Performances

While the systems above largely process audio files in an offline context,

we wish to use it in a real-time live performance situation. Several score

following systems have made use of sequence alignment techniques in real-

time.

Dannenberg [1984] has presented a technique for comparing a mono-

phonic performance to a score in real-time. Pitch estimation is used to turn

the monophonic audio into a series of pitches, which are then compared to

a score using a dynamic programming sequence alignment technique. This

approach was later adapted to handle polyphonic keyboard performances

[Bloch and Dannenberg, 1985].

Some genres of music – in particular folk and popular music – use scores

that provide only limited information such as the main melody or chord

sequences. These are referred to as partially specified scores. Pardo and

Birmingham [2001] outline an approach for the comparison of polyphonic

MIDI performances to a partially specified score in the form of a sequence

of chords. A chord sequence is extracted from the MIDI performance and

this is compared to the partially specified score using a global sequence

alignment.

Dannenberg and Hu [2003] suggested that their technique for compar-

ing polyphonic audio to a symbolic MIDI file could be used as part of

a real-time system for polyphonic performances. By synthesising audio

from the MIDI file, a comparison of two audio files was made by extract-

ing sequences of chroma vectors from the audio and then computing an

alignment between the two.

A technique called MATCH has been presented by Dixon and Widmer

[2005] for aligning polyphonic audio recordings of different performances

of the same piece of music. This is intended to be a useful tool for mu-

sicologists who can use it to switch between time aligned performances

in real-time. With audio files represented as sequences of spectral vec-

tors – a linear representation at low frequencies and logarithmic at high

frequencies – spectral difference vectors for each audio frame compared
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to its predecessor are calculated. The Euclidean distance between vec-

tors is then used to compute a cost matrix before an alignment is found

through dynamic programming based sequence alignment. This technique

was later applied to the problem of tracking live performances in real-time

[Dixon, 2005].

It should be mentioned that the problem of score following has been

approached without using sequence alignment techniques. For example,

Raphael [2001] implemented a score following system based upon hidden

Markov models [Rabiner, 1989] while Cont [2010] presented Antescofo, a

system also based upon a probabilistic framework but using an ‘anticipa-

tory’ system whereby a predictive model of future information is used to

inform current choices.

5.2 Approach

The live performance systems described above all compare a musical per-

formance to some form of score. However, we are approaching the problem

of predicting future harmonic content in performances when no score is

available.

Our approach is based upon the hypothesis that much music contains

repetition of musical patterns. Our aim is to ‘recognise’ these repeated

patterns by comparing the present developments of a performance to the

past. If the current musical pattern has been repeated in the past, and if

we can locate those previous occurrences, then we can use them to make

predictions about the future of the performance.

Score following techniques typically compare a live performance to a

score in order to discover the location of the performance within the score.

As we have no score to match against, we instead contextualise the recent

past within the longer term history of the performance. Specifically we

compare the most recent few seconds of the performance to the last few

minutes. The past of the performance itself is used as if it was the ‘score’.

There are some problems to overcome with this approach. Firstly,

tempo variations in the performance may mean that the same musical

pattern may be of different lengths depending on when it is performed. A
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second problem is that comparing high quality audio signals in their raw

form is computationally expensive.

We therefore approach this problem by representing musical patterns

using real-time beat-synchronous sequences, with a single vector for each

inter-beat interval. We then implement a sequence alignment technique

based upon dynamic programming to make predictions of future harmonic

content based upon the past of the performance.

Overview of System

We use as an input to our system a polyphonic audio signal from a single

instrument, such as a guitar or piano. By choosing a single instrument

we can avoid the problems caused by percussive instruments that may be

found in a mixture of a whole ensemble. In real-time, using chroma anal-

ysis and either a beat tracker or fixed tempo click track, we convert this

signal into a beat-synchronous sequence of chroma vectors. We then use

this beat-synchronous sequence as an input to our performance following

technique which outputs a chroma vector as a prediction of the harmonic

content of the next inter-beat interval. A graphical overview is displayed

in Figure 5.1.

5.3 Beat-Synchronous Sequences

Our approach involves the comparison of current musical patterns to those

in the past – in practice comparing the harmonic content of current au-

dio to that of previous audio. This approach presents us with a number

of problems. Firstly, we must be able to compare musical patterns that

occur at different tempi and so will be of different lengths. Secondly,

comparisons of large amounts of audio – spanning several minutes – is

computationally expensive. Finally, we have the problem that some audio

frames will contain audio from before and after a harmonic change, mak-

ing the determination of the harmonic content of such frames non-trivial.

In order to solve these problems we use the beat-synchronous sequences

described in Chapter 3.
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Figure 5.1: a) An overview of the performance following technique.

For our application, there are several advantages to representing music

beat-synchronously. Firstly, we are able to represent the same musical

theme with the same number of features regardless of tempo, allowing us

to more easily compare musical sequences.

A second benefit is that a beat-synchronous representation reduces

the amount of information needed to represent a musical sequence – and

therefore the computational cost of any subsequent sequence comparison.

Given 60 seconds of audio at 44.1kHz, if we use a frame size of 1024

samples then we will need (44100
1024

×60) > 2, 500 feature vectors to represent

the signal. However, if the tempo is 120 beats per minute, then a beat-

synchronous representation can represent the same signal with just 120

feature vectors.

Finally, beat-synchronous techniques have been shown to increase per-

formance in harmonic analysis in other research [Bello and Pickens, 2005].

This is because harmonic changes often occur at beat locations, and so

the use of beat-synchronous representations allows us to avoid some of the
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problems of audio frames that contain harmonic information from both

before and after a harmonic change.

In practice, for our application we make use of beat synchronous se-

quences of chroma vectors. We represent the kth inter-beat interval – the

time between beats [γr−1, γr], where r = k + 1 – with a beat-synchronous

vector ∆k, calculated according to method 2 in section 3.4.

5.3.1 Real-Time Beat Tracking vs. Fixed Tempo Click Tracks

In order to extract beat-synchronous sequences in real-time, we need some

measure of the beat. We have suggested in Chapter 3 that a real-time beat

tracker can be used for this purpose. While we have detailed a reasonably

robust and efficient real-time beat tracker in section 3.1, the beat tracking

evaluation in Chapter 4 has shown that 100% guarantees of performance

accuracy are still not possible with current beat tracking models.

A second option is to use a fixed tempo click track. Such a computa-

tionally ‘correct’ source of beats has the benefit of being reliable but the

disadvantage of being inflexible – performers must adhere to the tempo of

the click track.

For our work here we suggest that either option can be used based

upon their relative merits depending on the musical style.

5.4 Performance Following: Sequence Prediction

In order to perform sequence prediction, we maintain two sequences of

beat-synchronous chroma vectors. The first, A = a1, a2, ..., aN is a se-

quence containing the N most recent beat-synchronous vectors, which

we we refer to as the long term memory. The second sequence, B =

b1, b2, ..., bM , is a shorter sequence containing the M < N most recent beat-

synchronous vectors, which we will call the short-term memory. Specifi-

cally, we define:

A = ∆k−N+1, ..., ∆k (5.1)

B = ∆k−M+1, ..., ∆k (5.2)

where ∆k is the kth, and most recent, beat-synchronous chroma vector.
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5.4.1 Choice of Sequence Lengths, N and M

We wish to contextualise the shorter sequence, B, within the longer term

developments of sequence A. We therefore choose the values of N and M

accordingly. For the length, N , of the longer sequence A, we must choose a

value large enough to store recent developments in the music, while being

small enough to allow computation to occur in real-time. We suggest that

this sequence should represent a length of time of around 2 or 3 minutes as

this will likely include recent musical developments – though for different

musical styles it can be adapted. Given a hypothetical tempo of 120bpm,

a length of 300 for N allows the storage of the most recent 2 minutes and

30 seconds, which seems to easily allow computation in real-time (using

N = 300 and M = 50, our model can process a 4 minute piece at 120bpm

– 480 vectors – in just under 6 seconds).

The value M determines the length of the longest sub-sequence match

between the short-term and long-term memory. We will discuss the choice

of the value of M in detail in section 5.6.1, but for now we suggest a value

in the range 5 to 50.

5.4.2 Sequence Alignment

In order to discover, in sequence A, occurrences of similar musical patterns

within sequence B, we use a sequence alignment technique, computing an

alignment matrix between the two. Our technique is an adaptation of the

Smith-Waterman algorithm [Smith and Waterman, 1981].

The first step of our technique is to compute a self-similarity score ma-

trix s(i, j). This is achieved by calculating the inner product of ai, the ith

beat-synchronous vector of sequence A, and bj, the jth beat-synchronous

vector of sequence B:

s(i, j) =
V∑

v=1

ai(v)× bj(v) (5.3)

where v is the index of the bin number for each feature vector and V = 12,

the length of each chroma vector.

