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Abstract 
 

This thesis presents the theory, implementation and applications of the harmonic 

sinusoid modeling of pitched audio events. 

Harmonic sinusoid modeling is a parametric model that expresses an audio signal, 

or part of an audio signal, as the linear combination of concurrent slow-varying 

sinusoids, grouped together under harmonic frequency constraints. The harmonic 

sinusoid modeling is an extension of the sinusoid modeling, with the additional 

frequency constraints so that it is capable to directly model tonal sounds. This enables 

applications such as object-oriented audio manipulations, polyphonic transcription, 

instrument/singer recognition with background music, etc.  

The modeling system consists of an analyzer and a synthesizer. The analyzer 

extracts harmonic sinusoidal parameters from an audio waveform, while the 

synthesizer rebuilds an audio waveform from these parameters. Parameter estimation 

is based on a detecting-grouping-tracking framework. The detecting stage finds and 

estimates sinusoid atoms; the grouping stage collects concurrent atoms into harmonic 

groups; the tracking stage collects the atom groups at different time to form 

continuous harmonic sinusoid tracks. Compared to standard sinusoid model, the 

harmonic model focuses on harmonic groups of atoms rather than on isolated atoms, 

therefore naturally represents tonal sounds. The synthesizer rebuilds the audio signal 

by interpolating measured parameters along the found tracks.  

We propose the first application of the harmonic sinusoid model in digital audio 

editors. For audio editing, with the tonal events directly represented by a parametric 

model, we can implement standard audio editing functionalities on tonal events 

embedded in an audio signal, or invent new sound effects based on the model 

parameters themselves. Possibilities for other applications are suggested at the end of 

this thesis.  
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Introduction 
 

Musical signal processing is often categorized into two sub-areas: low-level and high-

level processing, depending on the use of symbolic representations (scores). 

Traditionally, high-level processing focuses on symbolic data, while low-level 

processing focuses on audio. The musical note, which is the basic element of the 

symbolic system, functions to communicate between the two levels. On one hand, 

many operations that generate symbolic data from audio, such as onset detection 

[BDADDS05], musical instrument recognition [ERD05, EK00], pitch estimation 

[Klapuri99, DG02], etc., are defined for individual notes or note groups rather than 

for arbitrary audio content; on the other hand, the operations that generate audio from 

symbolic data, known as music synthesis [Howe75], almost always proceed note by 

note. The symbolic-level representation for musical notes is already well defined. 

However, to fulfil its role as the bridge between low and high levels, we still need a 

representation for musical notes on the low level. 

The motivation of harmonic sinusoid modeling for music is that a large number of 

musical notes are pitched. The term pitch is defined as “the attribute of auditory 

sensation that orders sounds on a scale extending from low to high” [ASA60]. In 

music, the pitch is a basic property of musical notes, together with other properties 

such as duration, loudness and timbre [FR98]. In melodic music, a melody line is 

composed of a group of pitch values attached to a sequence of time intervals. 

Orchestral instruments, such as the strings and the winds, are good examples of 

pitched sound sources. Depending on the mechanism of generation, the string sounds 

can be categorized into plucked (e.g. guitar), struck (e.g. piano) or bowed (e.g. the 

viols), the wind instrument sound into lip driven (e.g. the brass), reed driven (e.g. 

clarinet) or air flow driven (e.g. flute, organ). The human voice, which can involve 

extremely complicated mechanisms, is often pitched during vocal music performance. 

Some mallet percussion instruments (marimba, etc.) are also perceived as pitched.  

Modern electrical instruments can deliver any sound in theory. However, when they 

are used to play a melody, the sounds are usually well pitched. 
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The pitch is often closely related to periodicity [Hartmann96]. For audio signals, 

periodicity refers to the periodic behaviour of the time-domain waveform. A key 

descriptor of periodicity is the period. Signals with perfect periodicity are invariant to 

the time shift of a period. Harmonicity is the frequency-domain counterpart of 

periodicity. A key descriptor of harmonicity is the fundamental frequency. Signals 

with perfect harmonicity have their frequency-domain energy concentrated at 

multiples of the fundamental. Numerically the fundamental frequency is reciprocal to 

the period. The equivalence of periodicity and harmonicity are shown by the 

harmonic decomposition known as Fourier series. Using Fourier series a periodic 

waveform is expressed as the linear combination of harmonic sinusoids, i.e. the 

frequencies of all the sinusoids are multiples of a fundamental frequency. We call this 

the harmonic sinusoid representation of the periodic signal.  

The use of harmonic sinusoids for representing pitched musical notes is supported 

by musical acoustics studies [FR98]. According to these studies, harmonic sinusoids 

are the steady-state response of a 1-dimension simple oscillating system. Examples of 

such systems include strings (e.g. piano, viols) and air columns (e.g. organ, 

woodwinds). Another source of harmonic sinusoids is periodic stimulus, of which the 

human voice is an example. The studies also show that musical instruments with other 

oscillation mechanisms can produce non-harmonic sinusoids. Mallet-bar percussions, 

such as the marimba, are examples of “pitched” instruments using 2-dimensional 

oscillating bodies. These instruments show good harmonicity in high partials, but 

have significant inharmonicity in the low (and usually strong) partials. In this thesis 

the harmonic sinusoid representation is only applied to those pitched sounds that do 

have a harmonic or quasi-harmonic structure. We use the symbol F0 to refer to the 

pitch, measured in the same dimension as frequency. A sound with pitch F0 is 

perceived as having the same position on the pitch scale as a sinusoid with frequency 

F0 has, no matter if it has a fundamental frequency, or if its fundamental frequency 

equals F0. 

The harmonic sinusoid representation provides a compact way for describing 

periodic signals. However, the harmonic sinusoid modeling of real-world pitched 

notes cannot be accomplished using the Fourier series. The main reason is that real-

 



Introduction  19 

world notes are not strictly periodic: it is common for them to have changes from one 

period to the next. This motivates the use of time-varying sinusoids in the harmonic 

sinusoid representation. Parameters of time-varying sinusoids are evaluated locally as 

functions of time. Time-varying sinusoids have been successfully used in standard 

sinusoid modeling [MQ86, Serra89] without harmonic context. To use time-varying 

sinusoids for modeling pitched notes, special care should be taken regarding the 

harmonicity between sinusoids. This is the starting point of upgrading sinusoid 

modeling to harmonic sinusoid modeling, the latter being the focus of this thesis. 

7 articles written during this PhD course have been published or accepted for 

publish, as listed below. 

[WS05] Wen X. and M. Sandler, “Transcribing piano music using signal novelty,” in 

Proc. AES 118th Convention, Barcelona, 2005. 

This article describes the improving of music transcription by suppressing the 

spectral contribution of previous events before estimating the pitch of a new note. 

After the suppression, the target spectrum gains better harmonicity corresponding 

to the new event. This method involves no explicit sinusoid model and is not 

discussed in this thesis. 

[WS05b] Wen X. and M. Sandler, “A partial searching algorithm and its application 

for polyphonic transcription,” in Proc. ISMIR’05, London, 2005.  

This article proposes a partial searching algorithm that models inharmonicity by 

adaptively allowing frequency departure from the perfect harmonic position. The 

algorithm is embedded in a polyphonic music transcription system, using the pitch 

hypotheses as a clue. This inharmonicity model is not so robust as the one in §3.2, 

and is not discussed in this thesis.  

[WS06] Wen X. and M. Sandler, “Error compensation in modeling time-varying 

sinusoids,” in Proc. DAFx’06, Montreal, 2006. 

This article describes a method for re-estimating sinusoidal parameters using 

parameter dynamics information embedded in sinusoid tracks. It is further 
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developed in §3.3 and Appendix E.2. This method is a part of the harmonic 

sinusoid analyzer. Due to its high computational cost, it is likely to be replaced by 

the more efficient method in Appendix E.3 in future systems. 

[WS07] Wen X. and M. Sandler, “New audio editor functionality using harmonic 

sinusoids,” in Proc. AES122nd Convention, Vienna, 2007. 

This article introduces new audio editor operations enabled by the harmonic 

sinusoid model. It includes an introduction to the model and the involved 

techniques, and details on the interface design issues and audio editing operations. 

Examples are included in Chapter 5 of this thesis. 

[WS07b] Wen X. and M. Sandler, “Sinusoid modeling in a harmonic context,” in 

Proc. DAFx'07, Bordeaux, 2007. 

This article is a miniature version of this thesis. It explains the theory and 

implementation of harmonic sinusoid modeling, including most key points in 

Chapters 3 and 4, along with selected numerical results.   

[WS07c] Wen X. and M. Sandler, “Calculation of radix-2 discrete multiresolution 

Fourier transform,” Signal Processing, vol. 87 no.10, 2007, pp.2455-2460. 

This article discusses the calculation of radix-2 discrete multiresolution Fourier 

transforms (DMFT). The DMFT is a redundant time-frequency-scale 

representation that includes DFT’s calculated using multiple window sizes. In this 

article we show how we can compute a radix-2 DMFT saving up to 50% 

computation. It is only marginal related to sinusoid modeling, and is not discussed 

in this thesis. 

[WS07d] Wen X. and M. Sandler, “A composite spectrogram using multiple Fourier 

transforms,” to appear in IET Signal Processing. 

This article introduces a DMFT-based time-frequency representation that 

automatically chooses windows sizes for individual areas in the time-frequency 

plane, so that the result is optimized in e.g. the minimal entropy sense. It also 

includes a fast algorithm for the selection. This topic is not discussed in this thesis. 
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The main chapters of this thesis are arranged as follows. 

Chapter 1 defines the harmonic sinusoid model. Examples of harmonic sinusoids 

are provided with contexts in musical acoustics or signal processing. The spectral 

properties of stationary and slow-varying sinusoids are discussed. The structure of 

harmonic sinusoids in the modeling system is also presented. 

Chapter 2 provides a brief review of techniques involved in standard sinusoid 

modeling, including additional discussions of the error bounds in DFT-based 

parameter estimators. This chapter also shows how we develop harmonic sinusoid 

modeling from standard sinusoid modeling, giving a comparison between concepts 

and components of the two.    

Chapter 3 discusses the estimation of sinusoidal parameters and the grouping of 

sinusoid atoms by harmonicity. The least-square-error estimator is presented with 

emphasis on frequency-domain implementation. Harmonic grouping is discussed with 

an inequality-based harmonic model, designed to tolerate frequency estimation errors. 

Two techniques for re-estimating parameters from time-varying sinusoid tracks are 

also presented. 

 Chapter 4 discusses the harmonic tracking based on the same inequality model. 

Topics of this chapter include tracking criteria based on frequency and amplitude 

continuity, forward tracking of single/multiple harmonic sinusoids, forward-backward 

tracking of single harmonic sinusoid, as well as terminating conditions. 

 Chapter 5 discusses the applications of harmonic sinusoid models. We present 

the implementation of new audio editor operations in details, and briefly outline other 

possible applications. The harmonic synthesis technique for reconstructing time-

domain harmonic sinusoids from model parameters is discussed at the beginning of 

this chapter. 

Chapter 6 summarizes the whole thesis, discusses its research contributions, and 

proposes further direction to improve harmonic sinusoid modeling. 

This thesis also includes 6 appendices containing definitions, mathematical proofs, 

algorithms and computation details. 
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The main contributions of this thesis include: 

• The harmonic sinusoid modeling system (§2.6).  

• Robust representation of harmonic frequency contents and its application for 

finding harmonic signal components from the spectrum (§3.2).  

• Joint operation of harmonic grouping and harmonic tracking (§4.1~§4.6).  

• Estimating sinusoids using the knowledge of signal dynamics (§3.3, §3.4).  

• Application of harmonic sinusoids for audio editing (§5.2).  

A more detailed list of contribution points, including minor ones, will be given in 

§6.2.  

 

 

 

 

 



    

 

Chapter 1
 
Sinusoids and harmonic sinusoids 
 

This chapter is devoted to the definition of harmonic sinusoids and studying the 

behaviour of time-varying sinusoids. In 1.1 we define the harmonic sinusoid model. 

Examples of harmonic sinusoids are provided in 1.2 with references to music 

acoustics. 1.3 discusses the Fourier transform, on which most of the thesis work is 

based, and applies it to time-varying sinusoids. 1.4 discusses the uniqueness issue and 

how it is related to the slowness of parameter variations. 1.5 defines the harmonic 

sinusoid modeling system, and explains the structure of harmonic sinusoid 

representation within this system. 

1.1 Harmonic sinusoids 

The harmonic sinusoid model represents a pitched music event as the linear 

combination of a number of partials, each partial being a slow-varying sinusoid, as 

follows: 

  (1. 1a) 
∑∑

==

==
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where M is the number of partials, and xm(t) the mth partial. am(t) is a slow-varying 

function of t, interpreted as the instantaneous amplitude of the mth partial. φm(t) is 

interpreted as the phase angle, with its derivative (divided by 2π), , being 

another slow-varying function of t, known as the instantaneous frequency: 

)(tf m

 ∫+==
t

mmm
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m dttft
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tdtf
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)(2)0()(,)()( πϕϕϕ  (1. 1b) 

In sinusoid modeling, a signal in the form specified by (1.1a) and (1.1b) is often 

known as deterministic, implying it has stable evolution properties. However, it does 

not necessarily have a fundamental frequency. In harmonic sinusoid model we impose 



1 Harmonic sinusoids  24 

the constraint that the M partials are harmonic or quasi-harmonic. Perfect harmonicity 

is expressed as  

  (1. 1c) )()( 1 tmftf m =

i.e. all partial frequencies are multiples of the lowest frequency, known as the 

fundamental frequency. In practice we also see the phenomenon of inharmonicity, i.e. 

pitched sounds diverge from perfect harmonicity. This is expressed by 

  (1. 1d) ))(0()(0)( tFftmFtf mm δ+=

where  is the frequency departure of the m)0(Ff mδ th partial from perfect harmonicity. 

Here we have used F0 instead of  to indicate that the lowest partial is allowed to 

have a frequency departure too.  

1f

Equations (1.1a)~(1.1d) define harmonic sinusoids as continuous signals. We 

derive the discrete version by sampling x(t), xm(t), am(t) and φm(t) at multiples of a 

sampling period T, i.e. 

 nTtnnTtnnTtn ttaatxx === === |)(,|)(,|)( ϕϕ  (1. 2) 

Then the discrete versions of (1.1a) and (1.1b) are obtained as 
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Up to now we have not associated the time variable t with a unit. It is convenient to 

choose this unit to be the sampling period, i.e. T=1. Then , 

, , and (1.3) becomes 
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Equation (1.4), together with (1.1d), defines discrete harmonic sinusoids. In deriving 

(1.4) we have ignored the sampling alias. This approximation is valid only if all 

partial frequencies are well below the Nyquist frequency, i.e. half the sampling 

frequency. For most musical materials sampled at 44.1kHz, this condition is satisfied 

during the process of recording and digital transfer. The instantaneous frequency 
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)(tf m  is not discretized in (1.4). In fact,  affects x)(tf m
n only by its integrals over 

intervals that start and end at the sampling points. We define  
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nϕ∆  is interpreted as the linear average of the instantaneous frequency on the interval 

[n, n+1]. Again,  and  are slow-varying functions of n.  m
na m

nϕ∆

Harmonic sinusoids are closely related to periodicity in time domain. If we lift the 

time dependency of am and  and let , then (1.1a) is reduced to a Fourier 

series, which exactly represents a periodical signal. The period is the reciprocal of the 

fundamental frequency . Slow variations of a

mf 1mff m =

1f m and  introduce small variations 

in the wave shape from one period to the next. The inharmonicity introduces 

dispersions to the waveform.  

mf

In music audio a harmonic sinusoid defined above models a single music note or a 

sequence of notes connected by smooth pitch variation. If there is an abrupt change 

between consecutive notes, or if the music has more than one concurrent notes, it is 

modeled as a combination of harmonic sinusoids: 
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where  now stands for the kkx th harmonic sinusoid, Mk the number of its partials, and 

 its mmkx , th partial. In the end, we allow a residue term r as a component that makes 

up the difference between the harmonic sinusoids and the real-world audio:  
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The residue r represents the combination of non-harmonic sinusoids, transients, and 

noise. Equations (1.7a) and (1.7b) complete the definition of harmonic sinusoid model. 

In Fourier-transform-based harmonic sinusoid analysis, it is convenient to use the 

complex exponential form of sinusoids: 
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so that the mth partial of (1.3) becomes 
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 (1. 9) 

That is, a real partial appears as two symmetric complex partials, whose frequencies 

are symmetric regarding 0.  

Throughout this thesis we use the singular form “harmonic sinusoid” to refer to 

the signal defined in (1.1a) or (1.3), although it contains multiple sinusoids that are 

harmonically related. The plural form “harmonic sinusoids” is used for multiple 

signals, each of which is defined in (1.1a) or (1.3). 

1.2 Examples of harmonic sinusoids 

In this section we give examples of harmonic sinusoids, synthesized by summing up 

sinusoid partials, each of which is a time-varying sinusoid. A time-varying sinusoid x 

is synthesized by first synthesizing the amplitude an and phase angle φn, then 

calculating xn=ancosφn. In natural musical sounds there is often a coupling between 

the amplitude and frequency laws. However, in this section we first study the laws 

independently, and leave the discussion on their combination to 1.2.3.  

In this thesis all raw waveform audio materials are mono, sampled at 44.1kHz, 

and quantized using 16 bits to fit into the interval -32768~32767. In all waveform 

figures the horizontal axes indicate time, and the vertical axes indicate displacement 

(air pressure, or its derivative, in acoustics). In all spectrogram figures the horizontal 

axes indicate time, and the vertical axes indicate frequency. 
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1.2.1 Amplitude laws 

Example A1: Linear amplitude  

A linear amplitude is expressed as 

 nAaan 10 += , n=0, 1, …, N (1. 10) 

Linear amplitudes are used in McAulay-Quatieri synthesis for interpolating between 

two amplitude estimates. Real signals rarely follow this model. In machine-driven 

instruments, such as the pipe organ, it is possible to generate sinusoidal components 

with highly stable amplitudes, each of which has an approximately constant amplitude, 

i.e. A1=0. Figures 1.1 (a) and (b) show the waveform and spectrogram of a constant 

sinusoid.  