We then calculate an alignment matrix H using dynamic program-

ming. The value Hi,j indicates the best score for the alignment of two
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sub-sequences ending in ai and bj. We initialise the values of Hi,0, H0,j

and H0,0 to zero. We then proceed with the calculation of the rest of the

matrix:

Hi,j = max



Hi−1,j−1 + s(i, j)

Hi−1,j −W

Hi,j−1 −W

0

(5.4)

where 1 ≤ i ≤ N , 1 ≤ j ≤ M , and W is the gap penalty that penalises

alignments that contain inserted or deleted elements. We choose W = 4
3

in a similar way to Smith and Waterman [1981]. In Figure 5.2 we show

an example of an alignment matrix resulting from the comparison of a

longer sequence of 300 beat-synchronous vectors and a shorter sequence

of 50 beat-synchronous vectors.

From the alignment matrix H, we can make a prediction of the next

likely element in the beat-synchronous sequence. We do this by finding

points where the last elements of sequence B align strongly with sequence

A. For the example in Figure 5.2 there are three potential alignments,

identified by strong diagonals and highlighted by arrows. Finding these

points of strong alignment is then achieved by analysing the final column

of the matrix H and choosing the value

y = arg max
1≤i<N

Hi,M (5.5)

In practice, harmonic content may be slow in changing and so strong

alignments may appear for sequences just one or two beats in the past,

which are unlikely to be correct. Therefore, we wish to indicate that these

alignments are unlikely and to favour alignments further in the past. As

a result, we amend Equation 5.5 by adding the parameter β which allows

us to not search the most recent β elements in the long term memory for

a strong alignment:

y = arg max
1≤i<(N−β)

Hi,M (5.6)

If we choose smaller values of β we allow shorter repeats to be identi-

fied, while larger values allow quicker identification of correct alignments,
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Figure 5.2: The matrix resulting from the comparison of the most recent 300
beats of a performance with the most recent 50. As can be seen in the final
column of the matrix, there are three potential alignments (identified by arrows)
indicating that the fragment contains a repeated part of the performance.
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assuming that the period of repetition is longer than β. Through experi-

mentation we choose β = 10.

Finally, we choose the previous feature vector – specifically the one

following the strongest alignment indicated by y – as a prediction of the

content of the next element, b̂M+1, of the beat-synchronous sequence B:

b̂M+1 = ay+1 (5.7)

5.5 Evaluation

5.5.1 Musical Sequence Alignment Database

In order to evaluate our system, we created a database by asking a number

of musicians to compose acoustic guitar pieces. The musicians were given

no specific instructions on the nature of the content for the pieces and no

mention was made of the repetition of musical themes. The musicians did,

however, have a natural stylistic leaning towards the rock, pop and folk

genres. The result is a database of 32 pieces in those styles, totalling over

104 minutes of audio. All files in the database are mono, 16-bit audio at

44.1kHz. The pieces in the database have an average length of 3 minutes

16 seconds with a standard deviation of 36 seconds.

For each audio file, the beats were labelled using a beat tracker with

any erroneously tracked beats corrected by a human annotator so that all

beat times were correct.

In assessing the performance of our technique, we initially considered

using the Euclidean distance between predicted and observed feature vec-

tors. However, our initial tests showed that distance measures such as

these did not necessarily show a small distance between vectors that were

harmonically similar to the human ear. This may have been the result of

variations in the intensity of the performance, or the octave at which a

given harmonic sequence was performed.

As a result, we created a ground truth in order to perform an objective

evaluation of our technique. For each audio file, we grouped repeated

sections together. For example, for a given piece, the content of inter-beat

intervals (IBIs) 1 to 32 may be repeated during IBIs 33 to 64 and 97 to
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128. Such a scenario is depicted in Figure 5.3.

Figure 5.3: The content of inter-beat intervals (IBIs) 1-32 is repeated from
33-64 and 97-128. This is shown as the three occurrences of section A. In this
example, the content of inter-beat intervals 65-96, labelled B, is not repeated
elsewhere and so is not ‘predictable’. Overall in this example, 50% of content
is ‘predictable’.

In order to record such information as an annotation, we use the syntax

[[1,32],[33,64],[97,128]].

Based upon such an annotation, for IBI 33 we allow a prediction of

IBI 1, for IBI 34 we accept a prediction of IBI 2 and so on. There may be

multiple repeats of a musical pattern and so for later repetitions multiple

IBIs may be accepted as correct. For example, for IBI 97 we accept

predictions of IBI 1 or IBI 33. Our final annotation is a list of acceptable

predictions (APs) for each IBI:

IBI APs

1: none

2: none
...

...

32: none

33: 1

34: 2
...

...

97: 1,33

98: 2,34
...

...

To evaluate a system on the database, for each prediction made, we

assess it as either correct or incorrect based upon whether the prediction
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made is in the list of acceptable predictions for each inter-beat interval.

For each file we obtain the percentage of correct predictions and then take

the mean to arrive at a final score for the system in question.

It is clear from our description of the annotations that some IBIs will

have no acceptable predictions and therefore cannot be considered ‘pre-

dictable’. We do not assess the performance of our technique on these

IBIs as the results for each audio file would vary greatly depending upon

the amount of repeated content.

While the stylistic content of the database is similar to much popular

music, it is interesting to note that 94.1% of the content is made up of sec-

tions that are repeated elsewhere in the piece and of 76.2% is ‘predictable’

in the terms we have described. We have made the database, annotations

and all source code available online under a Creative Commons license so

that our results may be independently reproduced1.

5.5.2 Methodology

A difficulty in performing such an evaluation is that if we use a beat tracker

and some of the beats are incorrectly tracked, then it becomes impossible

to tell if poor performance is due to poor localisation of harmonic content

by the beat tracking or poor performance of our predictive performance

following technique. Therefore, for the evaluation, we decided to evaluate

our technique using the beat annotations from the database, rather than

allow for the errors that may occur using a purely automatic beat tracker.

It is accepted that if we were to use a beat tracker in a live performance

context (rather than the evaluation) then any beat tracking errors would

result in a detrimental effect on performance. However, our experiments

show that these situations do not occur with a regularity that would make

the system unusable. It is also perfectly possible to largely avoid this

problem by using constant tempo click tracks.

We made predictions for each audio file as follows. For each audio file

we calculated a sequence of beat-synchronous chroma features. We then

1http://www.eecs.qmul.ac.uk/∼adams/pf/
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used our performance following technique to attempt to predict accept-

able harmonic content from the past of the performance. At each step

we recorded the index number of the inter-beat interval of the predicted

chroma vector. We then calculated a score as a percentage of correct

predictions given the ground truth annotations from the database.

5.5.3 Comparison To Other Techniques

In order to assess the performance of our technique relative to others,

we implemented three other techniques – a random predictor, an N-gram

based model and a Factor Oracle based technique.

Random Predictor

As a baseline, we implemented a random predictor that simply chose a

random inter-beat interval from the past of the performance as a prediction

of future content.

Factor Oracle Predictor

We implemented a Factor Oracle (FO) according to Assayag and Dubnov

[2004], making use of K-means clustering to group individual beat syn-

chronous feature vectors into clusters so that a model with discrete states

such as a FO could process the sequence of data. We followed suffix links

in the model which identify previously repeated factors and used these to

choose past inter-beat intervals as predictions of future content.

We experimented with using different numbers of clusters, trying values

between 1 and 20. We recorded the result for the best single number of

clusters (4 clusters) and also the result for a version where the best number

of clusters is chosen for each file. Given that some random initialisation

is involved with the K-means clustering, we ran the results 20 times and

took the mean for each file.

N-gram Predictor

We also implemented a predictor based on an N-gram model [Jurafsky

and Martin, 2000, Ch. 6], again making use of K-means clustering to
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turn the data into a sequence of discrete symbols. We processed the

sequences causally, recording the best transition given a certain sequence.

The prediction recorded was the inter-beat interval number from the past

of the performance for the transition the last time the given sequence

occurred.

Specifically we chose lengths L of 3, 5, 10 and 15 for the N-gram model.

We used the optimal number of clusters for each value of L and, as with

the Factor Oracle approach, we averaged scores over 20 runs to reduce the

effect of any random initialisation during clustering.

5.6 Results and Discussion

The results of our evaluation can be seen in Table 5.6. The highest scoring

model is our performance following technique (PF) with a short term

memory length of M = 20, which has a mean score of 75.3% correctly

predicted IBIs. Given the standard deviation of 13.9% and the sample size,

this gives a 95% confidence interval of [75.3%± 4.81] calculated according

to Flexer [2006]. This is also a prediction of a majority of content in the

database overall – 57.4% – given that the mean scores are only on the

‘predictable’ 76.2% of the database.

Our technique also performs better than both the N-gram and Factor

Oracle techniques. We believe that the need to cluster vectors into discrete

classes before processing is a problem for these latter techniques and that

a strength of our model is that it can locate repetitions of sequences of

polyphonic harmonic data without making the data discrete.

There are, however, several areas for potential improvement, to which

we turn now.

5.6.1 Short-Term Memory Length (M)

Our evaluation showed that the best single value for M was 20. However,

different pieces were suited to different values of M . Figure 5.4 shows the

number of examples that achieved their maximum score for a given value

of M . We can clearly see that the majority of examples could have scored
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better with values of M other than 20. Ten achieved their best score for

M = 15 but another 19 examples (59%) scored best with values of M that

were neither 15 or 20.

The implication of these results is that our model could be improved

by implementing M as an adaptive parameter. If we could find some way

of automatically adjusting M to suit the characteristics of the piece in

question then our evaluation suggests we could achieve an improvement of

over 3%. By choosing the best value of M for each file for our evaluation –

an ‘oracle’ approach – we reach a 95% confidence interval of [78.7%±4.08].

Model Parameter Score / % σ / %

PF M = 5 50.6 17.4

PF M = 10 69.6 17.6

PF M = 15 75.1 14.3

PF M = 20 75.3 13.9

PF M = 25 74.3 13.9

PF M = 30 73.2 14.2

PF M = 35 72.6 14.4

PF M = 40 71.5 15.0

PF M = 45 70.4 15.4

PF M = 50 69.3 16.0

FO D = 4 63.0 19.1

FO Best D Per File 68.5 16.6

N-Gram L = 3, D = 13 34.8 15.4

N-Gram L = 5, D = 6 38.0 16.9

N-Gram L = 10, D = 3 42.1 17.7

N-Gram L = 15, D = 3 38.0 20.8

Random - 2.2 1.4

Table 5.1: The results of evaluating our performance following technique (PF ),
a Factor Oracle (FO), an N-gram model (N-Gram) and a random predictor
(Random) on a database of 32 annotated audio files. Results are given as mean
percentage scores (%) and the standard deviation of those scores (σ). The
parameter M is the short-term memory length of the performance following
technique, the parameter D is the number of clusters used in the K-means
clustering for the N-gram and Factor Oracle models, and the parameter L is
the length used in the N-gram model.
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Figure 5.4: The number of examples achieving their maximum score for a given
value of M , the short-term memory length.

While our technique can pick up on repetitions of varying lengths up

to a size of M (due to an ability to match sub-sequences), we may also be

able to improve performance by combining several performance following

techniques with varying values of M .

Informal real-time use of our model indicates that smaller values of M

cause the system to be more responsive to fast changes in the music while

larger values provide more context and allow predictions based upon more

analysis of sequence development over the past of the performance.

For choosing a single value of M , it would be valuable to consider data

from psychological studies into short term memory in humans [Anderson,

2000] and music theoretic concepts of the time scales of music – in par-

ticular the grouping of sounds into phrase structures at the ‘meso-level’

[Roads, 2004].

5.6.2 The Selection of Features

A limitation of our approach is that we only use harmonic features. There

are many other aspects of music, such as rhythmic and timbral informa-

tion, that characterise musical patterns and we may be able to increase

the performance of our system by representing these aspects in musical

sequences.

Beat-synchronous features are beneficial to our system in a number of

ways. In addition to those discussed in section 5.3, harmonic information is
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‘smoothed’ through being made beat synchronous (i.e. there is a reduction

in the resolution), so variations in the harmonic themes can be tolerated.

For example, in the case of an acoustic guitar, a strummed sequence can be

successfully compared with an arpeggiated version of that chord sequence.

There are, however, limitations to using beat-synchonous features. We

may have harmonic changes at a rate that is faster than the metrical

level used by the beat-synchronous process. In this situation the temporal

resolution of the beat-synchronous sequence would be too low to correctly

represent the content of the performance. An obvious solution would be

to use a faster metrical level. However we may then reach a point where

the amount of audio in inter-beat intervals is too short to allow sufficient

frequency resolution to accurately distinguish frequencies in the signal.

The use of overlapping frames would only ‘blur’ representations across

beat boundaries.

5.6.3 Evaluation of the Effect of Beat Tracking Errors

It would be informative to perform an evaluation that examined the effect

of beat tracking errors on our approach. Given that our current evalua-

tion is based upon annotated beat locations, and considering that a beat

tracker would place beats in different places, it is unclear how to make any

meaningful comparison between our ground truth evaluation and an eval-

uation for the beat tracker. Indeed, given our discussions in section 5.5.1

of the problems using distance measures such as the Euclidean distance

in our evaluation, it is not clear how to perform any objective evaluation

when the beat locations are not correct.

Such an evaluation would also be useful in allowing us to assess the

useful values of the gap penalty W from Equation 5.4. This penalty is

rarely used in the current evaluation as it is designed to deal with beat

tracker errors - e.g. the situation where there are 5 beats where there

should be 4, for example. Given that we are using the ground truth beat

locations we do not encounter such errors in the current evaluation. We

will investigate ways of performing an evaluation using a real-time beat

tracker in future – perhaps through a subjective user-oriented study of the
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system.

5.6.4 The Annotation Process

It would be useful to develop a formal definition of a ‘repeated section’. In

the current study, repeated sections were identified through the subjective

perception of a musician but there are several different interpretations of

what can be considered a ‘repeated section’. However, given the variability

and complexity of music, it is difficult to make such a formal definition.

For example, if the harmonic content in one inter-beat interval (IBI)

was similar to that of the previous IBI then we could technically call this

a repeat. However, many people would disagree with such a classifica-

tion due to the brevity of the section. If we are to decide that a certain

number of IBIs have to be repeated before it is considered a repeated sec-

tion then we can only place some arbitrary threshold. Furthermore, this

threshold would be undermined by different tempi, time signatures and

metrical levels. We could also say that there must be a certain number

of harmonic changes – but if the music is more complicated than a simple

chord sequence then changes will be harder to identify.

5.6.5 Scope of the Work

Our technique is focused upon music that is based, at least partially, on

the repetition of musical patterns, such as music from the rock, pop and

folk genres. Therefore, we make no claim that this approach is extendable

to all musical styles.

We also believe that the use of a single instrument, such as a guitar,

as the input signal is a sensible approach. In a live performance, we are

much more likely to obtain a good quality audio signal directly from a

single accompanying instrument than to attempt to process a signal from

a complicated mixture of instruments and then to deal with the multi-

instrumental nature of that signal. Our use of a single instrument has

precedents in other research – for example, during research on the beat

tracking of drums by Robertson and Plumbley [2007].
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5.7 Directions for Future Work

In addition to the areas identified for future study when assessing the re-

sults – namely creating an adaptive short-term memory length M , adding

musical features that include more than just harmonic information and a

review of the procedures used in the evaluation – there are several other

areas that would be worthy areas for future work.

Currently the technique is focused upon making predictions of har-

monic content in the presence of repetition. However, to be truly useful,

we believe our technique should be integrated into a larger system capa-

ble of making predictions of harmonic content in the absence of repetition.

The use of data from multiple performances and rehearsals may be useful

in this context. It would also be useful to incorporate meta-data inputs to

our system. These could be used to indicate sharp, unpredictable changes

in tempo or harmonic shifts such as key changes.

The representations used for harmonic content could be amended so

that transposed versions of musical patterns could also be identified and

harmonic predictions made.

Finally, given that we have full sequences of harmonic data, we can

use our Performance Following technique as the input to an automatic

accompaniment system. We will return to this idea in Chapter 6.

5.8 Summary

In this chapter we have presented a technique for predicting harmonic

content in polyphonic audio signals based upon the repetition of musical

patterns, with no access to a musical score. Furthermore, our technique

is real-time, allowing its use in live performances.

With beat-synchronous sequences of harmonic features as an input, we

have used a sequence alignment technique based upon dynamic program-

ming to identify repetitions in the past of recent musical developments

within the wider context of the performance. Based upon the events pro-

ceeding these repetitions, we have made predictions of future harmonic

content.
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We have conducted an objective evaluation of our technique on a

database of acoustic guitar pieces, comparing it to several other tech-

niques. Our approach outperforms the others in the evaluation, and we

have demonstrated that we are able to predict a large majority of repeated

content, and a majority of content overall, with no prior information in

the form of a score.

Reproducible Research

We have made available, under a Creative Commons license, both the

data set and Matlab source code so that our results can be independently

reproduced. We have also made available a real-time implementation of

our technique for the Max/MSP environment2.

2http://www.eecs.qmul.ac.uk/∼adams/pf/



Chapter 6

Musical Audio Analysis In Practice:

Applications for Live Performance

In previous chapters we have described a number of techniques for extract-

ing information from live performances in real-time. The information from

such musical audio analysis can be used by some form of live performance

application to produce a response – audible, visual, tactile or otherwise.