Example A2: exponentially decaying amplitude 

An exponentially decaying sinusoid has one parameter τ>0 indicating the decay rate, 

known as the time constant: 

 , n=0, 1, …, N (1. 11) τ/
0

n
n eaa −=

A small τ indicates a fast decay. When τ→∞ it becomes a constant amplitude. 

Exponentially decaying sinusoid is found in free vibrating ideal strings. Figures 1.1 (c) 

and (d) show the waveform and spectrogram of an exponentially decaying sinusoid of 

length 1s and time constant 0.166s.  

Example A3: sinusoid modulated amplitude 

Amplitude modulation (AM) is done by multiplying a sinusoid (carrier) with a slow-

varying function (modulator). The exponential amplitude, for instance, can be 

regarded as using an exponential function as modulator. In musical audio a note 

amplitude-modulated by a periodical modulator is known as a tremolo. In this 

example the modulator is a sinusoid added to a DC shift: 

 10)),2cos(1( <<++= AMAMAMAMn dnfdaa ϕπ , n=0, 1, …, N (1. 12) 

dAM, fAM and φAM are the amplitude, frequency and starting phase of the modulator. 

dAM is known as the modulating depth. A depth of 0 implies no modulation. Figures 
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1.1 (e) and (f) show the waveform and spectrogram of a sinusoid-amplitude-

modulated sinusoid of length 1s, with modulating depth 0.6 and modulator period 0.2s. 

(a) (b)

(c) (d)

 
(e) (f)

Figure 1. 1 Example amplitude laws 

(a)(b) constant; (c)(d) exponential; (e)(f) sinusoid-modulated 

 Two or more very close sinusoids may also appear as a single sinusoid with 

amplitude modulation, known as beats. Indeed, any signal in the form of (1.12) can be 

written as the combination of three sinusoids evenly separated in frequency by fAM. 
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1.2.2 Example frequency laws 

Example F1: constant frequency 

All the three examples given in 1.2.1 have constant frequencies. A constant frequency 

appear in the spectrogram as a narrow band centred at a straight line parallel to the 

time axis, or normal to the frequency axis.  

Constant frequencies are very common in music. Free-vibrating instruments, e.g. 

the piano, guitar, most mallet percussions, are constant-frequency by design (although 

it’s possible to alter the frequency through performing techniques). A big family of 

wind instruments feature the pitch control using keys/holes. Even for those 

instruments that feature continuous pitch variation, such as the strings and the 

trombone, it is rarely hard to generate a stable pitch. However, constant frequency in 

human voice requires some training. 

The phase angle of a constant-frequency sinusoid is a linear function of time. 

Example F2: linear and quadratic chirps 

The linear chirp has a linear frequency and quadratic phase: 
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The quadratic chirp has a quadratic frequency and cubic phase: 
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Natural sounds rarely have linear or quadratic frequencies. In McAulay-Quatieri 

synthesis, they have been used for interpolating between frequency estimates. The 

linear frequency is used for resynthesis without phase [MQ84]; the quadratic 

frequency is used for resynthesis with phase [MQ86]. 

The linear chirp has been widely studied in the attempt to model time-varying 

sinusoids, as it is the simplest case of frequency variation, with all derivatives above 

the 1st-order being zero. The instantaneous frequency of a linear chirp can be 

accurately measured using the reassignment [AF95] or least-square-error (§3.1) 
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methods. Figures 1.2 (a) and (b) show the waveform and spectrogram of a linear chirp. 

The increasing density of the waveform implies a decreasing period. The linear 

variation of frequency is clearly seen from the spectrogram. Figures 1.2 (c) and (d) 

show the waveform and spectrogram of a quadratic chirp.  

(a) (b)

(c) (d)

 
(e) (f)

Figure 1. 2 Frequency variation laws 

(a) (b) linear; (c)(d) quadratic; (e)(f) sinusoid-modulated 
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Example F3: sinusoid modulated frequency 

Frequency modulation (FM) is done by varying the instantaneous frequency of a 

sinusoid (carrier) by a time-dependent amount (modulator). FM is well known in 

radio broadcasting and sound synthesis. In music audio a periodical frequency 

modulation is known as a vibrato. Vibrato is a standard performing technique for 

bowed string instruments, some wind instruments, as well as for singing. In this 

example the modulator is a sinusoid: 
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   (1. 15) 

where fcarr is the carrier frequency, aFM, fFM and φFM are the amplitude, frequency and 

starting phase of the modulator. In real music signals aFM<<1, fFM<<fcarr. Figures 1.2 

(e) and (f) show the waveform and spectrogram of a sinusoid-frequency-modulated 

sinusoid of length 1s, with modulator period 0.2s. The spectrogram clearly reveals the 

ongoing process being a frequency modulated sinusoid.  

1.2.3 Example harmonic sinusoids 

According to (1.1a), a harmonic sinusoid can be synthesized by summing up a 

individual sinusoids with harmonic frequencies. However, the harmonicity alone does 

not fully characterise the coupling between partials of real-world music sounds. On 

one hand, there is inharmonicity which shifts partial frequencies from perfect 

harmonicity; on the other hand, there is also the coupling between partial amplitudes, 

and the coupling between amplitude and frequency, to be considered.   

Example 1: simple harmonic sinusoids (formants) 

We call the wave function of simple harmonic vibration a simple harmonic sinusoid. 

This family of waveforms are also found in other vibration types, such as in a 

periodically stimulated resonator. All partials of simple harmonic sinusoids have 

constant amplitudes and frequencies, and all partial frequencies are in perfect 

 



1 Harmonic sinusoids  32 

harmonicity. The stable sound of a pipe organ is very close to a simple harmonic 

sinusoid. A simple harmonic sinusoids is written as  

 , n=0, 1, …, N (1. 16a) ∑
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where M is the number of partials. 

(1.16a) has 2M+2 parameters, i.e. M, M partial amplitudes am (m=1, …, M), M 

partial phases φm (m=1, …, M), and the fundamental frequency . Most acoustic 

instruments show a decreasing trend of partial amplitude regarding partial index, 

while local variations can be quite unpredictable. As an example we initialize the 

partial amplitudes as 

1f

 Mm
m

m
Aa m ,,2,1,

sinc
L==

θ
 (1. 16b) 

(a) (b) (c)  
Figure 1. 3 Simple harmonic sinusoids 

(a) waveform; (b) spectrogram; (c) spectrum 

(c) (a) (b)  
Figure 1. 4 A4 Harmonic sinusoids with exponential decay 

(a) spectrogram; (b)(c) spectra at time 0 and 2s 
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(a) (b) (c)  
Figure 1. 5 Exponential chirp 

(a) chromatic piano scale; (b)(c) exponential chirps on linear and logarithmic frequency axes 

(b) (a) (c)  
Figure 1. 6 Vibrato accompanied by tremolo 

(a) spectrogram; (b) spectrum at 0.2s; (c) the 6th partial 

where A>0, 0<θ<0.5 and sinc is the continuous sinc function, defined as (A.4a). The 

physical model behind (1.16b) is an ideal string with fixed ends, stimulated at position 

θ from one end.  

(1.16b) shows two typical phenomena of pitched events: the decay of amplitude 

with partial index, and the resonance at specific frequency ranges, known as formants. 

In (1.16b) the formants are found where mθ is close to 0.5, 1.5, 2.5, etc. In particular, 

when θ=0.5, the even partials disappear and the odd partials decay like m-2. 

Figure 1.3 depicts the waveform, spectrogram and spectrum of a simple harmonic 

sinusoid with M=25, θ=0.15. The formant structure is clearly seem in the spectrum. 

The 20th partial disappears since 20θ is an integer. 

Example 2: Piano-like harmonic sinusoids (partial-dependent decay) 

A simple harmonic sinusoid is made piano-like by modifying the partials so that they 

1) have constant frequencies that conforms to a stiff string model; 
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2) have decaying amplitudes so that lower partials generally decay slower than higher 

ones. 

[FR98] gives the stiff string frequency model as 

 )1(1 21 −+= mBmff m  (1. 17a) 

where B is a stiffness coefficient, typically 0≤B<0.001. It is observed that 

inharmonicity grows larger as the string becomes shorter (and pitch becomes higher, 

in general). 

In actual piano sound the decay of individual partials can be highly complicated, 

partially due to the presence of multiple strings at unison. As a result only some low 

partials roughly show exponential law. In this simple example we use the exponential 

law on all partials. [FR98] shows that the time constant of the fundamental partial 

drops roughly like F0-1, and the time constant of partials of the same note drops 

roughly like ( )mf -0.5. Based on these rules, the time constant of the mth partial of pitch 

F0 is  

 = ·(F0/440Hz)m
F 0τ 1

4Aτ -1·m-1/2·(1+B(m2-1))-1/4.  (1. 17b) 

where  the time constant of the fundamental partial of central A (i.e. A4=440Hz). 

Finally we have the partial-dependent amplitude rule 
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Figure 1.4 shows the spectrogram, spectrum at the beginning, and spectrum after 2 

seconds, of a harmonic sinusoid synthesized using M=25, F0=440Hz, θ=0.12, and 

=1s. The varying shape of the spectrum implies a change of short-term timbre 

over time. 

1
4Aτ

Example 3: exponential chirp (glissando) 

The exponential chirp, in which the pitch varies as an exponential function of time, is 

known as a glissando in music. Figure 1.5 (a) shows the spectrogram of a chromatic 
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piano scale (A0~C8), played at roughly constant intervals, which can be regarded as a 

simulation of true glissando.  

In this example we initialize the partial amplitudes using (1.24b) with θ=0.12 and 

let them be constant, and let partial frequencies be perfectly harmonic. The 

exponential frequency is written as 

 , 2/1 2)0()( τtm mftf ⋅= )12()0(
2ln

2
2/

2
1

0 −⋅+= ττπϕϕ nmm
n mf  (1. 18) 

where τ2 is the duration in which the pitch progresses by one octave. Figures 1.5 (b) 

and (c) show the spectrograms, in linear and logarithmic frequency scales respectively, 

of an exponential chirp that progresses from A1 to A7 in 3 seconds 

Example 4: vibrato (AM that accompanies FM) 

The vibrato is frequently encountered in music performance, especially in human 

voice and bowed string instruments. During a vibrato the pitch repeatedly rise and 

drop about a central frequency. In real-world signals the vibrato is usually 

accompanied by a modulation of amplitude, or tremolo, which has the same 

modulation period as the vibrato itself. 

This tremolo can be regarded as the joint effect of two mechanisms: a “true” 

tremolo due to the same performance mechanism as the vibrato, and a “vibrato-

bound” tremolo due to filtering effect. In this example we implement the 

accompanying tremolo using a source-filter model, where the source provides a time-

dependent factor and the filter provides a frequency-dependent factor: 

  (1. 19a) ))(()( nfAnAAa m
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m
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The source factor As(n) contributes to an overall amplitude modulation common to all 

partials (true tremolo), and the filter factor  contributes to a partial-

dependent modulation. It is apparent that if  is periodical, then  must 

also be periodical, and has the same period. In the frequency band where  is 

increasing, the amplitude becomes larger as the frequency goes up, and vice versa. A
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In this example partial frequencies are in perfect harmonicity, and the frequency 

modulator is a pure sinusoid. The frequency law is  

 ,  )2sin1()0()( tfaftf FMFM
mm π+⋅=
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f
fanf FM
FM

m
FMm

m
n
m ππϕϕ   (1. 19b) 

We initialize the partial amplitudes am(0) using (1.16b) with some θ(0). Let As(n)=1. 

We derive the filter factor  by rewriting (1.16b) as )( fAf
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where θ1=θ(n)/ (n), and let  1f

 
m
AAm = , 1sinc)( θffAf =  (1. 19d) 

The physical model behind (1.19d) is a vibrato on a bowed string created by varying 

the string length at the far end from a fixed bowing point. In this case both the 

frequencies and θ are reciprocal to the string length, i.e.  is proportional to θ, 

therefore θ

mf

1 is a constant, and can be calculated using θ1=θ(0)/ (0). From a spectral 

point of view, (1.19d) implies that the positions of formants remain stable. 

1f

Figure 1.6 (a) shows the spectrogram of a synthesized vibrato of length 1s, with 

M=25, θ(0)=0.18, (0)=440Hz, a1f FM=1/22, fFM=5Hz. Figure 1.6 (b) shows its short-

time spectrum at 0.2s. In figure 1.6 (c) we draw the 6th partial, together with its 

amplitude curve in time domain. There is a positive correlation between the amplitude 

and frequency, which is a result of the sinc function being increasing near 

6×0.18=1.08. 

1.3 The Fourier transform 

The importance of the complex representation of sinusoids lies in the fact that time-

invariant complex sinusoids are eigenvectors of linear time-invariant systems, with 

 



1 Harmonic sinusoids  37 

the frequency response being the eigenvalues. In discrete-time processing, this is 

represented by the discrete-time Fourier transform, or DTFT: 

   (1. 20) ∑ −=
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f is known as the digital frequency, dimensionless, with f=1 corresponding to the 

sampling frequency. The Nyquist frequency interval for f is (-0.5, 0.5). In numerical 

practices we use the discrete Fourier transform, or DFT:  
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where N is the DFT size and k is the discrete Fourier frequency in bins, with k=N bins 

corresponding to the sampling frequency. Xk is a sampled version of X(f). Both X(f) 

and Xk are called spectrum. (1.21) shows that these N complex sinusoids, multiplied 

by N-1/2, compose an orthonormal basis of the N-dimensional Hilbert space. In 

practice we only consider N=2L, L∈Z+. 

1.3.1 Constant sinusoids 

Let x be a time-invariant discrete complex sinusoid, i.e. xn=aej(2πfn+φ) , then its DTFT is 

 ( )∑ −−=
m

j mfgaegX δϕ)(  (1. 22a) 

where δ is the Dirac delta function, defined in Appendix A.1. Within the Nyquist 

frequency interval (-0.5, 0.5), X(g) has only one spike, which is located at f.  

The DFT of x calculated on the interval 0≤n<N is 

  (1. 22b) )(sinc))1)(/(( NfkaNeX N
NNkfj

k −⋅= −−+πϕ

where sincN(f) is the N-point discrete sinc function, defined in Appendix A.1. (1.22b) 

can be interpreted as the frequency-domain convolution of the rectangular window 

spectrum (i.e. the sinc function) with the spectrum of x (1.22a), sampled at k/N. Since 

the sinc function is concentrated around 0, Xk is concentrated around the frequency Nf, 

in bins.  
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1.3.2 Windowed DFT 

Let x be defined as above and w be a discrete window function supported on 0≤n<N, 

with spectrum W(f), then the windowed DFT of x using window w is 
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(1.23) is the starting point for DFT-based parameter estimators. All window functions 

used in this thesis are real, symmetric, non-negative and low-pass. Some of these are 

listed in Appendix A.2.  

1.3.3 Slow-varying sinusoids 

Now we look at the DFT of a slow-varying sinusoid . With the following 

proposition, we show that if the amplitude and frequency variations are slow enough, 

then its spectrum approximates that of a constant sinusoid at its central amplitude and 

central frequency.  
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Proposition 1.1 Let x be a slow-varying sinusoid, i.e. , then its windowed 

DFT can be written as 
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where the term εk is bounded by  
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∆a is the difference function of a, i.e. ∆an= an-an-1.  

The proof, following Mallat’s proof for the continuous FT [Mallat99], is given in 

Appendix A.3.1. The first term on the right side bounds the spectral departure due to 

frequency variation, while the second term bounds that due to amplitude variation. 
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function. (n-N/2)2 in the first term and (n-N/2) in the second term are both weighed by 
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|wn|, implying that the approximation of X with X~  is improved by using a window 

function that vanishes at both ends.  

As a numerical example, we consider a linear amplitude a combined with a linear 

frequency f, and let a have a total variation of A·aN/2, and f have a total variation of B 

bins, during the analysis window. Therefore sup| f ′ |=B/N2, sup|∆a|=A·aN/2/N. When a 

triangular window is used for DFT, we have  
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It follows from (1.24b) that  
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48
A4B +π  is interpreted as the relative error bound, since 

2
2/ NaN  is the amplitude at 

the main spectral peak.  

Proposition 1.1 also provides a criterion for comparing amplitude variation with 

frequency variation in their effects on the spectrum. For example, (1.25d) indicates 

that 1/π bins frequency variation is “equally bad” as 25% amplitude variation in their 

contributions to the error bound. 

It is apparent in (1.25d) that the error bound grows very large when B is more than 

2 or 3 bins. X~  becomes a poor approximation of X when the frequency variation is on 

the magnitude of bins, because different parts of x are now contributing to different 

bins. This can be interpreted either as that x varies too fast for the high frequency 

resolution of the window, or as that the window is too long to capture the dynamics of 
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x. Accordingly, to better represent x, a shorter window with a lower frequency 

resolution shall be used. For the linear amplitude and linear frequency example, let 

B=3 and A=0.5, then the relative error bound in (1.25d) is 23.8%. If the window is 

shortened by half, then A is reduced to 0.286 for the first half and 0.222 for the 

second half, B is reduce to 0.75, so that the relative error bound is reduced to 7.3% for 

the first half and 6.8% for the second half. 

The following proposition is an example of dividing a long window into shorter 

ones to study the spectral properties of a sinusoid with fast frequency variation. It 

shows that the spectrum of a time-varying sinusoid does not spread far from its 

instantaneous frequencies during the analysis window on which the spectrum is 

calculated. 

Proposition 1.2 Let x be a sinusoid with constant amplitude and varying frequency, 

i.e. , its instantaneous frequency f be within the interval F=(fnj
n ex ϕ= 1, f2) during [0, 

N], and X be its DFT. Given an integer L, 3≤L<<N, the amplitude spectrum at k is 

bounded by 

 ( ) f
L
NNLX k ′++< sup

60
/112.001.0 2

33π  (1. 26) 

if k is at least 1.5L bins from F, i.e. 0≤k<Nf1-1.5L or Nf2+1.5L<k<N/2-1. 

This is proved by breaking the window of size N into L-1 overlapping windows of 

size 2N/L. The complete proof is given in Appendix A.3.2. The right hand side is an 

upper bound on the spectral leakage outside the instantaneous frequency range. Of the 

three terms in (1.16), the last term shows how the decrease in window size helps 

suppressing the leakage due to frequency variation. The first and seconds terms 

represent the “original” leakage of a stationary sinusoid, with the second term mostly 

contributed by the use of rectangular windowing for calculating X. By using fade-in 

and fade-out at both ends, we get the following result with a smaller bound. The proof 

is discussed in Appendix A.3.2. 

Corollary 1.3 Let x be a sinusoid with constant amplitude and varying frequency, i.e. 

, its instantaneous frequency f be within the interval F=[fnj
n ex ϕ= 1, f2] during [0, N]. 

Given an integer L, 3≤L<<N, define a window function  
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where M=N/L, and let X be the DFT of x calculated using window w, then  

 f
L
NNX k ′+< sup

60
01.0 2

33π  (1. 27b) 

if k is at least 1.5M bins from the F, i.e. 0≤k<Nf1-1.5M or Nf2+1.5M<k<N/2-1. 

Regarding spectral energy, Carson’s bandwidth rule [Carson22, Carlson81] of FM 

communication provides a practical approximation. Carson’s rule states that more 

than 98% the total energy of a frequency-modulated signal is distributed within 

Carson’s FM bandwidth, given as )(2 MffCRB += ∆ , where f∆ is the maximal 

deviation of the instantaneous frequency from some central frequency, and fM is the 

maximal frequency of the modulator.  

1.4 Uniqueness and slowness 

From (1.7b), it is obvious that the analysis problem is underdetermined, i.e. the model 

contains more data than the modeled signal. Therefore there is no unique solution for 

the analyzer. This is true even when we model a single sinusoid (M=1). Suppose x is a 

time-varying sinusoid with amplitude a(t)>0 and phase angle φ(t), i.e. x(t)=a(t)cosφ(t). 

Let t1 and t2 be two adjacent zeros of x, so that x remain positive within (t1, t2). Let 

φ(t1)=-π/2,   φ(t2)=π/2. Now let θ(t) be a continuous differentiable monotonic function 

and θ(t1)=-π/2,   θ(t2)=π/2, and let b be defined on [t0, t1] and 
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then )(cos)()( ttbtx θ= , i.e. b and θ are also the instantaneous amplitude and phase 

angle of x. This implies that the instantaneous frequency is unique only when the 

instantaneous amplitude is determined, and vice versa. Given a signal x(t), we can 

always trade amplitude for frequency, provided that continuity is preserved at zeros of 

x.  

This non-uniqueness raises a question on the ground truths for sinusoid modeling. 

Usually when a time-varying sinusoid is synthesized from artificial amplitude and 

frequency laws and used in tests, the designed amplitude, frequency and phase are 

regarded as the ground truth, to which the parameter estimates are compared. 

However, since the sinusoid representation is not unique, there exist other 

combinations of parameters which are no less “true” than the designed ones. 

Accordingly the designed parameters alone are not enough to serve as the ground 

truth. In other words, a parameter set being closer to the designed one does not 

guarantee its being more accurate. This difficulty is partially relieved by knowing that 

the parameters are slow-varying. For example, Figure 1.7 shows a constant sinusoid 

with no amplitude or frequency variation. In (a) the instantaneous amplitude a is 

compared with the sinusoid x in the upper graph, and with the instantaneous 

frequency f in the lower graph. In (b) we show another choice of the amplitude b and 

frequency g, which produces the same signal x. Under the slow-varying assumption, 

(a) is considered a better representation since it shows slower parameter variation. A 

parameter estimator that assumes slow-variation of sinusoids is more likely to 

produce the amplitude and frequency lines in (a). 
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a b
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 0  0 
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Figure 1. 7 A constant sinusoid 

(a) constant-parameter representation; (b) non-constant-parameter representation 

 The following proposition shows that if the variation of amplitude and frequency 

are very slow, then a approximate b, f approximates g. 
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The proof is given in Appendix A.3.3. Proposition 1.4 implies that if the 

variations of both {a, f} and {b, g} are very slow, then they are similar in value. An 

exception is the amplitude at zeros of x, where the relative error between a and b is 

not bounded by (1.29c). However, it is easy to derive from (1.28) that at zeros of x the 

following holds 
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so that the error between a and b is still bounded. 

In sinusoid modeling there has not been much discussion on how the slowness of 

parameters should be measured or how parameter estimation is affected by it. 

Intuitively, the derivatives of amplitude and frequency measure the speed of their 

variations. We therefore compose the following function to evaluate how fast the 

variations are: 

 ∫ ′′−+′= dtttaI ))()1()(( 22 ϕηη  (1. 30a) 

where  and a′ f ′=′′ πϕ 2  respectively measures the amplitude and frequency variation 

rates, and η∈(0,1) is a balancing factor that trades amplitude variation for frequency 

variation. One plausible selection of η is using the spectral error bound (1.24b), so 

that η1/2 a′  contributes the same amount to the error bound as (1-η)1/2ϕ ′′ . Another 

interpretation of the criterion (1.30a) is the high-frequency energy: 

 ∫∫ −+= ωωωηπωωωη
π

dFdAI 2222 )()1(2)(
2
1   (1. 30b) 

where A and F are the Fourier transforms of a and f, respectively. 

The necessary condition for a and f to be “slowest-varying”, i.e. minimizing 

(1.30a), is  

 0  (1. 30c) )1(tan )4( =−+′′− ϕηϕη aa

The proof is given in Appendix A.3.4. The discrete-time version of (1.30a) and 

(1.30c) is 

 ∑ ∆−+∆=
n

aI 222 ))(1()( ϕηη , (1. 31a) 

 , (1. 31b) 0)1(tan 42 =∆−+∆− nnnn aa ϕηϕη

where ∆, ∆2 and ∆4 are 1st-, 2nd- and 4th-order difference operators. In both (1.30c) 

and (1.31b) the amplitude and phase angle are closely coupled through the factor 

ηtanφ. In synthesizing time-varying sinusoids, when amplitude and frequency laws 
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are designed without this coupling, the a and f we create are usually not slowest-

varying parameters of x. The only exception is when a ′′ =φ(4)=0, i.e. the amplitude 

law is linear and frequency law is quadratic. This coincides with the piecewise 

sinusoids in McAulay-Quatieri synthesis, which uses linear interpolation of 

amplitudes, and trinomial interpolation of phase angles.  

Due to the uniqueness problem, we always avoid evaluating parameter estimators 

by direct comparison of “true” and estimated parameters. Time domain signals are 

compared instead. 

1.5 Harmonic sinusoid modeling 

Harmonic sinusoid modeling is the process of converting between the waveform 

representation and the harmonic sinusoid representation. The device that converts a 

signal from waveform representation to harmonic sinusoid representation is a 

harmonic sinusoid analyzer. The device that converts a signal from the harmonic 

sinusoid representation to waveform representation is a harmonic sinusoid synthesizer. 

The analyzer and the synthesizer make up the complete harmonic sinusoid modeling 

system (Figure 1.8). 

 

Figure 1. 8 Harmonic sinusoid modeling 

As seen in (1.30b), the slow-varying parameters do not contain substantial high-

frequency energy. Therefore by doing a subsampling of a, f and φ, we are able to get 
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a more compact representation that preserves most sinusoidal features. In the simplest 

case the sampling points are uniformly distributed on the time axis. The three 

parameters are measured at each of these points from an interval centred at it, known 

as a frame. The uniform interval between adjacent frame centres is the hop size. In 

this thesis we fix the hop size at half the frame size, i.e. frames have 50% overlap, as 

shown in Figure 1.9.  

 

Figure 1. 9 Frames with 50% overlap 

The three parameters measured from a frame compose a short-time sinusoid atom, 

or atom. Multiple atoms can be estimated from the same frame, distinguished by 

frequency. Each partial of a harmonic sinusoid appears as one atom at every frame 

within its duration. All atoms of a harmonic sinusoid at the same frame form a 

harmonic sinusoid particle, or harmonic particle. Atoms within a harmonic particle 

are distinguished and sorted by partial index. Harmonic particles characterize the 

spectral harmonicity structure of a harmonic sinusoid. All atoms of the same partial 

form a sinusoid track. Atoms within a sinusoid track are distinguished and sorted by 

frame index. Sinusoid tracks characterize the time continuity structure of a harmonic 

sinusoid. Spectral harmonicity and time continuity are the two main features we 

explore in harmonic sinusoid modeling. 
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f / F0 

 

Figure 1. 10 Structure of a harmonic sinusoid 

Figure 1.10 depicts the components of a harmonic sinusoid in time-frequency 

plane. The fundamental partial is given partial index 1. Each atom virtually represents 

a time-frequency area which is narrow in frequency and wide in time. As a result the 

sinusoid track covers a narrow band in the plane which is continuous in time, but the 

harmonic particle consists of only isolated atoms and remains sparse in frequency. 

The harmonic sinusoid, as a whole, is dense in time and sparse in frequency.  

Given an audio signal, the frame-based harmonic sinusoid analyzer extracts atoms 

and form harmonic sinusoids from them. The harmonic sinusoid can either be 

regarded as a collection of harmonic particles sorted in time by frame index, or be 

regarded as a collection of sinusoid tracks sorted in frequency by partial index. In this 

thesis we use the first interpretation to implement the analyzer. More details will be 

discussed in Chapter 2 after a brief review of standard sinusoid modeling techniques. 

1.6 Summary 

In this chapter we have defined the harmonic sinusoid model using time-varying 

sinusoids, and discussed several aspects of the analysis of time-varying sinusoids. By 

forcing harmonicity between sinusoids, the harmonic sinusoid representation enables 

the direct modeling of harmonic sounds, as shown by our examples. Discussions on 

time-varying sinusoids in this and future chapters will lead to improved sinusoid 

estimation methods and parameter evaluation designs. 
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Chapter 2
 
Review of related techniques 

 

In this chapter we briefly review the techniques related to sinusoid modeling. The 

standard sinusoid model (plus noise) [MQ86, Serra89] is given as follows. 
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xm is a time-varying sinusoid, known as the mth partial. Compared with (1.7b), the 

standard sinusoid model constructs a sound directly from individual sinusoids without 

a mid-level structure of harmonic sinusoids.  

The sinusoid modeling system converts a signal between the waveform and 

sinusoid-plus-noise representations. The analyzer finds sinusoids from the waveform. 

Inside the analyzer a peak picker finds short-time sinusoid atoms and estimates their 

parameters, and a peak tracker connects the found atoms into sinusoid tracks. The 

synthesizer reconstructs a waveform from the sinusoid tracks. Signal contents that are 

not represented in the sinusoid tracks are left in the residue r. 

 The sinusoid modeling is based on short-time sinusoid atoms. In the presence of 

concurrent sinusoids and noise, it is desirable to isolate the sinusoid of interest from 

other events before estimating the parameters. In practice, the DFT, which 

implements a dense bank of band-pass filters, is used as the starting point of sinusoid 

analysis.  

This chapter is arranged as follows. 2.1 discusses the detection of sinusoid atoms; 

2.2 and 2.3 review several methods for measuring sinusoidal parameters; 2.4 reviews 

the methods for tracking sinusoids over time; 2.5 reviews synthesis techniques. In 2.6 

we draw a comparison between standard and harmonic sinusoid models. 
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2.1 Detecting sinusoids from DFT 

As discussed in §1.3, the energy of slow-varying sinusoids is concentrated within a 

narrow band of several DFT bins, and therefore can be detected as spectral peaks. 

DFT-based sinusoid detector finds sinusoids from the signal by locating these peaks. 

This section discusses several aspects of this “peak picking” method. 

2.1.1 Constant sinusoid with noise 

Let X be the DFT of x. A local spectral peak is defined as a bin k where |Xk|≥|Xk+1|, 

|Xk|≥|Xk-1| (but at least one identity does not hold). A global spectral peak is defined as 

a local spectral peak at bin k so that |Xk|≥|Xl|, ∀l. We always expect a sinusoid to 

appear in the amplitude spectrum as a local peak. This is guaranteed for constant 

complex sinusoids by the following. 

Proposition 2.1 (windowed DFT): If the window spectrum W(f) satisfies that 

|W(f)|>|W(g)|, ∀ ≤0.5/N, 0.5/N< <1-0.5/N, || f || g )( gfN −⋅ ∈Z, then a constant 

complex sinusoid xn=aej(2πfn+φ) (0≤ f <0.5) has a global windowed DFT peak at bin k, 

where k/N is closest to f. 

The proof is given in Appendix B.1.1. All the “usual” window functions we 

consider have monotonically decreasing amplitude on the interval [0, 0.5/N], and 

|W(0.5/N)| is larger than |W(f)| for all 0.5/N<f<1-0.5/N, so that the requirements on W 

are fully satisfied. In fact, the condition )( gfN −⋅ ∈Z indicates that we only need to 

compare values of W sampled at intervals of whole bins, e.g. W(0.1/N) with W(1.1/N), 

W(2.1/N), etc. There is no need to require W(0)>W(1.1/N). This shows the effect of 

frequency sampling when we work with the DFT. For usual window functions, the 

amplitude at 0.5 bin becomes a measure of the worst-case peak, as shown in the 

following proposition concerning the detection of sinusoids in noise. 

Proposition 2.2 (noise tolerance): Let x be a complex sinusoid mixed with noise r, i.e. 

xn=aej(2πfn+φ)+rn (0≤ f <0.5), W(f) be the window spectrum, K be a positive integer, 

then the windowed spectrum Xk has a local peak within K bins from Nf, provided that 

|Rk|<0.5aW(0)∆ for Nf-1-K<k<Nf+1+K, where ∆ is defined as 
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The proof is given in Appendix B.1.2. ∆L is interpreted as the minimal drop from 

the main sampled peak of W to a bin L bins away. If we denote the DFT of the 

sinusoid (without noise) as S, then the proposition simply says that a local peak is 

guaranteed for X within K bins from the main peak of S, if the noise is not strong 

enough to make up the drop from the main peak to somewhere no more than K bins 

from it. However, the local peak of X does not have to be the main peak of S. The 

value of ∆ depends mainly on the window type, the integer K, and very slightly on the 

window size N if N is large. For large N numerical results of ∆ are given in Figure 2.1.  
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Figure 2. 1 Noise tolerance factor (∆)  
*Gaussian18 is the Gaussian window given as wn=exp(-18(n-0.5N)2N-2). 

All these curves converge to |W(0.5/N)|/W(0) as K→∞. The rectangular window 

shows a distinctively lower noise tolerance than the others because its amplitude is 

lower at the frequency of 0.5 bin. It is also apparent that ∆ does not have useful 
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increase after some critical point (2 or 3 bins), around which the integer K is chosen in 

practice.  

Proposition 2.2 takes the deterministic approach with noise. For white noise we 

get the following result. 

Corollary 2.3 (flat-spectrum noise): Let the windowed noise r·w have a root-mean-

square (r.m.s.) σrw<0.5aN-1/2W(0)∆, its windowed DFT Rk be constant-amplitude, K be 

a positive integer, ∆ be as defined in (2.2), then xn=aej(2πfn+φ)+rn has a local windowed 

spectral peak within K bins from Nf.  

This is shown by  

 ( ) ∆<=→=== ∑ ∑−− )0(5.02/1221212 aWNRNwrNNRNR rwm
k

rw
n

nnkm σσ . (2.3) 

In the above the conditions on r are also deterministic. However, they 

approximately characterize a white noise with σr<0.5a∆||w||1/||w||2, where ||w||1 and 

||w||2 are the L1 and L2 norms, respectively, of w. ||w||1=W(0) is proportional to N. ||w||2 

is proportional to N1/2. (2.3) shows that longer windows tolerate more wide-band 

noise.  

2.1.2 Two sinusoids 

In Proposition 2.2 the noise level is forced under a “flat cap” in the frequency range 

around the sinusoid, which is chosen to represent wide-band noise. In sinusoid 

modeling, however, the interference between sinusoids is common. For peak picking 

involving concurrent sinusoids, we have the following result.  

Proposition 2.4 (sinusoidal noise): Let the noise r be a constant sinusoid, i.e. 

rn=bej(2πgn+θ), K be a positive integer, then xn=aej(2πfn+φ)+rn has a local windowed 

spectral peak within K bins from Nf, provided that b<a∆s, where ∆s is defined as  
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The proof is given in Appendix B.1.3. ∆s depends mainly on the window type, the 

integer K, the frequency gap h, and very slightly on the window size N if N is large. 

Figure 3.2 gives numerical results of ∆s for K=4 and very large N . The curves show 
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local oscillations synchronized to the bins, which is another example of the frequency 

sampling effect. 

The assumptions of Proposition 2.4 is sufficient not only for a peak to exist within 

K bins from Nf, but also for this peak to be credited to the contribution of the sinusoid 

at Nf, no matter whether the r has a positive contribution or not. Generally speaking 

the DFT detector has much higher tolerance of sinusoidal noise than of wide-band 

noise if the frequency gap h is above several bins, as little noise power spreads to the 

bins where the sinusoid of interest is. 

In practice we always work with real sinusoids rather than complex ones. A real 

sinusoid is equivalent to two complex ones with conjugate frequencies. Figure 2.2 

shows that the existence of a conjugate hardly affects the detectability of a sinusoid, 

unless the frequency is very low, e.g. below 1 bin. 

2.1.3 Zero-padded DFT 

In [Serra97] it has been proposed to use zero-padded DFT for sinusoid detection. 

Zero-padding a sequence of N points to M points (M>N) results in a 1/M-sampling of 

the DTFT, instead of 1/N-sampling. We can derive a result similar to Proposition 2.1 

by replacing N with M. Another result without involving M in the assumptions is 

given as follows. 