We now describe a number of different applications for live performance

based upon the analysis techniques presented in Chapters 3, 4 and 5.

6.1 Beat Tracking and Audio Effects

Audio effects are now commonplace tools within live musical performances

and recording studios. Each audio effect will have a number of parameters,

controllable by musicians, such as the length of a delay time in millisec-

onds, or the rate of an oscillator in Hertz (Hz). In some situations it

can be desirable to link the parameter values to the tempo or beat of a

performance.

However, effects that are synchronised to the tempo and beat can be

difficult to create in live performance situations. For example, to cre-

ate a delay effect (similar to an ‘echo’) where the signal is delayed for

the length of one beat, we must know the exact tempo of the perfor-

mance when setting the delay time. Calculating tempo information is not

easy (or desirable) for musicians to do in real-time performance situations.

Furthermore, the tempo of the performance may later change, rendering

previous audio effect settings obsolete.

149
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One solution to such a problem is for musicians to synchronise their

performance to an artificial ‘click track’ – a computer controlled series of

pulses at a specified tempo. This click track will not vary in tempo and

so audio effects can be created that are related in some way to the beat

or tempo of the performance. Synchronisation is maintained as long as

the musician does not deviate from the click track. Unfortunately, this

‘flat tempo’ approach can lead to performances that are mechanical or

inexpressive.

Another solution is to use one of several commercially available ‘tap-

tempo’ pedals, such as the Line 6 Echo Park1. These pedals allow the user

to ‘tap’ their foot twice in time to the beat, with the time between ‘taps’

used to inform the effect of the tempo. Such an interface does allow the

creation of effects synchronised to the beat or tempo in expressive time-

varying performance. However, as the tempo in the performance varies,

the musician will have to update the pedal with the new tempo. This is

undesirable as it creates a need for the musician to concentrate on the

maintenance of technology rather than the performance itself.

In this section we present a solution to this problem by using beat

and tempo information from a real-time beat tracker to automatically

update audio effect parameters. The musician is able to set parameters

in terms relative to the tempo or beat, for example applying a delay time

of a single beat, rather than a number of milliseconds. Beat tracking

information allows us to automatically update parameter settings to stay

synchronised with a live performance.

Beat-trackers provide us with two pieces of information – the perfor-

mance tempo and the location, or phase, of the beats in the performance.

We describe both tempo-synchronous audio effects, that make use of only

tempo information, and beat-synchronous audio effects that make use of

both tempo and beat phase information.

1http://line6.com/tonecore/echoPark.html (accessed 25th February 2011)
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6.1.1 Tempo-Synchronous Audio Effects

Tempo-synchronous audio effects automatically adapt effect parameters

to synchronise with the performance tempo – as provided by a real-time

beat tracking system. We present here a tempo-synchronous delay effect.

Tempo-Synchronous Delay

A delay effect creates the impression of an ‘echo’ by delaying sounds for a

certain amount of time and mixing them with the original signal. A con-

ventional delay effect uses a user-defined delay time parameter, specified

as a number of audio samples (though the user will normally control this

in milliseconds). The output signal, y[n], is calculated by [Zolzer, 2002]:

y[n] = x[n] + α · x[n−Q] (6.1)

where x[n] is the input signal, Q is the number of audio samples to delay

the signal by and α is the gain factor that controls the amplitude of the

delayed signal.

In order to make this effect tempo-synchronous, we replace the param-

eter Q with a value related to the beat period, τ , provided by the beat

tracker:

y[n] = x[n] + α · x[n− (λ · τ)]. (6.2)

The user is now able to control the delay time in multiples of the beat

using the λ parameter, rather than by setting a delay time as a number

of audio samples Q.

At each beat we will receive a new estimate of the beat-period from

the beat tracker. The likely scenario is that there will be variations in the

tempo and this will cause sharp changes in the length of the delay time. A

potential side effect of this is that there can be phase mismatches between

the delayed audio signal before and after the tempo change. This can

lead to unpleasant audible artefacts. In order to avoid this problem, we

crossfade the pre- and post-tempo change delayed signals for the length of

a single audio frame (in the case of our real-time beat tracker presented
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in Chapter 3 this is 512 audio samples). The result is a smooth change

from one delayed signal to another, with no artefacts.

6.1.2 Beat-Synchronous Audio Effects

Beat-synchronous audio effects differ from tempo-synchronous audio ef-

fects in that they use both the tempo and beat location information to

inform performance. Some audio effects have an inherent frequency at

which they perform their processing – for example the modulation of the

amplitude of an audio signal in a tremolo effect will happen at a rate spec-

ified in Hz. They are often controlled by an oscillating signal or oscillator.

If we are to synchronise effects such as these to the temporal charac-

teristics of live performances, then in addition to relating the frequency

of an oscillator (in Hz) to the tempo of the performance, we may want to

cause the ‘phase’ of the oscillator to be synchronised with the location of

beats. For example, we may want the maxima of the oscillator to occur

at beat locations.

In this section we present a number of beat-synchronous audio effects

that make use of both tempo and beat phase information from a real-

time beat tracker. Specifically we present a technique for creating a beat-

synchronous oscillator from a phasor signal and then detail its use in a

number of oscillator based effects – a tremolo, a flanger and an auto-wah.

A Beat-Synchronous Phasor

The key component of beat-synchronous audio effects is a beat-

synchronous phasor. The beat-synchronous phasor, θ, takes values in the

range [0, 2π] representing the phase position of some arbitrary oscillator

with the constraint that the cycle should begin at zero at one beat and

end at 2π after R beats, where R is the length of the phasor cycle in beats.

Once the phasor reaches 2π, it will automatically reset to zero.

Tempo changes in the performance will cause the regularity of beat

times from the beat tracker to change. Therefore the frequency of the

beat-synchronous phasor must be adjusted to maintain synchronisation

with the beats. This involves setting the frequency of the phasor in such
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a way that it will end its next cycle after R beats.

At each beat, occurring at detection function sample m, the value of

the phasor is θ(m). The target value of the phasor at the next beat, θtar,

is dependent upon the number of beats in a phasor cycle, R, and the index

number of the next beat (between 1 and R) of the next beat in the cycle

of the R beats:

θtar = (
r + 1

R
) · 2π (6.3)

where r = 0, ..., R − 1, the number of the current beat in the cycle of R

beats. For example, if we have a phasor that will repeat over 4 beats, and

the next beat will be the 3rd beat, then the target value of the phasor at

the next beat will be θtar = 3
4
· 2π = 3π

2
.

In order for the phasor to maintain synchronisation with the beat

tracker, we must update the value of the phasor at each time step with an

incremental value that will cause it to reach its target value, θtar, at the

next beat . At the mth audio frame, the value of the beat-synchronous

phasor is calculated by:

θ(m) = θ(m− 1) + ζ (6.4)

where θ(m−1) is the value of the beat-synchronous phasor at the previous

time-step and ζ is an incremental value. This incremental value is calcu-

lated at each beat and is dependent on the current value of the phasor,

the target value of the phasor at the next beat, θtar, and the beat period,

τ , in detection function samples.

The incremental value is calculated differently depending upon whether

the beat at which it is updated is one where we expect the phasor cycle

to end and reset to zero – a ‘reset beat’ – or one where we do not expect

the phasor to reset to zero – a ‘non-reset beat’.

At non-reset beats, we simply calculate the incremental value, ζ, by:

ζ =
θtar − θ(m)

τ
. (6.5)

If we expect the beat-synchronous phasor to reset at the beat in ques-

tion, then we must analyse the state of the phasor before deciding on the
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incremental value. There are two possible scenarios.

Firstly, it is possible that the beat in question was earlier than expected

and the phasor has not yet reset to zero – in which case we must adjust

the incremental value so that the phasor increases at a rate that allows it

to reach the end of its cycle and then reach its target value by the next

beat:

ζ =
(θtar − θ(m)) + 2π

τ
. (6.6)

If, however, the beat is later than expected and the phasor has already

reset, then we calculate the value of the incremental value as in Equation

6.5.

The beat-synchronous phasor uses a linear form of synchronisation.

However there may be more complicated, non-linear equations that would

provide better synchronisation. These will be investigated in future. The

algorithm for the beat-synchronous phasor can be seen as pseudo-code in

Algorithm 1. Example plots of the beat-synchronous phasor can be seen

in Figures 6.1(a) and 6.1(b).