Proposition 2.5 (padded DFT): Let the window spectrum |W(f)| be monotonically 

decreasing on [0, 0.5/N], and satisfy |W(0.5/N)|>|W(g)|, ∀|g|>0.5/N, x be a constant 

complex sinusoid, i.e. xn=aej(2πfn+φ) (0≤ f <1/2), Xk be its M-point padded windowed 

DFT, then Xk  has a global peak at bin k, where k/M is closest to f. 

Using padded DFT also enhances the noise tolerance by raising the worst-case 

peak from W(0.5/N) to W(0.5/M). This is easily shown by Proposition 2.2, since zero-

padding does not change the DTFT of the window function. 
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Figure 2. 2 Disturbance tolerance factor ∆s for K=4 
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Figure 2. 3 Noise tolerance factor (∆) using zero-padded DFT 

(a) for fixed padding rate (2); (b) for fixed window type (Hann) 

KN/M

∆ Rectangular

Hamming

Hann

Gaussian18

Blackman

(K-1)N/M KN/M

∆

M=2N

M=3N

M=5N

M=10N

(K-1)N/M 
(a) (b) 

 



2 Technical review  54  

Figure 2.3 (a) shows the noise tolerance factor at M=2N, N and M being the 

unpadded and padded window sizes respectively, for various windows. Figure 2.3 (b) 

compares the noise tolerance for different padding rates computed using the Hann 

window. In the horizontal axes we have multiplied the number of bins K-1 by N/M to 

convert it back to the same frequency scale as in Figure 2.1.  

2.1.4 Section summary 

In §2.1 we have discussed several sufficient conditions for stationary sinusoids to 

appear in the DFT as spectral peaks, so that they can be detected by direct peak 

picking. Peak picking is used in standard sinusoid modeling for its simplicity and 

acceptable performance. For time-varying sinusoids, although it is hard to formulate 

good bounds regarding noise level or peak position in a general form, peak picking 

works fine most of the time, as long as the sinusoid is not overwhelmed by other 

events. However, there is always a chance that a sinusoid, constant or time-varying, 

does not appear as a spectral peak. Special care should be taken of missing peaks in 

sinusoid or harmonic sinusoid modeling (see §3.2). 

2.2 Measuring frequency 

Sinusoid modeling systems extract sinusoidal parameters, i.e. frequencies, amplitudes 

and phase angles, at detected spectral peaks. Although the three parameters are often 

evaluated together, the estimation of frequency plays a key role, while the estimation 

of amplitude and phase angle usually depends on the frequency estimate. In this 

section we focus on frequency estimation only. The amplitude and phase angle are left 

to §2.3.  

Since it is impossible to measure the frequency at a single point with any accuracy, 

the instantaneous frequency is always measured from a data segment (frame) centred 

at a measurement point, while the segment itself may involve parameter changes. The 

frequency estimate therefore carries the characteristics of the whole segment, and is 

almost always inaccurate. 

[KM02] summarizes DFT-based methods for estimating stationary sinusoids. 

These include the standard FFT method, parabolic interpolation [Serra89], 
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reassignment method [AF95], derivative method [DM00], phase vocoder [BP93], etc. 

All these methods produce one frequency estimate calculated from an interval of N 

(or a few more) points. In the following we review these methods and derive error 

estimates in analytical form. 

2.2.1 Standard FFT method 

This method was suggested in [MQ86]. Given a signal x, the FFT frequency estimator 

calculates its N-point DFT, then selects local maxima from the amplitude spectrum. 

Let one of them be selected at bin k, then the frequency is estimated as 

  (2. 5a) Nkf /ˆ =

2.2.1.1 Constant sinusoids 

For pure complex sinusoids, (2.5a) quantizes the true frequency f to its closest bin k/N. 

The frequency estimation error is  

 fNk −= /δ   (2. 5b) 

δ is bounded by 0.5/N. By zero-padding the signal to M points before calculating the 

DFT, the error bound is reduced to 0.5/M. As M→∞, | |≤0.5/M→0. However, 

for real sinusoids the error cannot converge to zero due to the existence of a conjugate 

sinusoid. In this case we derive the following from (1.9) and (1.23): 

ff −ˆ

 ( )( )εϕϕ 21/
2

jj
k efNkWeaX −+−=  (2. 6a) 

where ( )
( )δ

δε
W

fW 2+
= . Since w is low pass, |ε| is a small number well below 1 when 

k/N is close to f and f is not too small. For M→∞, the frequency estimate error is 

bounded by 
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provided that  is detected within 0.5/N from f.  f̂

 



2 Technical review  56  

The proof of (2.6b) is given in Appendix B.2.1. ( )fW 2+′ δ  is the amplitude 

spectrum of 2πnwn at frequency +f, which is within 0.5/N  from 2f. For the Hann 

window, we compare 

f̂

( )
∑

′
=∆

n
nwn

fWN
f 28

)(
π

 to the normalized window spectrum 
( )

∑
n

nw
fW

 

in Figure 2.4a. ∆(f) is generally low-pass, but has a notch at zero frequency. As f 

grows ∆(f) approaches zero. There is a 39dB decay at 5 bins, and 60dB decay at 11 

bins. The decay rate is slower than that of the Hann window spectrum, but the decay 

law is similar. To show this we compress ∆(f) along the f axis by 25:16, and compare 

it to the Hann window spectrum in Figure 2.4b. The two are shown to have highly 

consistent profiles. In Figure 2.5 we compare ∆(f) for four window types, namely the 

Hamming, Hann, Blackman and Gaussian-18 windows. The Hann and Blackman 

windows show faster decay rate than the other two. 

For numerical example, if the signal frequency f is above 5.5bins, then according 

to (2.6b) the frequency estimation error using padded Hann-windowed DFT is 

roughly bounded by 0.001/N when M→∞. 
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Figure 2. 4 Comparing Hann window spectrum and its derivative 

(a) original spectra; (b) after scaling the derivative window spectrum 
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Figure 2. 5 Comparing window spectrum derivatives 

2.2.1.2 Time-varying sinusoids 

Now suppose we have a time-varying sinusoid . Let the spectral 

peak be located at when M→∞, we derive the following 
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where ∆φmn=φn-φm-2π (n-m), wf̂ mn=(n-m)wmwn.  

 



2 Technical review  59  

The details of deriving (2.7a) and (2.7b) are given in Appendix B.2.2. (2.7b) 

expresses the DTFT peak frequency as a weighted average of the instantaneous 

frequency, with ηl being the weight on the interval [l, l+1]. However, it is not a 

closed-form solution, because the right hand side depends on  itself.  f̂

In most DFT-based estimators the frequency estimate is assigned to the frame 

centre (with the exception of time-reassignment [AF95]). Therefore we compare the 

frequency estimate to the instantaneous frequency at the central point N/2 (sometimes 

we take (N-1)/2) to get an estimation error. This is given as 

 
( )

∑

∑
−

=

−

=
+ −−

=− 2

0

2

0
1

2/0

)2/(

N

l
l

N

l
lll

N

Nf
ff

η

ϕϕη
 (2. 7c) 

2.2.2. Parabolic interpolation 

The parabolic method was used in [Serra89]. Although the standard FFT method can 

achieve arbitrarily high frequency accuracy by zero padding, the additional 

computation cost prevents us doing so with a high padding-rate. Since zero-padding 

does nothing beyond a denser sampling of the DTFT, and since the DFT calculated 

with any zero-padding rate contains the complete information, it has been suggested 

that we may interpolate the spectrum calculated at a relatively low zero-padding rate 

to achieve a high frequency resolution. The parabolic interpolation is the simplest 

case of such interpolations. 

Like the standard FFT method, the parabolic interpolation first locates a local 

spectral peak at bin k, so that |Xk|≥|Xk-1|, |Xk|≥|Xk+1|. The amplitude spectrum (direct or 

post-processed) between bins k-1 and k+1 is then approximated with a quadratic 

function, then the peak position of this quadratic function is used as the frequency 

estimate. Let these three amplitudes be A-1, A0, and A1, respectively. The quadratic 

function is given as 

  (2. 8a) 011
2

101 )(5.0)5.05.0()( AdAAdAAAdkA +−−+−=+ −−

The local maximum is found at  
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Finally the frequency is estimated as 

 
M

dkf +
=ˆ  (2. 8c) 

where M is the zero-padded DFT size. For a pure complex sinusoid the amplitude 

spectrum is given by |Xk|=|W(k/M-f)|. Let k be the integer closest to Mf, i.e. |k/M-

f|≤0.5/M; δ be k/M-f. Without loss of generality, let k/M>f. Then  

 A-1=|W(δ-1/M)|, A0=|W(δ)|, A1=|W(δ+1/M)|,  (2. 9a) 

so 
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The frequency estimation error is  
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The parabolic method assumes d approximates -δM. Generally speaking the 

performance of this method depends on how accurately W can be approximated by a 

parabolic function near zero frequency. When |W| is quadratic near zero, i.e. 

|W(f)|=a+bf2, we can verify that d=-δM. In a more general case, let |W(f)| be 

approximated around zero as 

 ∑
≥

=
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n
n NfAfW , (2. 10a) 

where N≤M is the window length without padded zeros, then we may calculate the 

frequency error in bins 
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where 
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  (2. 10d) nnn
n xxxxJ 222 )1()(2)1()( ++−−=

In and Jn have the following properties: 

1) I0(x)=I1(x)=J0(x)=0; 

2) In(x)=-In(-x), Jn(x)=Jn(-x);  

3) In(0)=In(0.5)=0; 

4) In(x)<0 when n≥2 and 0<x<0.5, Jn(x)>0 when n≥1; 

5) In(x)/Jn(x)>-1 when n≥2 and 0<x<0.5 (so that |In(x)|<|Jn(x)| ); 

6) Jn(x)≤1+(x+1)2n, and grows with n like (1+x)2n when 0<x<0.5.  

First part of 4) is shown by the following induction: 
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We show the above is positive by the following induction: 
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With “normal” low-pass window functions An decreases rapidly with n. As Jn 

increases like 1.52n at the most, and |In| is below |Jn|, when the zero-padding rate M/N 

is moderately high, e.g. M=10N, the factor (N/M)2n assures that the error is dominated 

by the first non-zero terms in both the numerator and denominator of (2.10b). In 

particular, if A1≠0, A2≠0, we can write 
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As 
4

)(164 3MM δδ +−  is bounded by 3-1.5, the frequency error is roughly bounded by 

1

2
35.1

2

3 A
A

M
N .  

For numerical example, we look at the Hann window, approximating its window 

spectrum with that of a continuous Hann window. We calculate 
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Comparing this to  we get ∑
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n An/0.5N 

0 1 

1 -0.644934 

2 0.166808 

3 -0.239435×10-1

4 0.220438×10-2

5 -0.141699×10-3

6 0.672989×10-5

7 -0.245985×10-6

8 0.713635×10-8

9 -0.168360×10-9

10 0.329383×10-11

Table 2. 1 Polynomial coefficients of Hann window spectrum 
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The values for n=0~10 are listed in Table 3.1. We have 3-1.5|A2/A1|≈0.05. 

The error bound above is derived for pure complex sinusoids. In the case of real 

sinusoids, the existence of the conjugate sinusoid introduces an additional term to the 

error bound, given by (2.6b) as M→∞. 

2.2.3. Reassignment method 

The original reassignment method [AF95] is based on the idea of undoing the 

smoothing of Wigner-Ville distributions, which generates time-frequency 

representations such as the short-time Fourier transform. [KM02] takes a stationary 

assumption and ignores the time reassignment. The frequency reassignment is 

calculated from two DFTs using window derivative. Let x be a sinusoid, w be a 

window function with derivative w′ , the frequency reassignment method calculates 

the DFT wX , with window w, and wX ′  with window w′ , then estimates the 

frequency as 

 w
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w
k

X
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−= . (2. 11) 

where k is a local spectral peak. In case of multiple sinusoids, each frequency is 

estimated using a distinct k. 

In this method w  is taken as the derivative of the continuous window function w, 

although in the calculation of DFT both w and w

′

′  are sampled. Let Wc(f) be the 

spectrum of the continuous window w (not a DTFT), δ=k/N-f, then the frequency 

estimation error for a pure complex sinusoid xn=acosj2πfn is given as 
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The proof is given in Appendix B.2.3. (2.12) shows that using a derivative window 

we can estimate the frequency without error, provided that Wc(f) is band-limited to (-

1/2, 1/2). However, no window function has its frequency and time support both 
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bounded. In the case of DFT, since w(t) has bounded time support, Wc(f) always has 

marginal energy outside (-1/2, 1/2).  

As an example we look at the Hann window in the continuous form 

  (2. 13a) ∫
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When N is a large even integer, n≠0 and f<<1, we have 
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The frequency estimation error is roughly  
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As |δN(1-δN)(1+δN)| is bounded by 2·3-1.5 when |δN|<1, we see that the frequency 

error has an upper bound close to 2·3-2.5π2/N2 bins, if k is selected within 1 bin from Nf.  
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For real sinusoids, the error (2.12) is replaced by the following: 
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where φ is the phase angle at the centre of the window. When the frequency is low, 

the above can be approximately written as  
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so that the error bound is roughly given by 
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(2.14c) indicates that one one should select k close to the spectral peak, so that W(δ) is 

kept small, to get good estimation. 

2.2.4. Derivative method 

The name “derivative” originates from the continuous version of the method. In the 

discrete case the derivative is replaced by the difference. Let x be a constant sinusoid, 

i.e. x=aej2πfn+φ, ∆x be its backward difference, X0 and X1 be their DFTs respectively, w 

be a low-pass window function, then the frequency is estimated as 
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where k is a spectral peak of X0. In case of multiple sinusoids, each frequency is 

estimated using a distinct k. 

The derivative method does not have an error for pure complex sinusoids. For real 

sinusoids and not too low f, the error bound is given by 

 



2 Technical review  66  

 ε
π

πf
ff

tan2ˆ ≤−  (2. 16) 

where 
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)2(
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δε
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fW +
= , δ=k/N-f. The proof is given in Appendix B.2.4. 

(2.16) indicates that one one should select k close to the spectral peak, so that W(δ) 

is kept small, to get good estimation. 

2.2.5. Phase vocoder method 

The phase vocoder method [BP93] estimates the frequency using phase changes of the 

Fourier transform. Let x=aej2πfn+φ, w be a low-pass window function, X be the 

windowed DFT of x calculated from N points 0, 1, …, N-1, X1 be the windowed DFT 

of x calculated from N points 1, 2, …, N. The phase vocoder estimates the frequency 

as 
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where the arg function takes the angle of a complex number between –π and π. The 

method is also known as phase difference method as kk
k

k XX
X
X argargarg 1

1

−= . Like 

the derivative method, the phase vocoder method does not have an error for pure 

complex sinusoids. For real sinusoids and not too low f, the frequency estimation 

error is bounded by 

 εarcsin2ˆ ≤− ff  (2. 18) 

where 
)(

)2(
δ

δε
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fW +
= , δ=k/N-f. The proof is given in Appendix B.2.5. (2.18) 

indicates that one one should select k close to the spectral peak, so that W(δ) is kept 

small, to get good estimation. 

2.2.6. Section summary 

In §2.2 we have discussed several DFT-based methods for frequency estimation. 

Although the standard DFT only provides a frequency resolution of 1/N, almost all 
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these DFT-based methods can achieve much higher accuracy for clean and constant 

sinusoids. Of the five methods, the standard FFT method requires the calculation of 

heavily padded DFT to achieve good result; the reassignment, derivative and phase 

vocoder methods require computing two FFTs; the parabolic interpolation method 

requires only one FFT. We compare the error bounds of four methods for constant 

real sinusoid in Table 2.2. The parabolic method has the error bound of the heavily-

zero-padded FFT method, plus an extra term due to non-parabolicity, which vanishes 

if a window function with parabolic amplitude spectrum near zero frequency is used. 

Method Error bound 

Standard FFT 

(with heavy zero padding) 
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Derivative επ
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fff tan2ˆ ≤−  

Phase vocoder εarcsin2ˆ ≤− ff  

Table 2. 2 Comparing error bounds for pure sinusoids 

 

2.3. Measuring amplitude and phase angle  

Given (1.23), the amplitude and phase angle of a constant sinusoid can be 

straightforwardly estimated as 
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This method is used in [AKZ99] and [KM02] as an improvement on former amplitude 

and phase estimation methods proposed in conjunction with individual frequency 

estimation methods. For a pure complex sinusoid, if the frequency is determined 
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without error, then (1.23) assures that the amplitude and phase angles can also be. In 

the case of real sinusoids, we have 

 ( )/()/(
2

fNkWefNkWeaX jj
k ++−= − ϕϕ ), (2. 20a) 

the relative amplitude error 
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and the phase angle error 
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However, the frequency estimate almost always has an error. Let the frequency 

estimate be  and δf̂ f= . Then for a pure complex sinusoid, the amplitude 

estimation error is 
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According to (2.21a), the frequency estimation error introduces an amplitude error 

that depends on the behaviour of W(f) near f. For a real sinusoid the conjugate 

sinusoid introduces a similar term as in (2.20b): 
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However, the frequency error does not affect the phase estimate, unless the error is so 

large that Wk(f) and Wk(f+δ) have different signs.  

In practice W  is of the same magnitude as W itself when the frequency is 

expressed in bins, so if δ

′

f is on the magnitude of bins, the amplitude error bound is on 

the magnitude of 1, i.e. very large. Therefore to use (2.19) for amplitude estimation 

requires a highly accurate frequency estimate, which is not easily available for fast 

varying frequencies. Accurate frequency estimation involving frequency variation 

model will be discussed in §3.3.  

2.4 Sinusoid tracking methods 

In sinusoid modeling, the tracking stage connects short-time sinusoid atoms into 

sinusoid tracks, along which the parameters evolve. All criteria for connecting 

sinusoids from one point to the next are based on some kind of continuity measure: 

only those atoms that bear some similarity are connected together.  

The first and most important continuity measure is the closeness in frequency. In 

[MQ86] the authors composed their sinusoid tracking using this measure alone. A 

track is extended forward if there is a sinusoid atom ahead and its frequency is within 

a maximal jump from the frequency at the end of the current track. If more than one 

atom is found, the one with the smallest frequency jump is selected. A track “dies” if 

no atom exists in the allowed range. Atoms that are not matched to existing tracks 

mark the “birth” of new tracks. Figure 3.4, taken from [Serra97], illustrates this partial 

tracking. Compared to [MQ86], [Serra97] allows a dead track to be revived if a 

successor can be found within a short time. 

 



2 Technical review  70  

 
Figure 2. 6 Partial tracking by frequency closeness [Serra97] 

Advancements in partial tracking have mainly focused on deriving patterns for 

frequency and amplitude variation. [Röbel02] proposed to estimate the frequency 

slope using the reassignment method and suggested using this slope in partial tracking. 

Instead of directly evaluating the frequency slope, [SW98] implements a linear 

frequency predictor as a Kalman tracker, with the frequency slope as a state variable. 

The use of frequency variation trends for guiding partial tracking appears in 

[LMRR03] as a linear prediction model, exploring higher-order trends than a simple 

first-order slope. The linear prediction model is able to closely model exponential 

chirps and sinusoidal modulations. The predictor for a certain frame is calculated 

from a chosen number of previous frames. All the above methods are examples of 

pure forward tracking. One drawback to pure forward or backward tracking is the 

sensibility to local disturbance. On the contrary, forward-backward partial tracking 

improves the robustness by introducing a global cost function. [SB90] and [SE90] are 

early examples of using hidden Markov model for tracking sinusoids. In the context 

of sinusoid modeling, [DGR93] explores the use of hidden Markov model for 

modeling first-order amplitude and frequency trends. Compared to forward frequency 

prediction models, the use of a forward-backward tracking framework makes it 

possible to find optimal partials globally.  
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All the methods above deal with tracking individual partials. Most existing 

methods that model harmonic sources [BC94, Ellis96, Métois98, Tolonen99] do so by 

tracking individual partials then grouping them according to some harmonic 

relationship. [BC94, Ellis96] describe general-purpose audio analyzers called 

computational auditory scene analysis (CASA) systems. These systems do not model 

sinusoids explicitly, but they collect energy in the time-frequency space into partial 

tracks in a manner similar to sinusoid modeling. [Tolonen99] applies the harmonic 

criterion after a sinusoid modeling stage to form harmonic streams. There are also 

methods that consider harmonic constraints in the first place. [Brown92] introduces a 

pattern for harmonic particles that explicitly requires that the objects being tracked be 

harmonic. [DG03] models partial harmonicity by forcing partial frequencies close to 

perfect harmonicity in formulating a Bayesian model. Amplitude variation is modeled 

as “smooth” in [DG03] by forcing the amplitude to be an additive combination of 

low-pass envelopes. Frequency variation modeled in the Bayesian framework in 

[WGR99] using single-frame harmonic models connected in a Markov chain. [DD07] 

formulates the detecting and tracking of harmonic sinusoids in a Bayesian sequential 

harmonic framework, which models a wider range of signals than previous Bayesian 

harmonic methods. 

2.5 Synthesizing methods 

Given the amplitude a and phase angle φ, a sinusoid can be synthesized by directly 

calculating nnn ax ϕcos= . However, in frame-based modeling the parameters are 

only estimated at the frame centres. The synthesizer therefore has to recover the 

skipped points from the estimates. The first sinusoid synthesizers that rebuild 

sinusoids from incomplete parameter estimates were introduced in [MQ86]. The first 

method proposed by [MQ86] uses an overlap-add framework. Rather than 

reconstructing the missing parameters, the overlap-add method directly interpolate 

sinusoid atoms linearly. This interpolation is not consistent with the sinusoid model, 

but has good perceptual quality when the overlap rate is high. The overlap-add 

synthesis can be implemented by fast Fourier transform [RD92]. 
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[MQ86] also gives a true sinusoid synthesizer that rebuilds the signal by 

recovering instantaneous parameters at skipped points. The parameters are 

interpolated between adjacent pairs of measurement points using the estimates at 

these two points only. Let them be at time 0 and N, with parameter estimates ( , , 0â 0̂f

0ϕ̂ ) and ( , , Nâ Nf̂ Nϕ̂ ) respectively. The parameters between 0 and N are interpolated 

as  
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where α is chosen to be the smallest number that makes  NN ϕϕ ˆ−  a multiple of 2π. In 

the MQ synthesizer the amplitude is piecewise linear, while the phase angle is 

piecewise cubic. The phase interpolation suffers from phase wrapping around 2π. In 

the original article the authors derived the phase interpolation algorithm by 

minimizing the frequency fluctuation under four boundary conditions, using an 

argument counting the number of phase wraps. However, in (2.22) we have 

formulated it as a linear frequency interpolation with a minimal correction term. It is 

apparently that (2.22) satisfies the four phase and frequency boundary conditions, i.e. 

00 ˆ~ ϕϕ = , πϕϕ kNN 2ˆ~ =− , 00
ˆ2|)(~ ft t πϕ =′ = , NNt ft ˆ2|)(~ πϕ =′ = . The frequency fluctuation, 

as given by [MQ86], is 
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This shows that by choosing a minimal coefficient α for the correction term in (2.22), 

we also minimize the frequency fluctuation. 

  There have been variations of the MQ synthesizer, with boundary conditions 

different from the standard MQ synthesis. [Serra97] gives a simplified version that 

interpolates frequency linearly and discards phase estimates. Since the human 

auditory system is not sensitive to phase angles, discarding the phase of stationary 

sinusoids does not undermine the perceptual quality of the synthesized sound. On the 

contrary, [LMMRP03] proposes to introduce more boundary conditions for enhanced 

accuracy. The original boundary conditions of the MQ synthesizer assure the 1st- and 
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2nd-order continuity of phase angle. In [LMMRP03] the conditions are extended to 

ensure the 3rd-order continuity, provided that estimates of the frequency derivative are 

available. Indeed, with frequency and frequency derivative estimated at time 0 and N 

as , , , , the frequency can be interpolated as the trinomial 0f̂ 0f̂ ′ Nf̂ Nf ′ˆ
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Now we formulate the phase unwrapping problem considering frequency derivative in 

terms of interpolation and correction. In a wider sense, let be any function that 

is continuous and has continuous derivatives at 0 and N. The corresponding phase 

angle is 
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nϕ~  satisfies the phase continuity condition at boundary 0, i.e. 00 ˆ~ ϕϕ =o . The 

continuity at boundary N can be satisfied by introducing a correction term δ, so that 

0000 =′′=′′=′=′= NN δδδδδ , . δ does not affect the already 

satisfied boundary conditions. The simplest way to construct δ is using a 5
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This correction term is proportional to δN. In the minimal correction criterion, we 

choose δN to be the smallest value that satisfies , then interpolate 

the phase angle as 

πϕδϕ kNNN 2ˆ~ +=+o

  nnn δϕϕ += o~~  (2. 24d) 

We can also find the instantaneous frequency of the reconstructed sinusoid as 
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2.6 From sinusoid model to harmonic sinusoid model 

Sinusoid modeling assumes that an audio signal can be written as the sum of a finite 

number of slow-varying sinusoids and a small residue. This was formulated by J. 

McAulay and T. F. Quatieri in 1986 for speech analysis and synthesis [MQ86]. In 

1989 X. Serra improved this method by introducing a noise descriptor on the residue 

so that it doesn’t have to be small [Serra97]. The sinusoid model is given as (2.1): 

   n

M

m

m
n

m
nn

M

m

m
nn rarxx +=+= ∑∑

== 11

cosϕ

where xm (m=1, 2, …, M) are sinusoids and r is the residue. A complete sinusoid 

modeling system includes an analyzer and a synthesizer. The analyzer finds the 

sinusoids and estimates their parameters in (2.1) at a set of measurement points. It 

contains a sinusoid detector, a parameter estimator, and a partial tracker. Details of 

these parts have already been reviewed in §2.1~§2.4. The synthesizer simply sums up 

a finite number of resynthesized sinusoids. Techniques for resynthesizing a sinusoid 

from incomplete parameter estimates have been reviewed in §2.5.  Sinusoid modeling 

can be used for deterministic component extraction, noise removal, pitch shifting, 

time stretching, sound morphing, audio coding, etc. However in the literature the use 

of sinusoid modeling is discussed mostly in an analysis-synthesis framework, where a 

new sound is generated from the original. These include sound reconstruction with 

sinusoids (known as spectral modeling synthesis, SMS), time stretching, pitch shifting, 

frequency warping, etc., which are extensively discussed in [MQ86, Serra97, 

Zölzer02].  

The plain sinusoid model does not explicitly represent individual sound sources. 

There have been attempts to study pitched sound by grouping individual partials 

[BC94, Ellis96] that fit in a harmonic relationship. In [Tolonen99] this grouping is 

applied to the sinusoid model to extract pitched events. After the grouping the 

sinusoid model (2.1) is converted to a harmonic sinusoid model (1.7b). On the other 

hand, the partial tracking can also be regarded as a kind of grouping, i.e. the grouping 

of short-time sinusoid atoms onto partials. In this sense the grouping of sinusoid 

tracks into harmonic sinusoid tracks is equivalent to the grouping of sinusoid atoms 

with higher priority on partial continuity than on harmonicity. Since the tracker 
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groups the atoms without considering harmonicity, the harmonic structure is likely to 

be corrupted at this stage. That is, a valid sinusoid track may fail to fit in a harmonic 

model, as shown in Figure 2.7a. 

 

Figure 2. 7 Preserving harmonic structure using harmonicity-priority tracking 

(a) continuity-priority tracking; (b) harmonicity-priority tracking 
Tracking mistakes are marked with “×” symbols. 

Intuitively, the harmonic structure is corrupted when one of the harmonics goes 

astray onto another under the optimal continuity criterion. This type of error can be 

alleviated by limiting the duration of each track so that the crossing points are 

“quarantined” on their own segment without disturbing the other “clean” segments. 

The short sinusoidal components can then be grouped within their own intervals, and 

then connected together in time with multi-partial continuity considerations. 

If we push the above treatment to the extreme, i.e. each segment is unit-length so 

that no source-crossing could ever happen, we arrive at an alternative way for 

obtaining harmonic sinusoids, i.e. grouping harmonic atoms before tracking them 

over time. By doing this we are giving partial harmonicity higher priority over 

continuity, so that the tracking never goes out of harmonicity, as shown in Figure 2.7b. 

This is our starting point of harmonic sinusoid modeling. A harmonic sinusoid 

analyzer therefore consists of a module for finding harmonic partials at a certain 

frame, a module for tracking harmonic partials over time, and a module for estimating 

sinusoidal parameters. We compare the block diagrams of sinusoid and harmonic 

sinusoid modeling systems in Figure 2.8.  

f f

× 

× 

t t
(a) (b)

 



2 Technical review  76  

 

Figure 2. 8 Comparing sinusoid and harmonic sinusoid analysis systems 

(a) sinusoid analysis; (b) harmonic sinusoid analysis 

 While in sinusoid analysis we group sinusoid atoms over time immediately after 

they are detected, in harmonic sinusoid analysis a harmonic grouping stage is 

introduced between those two steps to collect sinusoid atoms into harmonic particles, 

which are then tracked with a harmonic sinusoid tracker. In both systems the tracking 

modules are based on time continuity structures. Table 2.3 lists the elements of 

harmonic sinusoid modeling compared to their sinusoid modeling counterparts. The 

key upgrade from sinusoid to harmonic sinusoid modeling is the replacement of a 

sinusoid atom with a harmonic particle, which is listed in bold. Accordingly all 

modules and criteria designed for sinusoid atoms are upgraded for working with 

harmonic particles.  
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Sinusoid modeling Harmonic sinusoid modeling 

Object: pure tones Object: tonal sounds 

Sinusoid atoms (peaks) Harmonic sinusoid particles 

Spectral peak picking Harmonic particle detection 

Peak amplitude Amplitude vector, on partial index 

Peak frequency Frequency vector, on partial index 

 Inharmonicity 

Peak continuity Harmonic particle continuity 

Peak frequency variation Pitch variation 

Peak amplitude variation Amplitude vector variation 

Phase continuity Multi-phase continuity 

 Energy distribution in partials 

Peak tracking (sinusoid tracking) Harmonic sinusoid tracking 

Table 2. 3 Comparing sinusoid and harmonic sinusoid modeling 

In the table we have used the name harmonic particle detection to refer to the 

combination of peak picking with harmonic grouping. The key element in sinusoid 

modeling, the sinusoid atom, is detected by peak picking and described by its 

amplitude, frequency and phase angle. Its harmonic counterpart, the harmonic particle, 

is detected by harmonic particle detection (see §3.2), and described by amplitude, 

frequency and phase angle vectors. From the frequency vector we derive 

inharmonicity (see 3.2.2), describing how partial frequencies depart from perfect 

harmonicity. The sinusoid tracker tracks sinusoid particles according to peak 

continuity criteria. The harmonic tracker does its job according to harmonic particle 

continuity criteria (see §4.1 and §4.2). When partials of pitched sounds are regarded 

as independent components, the harmonic sinusoid modeling is reduced to sinusoid 

modeling.   
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As is the case with sinusoid modeling, the harmonic sinusoid modeling also 

includes a synthesis module. However, since the conversion from a harmonic sinusoid 

model to a sinusoid model is trivial, the harmonic sinusoid synthesis can be done in 

the same way as in sinusoid modeling.  

2.7 Summary 

In this chapter of technology review we have focused on the main aspects of sinusoid 

modeling, i.e. sinusoid detection and sinusoidal parameter estimation, partial tracking, 

and synthesis algorithms. We have also reviewed how these modules are integrated 

together as a sinusoid modeling system, and how this system is transformed into a 

harmonic sinusoid modeling system by the introduction of harmonic sinusoid particles. 

Theoretically a harmonic sinusoid analyzer can be implemented by upgrading the 

modules of a sinusoid modeling system to work with harmonic particles. This is to be 

discussed in details in the following chapters. 

 



    

 

Chapter 3
 
Harmonic sinusoid measurements 
 
This chapter is devoted to techniques for estimating the parameters of harmonic 

particles, i.e. the frequencies, amplitudes and phase angles, from audio signal. A 

harmonic particle is represented by the number of partials M, partial frequencies 

, …, , amplitudes a1f Mf 1, …, aM, and phase angles φ1, …, φM. To determine a 

harmonic particle, we locate its partials and estimate the parameters. The harmonic 

grouping requires the knowledge of amplitudes and frequencies of the atoms. 

However, good estimation of sinusoidal parameters requires the knowledge of 

parameter variation, which is only available after the tracking stage (see Chapter 4). 

Fortunately, parameter accuracy is not critical in the harmonic grouping and tracking 

stages, which are designed to tolerate parameter errors. We perform parameter 

estimation in two stages: a pre-tracking estimation that provides rough estimates for 

use in harmonic grouping and tracking, and a post-tracking estimation that provides 

the final model parameters.  

This chapter is arranged as follows. 3.1 discusses a least-square-error method for 

estimating stationary sinusoidal parameters in the presence of noise. 3.2 discusses the 

grouping of sinusoid atoms into harmonic particles. In 3.3 and 3.4 we propose two 

schemes for post-tracking parameter estimation, which use the knowledge of partial 

tracks to improve parameter estimation.  

3.1 Least-square-error estimation of stationary sinusoids 

Now we consider the problem of evaluating parameter estimates. Let x be a sinusoid 

xn=ancosφn with already known parameters, ,  and â f̂ ϕ̂  be its parameter estimates at 

point 0. It is straightforward to compute the individual errors at time 0: 
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 , 0ˆ aaea −= 0ˆ ϕϕϕ −=e , and 
π

ϕ
2

)0(ˆ ′
−= fe f . (3. 1) 

These errors are useful for evaluating analyzer performance on each parameter. 

However, there are two problems. First, they do not provide an overall performance 

measure. While we may use these errors to compare systems for each parameter, it is 

hard to compare analyzers each of which has its own strong points. For instance, if 

system A is better in frequency estimation than system B, but worse in amplitude 

estimation, then to compare the two systems we need to know how much frequency 

error can be “traded” for a certain amount of amplitude error, etc. The second problem 

of direct parameter comparison is that it requires that we know the instantaneous 

parameters at the measurement points, which is only applicable to synthesized signals.   

To avoid these complications we take a synthesis approach. Given a set of 

parameters a, f, φ and their estimates a , , ˆ f̂ ϕ̂ , we synthesize a sinusoid from each 

set and compare their waveforms, i.e. 

  (3. 2a) (∑ +−+=
n

n fnanfawe
22 )2cos()ˆˆ2cos(ˆ ϕπϕπ )

where w is a low-pass window function centred at the measure point, so that the sum 

is bounded. Comparing two parameter sets with (3.2a) enables each individual 

parameter error to contribute in its natural way to a global error. When we have no 

ground truth of the instantaneous parameters, we can use 

 ( )∑ −+=
n

nn xnfawe
22 )ˆˆ2cos(ˆ ϕπ  (3. 2b) 

The above time-domain formulation has been given in previous literatures e.g. 

[Kay87]. The frequency-domain version of (3. 2b) is  
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where N is the size of w, W is the DTFT of w, and X is the windowed DFT of x. Most 

energy of W is concentrated within a narrow band, say 2B bins, centred at 0. Then 

using the symmetry of Fourier transforms of real signals, for the typical frequency 

range we work in, we may write 
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“ ” is used in (3.3b) since the energy of W outside the 2B bins is ignored. The part of 

e that concerns parameter estimates is the band-limited square error: 
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(3.3c) separates from (3.3a) a narrow band that contains most energy of the sinusoid. 

Since W itself is band-limited, using eB instead of e hardly affects the estimation 

outcome, but effectively reduces the frequency-domain computation involved in 

calculating the error and its derivatives.  

Given two analyzers, we may compare them using (3.3c) for an arbitrary signal. 

The one with a lower eB is a better estimator in the sense of less square error. We 

define a least-square-error (LSE) estimator as the one that minimizes eB in (3.3c). 

It can be shown that the LSE estimator is equivalent to the Gaussian maximal 

likelihood (ML) estimator [Kay87]. 