A Beat-Synchronous Low Frequency Oscillator

In order to create an oscillator for beat-synchronous audio effects, we

use the beat-synchronous phasor, θ, to create a beat-synchronous low

frequency oscillator (LFO), Λ. This LFO will have a frequency related

automatically to the beat period of the performance and be phase aligned

with the beats. We allow the user to specify the frequency of the LFO

as a number of cycles per beat, Ω. This frequency is determined by the

length of the beat-synchronous phasor cycle in beats R and a frequency

ω:

Ω =
ω

R
(6.7)

If we wish to have an oscillator at a rate of Ω ≥ 1 (one or more cycles

per beat) then we set ω ≥ 1 and R = 1. However, if we want cycles that

last for multiple beats so that there is less than one cycle per beat, i.e.

Ω < 1 then we set ω = 1 and R > 1.
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(b) A Beat-Synchronous Phasor with Cycle Lengths of R = 2

Figure 6.1: Beat-synchronous phasors. The phasor signal is the solid line and
the beats are indicated by vertical dotted lines

We then calculate a beat-synchronous low frequency oscillator by tak-

ing some function of the beat-synchronous phasor, θ. For example, a raised

cosine beat-synchronous LFO:

Λcos(m) =
cos(ω · θ(m)) + 1

2
(6.8)

Note that we add one and divide by two in order to set the range of the

beat-synchronous LFO to [0,1]. Figures 6.2(a), 6.2(b) and 6.2(c) show

three cosine beat-synchronous low frequency oscillators at different fre-

quencies.

A Beat-Synchronous Tremolo

A tremolo effect is the modulation of the amplitude of an audio signal by

a low frequency oscillator (LFO) [Zolzer, 2002]. We can create a beat-

synchronous tremolo using a cosine beat-synchronous LFO:
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Algorithm 1 A Beat-Synchronous Phasor
{Initialise variables...}
Given sampling frequency fs, hop size H, initial tempo bpm = 120.
r = 0
R = length of phasor in beats
τ = round((60/bpm) · (fs/H))
ζ = 2π

R /τ
θ(0) = 0
resetflag = 0
{Main Algorithm}
for each detection function sample, m, starting from m = 1 do
{Update phasor}
θ(m) = θ(m− 1) + ζ
if θ(m) > 2π then

θ(m) = θ(m)− 2π
end if
{If there is a beat}
if beat event γb at sample m then

τ = γb − γb−1 {get new beat period τ}
r = r + 1 {set current beat number}
if r == R then

r = 0
end if
θtar = ( r+1

R ) · 2π {get target value for θ at next beat}
{if this is a beat where we expect the phasor to reset}
if r == 0 then

if resetflag < 0 then
{beat is late, phasor has already reset to zero}
ζ = θtar−θ(m)

τ
resetflag = 0

else
{beat is early/on time, phasor has not yet reset to zero}
ζ = (θtar−θ(m))+2π

τ
resetflag = 1

end if
else

ζ = θtar−θ(m)
τ

end if
end if

end for

y[n] = x[n] · Λcos(m) (6.9)

where n is the index of each audio sample, x[n] and y[n] are the input

and output signals and Λcos(m) is the value of a cosine beat-synchronous

LFO at detection function sample m. Our experience of using the effect
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(a) A Beat-Synchronous LFO at Ω = 1 cycle per beat, with Ω = ω
R

with ω = 1 and
R = 1.
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(b) A Beat-Synchronous LFO at Ω = 2 cycles per beat, with Ω = ω
R

with ω = 2 and
R = 1.
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(c) A Beat-Synchronous LFO at Ω = 0.5 cycles per beat, with Ω = ω
R

with ω = 1 and
R = 2

Figure 6.2: Beat-synchronous Low Frequency Oscillators using a cosine func-
tion. The solid line is the oscillator signal while the vertical dotted lines indicate
the beats.

indicates that we would typically expect the frequency to be one or more

cycles per beat, i.e. Ω = ω
R
≥ 1 where R = 1 and ω ≥ 1.

A Beat-Synchronous Flanger

A flanger is an audio effect whereby two identical audio signals are mixed

together – with one signal delayed by a small and varying amount [Zolzer,
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2002]. The effect results in a ‘whooshing’ sound passing through the sig-

nal. We can create a beat-synchronous flanger by using a cosine beat-

synchronous LFO to modulate the length of a variable delay line of length

D:

D(m) = Λcos(m) ·Dmax (6.10)

where Dmax is the maximum length of the delay line (usually around 2ms).

The effect is then implemented as follows:

y[n] = x[n] + α · x[n−D(m)] (6.11)

where we choose α = 0.7. We would typically expect there to be one or

more beats per cycle for this effect, i.e. Ω = ω
R
≤ 1 where R ≥ 1 and

ω = 1.

A Beat-Synchronous Auto-Wah

A ‘wah’ effect produces a colouring of the sound in such a way that

it sounds like the human voice uttering the sound “wah-wah”. This is

achieved by moving a bandpass filter up and down in the frequency range

where human vocal formants vary to change the sound of vowels [Zolzer,

2002]. In many cases, the cutoff frequency of the bandpass filter is con-

trolled by a pedal. An ‘auto-wah’ effect controls the cutoff frequency of

the bandpass filter using an oscillator, rather than a foot pedal. We can

create a beat-synchronous auto-wah effect by using a beat-synchronous

LFO to modulate the cutoff frequency fc:

fc(m) = fbase + (Λcos(m) · frange) (6.12)

where fbase and frange are respectively the base cutoff frequency and sweep

range, in Hz, of the bandpass filter. We would expect typical usage of this

effect to be with a beat-synchronous LFO operating at one or more cycles

per beat, in a similar way to the beat-synchronous tremolo. Through

experimentation we choose the values fbase = 100Hz and frange = 1000Hz.
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6.1.3 Implementation

The beat-synchronous audio effects are implemented in C++ and wrapped

as externals for Max/MSP for use with real-time audio signals2.

6.2 Synchronising Video to a Live Performance

Many have experimented with the projection of video to accompany live

musical performances. For example there is the real-time sequencing and

mixing of pre-stored video footage, synchronised to music, often referred

to as VJing [Spinrad, 2005]. Information from audio processing such as

audio splicing and onset detection has been used to directly manipulate

video playback [Collins and Olofsson, 2006]. In other work Lew [2004]

developed a musical instrument as an interface for controlling the live

editing of video footage or Live Cinema. A detailed discussion of live

audiovisuals has been presented by Alexander and Collins [2007].

As indicated by the rise of music video channels such as MTV since the

1980s, it is now commonplace for bands and musicians to produce videos

to accompany some of their pieces of music. Indeed, many independent

artists now produce videos for their music – or collaborate with filmmakers

to do so. The projection of these videos during live performances is also

becoming more commonplace.

However, there remains a problem. The video is likely to contain time

sensitive editing related to events in the music. If a band projects their

music video during a live performance – given that the live performance

tempo will differ from that of the recording the video was edited to – how

can the band ensure that the events in the video and the events in the

music coincide?

A simple solution is for the band to play to a click track – played into

the headphones of a key performer, such as the drummer. By playing

at a computer defined tempo the band will be able to play to the exact

tempo of the original performance, allowing the video to stay in time.

Unfortunately, this option heavily detracts from the expressive nature of

2http://www.eecs.qmul.ac.uk/∼adams/software.html
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a live performance, forcing the musicians to stay in time with an inflexible

computer clock.

To allow musicians to be able to perform in time with their music

videos while also performing expressively, here we outline a solution that

uses information about the beats in the performance, provided in real-time

by a beat tracking system, to adjust the speed of the video to stay in time

with a live performance.

In particular we are attempting to match the beats in a live perfor-

mance – which will likely contain tempo variations at points – with beat

associated video frames – which in turn are determined by a different

performance which will contain different tempo variations from the live

performance.

We now present a solution that, at each beat, examines the current

frame of the video, the current tempo and the desired frame of the video

and the next beat (according to a set of annotated beats) and sets the

frame rate of the video accordingly so that synchronisation between the

video and live performance is achieved.

We consider a video, at F frames per second, with associated annotated

beat times as video frame numbers, Ay, for the recorded audio to which

the video was originally edited to. We begin to play the video from the

first beat, γ0, occurring at zero seconds, at a frame rate, frate, equal to

the initial frames per second, i.e. frate = F .

Then, at each beat indicated by the beat tracker, we record the time

in seconds of the beat, γb, and also the video frame in the video at which

it has occurred, Vb. We then record the index of the nearest beat in the

annotations, g:

g = arg min
y
|Vb − Ay|. (6.13)

We are then able to calculate the new frame rate of the video by dividing

the number of video frames to the next beat by the inter-beat interval of

the performance in seconds:

frate =
Ag+1 − Vb

γb − γb−1

. (6.14)
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Figure 6.3: A performance using the automatic synchronisation of video (dis-
played on screens behind the performers) to a live performance. The author is
on the right. Photograph: Chris Matthews.

When building such a system, we are making the assumption that the

structure of the live performance is identical to that of the recorded audio

for which the video was made.