3.1.1 The estimating process 

Given a windowed DFT , the LSE estimator finds a set of parameter estimates a , 

and 

kX ˆ

f̂ ϕ̂  that minimizes eB. We always start from a rough estimate of the frequency, 

say . This can be obtained by any method discussed in §2.2. We choose k0̂f 1 as the 

minimal integer above , kB0̂ −fN 2 as the maximal integer below , then 

redefine the band-limited square error as 

B0̂ +fN

 ( ) ( )∑
=

−−=
2

1

2
ˆ ˆ/

2
ˆ1ˆ,ˆ,ˆ

k

kk

w
k

jB XfNkWea
N

fae ϕϕ  (3. 4a) 

By fixing the summation bounds instead of letting them vary with , we avoid 

possible discontinuity problems of e

f̂
B at bin boundaries. We further introduce the 

scalar λ=aejφ/2, as well as the vectors 
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 , , (3. 4b) 
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The optimization of eB regarding { } does not have a closed-form solution 

for an arbitrary window function, so we turn to numerical searching methods. 

Fortunately, if  is fixed, we do have an analytical solution. This helps to reduce the 

searching scope from three dimensions to one. 

ϕ̂,ˆ,ˆ fa

f̂

We consider the optimization of { ϕ̂,â }, or , with fixed . The 

solution is straightforward: 

2/ˆˆ ϕ̂λ jea= f̂

 2
)ˆ(

)ˆ(,)ˆ(ˆ
f

ff
W

WX ><
=λ  (3. 5a)

and the square error at this  is  λ̂
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)(ˆ fλ  is interpreted as the orthogonal projection of X onto the 1-D subspace 

containing . (3.5b) expresses the least square error as a function of  only. 

Once we have optimized e

)( fW f̂

B regarding variable  using (3.5b), the optimal a  and f̂ ˆ ϕ̂  

can be calculated immediately with (3.5a). The optimal  can be found using a 

standard one-dimension optimization method. If W has an analytic expression, we can 

use the Newton method. If not, we can run a convex 1-D search. 

f̂
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To use the Newton method we need to calculate the 1st- and 2nd-order derivatives 

of eB(f) regarding f. For the cosine window family, we formulate the details of the 

computations in Appendix C.1 and C.2. 

We summarize the LSE estimator as follows. 

  (*) 

2

2

)(

)(,
maxargˆ

f

f
f

f W

WX ><
=  

2
)ˆ(

)ˆ(,ˆ
f

f

W

WX ><
=λ  

|ˆ|2ˆ λ=a  

λϕ ˆargˆ =  

Other formulations equivalent to (*) are found in e.g. [Kay87] with rectangular 

windowing, and in [Virtanen00] with general windowing. Multi-sinusoid version of (*) 

is also discussed in [Kay87] and used for sinusoid modeling in [Tolonen99, 

Virtanen00].  

The variation of the denominator 
2

)ˆ( fW with  is an effect of the band-limiting, 

and hardly has any substantial importance. In a simplified version we take an 

approximation by ignoring the marginal energy outside the considered band, and write 

f̂

 ∑==
n

nwNf 222
)0()ˆ( WW , (3. 6) 

This leads to the maximal-cross-correlation method [Rodet97]: 

 2)(,maxargˆ ><= ff
f

WX , 2)0(
)ˆ(,ˆ

W
WX ><

=
fλ  (3. 7) 

However, by using (3.7) we are deliberately casting away side-lobe energies of w, 

which may introduce a bias for some window functions. 

Figure 3.1 depicts  )ˆ(ˆ fλ  as a function of . The signal is a five-partial harmonic 

sinusoid with fundamental frequency 0.08 and partial amplitudes 1, plus white noise 

f̂
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with SNR=0dB. A Hann window of size 1024 is used. The DFT is given in black and 

)ˆ(ˆ fλ  in red; where the two overlap it appears in aqua. Figure 3.1 (a) shows the 

complete Nyquist frequency range, while Figure 3.1 (b) zooms in near the second 

partial.  

λ̂  

 0 0.125 0.25 0.375 0.5 
    f̂  

(a) 

spectral peak 1 

λ̂   peak 2 
peak 3 

 peak 4 

 155 160 165 170  

   (bins) f̂
 

(b) 

Figure 3. 1 Projection amplitude as a function of frequency 

(a) the whole Nyquist range; (b) around a local spectral peak 
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3.1.2 Multiple spectra 

Some musical instruments have constant pitches. In this case it is reasonable to 

evaluate a constant frequency from multiple short-time spectra. Let the band-limited 

spectrum vector of the lth frame be Xl, the amplitude-phase factor estimate of the lth 

frame be  , the frequency estimate be , then we define the total windowed square 

error as 

lλ̂ f̂

 ( ) ∑ −=
l

llL
B f

N
fe

2

21 )ˆ(ˆ1ˆ,ˆ,,ˆ,ˆ XWλλλλ L  (3. 8a) 

For a fixed  the above is minimized by setting f̂

 2
)ˆ(

)ˆ(,)ˆ(ˆ
f

ff l
l

W

WX ><
=λ , ∀ l (3. 8b) 

The minimal square error fixing  is: f̂

 ( ) ∑∑
−

><−=
l

l
l

l
B ff

NN
fe

222 )ˆ()ˆ(,11ˆ WWXX  (3. 8c) 

To minimize this error we search for an optimal frequency: 
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2
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)(,
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f
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f W

WX∑ ><
=  (3. 8d) 

3.1.3 Non-stationary sinusoids 

Since the LSE method is based on the orthogonal projection of the signal spectrum 

onto the subspace of fixed-frequency stationary sinusoid spectra, it does not work for 

non-stationary sinusoids in the same way as for stationary ones. To interpret the LSE 

frequency estimate, we apply the LSE estimator, in its simplified version, to time-

varying sinusoids and get the following result.  

Proposition 3.1 Let x be a complex sinusoid given as 

 , (3. 9a) ))(2( 2/∫+=
n
Nc dttfj

nn eax πϕ
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w be a window function, and  be the LSE frequency estimation of x, then f̂
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The proof is given in Appendix C.3. By rearranging the summing indices of (3.9b) 

we get 
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(3.9c) says that the LSE frequency estimate is a weighted average of the 

instantaneous frequency during the interval from which the spectrum is calculated. 

This result is similar to (2.7c) derived for the standard FFT method, except for the 

definition of wmn. Here it is the squares of wm and wn, rather than are wm and wn 

themselves, that produce wmn, which further favours the central part of the window.  

Strictly speaking, when the frame involves large frequency variation, ηl is not 

guaranteed to be non-negative when f(l) departs far from . If the frequency varies in 

a smooth way, the sign of η

f̂

l appear alternatively positive and negative with l during 

the time f(l) remains far from . The effect is that they partially cancel the 

contribution of each other in (3.9c).  

f̂

The amplitude-phase factor  can still be interpreted as the maximal projection of 

x onto any subspace of fixed-frequency sinusoids. However, since time-varying 

sinusoids can not be effectively approximated in such a subspace, this projection can 

no longer be used for amplitude estimation. The parameter estimation of time-varying 

sinusoids will be discussed in §3.3. 

λ̂

It is easily shown by (3.9c) that the LSE frequency estimate is accurate for linear 

chirps, i.e.  equals the instantaneous frequency at the frame centre, if x has constant f̂
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amplitude and linear frequency. A closer study shows that if the frequency is odd-

symmetric (allowing a constant shift) and the amplitude is even-symmetric within the 

analysis window, then the LSE estimator does not incur a frequency estimation error. 

A discussion of parameter symmetry and its effect on (3.9c) is included in Appendix 

C.3. 

f f

t 0 20480t
 

  (a)   (b) 

Figure 3. 2 Frequency averaging effect in the LSE method 

(a) at a peak of a frequency track; (b) on a whole frequency track modulated by a sinusoid 

Figure 3.2 shows the frequency averaging effect in the LSE method. Figure 3.2 (a) 

shows a quadratic frequency track (dark blue). The gray-scale shadow behind the 

frequency track is the spectrogram. When we try to estimate the instantaneous 

frequency at the bottom of the track using the spectrum, the frequency estimate is 

obtained at the position marked with a cross, which is a local average of the 

instantaneous frequency track. In Figure 3.2 (b) we measure the instantaneous 

frequency of a frequency-modulated sinusoid with different frame widths. The 

modulator period is 10240 samples. An instantaneous frequency is estimated for each 

point in time at the global spectral peak calculated from a frame centred at that point. 

Frequency tracks estimated using 2048-, 4096- and 8192-point windows are given in 

aqua, pink and red respectively. Large estimation errors are observed near the peaks 

of frequency modulation, since these positions have the largest even-symmetric 
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components. The comparison between window sizes suggests the use of short 

windows in the presence of large signal dynamics. This issue will be discussed in §3.4. 

3.2 Detecting harmonic particles 

Harmonic sinusoid particles are detected in a single frame of data. Given the 

fundamental frequency , we expect to find sinusoidal peaks at multiples of  on 

the frequency axis. Theoretically, a harmonic partial appears as a spectral peak, with 

its frequency being a multiple of that of a fundamental partial. Based on such an 

assumption it seems plausible that a harmonic particle can be found by grouping 

short-time sinusoid atoms, whose frequencies have been estimated with the LSE or 

some other method, that are multiples of a fundamental. However, there are two 

matters to consider: that the frequencies are all estimates, each carrying an error, and 

that there may be inharmonicity among the partial frequencies. We address them 

separately. 

1f 1f

3.2.1 Frequency estimation error 

The frequency estimate can be very accurate when the pitch is stable and the partial is 

free of noise or disturbance. In real-world recordings the pitch line can have smooth 

(glissando) or repetitive (vibrato) variations fast enough to affect frequency estimates, 

and noise and concurrent sinusoids do disturb sinusoid analyzers. Frequency variation, 

and accompanying amplitude variation, shifts the frequency estimate from the 

instantaneous frequency at the window centre to another weighted frequency centroid 

as shown in (3.9c). The existence of noise or nearby sinusoids further shifts this peak 

in even less predictable manner. Therefore we should always allow an error for a 

frequency estimate, i.e. we bound the true frequency  by mf

  (3.10) mmmmm fff δδ ˆˆˆˆ +<<−

where  is the upper bound of the error. mδ̂

In the worst case, the partial of interest may not stand out as a spectral peak at all. 

This happens in two cases: either it is too weak itself, or it is shaded by noise or 

nearby stronger partials. There are multiple reasons for weak partials. Some 
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instruments, such as the pipe organ and the clarinet, leave out certain partials by 

design. On some instruments designed to present a full collection of harmonic partials, 

the player has the choice to suppress certain partials by his playing technique. The 

majority of weak partials happen due to the filtering effect of the instrument. When 

formants are present, for example, partials that happen to be located at a node become 

weak partials. This effect is frequently encountered by instruments with variable 

pitches: as the frequency tracks vary freely, one observes a dependency of amplitude 

on frequency. Partials may also become weak due to beating with a close sinusoid, 

which is typical of the grand piano. In harmonic sinusoid modeling we say a partial is 

weak if it does not appear as a spectral peak and there is no audible signal power in a 

narrow band in which it is expected, and a partial is masked if it does not appear as a 

spectral peak but there is audible signal power in a narrow band in which it is 

expected. In either case there is little hope to estimate an accurate partial frequency 

from the spectrum.  

3.2.2 Inharmonicity 

Inharmonicity is the phenomenon that harmonic partial frequencies depart from 

multiples of the fundamental. Real-world free vibrating bodies more or less depart 

from perfect harmonicity. The most encountered example is the inharmonicity of a 

stiff string. [Klapuri99] gives an example of explicitly expressing the partial 

frequencies with the fundamental frequency  and a stiffness coefficient B: 1f

  (3. 11a) 2/1211 )]1(1[),( −+⋅= mBmfBff m

The departure of the mth partial from the perfect harmonic frequency is 

 
1)]1(1[

)1(
2/12

2
1

+−+
−

=
mB

mBmff mδ  (3. 11b) 

B is a constant for a given string, typically well below 0.001.  

In [Klapuri99] an exhaustive search is suggested for finding the coefficient B, 

based on the observation that it does not significantly increase the overall computation 

cost including spectral analysis. [RLV07] proposes an iterative method for finding B 

more efficiently, which relies on relatively accurate estimates of partial frequencies, 

especially the fundamental. [GD05] implements (3.11a) within a Bayesian harmonic 
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model, where B is introduced as a model parameter to be estimated. In the following 

we implement the inharmonicity model within an inequality-based harmonic partial 

finder, which jointly “brackets”  and B within a small range. 1f

According to (3.11b), the frequency departure is positive, proportional to , and 

roughly proportional to m

1f
3 when m is not very large. The true frequency of the mth 

partial, however, may still have an error from (3.11a) for two reasons: that (3.11a) 

itself comes with some mathematical approximation [FR98], and that there are still 

mechanisms other than stiffness that can shift partial frequencies. When the stiffness 

is the main source of inharmonicity, this additional error is usually very small 

compared to .  mfδ

To generalize, we assume that there is only one main mechanism of inharmonicity, 

associated with a coefficient B, so that the mth partial frequency is approximately 

shifted to , . The true partial frequency  is then 

bounded by 

),( 1 Bff m 11 )0,( mfff m = mf

 ,  (3. 12) mmmmm BfffBff δδ +<<− ),(),( 11

where  represents the error involved in  itself , and frequency shifts 

caused by all the less-important mechanisms.  

mδ ),( 1 Bff m

3.2.3 Modeling harmonic partial frequencies with inequality system 

Now we relate the partial frequency model to the frequency estimates. For each partial, 

we have three frequencies: the true frequency , the model frequency , 

and the estimate . The true frequency and the model frequency are related by 

(3.12). The departure of the estimate  from the true frequency is described by 

(3.10). Combining the two we get 

mf ),( 1 Bff m

mf̂

mf̂

  (3. 13a) mmmmmmm BfffBff δδδδ ˆ),(ˆˆ),( 11 ++<<−−

There is no hint for evaluating  except it is very small. However, since  is also 

a rough estimate, it is reasonable that we combine the two error bounds as one, either 

mδ mδ̂
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by ignoring , or by expanding  by a small amount. We denote this combined 

error bound ∆

mδ mδ̂
m:  

  (3. 13b) mmmmm BfffBff ∆+<<∆− ),(ˆ),( 11

(3.13b) relates the model parameters  and B to the observations , , , …. 

Both the model frequency  and the true frequency  are invisible to us 

(hidden). However, they are indirectly observed through the frequency estimates. To 

find a harmonic particle from the spectrum, we look through the spectral peaks for 

those that satisfy (3.13b) for some reasonable  and B. Regarding harmonic 

grouping we raise three questions:  

1f 1f̂ 2f̂ 3f̂

),( 1 Bff m mf

1f

1. given the frequency estimates  , , …,  of the m1ˆ mf 2ˆ mf Mmf̂ 1
th, m2

th, …, mM
th partial, 

can they be grouped as harmonic partials? 

2. given a group of harmonic partials , , …, , can another frequency 

, with the partial index m

1ˆ mf 2ˆ mf Mmf̂

1ˆ +Mmf M+1, be associated to the group at another partial? 

3. given a group of harmonic partials , , …, , how do we estimate the 

fundamental  and inharmonicity coefficient B? 

1ˆ mf 2ˆ mf Mmf̂
1f

We give answers to these questions in the following sub-sections. 

3.2.4 Finding the f 1-B range from partial frequencies 

Given the frequency estimates , , …,  of the m1ˆ mf 2ˆ mf Mmf̂ 1
th, m2

th, …, mM
th partial, 

we have the following inequalities: 

  (3. 14a) 
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This is a system of inequalities of independent variables  and B. Let the solution 

set of this inequality system be R. The group of frequencies can be regarded as 

harmonic partial frequencies if and only if R≠Φ. 

1f

For the stiff string model (3.14a) becomes 
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 (3. 14b) 

(3.14b) is highly nonlinear in the -B space, which makes R hard to represent. We 

linearize (3.14b) by observing that 

1f

 mmm mBmffmBmf ∆+−+<<∆−−+ )1(1ˆ)1(1 2121  (3.15a) 

is equivalent to  
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 (3. 15b) 

Using the variable substitution  

 , , (3. 16)  21)( fF = 21)( fBFBG ==

(3.14b) becomes 
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 (3. 17) 

(3.17) is a linear inequality system. Its solution set is the -B range R mapped into 

the F-G space by (3.16). The inverse mapping is  

1f

 Ff =1 , FGB /=  (3. 18) 

The frequencies , , …,  can be regarded as harmonic partial frequencies 

if and only if the solution set R of (3.17) is non-empty. In the F-G plane R is a convex 

polygon. Let the number of its vertices be N and the n

1ˆ mf 2ˆ mf Mmf̂

th vertex be (Fn, Gn), 0≤n<N, 

then R can be represented using the vertices by {N; (Fn, Gn)0≤n<N}. Details of solving 

(3.17) are discussed in Appendix D.1. 

 

Figure 3. 3 Mapping between the f 1-B and F-G planes 

B G
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f 10          0.1       0.2   0.4
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Figure 3.3 shows the mapping between the two planes. A line parallel to the  

axis in the -B plane is mapped as a line passing through the origin in the F-G plane; 

a line parallel to the B axis in the -B plane is mapped as a line parallel to the G axis 

in the F-G plane.  

1f
1f

1f

R is a representation of the frequency contents of a harmonic particle. For any pair 

of parameters ( , B) that falls in R, and only for these pairs, the frequency estimates 

, , …,  are within the preset error bounds 

1f

1ˆ mf 2ˆ mf Mmf̂ 1m∆ , 2m∆ , …,  from the 

model frequencies. 

Mm∆

3.2.5 Adding new frequencies to a harmonic particle 

Let R be the range derived from harmonic partials , , …, . Now we have 

a frequency , associated with partial index m

1ˆ mf 2ˆ mf Mmf̂

1ˆ +Mmf M+1. This new frequency estimate 

introduces two constraints according to (3.15b). The new frequency is acceptable as a 

new harmonic partial if R, subject to the two new constraints, does not reduce to Φ.   

Another way to determine if  is compatible with the previous partials is to 

calculate a compatible frequency range and see if  falls in this range. This is 

especially effective if there are multiple candidates of  to evaluate. Given R, the 

upper and lower bounds of   is given by 

1ˆ +Mmf

1ˆ +Mmf

1ˆ +Mmf

1+Mmf
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Then the range for the estimate is  
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mmm
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Any frequency estimate that falls in this range is compatible with R, i.e. there is some 

point ( , B)∈R so that  is within the preset error bound  from the model 

frequency calculated from ( , B). 

1f 1ˆ +Mmf 1+∆ Mm

1f
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In case of the stiff string model, since the square of  is a linear function of F 

and G, and R is a convex polygon in the F-G plane, the extrema of  are reached 

at the vertices. So we have 

1+Mmf

1+Mmf

   (3. 20a) )R()R( 111 +++
+− << MMM mmm fff

and 

  (3. 20b) 11111 )R(ˆ)R( +++++ ∆+<<∆− +−
MMMMM mmmmm fff

where 

 ))1((min)R( 2
nnn

m GmFmf −+=− , ))1((max)R( 2
nnn

m GmFmf −+=+  (3. 21) 

If  is compatible with R, adding this new partial updates R by two linear 

constraints. Figure 3.4 shows how R is updated for a perfect harmonic particle with 

neither frequency estimation error nor spurious peaks. In this example =0.1 and ∆

1ˆ +Mmf

1f m 

=0.01, 0≤B≤0.05. The partials are added in the order of partial index, from 1 to 4. In 

Figure 3.4 (a) R is initialized using the fundamental partial =0.1 and whole B range 

0~0.05. R obtained by using the lowest 2, 3, 4 partials are shown in (b), (c), (d) 

respectively. Each newly added partial “chops off” the part of R outside a band 

specified by the pair of inequalities associated with the partial. The more partials we 

use, the smaller R becomes. Details of the operation are given in Appendix D.1.  

1f
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(a) (b) 

(c)  (d) 

Figure 3. 4 Update R using found partials 

(a) initial R; (b)(c)(d) updating R using the 1st, 2nd and 3rd partials 

3.2.6 Estimating model parameters 

The word “model” in the sub-section title refers to the harmonic frequency model 

with parameters and B. As mentioned above, R represents the knowledge 

accumulated from the given partial frequencies as a range in the F-G plane, or 

equivalently, in the -B plane. We can derive from R the upper and lower bounds of 

the model parameters: 

1f

1f
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),( 11
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RBfRBf ∈∈
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),(),( 11
supinf  (3. 22) 

In the stiff string model it is 
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 nnnn
FfF maxmin 1 <<  (3. 23a) 

 
n

n

n
n

n
n F

GB
F
G maxmin <<  (3. 23b) 

In this model the span of R on the F axis determines the precision of , and the 

sweep angle of R, with respect to the origin (0, 0), determines the precision of B.  

1f

However, unless R has zero size (but not empty), it does not provide estimates of 

 or B in a precise form. Accordingly, to estimate the fundamental frequency or the 

stiffness coefficient, we need to “shrink” R to zero size. To do this we reconsider the 

allowed error bounds ∆

1f

m, m=1, 2, …, by which we derive the range R. 

Generally speaking, the choice of ∆m is a matter of trade-off. Large error bounds 

improve the robustness against unpredictable frequency estimate errors, but at the 

same time increase the chance of collecting spurious spectral peaks. Smaller error 

bounds, on the other hand, may fail to catch the correct partial and make R vanish 

before enough partials are collected. Since it is important to collect the partials in the 

first place, we prefer large error bounds in the partial grouping stage. When we need 

estimates of the fundamental frequency or stiffness coefficient, we may shrink R by 

reducing the error bounds simultaneously. Let θ be a number between 0 and 1. and the 

error bound associated with the mth partial be θ∆m. For each value of θ we can derive 

a range R(θ), using θ∆m as the error bound associated with , m=1. 2, …. When θ 

equals 1 we get the original R discussed in 3.2.4 and 3.2.5.  The size of R(θ) is a 

monotonic function of θ, and the size of R(0) is 0. So there exists a maximal θ 

between 0 and 1, say η, so that the size of R(η) is 0, and ∀θ>η, the size of R(θ) is 

positive. Using R(η) we can get a more precise range for  and B than what R(1) 

provides in (3.22). In particular, if R is shrunk to a single point at η, which is the usual 

case, we have estimates of  and B in the precise form. 

mf̂

1f

1f

Now the question is, where is η? We consider applying the M constraints with the 

argument θ on R. Given a point ( , B)∈R, it lies on R(θ) if and only if it satisfies all 

the M constraints, i.e. 

1f
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θ( , B) is the minimal value of θ for R(θ) to cover the point ( , B). We define  1f 1f
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θ(R) has the following properties: 

1) for any θ<θ(R), R(θ) is empty; 

2) for any θ>θ(R), R(θ) is non-empty. 

Therefore we have found η=θ(R), or 
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This is a minimal-maximum problem. The model parameters can be estimated at the 

minimum: 
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For the stiff string model this becomes 

 m

m

mRGF

GmFmf
GF

∆

−+−
=

∈

)1(ˆ
maxinfarg)ˆ,ˆ(

2

),(
, Ff ˆˆ1 = ,   (3. 26c) FGB ˆ/ˆˆ =

We call m

mm Bfff

∆

− ),(ˆ 1

 the relative frequency estimation error. Equations 

(3.26a)~(3.26c) show that by shrinking R to zero, we locate the parameter pair that 
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minimizes the maximal relative frequency estimation error of all the given frequency 

estimates.  

F F

 
Figure 3. 5 Minimum-maximal error estimation 

(a) for accurate frequency estimates; (b) for inaccurate frequency estimates 

Figure 3.5 illustrates this idea by using three partials, indexed 1 (fundamental), 2 

and 3. The solid lines are zero-error lines for each partial. Points (F, G) on these lines 

accurately predict the corresponding frequency estimates under the model (3.11a). 

Equal-error lines for each partial (dashed lines) are parallel to the zero-error line of 

that partial. The farther a point departs from this solid line, the more discrepancy there 

is between the model parameters and the frequency estimate. If all frequency 

estimates perfectly follow the model, all these solid lines intersect at a single point 

 (Figure 3.5 (a)). This point has a maximal error of zero, which is apparently 

the minimal maximum. However, if the estimates carry errors, or the true frequencies 

do not accurately follow the model (3.11a), the zero-error lines usually do not meet at 

the same point (Figure 3.5 (b)). By allowing an error for each partial, we are able to 

move these zero-error lines to parallel equal-error lines, so that at some point they 

may meet together. The smallest allowed error that enables the three equal-error lines 

to meet together leads to the minimal maximum estimation. Details on the minimal-

maximum search for the stiff string model are given in Appendix D.2.  
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3.2.7 Harmonic partial grouping 

Now we address the task of grouping short-time sinusoid atoms into harmonic 

particles. The frequency content of a harmonic particle is described by R, while the 

power content is described by the partial amplitudes a1, a2, …, aM. To find a harmonic 

particle, we choose from a group of pre-detected sinusoid atoms a subset with 

frequency and amplitude estimates , then use these frequency 

estimates to calculate R. The subset is chosen according to some criteria concerning 

harmonicity and power. In this section we use the stiff string model for inharmonicity. 

Mmmmm
mm af L,, 21

)ˆ,ˆ( =

3.2.7.1 Grouping with a given frequency range 
We start with the simplest case, that the analyzer is given a small range in which lies 

the fundamental frequency, or any other partial frequency, or a combination of 

arbitrary partial frequency ranges. The given range is small enough to cover no more 

than a few spectral peaks. Using these ranges we can initialize a relatively small R 

with the method in Appendix D. Using this initial R we are able to bracket an interval 

in which to search for the 1st partial, 2nd partial, etc. Individual partial searching is 

done by looking up the pre-detected sinusoid atoms. When a partial is found, we can 

use its frequency estimate to update R. However, there are two complications: that a 

partial may not appear as a sinusoid atom, and that there may be multiple sinusoid 

atoms competing for one partial.  

A. Competing atoms 

Let the frequency interval for the mth partial be ( , ). If there is more than 

one spectral peak lying in this range, then each of them is treated as a candidate for 

the m

mf−
mf+

th partial. Starting from each candidate we may go on looking for further partials, 

where we may encounter more competing atoms. To reach a decision from multiple 

candidates, we need a criterion to compare them. Let p1 and p2 be two harmonic 

particle candidates estimated for the same event. Intuitively p1 is better than p2 if it 

captures more correct partials and less incorrect ones than p2. However, this criterion 

is not practical for the analyzer as it requires the ground truth. We base our criterion 

on two assumptions: 
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(1) Most spurious atoms are weak; 

(2) correctly captured partials tend to have less frequency departure from the 

model frequency. 

Assumption (1) favours strong partials. So if atom p1 has higher power than atom 

p2, it is given a higher score on the strength side. The power itself can be the total 

amplitude, calculated by summing up the partial amplitudes, or a total partial loudness, 

calculated by summing up the logarithms of partial amplitudes, or some other 

perceptual measure. In the least-square-error sense, we use the total square amplitude. 

Whatever measure we use, we write it in the additive form 

 ( ) )ˆ(}ˆ{ ,2,1
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m

m
am

m
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a as 0)(
>

dx
xdsm

a   (3. 27) 

Assumption (2) favours partials with more predictable frequencies. As said in 

3.2.6, relatively large values are selected for ∆m to comply with unpredictable errors. 

This is, however, a main reason why we have competing sinusoid atoms. To make up 

for this, we introduce the harmonicity criterion based on the departure of frequency 

estimates from the model. The departure of the mth partial frequency estimate from 

model R is  
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where  and  are defined by (3.21). There can be variations to (3.28a), 

such as recalculating R with tighter error bounds, moving the boundaries of the piece-

wise definition, etc. We also need a post-processing of  before combining 

them into a total measure, so that it is consistent with the strength criterion (3.27) in 

some sense. That is 
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Let ∆m be the maximal allowable frequency departure, i.e. any frequency departure 

beyond it is unacceptable. Accordingly we do a 100% penalty to ≥∆)R,ˆ( mm fd m by 

cancelling all its contribution to the strength measure, and no penalty to =0, 

i.e. 

)R,ˆ( mm fd

  (3. 28c) ( )
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Between =0 and ≥∆)R,ˆ( mm fd )R,ˆ( mm fd m we do a partial penalty, which may also 

take other forms than the linear one in (3.28c), as long as it stays monotonic. The final 

scoring function that evaluates a harmonic particle is 
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where  
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 is interpreted as the contribution of the mth partial to the strength-harmonicity score s. 

In the absence of competing atoms, the harmonic grouping proceeds as linear 

search, i.e. the partials are found one after another. The presence of competing atoms 

expands the linear search to tree search. A new branch emerges whenever there are 

competing atoms, producing multiple candidate atoms for that partial, each generates 

a new incomplete harmonic particle candidate. However, at any stage we can combine 

two incomplete harmonic particles p1 and p2, if 1) s1>s2 and 2) R1⊇R2. In particular, at 

any branching point, let  and  be two peaks that compete for the m1̂f 2̂f
th partial, 

> ) , then we can immediately remove candidate 2 if a) 

> and , or b) < and . The searching stops 

when there are no more partials to be found. The harmonic particle candidate with the 

highest score is chosen as the grouping result. We summarize the tree search as 

follows: 
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Let R1 be initialized from a given frequency range, s1=0, N=1. For m=1, 2, 3, …, 

do 1~5; 

1. let n’=0; for n=1, …, N, do 2~4; 

2. calculate the frequency range for the mth partial using Rn; 

3. for each pre-detected atom within this frequency range, do 4; 

4. n’←n’+1; use the atom to update Rn to n′′R ; calculate  using (3.29a); n′′s

(at this point the highest n′′s  corresponds to the best result with m partials) 

5. N←n’; Rn← , snR ′ n← ns′ , n=1, 2, …, N. 

Details on removing redundant candidates are ignored here.  

B. Unfound partials 

The unfound partial problem has been addressed in 3.2.1. A partial being unfound 

is not a problem by itself, as its absence does not affect R, or affect the searching of 

other partials. The problem is that we do not know whether a partial appears as a 

spectral peak or not. Even when a partial does not produce a spectral peak by itself, it 

is possible for spurious peaks to appear where it is expected. If this were the case and 

the peak were used to update R, the searching range of further partials would be 

biased. A safe way to deal with the unfound partial problem is always reserving a 

place for an unfound partial candidate, even when an atom or more has been located. 

In practice this is necessary only when the size of R is relatively large and the found 

atom has a large model frequency departure (in which case the found partial 

substantially reduce the frequency ranges of future searching). Unfound partials do 

not contribute to .  )R,ˆ,ˆ( mmm fas

The number of candidates grows with each branching. Fortunately R becomes 

tight quickly after a few partials have been located, so the competing atom problem 

does not grow out of control. To further control the scale, we process the partials in 

two stages: in the first stage we process only the partials without competing peaks, 

and leave the rest to the second stage. Since after the first stage R has become 

relatively small, the chance for peaks to compete in the second stage is minimized. A 
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simple trimming is done to keep the number of candidates below a given limit. 

Whenever the number exceeds this limit, the candidate with the lowest score is 

discarded. When the search is over, we select the remaining candidate with the 

highest score as the grouping result.  

We run tests on synthesized harmonic sinusoids with white noise. The SNR ranges 

from -15dB to 45dB. Each test sample is 44100 samples in length. A Hann window is 

used for calculating the DFT’s, with fixed window size 1024 and hop size 512, so that 

from each sample we have 85 results. The fundamental frequency ranges from 5 bins 

to 40 bins (1bin=1/1024),. The amplitudes follow a reciprocal law, i.e. am=1/m. The 

performance of harmonic grouping is evaluated by the peak collection rate, defined as 

the number of correctly located sinusoid atoms divided by the total number of atoms. 

An atom is classified as correctly located if its frequency estimate is within 0.5 bin 

from the true frequency. Results for constant harmonic sinusoids are given in Table 

3.1, with B ranging from 0 to 0.001. Results for pitch-modulated harmonic sinusoids 

are given in Table 3.2, with the modulator amplitude fixed at 1 semitone, and the 

modulator period TM ranging from 2 frames to 12 frames (counted by frame hops, i.e. 

512 samples). 
 
 

 SNR 

B  
-15dB 0dB 15dB 30dB 45dB 

0 20.13 63.56 99.83 100 100 

0.0002 31.07 75.59 99.98 100 100 

0.0004 29.55 82.17 99.98 100 100 

0.0006 33.27 79.25 99.99 100 100 

0.0008 32.50 84.78 99.99 100 100 

0.001 31.12 85.98 100 100 100 

Table 3. 1 Peak collection rate for constant harmonic sinusoids with stiff-string 

inharmonicity and white noise (%) 

SNR: signal-to-noise ratio; B: stiffness coefficient 
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 SNR 

TM  
-15dB 0dB 15dB 30dB 45dB 

2  20.59 26.98 35.00 35.91 36.10 

4 28.07 52.48 69.14 73.77 74.03 

6 30.77 57.02 74.51 79.46 81.01 

8  30.17 60.57 79.30 83.91 84.89 

10 31.31 60.72 83.32 87.98 88.91 

12 30.39 62.06 84.06 89.44 90.39 

Table 3. 2 Peak collection rate for frequency-modulated harmonic sinusoids with white noise (%) 

SNR: signal-to-noise ratio; TM: modulator period (in frames, 1 frame=512 samples) 

3.2.7.2 Predominant harmonic particle 
If no knowledge of any partial frequency is available, we can still use the method in 

3.2.7.1, with L competing peaks for the fundamental, where L is the total number of 

pre-detected sinusoid atoms. Once an atom is assumed to be the fundamental, the rest 

of the searching is reduced to the task in 3.2.7.1. In the case that the fundamental does 

not show up as a spectral peak, all the L atoms compete for the 2nd partial, etc. In the 

end we can always find a harmonic particle that is optimal by the strength-

harmonicity criterion. We call it the predominant harmonic particle, and its pitch the 

predominant pitch. This is a different definition from [KVH00, Goto04]. However, 

their physical concepts are very similar. 

The procedure stated above is hardly practical due to the high computation load 

and the lack of constraint on the fundamental (as it’s likely to lower the fundamental 

to collect as many spectral peaks). We start searching from the strongest peak, let its 

frequency be . Without knowing its partial index, we run a quick test through all 

possible indices, i.e. let m=1, 2, …, and let  be . We calculate a score for each m 

as 
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lkWX  is roughly interpreted as the energy of an LSE estimate of a 

sinusoid atom  with fixed partial frequencies , up to a constant factor. For 

m=2, 3, 4, …, we calculate 1-s

)/ˆ( 1 mfl

a( m′ )/sa(m), where m′ |m, m′ <m. If this value is below 

some threshold, we remove m from the list. Every m that is left in the list provides a 

pitch candidate . We derive a harmonic particle candidate for each m by 

initializing a particle searching with , and select the optimal one according to 

the strength-harmonicity criterion as the predominant harmonic particle involving . 

Similarly, we may proceed with the second strongest peak , third strongest peak , 

etc., and finally select the predominant harmonic particle of this frame.  

mf /1̂

1̂
ˆ ff m =

1̂f

2̂f 3̂f

3.2.7.3 Finding harmonic particle in the presence of other particles 
Although we can compare two concurrent harmonic particles using some criterion to 

determine which is more “predominant”, it is more useful if we are able to detect both. 

A technique closely related to the detection of multiple harmonic particles is 

multipitch estimation [KVH00, Klapuri01]. In these works the multipitch estimation 

proceeds in an iterative manner: in every iteration a predominant pitch is detected and 

removed from the signal, so that it no longer has predominance in the residue. In the 

context of harmonic sinusoid modeling we run a similar iterative process. In each 

iteration a predominant harmonic particle is found. However, instead of subtracting 

the found harmonic particle from the signal, we mark its partials as “used”. On one 

hand, the “used” tag means we can ignore this spectral peak in further harmonic 

particle searching, so that we achieve a similar effect as removing a predominant pitch. 