In practice, adjusting the frame rate of the video at every beat (every

0.5 seconds at an example tempo of 120bpm) is unnecessary. Rather, our

experience shows that the video frame rate needs to be adjusted only every

few seconds to maintain synchronisation. Furthermore, as we identify the

nearest beat in the annotations given each beat from the performance

(in Equation 6.13), at faster tempi it only takes small beat timing errors

(around 0.2 seconds at 160bpm) to cause the wrong beat to be identified.

This makes the system vulnerable to small beat tracking errors.

For these reasons, we suggest updating the video at the bar level. This

involves both annotating the video at the bar level and inputting only bar

level beats to the system. If the piece is in a 6
4

time signature, with 6

beats in a bar, for example, then we would input the first of every 6 beats.

The time signature can be specified prior to the performance.

Figure 6.3 shows an image from a performance where this algorithm

was used to synchronise video playback to a performance – although in
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the case in question the performance beat times were entered by a human

using a computer keyboard, rather than a beat tracking algorithm. This

was due to the variability of beat tracking performance on different pieces

of music and the practicality of providing audio to a projecting laptop in a

small venue. However, we have successfully used automatic beat tracking

in rehearsal to synchronise video to live performers.

Implementation

The video synchronisation technique is implemented in C++ using open-

Frameworks to control the rate of the video in response to beat events

sent by our real-time beat tracker from Max/MSP.

6.3 Visual Displays Informed By Harmonic Analysis

Through our real-time chroma analysis algorithm (presented in section

3.2) we have a signal giving us information about the harmonic content of

a performance. In this section we describe a technique for linking this har-

monic information automatically to visual displays to create a responsive

multimedia performance.

We can use the information from our chroma analysis algorithm to

control the tonal balance of the red, green and blue in a video which can

lead to interesting synchronisation between visual accompaniments and

live performances. A mapping from a harmonic profile to visual effects is

creative in nature and so here we demonstrate what should be considered

a single example mapping.

The parameters passed to the video are the amount of red (vr), green

(vg) and blue (vb) expressed as values between 0 and 1. Given the 12 values

in our chroma vector, C, produced by our chroma analysis technique in

Chapter 3, we calculate the values of the three colour components in the

video as follows:

vr =
round(C(0) + C(7))

2
(6.15)

vg =
round(C(2) + C(9))

2
(6.16)
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(a) A video image with a dominant red colour tone due to harmonic
content containing a large amount of the C and G pitch classes.

(b) A video image with a dominant green colour tone due to harmonic
content containing a large amount of the D and A pitch classes.

(c) A video image with a dominant yellow colour tone due to harmonic
content containing a large amount of the G and D pitch classes.

(d) A video image with a dominant blue colour tone due to harmonic
content containing a large amount of the E and B pitch classes.

Figure 6.4: A video of a zoetrope affected by different colour balances deter-
mined by our mapping from the real-time chroma analysis algorithm to the
proportions of red, green and blue in the video image.

vb =
round(C(4) + C(11))

2
(6.17)

This mapping means that the amount of red in the video is determined by
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Figure 6.5: An implementation, in Max/MSP, of video display colour tone being
affected by harmonic analysis.

the amount of C and G in the signal, the amount of green is determined by

the amount of D and A in the signal and the amount of blue is determined

by the amount of E and B in the signal. As these pairs of notes are

separated by an interval of a 5th, many chords will contain both notes.

This creates harmonic ‘centres’ linked to certain colour balances.

Figures 6.4(a) to 6.4(d) show four screenshots of a video of a zoetrope

(an early spinning cylindrical device for animating images – the user looks

through slits to see the animation) affected by four different harmonic

profiles from a chroma vector.

Implementation

The harmonic control of video colour tone is implemented in Max/MSP

using our chroma analysis external, chroma∼. The patch can be seen in

Figure 6.5.



6.4. BEAT-SYNCHRONOUS LIGHTING PATTERNS 165

Figure 6.6: An implementation, in Max/MSP, of a beat-light matrix controlled
by our real-time beat tracker, btrack.

6.4 Beat-Synchronous Lighting Patterns

It can be very visually effective for lighting changes to be synchronised

with the beats of a performance. For controlling such lighting we present

an interface that allows easy specification of patterns which are then au-

tomatically synchronised to the beat of the performance.

The interface we present is called a beat-light matrix, M . It is a B×L

matrix where B is the number of beats in the pattern (usually the number

of beats in the bar) and L is the number of lights. Each entry M(i, l) is

binary, indicating whether light l should be on or off at beat i.

Our real-time beat tracker is then used to cycle through the B columns

of the matrix and each L-bit binary column is used to turn the L lights

on or off.

Figure 6.6 shows an example implemented in Max/MSP with an 8 beat

cycle and 4 lights. In the top left hand panel we can see the audio input

fed to our beat tracker btrack. The beat events from this beat tracker

are then fed into the bottom left hand panel where they control a counter
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running from 0 to 7. These values select the columns from the beat-light

matrix which has a lighting pattern pre-programmed into it. Each 4-bit

binary column is then sent to the third panel in the bottom right which

determines whether the 4 lights are ‘on’ or ‘off’. The image has been taken

when the 5th column of the matrix (the counter says 4, as it starts at 0)

and so three lights are on (green, red and blue) as indicated by the column

of the matrix.

Implementation

The beat-synchronous patterned lighting is implemented in Max/MSP

using our real-time beat tracking external, btrack∼. Currently only sim-

ulated lights are controlled in the software – however, communications

technologies for controlling lighting such as DMX could be used to control

real lighting with minimal adaptations to the current implementation.

6.5 Automatic Accompaniment Using Performance

Following

In Chapter 5 we presented our ‘performance following’ technique for pre-

dicting harmonic content in musical performances containing repetition.

The prediction, at each beat, was of a 12×1 chroma vector indicating the

predicted harmonic content of the beat in question.

Making use of this information, we implement an automatic bassline

accompaniment by using the chord classification technique presented in

section 3.3 to discover the root note of the harmonic vector. We then use

the pitch class of the root note to generate a MIDI note which is sent to

a synthesiser in Ableton Live.

The resulting combination of our performance following technique and

the use of the root note information from our chord detector is that we

have a simple automatic accompaniment system capable of identifying

repeated musical patterns and playing a bassline, in real-time, with no

prior knowledge.

This is currently a very literal bassline as our chord detection algorithm
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does not detect inversions and no other tones are substituted in for the

root note. In future work we will investigate using the full polyphonic

nature of the predicted chroma vectors to inform a real-time generative

music system capable of more interesting accompaniments than a simple

bassline. This would give the system the degree of complexity (as defined

in Chapter 2) necessary to produce a fully interactive music system.

6.6 Beat-Synchronous Sample Playback

In a live performance, due to variations in tempo, the use of recorded

samples that have some form of ‘beat’ involves ensuring that the tempo

and beat locations of the sample match those of the performance. In this

section we present a method for automating this process.

The information provided by our real-time beat tracker allows us to

inform existing technology of the nature of the performance in which it

is involved. In this particular case we use information from our real-

time beat tracker to inform live performance software Ableton Live of the

performance tempo.

Ableton Live is equipped with an interface for identifying the beat loca-

tions of recorded sound files so that they can be effectively time stretched,

in real-time, to be performed at any tempo. By providing information

about the beat and tempo to Ableton Live we can automatically cause

any sound sample to be played in time with a live performance.

Feeding a live audio signal into our beat tracker in Max/MSP, we then

send each beat to Ableton Live as a MIDI message. Ableton Live receives

each beat as a ‘tap’ for its tap-tempo interface which automatically adjusts

the system metronome. In Ableton Live we can then trigger a sound file

at any beat and it will play in time with the live performance, with no

other instruction from a human. This process is depicted in Figure 6.7.

6.7 Summary

In this chapter we have demonstrated a number of ways in which real-

time musical audio analysis algorithms – in particular those presented in



6.7. SUMMARY 168

Figure 6.7: The use of a real-time beat tracker, in Max/MSP, to send beat
information to Ableton Live, allowing beat-synchronous sample playback.

preceding chapters – can be used to create novel performance tools for

musicians.

We have demonstrated that real-time beat tracking can be used to

control the parameters of audio effects, to synchronise a video to the per-

formance of a live band, to synchronise the tempo of audio samples to live

performances and to create lighting patterns that automatically change

in time to the beat. We have shown also that harmonic analysis can be

used to control the colour tone of video displays. Finally we have shown

that the predictions from our performance following technique can be used

to generate a simple bass line accompaniment in real-time, with no prior

knowledge in the form of a score.



Chapter 7

Conclusion

In this thesis, we have explored the use of musical audio analysis to inform

applications in live musical performances. We have developed a number

of musical audio analysis algorithms and explored ways of following tem-

poral developments in musical performances – allowing live performance

technologies to have a representation of their musical surroundings.

Specifically we have developed real-time algorithms for extracting beat

and harmonic information, combined these to create a beat-synchronous

harmonic representation, using the result in a ‘performance following’ tech-

nique for identifying repeated patterns in musical performances. We have

then demonstrated the use of these analysis techniques in applications for

live performance.

In Chapter 1 we outlined four specific objectives for this thesis. The

first was the development of real-time musical audio analysis algorithms

which we met with the beat tracking, chroma analysis and chord recog-

nition techniques presented in Chapter 3. The second objective was the

exploration of the combination of these musical audio analysis algorithms,

which we explored in section 3.4, outlining techniques for calculating beat-

synchronous harmonic representations. In Chapter 5, the use of these

representations as an input for our performance following technique for

predicting the harmonic content of repeated musical patterns met our

third objective. Finally, meeting our fourth objective, we have outlined

in Chapter 6 a number of live performance applications based upon these

techniques for musical audio analysis that automate the control of audio

effects, audio samples, video and lighting in real-time performance situa-

tions.

169
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7.1 Thesis Contributions

We now summarise the main contributions of the work in this thesis.

A Real-Time Beat Tracker

In section 3.1 we presented a computationally efficient and robust beat

tracker for real-time audio signals. Extending an existing offline model

[Ellis, 2007] based upon dynamic programming, we have replaced its non-

causal tempo estimation phase and method for determining beat locations

with causal techniques.

We have shown that the resulting causal beat tracker outperforms the

Scheirer [1998] model and is comparable in performance to the causal

model proposed by Klapuri et al. [2006]. Our model, however, is consider-

ably more computationally efficient than these approaches. Our real-time

approach also outperforms two of the four non-causal models proposed –

the Dixon [2007] and Ellis [2007] models – despite having no access to

future information.

This beat tracker was implemented as an external for Max/MSP called

‘btrack∼’, enabling its use in live performance contexts.

A Real-Time Chord Recognition Technique

We presented, in sections 3.2 and 3.3, real-time chroma analysis and chord

recognition techniques specifically focused on use in a live performance

context. By mapping energy from spectral peaks to pitch classes, rather

than larger spectral ranges, we presented a chroma analysis calculation

technique suitable for real-time performance. This chroma analysis tech-

nique was the input to a chord classification technique that compares the

chroma vector to a number of templates, masking out expected note po-

sitions and choosing the template that minimises residual energy.

We have shown that our approach performs comparably to other

chroma analysis and chord recognition techniques when classifying au-

dio frames of acoustic guitar signals as chords. However, our model is

considerably more computationally efficient than the other techniques it
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was compared to.

We have presented real-time implementations of these techniques as

Max/MSP externals called ‘chroma∼’ and ‘chorddetect∼’ for practical

use in musical performances.

A Modular Beat Tracking Evaluation

In Chapter 4 we conducted a modular study of five state of the art beat

trackers. Splitting them into their input feature and tracking model we

evaluated the resulting 20 combinations on two separate databases. We

have examined the results with specific focus on the input features and

tracking models outside of the context of their original combinations. We

also studied the variations in their performance when applied to different

genres, observing that different input features resulted in the best perfor-

mance for different genres of music.

We compared, for each tracking model, the best score with a single

input feature to the score with an ‘oracle’ input feature – where the best

input feature is used for each audio file. The substantial increases in

performance indicate that some automatic method for choosing the most

appropriate input feature for a given audio signal would improve perfor-

mance. We conducted similar studies using an ‘oracle’ tracking model and

‘oracle’ parameter settings for a given tracking model. Again, these stud-

ies implied that selection of appropriate models or parameters for different

signals would improve performance.

Finally, we studied the result of applying some of these lessons to our

real-time tracking model by choosing genre specific input features and

parameter settings.

A Performance Following Technique

We presented a technique in Chapter 5 for predicting harmonic informa-

tion in musical performances with no prior information in the form of a

score. Taking as an input the real-time beat-synchronous harmonic repre-

sentation outlined in Chapter 3, we compare the most recent few seconds
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of a performance to the most recent few minutes. This process of con-

textualisation allows us to identify repetitions of musical patterns, from

which we can make predictions of future harmonic content.

We have compared our technique to others in an objective evaluation.

We were able to show that our technique was able to predict a majority

of repeated content, and more than any of the techniques to which it was

compared. Finally, based upon this technique we have presented a simple

bassline following application.

Live Performance Applications

Making use of the real-time musical audio analysis techniques presented

in earlier chapters we demonstrated several novel live performance appli-

cations in Chapter 6. By making use of information from our real-time

beat tracking technique we have shown that we can automatically link

audio effect parameters to the beat and tempo of live performances. We

have demonstrated a tempo-synchronous delay and a beat-synchronous

tremolo, auto-wah and flanger.

We have shown that real-time beat tracking information can be used to

synchronise a video to a live musical performance by adjusting the frame

rate of the video to match beats in the performance to annotated beats

relating to the video. We have also shown that beat tracking can be used

to synchronise both audio samples and lighting patterns to the beat and

tempo of live performances.

Using our harmonic analysis technique we have shown that we can re-

late the colour tone of videos in live musical performances to the harmonic

changes of musical instruments.

In addition to the contributions above, we believe that a key test of the

strength of this research is the wider impact it has on others – in particular

its practical use in performances and integration into applications. We now

turn to the (known) use of this work by others, at the time of writing.
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7.2 Wider Use of This Research

It is cause for confidence in the musical audio analysis tools presented in

this thesis that they have been used by third parties for both real-time

musical applications and in commercial software. Here we outline this

third party use.

Project LSD

The Max/MSP implementations of the real-time beat tracking (btrack∼)

and chord recognition (chorddetect∼) techniques presented in Chapter 3

of this thesis have been used as part of Project LSD – an “interactive music

visualizer”. The project was created as part of a bachelor group project

at the Department of Media Technology at the University of Aalborg,

Denmark [Hansen et al., 2010]. Martin Weiss Hansen, one of the four

instigators, explains the project:

A prototype of the interactive music visualizer, LSD (Listen,

See & Dance), was developed. Beat tracking, chord detection

and MFCC extraction are used as parameters to the creation

of the music visualization. The users can interact with the

system by moving their bodies, waving glowsticks and shouting

or cheering.

The prototype was tested at a party arranged by Art & Tech-

nology at Platform4, Aalborg. LSD was set up to accompany

three DJs playing at the party. The experiment showed that

the attendees were engaged when they interacted with the mu-

sic visualization.

Exploration of Real-Time Rhythmic Automatic Accompaniment

The Max/MSP implementation of the real-time beat tracker (btrack∼)

has been used in a master’s dissertation by Tim Canfer [2010] focused on

an exploration of real-time rhythmic automatic accompaniment (which

focused also on the drum tracker B-Keeper, presented by Robertson and

Plumbley [2007]). In the dissertation, Canfer concludes:



7.2. WIDER USE OF THIS RESEARCH 174

The real surprise of this project was the performance of the

most recent beat trackers, which has been extremely encour-

aging for the prospects of a fully working system of real-time

rhythmic automatic accompaniment as suggested in section 5.2.

Prior to exploring B-Keeper and btrack∼, there was a very

real possibility that even the most up-to-date technology was

just not sophisticated enough to be able to supply an accurate

enough beat tracker for the system. In fact, the general im-

pression that I have received from musicians, academics and

laypeople alike was that I would quickly come down out of the

science fiction fantasy idea when I started to look at the prac-

tical limitations of technology. While still not wanting to be

unrealistic about the prospects of this real-time rhythmic au-

tomatic accompaniment system, it does look like there may be

a real possibility of this being able to work on stage. [Canfer,

2010]

Capo 2

In the context of single audio files, our chord classification technique, pre-

sented in section 3.3, has been used as part of a commercial software pack-

age called Capo 2 by a Canada-based company called SuperMegaUltra-

Groovy1. This software aids musicians by helping them to learn to play

music in their collections by annotating them with information such as

chord labels. In a personal communication, Christopher Liscio from Su-

perMegaUltraGroovy explains the use of our chord recognition technique

in Capo 2:

Capo uses this chord recognition technique as a basis for its

Chord Marker feature. As the user listens to a song, they tap

the ‘k’ key to drop a marker that contains a detected chord for

that time period. If the detection is incorrect, the user may

easily replace the chord by typing in simple strings such as

‘bbmaj7’ or ‘eb9’.

1http://capoapp.com/
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When a song is loaded, the chromagram representation is cal-

culated alongside the spectrogram display (which is based on

a modified version of the Constant Q Transform). When the

user drops a chord marker, the stored chromagram representa-

tion is used to determine the chord at the current time. This is

achieved by averaging successive chromagram frames starting

at the current time, and within a 300ms time window.

We believe that these accounts of the use of our musical audio analysis

tools in practice demonstrate that their level of performance is such that

they are practically useful as tools for musicians.

7.3 Future Work

We now outline some areas for potential future research that have arisen

from the work in this thesis. We see the main areas as broadly the improve-

ment of the musical audio analysis algorithms presented, the development

of musical audio analysis algorithms to represent musical features other

than beat and harmonic information, the development of more complex

live performance applications and the communication of the potential of

these techniques to the wider music community.

7.3.1 Improving Musical Audio Analysis Techniques

We have seen the development of a number of applications based upon

real-time musical audio analysis. Due to the fact that they rely on the

information from the analysis, these applications are only as good as the

analysis techniques that underpin them. We have shown that the analysis

techniques we have presented are as robust as state of the art techniques,

while being comparatively computationally efficient. We have also shown

in this chapter that others have been able to successfully use these tech-

niques for practical applications. However, there is still room for improve-

ment if they are to be truly reliable and robust in all situations.
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Beat Tracking

Due to the sensitivity of humans to timing differences between musical

events [Hirsh, 1959] – and therefore the sensitivity to beat tracking errors –

a clear area for future study is the improvement of real-time beat tracking.

Through our modular study of beat tracking algorithms, presented

in Chapter 4, we found evidence that a ‘one size fits all’ approach to

beat tracking – where a single input feature and set of parameters are

used for all signal types – is limited in its approach (in agreement with

earlier work by Collins [2006a]). Future work would involve discovering

automatic ways to select appropriate input features and parameters, based

upon some signal characteristics.

We also found in Chapter 4 that our real-time beat tracking model

performed comparably to non-causal approaches for genres of music of-

ten characterised by a strong beat, such as Rock, Pop and Dance music.

However, the difference between our real-time approach and the non-causal

techniques was larger for genres such as Classical and Folk music that more

often contain stylistic tempo variations. As a result, future work should

address the performance of real-time models on these musical styles.

Harmonic Analysis

While beat tracking errors can be noticed with very low tolerance, the er-

rors in our harmonic analysis techniques, in particular the chroma analysis

technique, are not quite as critical. Where there are small errors, we can

measure the Euclidean distance between the correct and actual chroma

vectors, and it is unlikely that the distance will be large if the signal is

clean. We are faced with two small problems, however.

Firstly, while small errors are unlikely to produce a wildly different

chroma vector to the correct one, they can lead to misclassifications for

subsequent analysis such as chord recognition. As a result, future work

may involve techniques to improve either the chroma analysis technique

or to build tolerance for energy produced by harmonics into the chord

classification technique.

The second problem we face is the calculation of chroma vectors from
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larger ensembles. It has been noted that the presence of percussive instru-

ments can introduce noise to the chromagram that may adversely affect

any applications that make use of it [Harte and Sandler, 2005; Lee, 2006;

Cho et al., 2010]. It would be beneficial to examine how pre- and post-

filtering strategies used to mitigate errors in offline chord analysis [Cho

et al., 2010] could be implemented in real-time.

Dealing with multiple instruments is another complication as some

may be playing tones that are not part of the main chord. Mauch and

Dixon [2008] have identified the need to model “non-chord notes” as well

as those expected to be in a given chord, which would aid chord recognition

in such situations. It could be claimed that by using a direct audio signal

from a single instrument we can avoid this problem – however it would

increase the practical use of chroma vector informed applications if we

could implement a technique that could accurately represent harmonic

information from larger ensembles and so this will be a topic of future

work.

Performance Following

Our performance following technique currently predicts harmonic infor-

mation in the presence of repetition. For it to be truly useful as an infor-

mation source for automatic accompaniment systems, it must be built into

a larger system capable also of making predictions of harmonic content in

the absence of repetition.

It would also be useful to allow the prediction of harmonic content at

a resolution finer than the level of the beat as many musical events will

be missed by the use of ‘one harmonic vector per beat’ approaches. A

beat-synchronous approach could be developed that segmented the signal

at faster metrical levels.

7.3.2 Implementing Other Musical Feature Extraction Tech-

niques

We have studied two forms of musical audio analysis – beat tracking and

harmonic analysis. There is, of course, much more to music than these
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two aspects, and so a clear topic for future work is the implementation

of other musical audio analysis techniques – and the exploration of their

potential use in applications.

Specifically, we suggest developing robust and efficient techniques for

the real-time analysis of monophonic pitch, multi-pitch extraction, melody

extraction and musical key analysis. Extending beat tracking, we believe

that information about the downbeat and other metrical levels would be

invaluable. Beyond this, rhythmic information could be examined. Fi-

nally, the incorporation of timbral information into applications would be

of great interest.

7.3.3 Developing More Complex Live Performance Applica-

tions

The majority of the applications presented in this thesis are ‘reactive’,

rather than ‘interactive’. They all change their behaviour in response to

a musical input, and some (such as the beat synchronous audio effects)

have the property of mutual influence in that the change in behaviour is an

audible effect to the human performer. However, it could be argued that

applications such as the automatic bassline generator in Chapter 6 do not

possess a high enough degree of complexity to be fully interactive systems.

In future we will investigate more highly interactive music systems based

upon the musical audio analysis techniques developed in this thesis.

7.3.4 Expanding Awareness of the Technology in the Wider

Music Community

From my personal experience, it has been clear that while there are clearly

many exciting potential creative situations that can be explored through

the use of musical audio analysis in live performance, outside of the aca-

demic and computer music circles these things are not seen as possibilities.

While some forms of beat tracking, for example, are available as part of

commercial software such as Traktor 2, the intended use of the tool is with

2Traktor Pro 2: http://www.native-instruments.com/en/products/dj/traktor-pro/

(Accessed 11/08/2011)
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music at a fixed tempo and the software is primarily aimed at DJs, rather

than musicians involved in live performances with varying tempi.

The limited use of more sophisticated musical audio analysis algorithms

in live performance is because either musicians do not know that this kind

of technology exists, or if they do, it is so wrapped up in technical terms

and expert jargon that they have no way to access it. As a result, I will

be embarking upon a six month project to raise awareness and access to

these ideas in the wider music community. This project is discussed in the

next section.

7.4 Musical Interaction In The Community

Following on from the work in this thesis, I will be conducting a musical

outreach project entitled ‘Musical Interaction In The Community’. The

project will be comprised of four stages.

The first will see the development of a musical audio analysis and

applications library for live performance. This will involve the implemen-

tation of real-time musical audio analysis techniques – mainly refinements

of those already completed for this thesis – for Max/MSP and SuperCol-

lider. This will be easily achievable as all code is in the form of C++

classes which can be incorporated into different software environments

with only a few lines of code. Then a number of musical applications will

be designed as patches for Max for Live, Max/MSP and SuperCollider –

incorporating openFrameworks for visual applications involving videos.

The second stage will involve the development of an attractive, clear

and user friendly website. As well as hosting the externals, objects,

patches and open source code, this website will also host tutorials – in

video and text form – explaining in non-expert terms what each com-

ponent or application does, how to make use of it and how to set it up

in a live performance situation. The website will also contain clear, jar-

gonless documentation on each component, downloadable in pdf format.

Finally, for maximum potential communication, the website will be fully

integrated with social media such as Facebook and Twitter, with a blog

explaining the latest developments.
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The third stage will be an ‘outreach’ phase, with myself and others

from Queen Mary working ‘in situ’ with bands, musicians and installation

artists to help them use this research in their musical projects. This will

have the benefit for them of face-to-face explanation of the technology –

and, for us, of feedback on technological implementations and the potential

for new ideas for applications. In order to increase participation from

non-London-based artists, during the project we will make several trips to

elsewhere in the UK.

Further events will involve a number of workshops at Queen Mary,

talks at music performance schools, outreach events in secondary schools

and articles written for non-expert publications and magazines. Finally,

a series of concerts will be organised to showcase the work of musicians

who have been involved in the project.

The final stage will involve writing publications in the form of journal

and conference papers on the experience of communicating the research

to non-expert musicians and on any new applications developed during

discussions with musicians.

7.5 Perspectives

In this thesis we have explored a potential shift in the way humans interact

with technology in live performances. We have explored the idea that

machines can make independent analyses of their musical surroundings

and use that information to inform choices in musical and multimedia

applications.

The eventual success of this approach will be determined, like many

ideas, by its longevity and breadth of uptake amongst musicians and per-

formers. We believe that the external use of the analysis techniques so far

has been promising with positive responses on their reliability and level

of performance.

We have seen in this thesis that the use of multiple real-time musical

audio analysis techniques in performance situations is possible, practical

and has the potential to inform a number of new creative applications for

live performance. If there is the will amongst musicians we believe that
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analysis techniques and applications such as these could become common-

place in musical performances in the future.
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