On the other hand, by preserving these peaks rather than simply deleting them, we 

allow a used peak to be reused, i.e. shared among harmonic particles. These tags are 

used for the further searching of concurrent harmonic particles.  

We use the score defined in (3.29a). A summary score of multiple harmonic 

particles, indexed on p, is given as  
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A complication is that the arrangement of spectral peaks into harmonic particles that 

maximizes the left side of (3.31) not necessarily maximizes the addends on the right 

side. In other words, earlier detected harmonic particles may have incorrectly 

collected spectral peaks of other harmonic particles. This should be taken care of 

during the iterative searching for multiple harmonic particles. 

Let there be P already detected harmonic particles p1, p2, …, pP, and now we look 

for the (P+1)th. To do this we find the strongest unused spectral peak, let it be . 

Again, we run a quick test through all possible partial indices for . Instead of 

using the score (3.30), we use  
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  (3. 32) 

Equation (3.32) ignores the contribution of already-used peaks. For m=2, 3, 4, …, we 

calculate 1- , where m)(/)( msms aa ′ ′ |m, m′ <m. If this value is below some threshold, 

we remove m from the list. Every m that is left in the list provides a pitch candidate 

. We derive a harmonic particle candidate for each m by initializing RmfP /ˆ
1+ P+1 with 

. Once R1
ˆˆ

+= P
m ff P+1 has been initialized, the searching range for the µth partial 

becomes ( , ). Regarding the spectral peaks within this interval, we 

discuss three possibilities:  

)R( 1+− Pf µ )R( 1++ Pf µ

1) there are only used peaks in the interval,  

2) there are both used and unused peaks in the interval, and  

3) there is no used peak in the interval.  

In the first case the µth partial either shares a peak with a partial of another 

harmonic particle, or does not appear as a peak. In the case of sharing spectral peak, 

we need amplitude estimates contributed from each harmonic particle to evaluate the 

score (3.31). However, individual amplitudes are not available. To evaluate (3.29a), 

we take an approximation by assigning the total amplitude to one harmonic particle, 

and zero amplitude to others. In the case of the (P+1)th harmonic particle, if the µth 
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peak is shared and its amplitude a  has been assigned to , then we either set 

 or  and . In both ways  is added only once in (3.31) 

with its true amplitude, no matter how many harmonic particles share it; and it 

contributes the same score no matter to which harmonic particle the true amplitude is 

assigned to. This is reasonable as the strength of a spectral peak is not affected by 

whether or not it is being shared among harmonic particles. However, the frequency 

departure score  depends on the assignment of the amplitude. Accordingly, we 

choose to assign the full amplitude to a harmonic particle that maximizes (3.31). In 

other words, the amplitude is assigned to the harmonic particle for which the 

frequency of the shared peak has minimal departure. Shared peaks are not used to 

update R
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P+1.  

In the second case we may 1) assume the µth partial being a weak partial without a 

spectral peak, 2) let the µth partial share a peak with another harmonic particle, 3) let 

the µth partial take an unused peak by itself, or 4) replace a peak p from another 

harmonic particle with an unused peak and assign p to the µth partial. Let the used 

peak be , which has been assigned to the moldf̂ th partial of the harmonic particle pp, 

and the unused peak be . We calculate the changes of the score (3.31) associated 

with the four cases: 

newf̂
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∆s2 and ∆s3 are non-negative, while ∆s4 can be positive or negative. By introducing 

case 4 we create a chance for modifying the already detected harmonic particles in the 

context of another new harmonic particle. Although we did not explicitly test if  

is compatible with R

newf̂

p, it is easy to test that ∆s4≤∆s2 whenever it is not, which implies 

that we can remove case 4 from consideration immediately.  

In the last case the searching of the µth partial can proceed as if there are no 

concurrent harmonic particles at all.  
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Assuming at least one atom is located for the new harmonic particle, we 

summarize the harmonic grouping in the presence of other harmonic particles as 

follows. 

Let R1 be initialized from a given atom, s1=0, N=1. For m=1, 2, 3, …, do 1~6; 

1. let n’=0; for n=1, …, N, do 2~3; 

2. calculate the frequency range for the mth partial using Rn; 

3. for each pre-detected atom a within this frequency range, do 4 if it is used 

by some harmonic particle p, 5 if not; 

4. if there is an unused atom a’ so that a’ maximizes ∆s4 and ∆s4>∆s2, do 

4.1; otherwise do 4.2; 

4.1. (atom reassignment) n’←n’+1; use a to update Rn to n′′R ; 

←sn′′s n+∆s4; replace a in p with a’; 

4.2. (atom sharing) n’←n’+1; n′′s ←sn+∆s2;  

5. n’←n’+1; use a to update Rn to n′′R ; calculate n′′s  using (3.29a); 

(at this point the highest n′′s  corresponds to the best result with m partials) 

6. N←n’; Rn← , snR ′ n← ns′ , n=1, 2, …, N. 

The partials of the (P+1)th harmonic particle can also be processed in two stages: 

in the first stage we only process those in the third case (no used peak in the searching 

interval) without competing peaks, and leave all other partials to the second stage. In 

the end the candidate with the highest score is selected as the grouping result of pP+1. 

We run a test on synthesized signals containing two harmonic sinusoids, one is the 

target sinusoid and the other is regarded as noise. The fundamental frequency of the 

target harmonic sinusoid is fixed at 20 bins, while the interval between the 

fundamentals of the two harmonic sinusoids ranges from -11 semitones to 11 

semitones, save the 0 interval. The SNR, measured as the power of the target 

harmonic sinusoid divided by the power of the noise harmonic sinusoid, ranges from -
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10dB to 10dB. The harmonic grouping is performed with pre-set frequency range 

around the target fundamental (18bin, 22bin). The peak collection rate without/with 

considering a second harmonic sinusoid is given in Tables 3.3 and 3.4, respectively. 

By referring to a second harmonic sinusoid we are able to collect more peaks than 

ignoring it, especially when the disturbance from the second harmonic sinusoid if 

strong.  
 
 

 SNR 

B  
-10dB -5dB 0dB 5dB 10dB 

0 60.96 76.27 92.47 98.77 100 

0.0002 62.00 76.93 93.74 99.17 100 

0.0004 59.01 74.80 91.82 98.97 100 

0.0006 61.56 76.40 92.93 98.76 100 

0.0008 63.78 76.06 93.96 99.21 100 

0.001 63.81 76.06 93.81 99.16 100 

Table 3. 3 Peak collection rate of one harmonic sinusoid in the presence of a second harmonic 

sinusoid and white noise, without referring to the second one (%) 

SNR: signal-to-noise ratio; B: stiffness coefficient 

 

 SNR 

B  
-10dB -5dB 0dB 5dB 10dB 

0 67.04 78.62 92.48 98.77 99.99 

0.0002 71.54 80.32 93.73 99.17 100 

0.0004 68.13 78.33 91.83 98.97 100 

0.0006 71.14 80.31 92.92 98.76 99.98 

0.0008 72.82 80.54 93.98 99.21 100 

0.001 72.53 80.19 93.83 99.19 100 

Table 3. 4 Peak collection rate of one harmonic sinusoid in the presence of a second harmonic 

sinusoid and white noise, referring to the second one (%) 

SNR: signal-to-noise ratio; B: stiffness coefficient 
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3.2.8 Section summary 

In §3.2 we have proposed an inequality-based modeling of harmonic partial 

frequencies, including the model, methods for solving the model, methods for 

estimating frequency-related parameters from the model, and application of the model 

in the grouping of spectral peaks (sinusoid atoms) into harmonic particles. The 

harmonic grouping process is based on a strength-harmonicity criterion, and 

constrained on a signal frame of data. In the next chapter we will discuss the harmonic 

grouping in the context of other harmonic particles within the same sinusoid.  

3.3 Measuring sinusoids from multiple frames 

All the parameter estimation methods we have discussed so far, including the LSE 

method, extract parameters from a single data frame based on a stationary-sinusoid 

assumption. In the rest of this chapter we discuss the measurement of sinusoidal 

parameters from sinusoidal tracks that span multiple frames. This section discusses 

the estimation of parameters from sinusoidal tracks with rough parameter estimates. 

The next section discusses the selection of frame size using frequency dynamics 

information. Both methods require that the sinusoid tracks be known, therefore can 

only be applied as post-tracking estimation. Sinusoidal tracks are generated from 

sinusoid tracking [MQ86, Serra97] or harmonic sinusoid tracking (see Chapter 4).  

The point of estimating sinusoidal parameters using sinusoidal tracks lies in the 

fact that good parameter estimates are only available when signal dynamics have been 

considered. As discussed in Chapter 2, the error-tolerating harmonic particle 

representation allows the use of rough parameter estimates evaluated without 

considering local dynamics. The tracking stage (Chapter 4) returns harmonic 

sinusoidal tracks, from which the parameters can be re-estimated in a time-varying 

context. In the re-estimation stage each partial of a harmonic sinusoid is treated 

separately. Partial harmonicity is not considered.  

Let , , …,  be the instantaneous frequencies of a sinusoid estimated at 

points 0, h, …, Lh, where h is the hop size between adjacent frames. Let the frame 

size be N, and the window function w be symmetric with w

0̂f 1̂f Lf̂

0=wN=0 (so that the true 
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frame size is N-1). The re-estimation takes a synthesis approach: we try to find re-

estimates of the sinusoidal parameters, from which we can synthesize a sinusoid that, 

when subjected to the LSE estimator, yields the original LSE estimates [WS06].  

Since parameters are only estimated at a small subset of all samples, the synthesis 

of a sinusoid always requires interpolation. Let { lf
~ , la~ , lϕ~ }l=0, …, L be the re-estimates, 

and f(t), φn and an be the interpolated parameter tracks, . The 

sinusoid synthesized from these re-estimates is a

∫+=
n

n dttf
00 )(2πϕϕ

ncosφn. The LSE frequency estimates 

evaluated from this sinusoid are given by (3.9c):    
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where fl(t)=f(lh-N/2+t), al,k=alh-N/2+k, ∆φl,mk=∆φlh-N/2+m,lh-N/2+k. Each frequency estimate 

is a weighted average of the instantaneous frequencies of the frame from which it is 

estimated. The amplitude estimate, however, can be interpreted as a weighted 

instantaneous amplitude average only when the frequency is constant. The LSE 

estimation of the amplitude uses the inner product of the analyzed sinusoid with a 

reference sinusoid at a central frequency. Any departure of the instantaneous 

frequency from this central frequency will cause the analyzed signal to go out of 

phase with the reference signal, and therefore produce smaller estimates. This can be 

corrected by using a variable-frequency reference sinusoid: let the instantaneous 

frequency track be f(t), we can estimate the amplitude and phase angle using: 
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This is the LSE estimate of the frame [0, N-1] given the frequency f(t). When the 

frequency track using in (3.34a) is accurate, the a  calculated with (3.34a) is a 

weighted average of the instantaneous amplitude, with the weights being , i.e.  

ˆ
2
nw
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Since the LSE frequency estimation is a process of averaging, the re-estimation of 

frequencies from the LSE estimates becomes one of de-averaging. However, as 

shown by (3.9c), (3.34a) and (3.34b), the de-averaging of the frequencies requires the 

amplitude track, and the de-averaging of amplitudes requires the frequency track. In 

[WS06] we proposed to iteratively solve for the re-estimates. This can proceed as 

follows. 

Let Fi stand for a set of frequency estimates, Ai stand for a set of amplitude 

estimates, Pi={Fi, Ai}. F0={ , , …, }. For i=1, 2, …, do 1~6, until ∆ is 

below some threshold, or i is above a maximal number of iterations: 

0̂f f̂ f̂1 L

1) interpolate the frequency estimates Fi-1 as ; )(1 tf i−

2) estimate amplitudes Ai-1 using the frequency track  with (3.34a); )(1 tf i−

3) de-average the amplitudes Ai-1 as Ai using (3.34b); 

4) interpolate the amplitude estimates Ai as ; 1−i
na

5) de-average the frequencies Fi-1 as Fi using (3.9c); 

6) calculate the distance ∆ between Pi-1 and Pi. 

In [WS06] the de-averaging was implemented in an average-subtract procedure. That 

is, we weight-average the parameter estimates Pi-1 which are themselves already 

weighted averages to get Qi, then compute Pi=2Pi-1-Qi. A refined implementation of 

the de-averaging stages is discussed in Appendices E.1 and E.2. A de-variation 

method, as an alternative for de-averaging, is presented in Appendix E.3. 

We run a test on synthesized sinusoids with sinusoid-modulated frequencies. The 

modulator amplitude AM ranges from 1 bin to 32 bins (1bin=1/1024); the modulating 

period TM ranges from 2 frames to 12 frames. Amplitudes, frequencies and phase 

angles are estimated using the LSE estimator. Parameter estimation performance is 
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evaluated using a synthesis approach. Two constant sinusoids are synthesized from 

the true and estimated parameter sets respectively, then the error between the two is 

compared to the former to produce a noise-to-signal ratio (NSR). One synthesis NSR 

is calculated from each atom. The average NSR on a set of atoms is obtained by 

averaging the individual atom NSR’s. Finally the reciprocal of this average NSR, 

which we call an atom SNR, is used for evaluating parameter estimation. The results 

with and without re-estimation are listed in Tables 3.5 and 3.6 respectively.   
 

 TM

AM  
2 4 6 8 10 12 

1 5.78 15.49 19.80 22.64 24.74 26.44 

2 0.83 9.89 14.06 16.78 18.82 20.49 

4 -2.09 5.20 9.02 11.35 13.19 14.74 

8 -2.78 1.76 4.83 7.16 8.50 9.70 

16 -1.84 -0.40 1.16 3.45 5.22 6.16 

32 -0.59 -1.11 -0.95 0.45 1.91 3.22 

Table 3. 5 Atom SNR (dB) of standard LSE method on frequency-modulated sinusoids 

TM: modulator period, in frames; AM: modulator amplitude, in bins 

 

 TM

AM  
2 4 6 8 10 12 

1 20.50 31.88 42.11 50.76 43.37 44.83 

2 13.60 26.31 36.22 44.81 52.29 57.70 

4 10.41 21.76 30.59 39.00 46.36 51.93 

8 8.91 18.40 25.69 33.45 40.40 46.11 

16 7.87 14.01 22.52 27.33 34.60 41.49 

32 -0.25 7.59 16.04 21.80 27.66 33.24 

Table 3. 6 Atom SNR (dB) of LSE method with multi-frame re-estimation on frequency-

modulated sinusoids 

TM: modulator period, in frames; AM: modulator amplitude, in bins 
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3.4 Measuring harmonic sinusoids with multiple resolutions 

In this section we discuss the evaluation of sinusoidal parameters using Fourier 

transforms with multiple resolutions. The resolution is determined by the width the 

window function used for calculating the spectrum. It has two aspects: a time 

resolution representing the ability to localize events in time, and a frequency 

resolution representing the ability of the spectrum to resolve events in frequency. The 

time resolution is reciprocal to the frequency resolution.  

When the signal frequency is constant, the accuracy of frequency estimation is 

mainly determined by the frequency resolution: the higher the frequency resolution, 

the less noise and disturbance affect the frequency estimate. However, when the 

frequency varies with time, the time resolution becomes important. Since the 

frequency estimate is only a weighted average of the true frequency over time, the 

better the measurement is localized, the smaller estimation error is expected. We show 

this as follows. 

3.4.1 Instantaneous frequency estimation error 

To roughly evaluate the frequency estimation error, we take approximations of (3.9c) 

by ignoring the factor ( )πϕmn∆sinc  and replacing the sums with integrals, fixing the 

window centre at 0 and window width at 2τ, so the window is supported on (-τ, τ): 
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Let ∆(t)=f(t)-f(0), then we have the frequency estimate error when  is assigned to 

the frame centre: 

f̂
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If we expand ∆(t) at 0: 
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so 

 
( )

∫ ∫

∫ ∫ ∑

− −

− − >

++

−⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

−
+

−⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

≅− τ

τ

τ

τ

τ

τ

τ

τ

ττ

ττ

dndmmnmananwmw

dndmmn
k
fmnmananwmw

ff k

kk
k

222

0

11
)(

22

))(()(

)!1(
)0())(()(

)0(ˆ  (3. 35e) 

Now let us change the window size to ατ, let the estimate be , then )(̂αf
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The right-hand side of (3.35f) is a weighted average of ( )∑
>

++ −
+0

11
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Compared to (3.35e), we see that the kth term is amplified by αk, k≥1. However, for 

the linear term k=1, since it is odd-symmetric, when multiplied with )()( αα mana  

only the odd part of the latter contributes to the integral. This introduces a factor of α. 

Therefore roughly speaking, the frequency estimate error due to signal dynamics 

grows like α2 or faster.  

3.4.2 Choosing resolution for parameter estimation 

Based on the above observation we develop a simple multi-resolution method for 

post-tracking parameter estimation. After partial tracking, we can estimate local 

parameter dynamics using parameter estimates from adjacent frames. For example, 

the frequency dynamics at the lth frame can be estimated from the estimates ,  

and  up to order 2. Let it be 

1
ˆ

−lf lf̂

1
ˆ

+lf
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  (3. 36a) 2
21)0()( tftfftf ++=

The amplitude dynamics, on the other hand, cannot be reliably extracted from the 

estimates, since the latter are too sensitive to frequency errors. Instead, we preset a 

maximal reasonable 1st-order amplitude dynamics coefficient. Let it be 

 )1)(0()( 1taata +=  (3. 36b) 

f1 evaluates the main odd-symmetric part of f; f2 evaluates the main even-symmetric 

part of f. We consider these two parts separately. fk (k=1 or 2) contributes a term 

( )11
11

2
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))(1)(1()0( ++ −
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−++ kkk mn

k
fmnnamaa  from (3.35e). For f1 it is 
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where the right hand side is obtained by discarding the terms that vanish after doing 

the integral. For f2 it is 

 ( ) )()0(
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1~)())(1)(1()0(
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2 mnafmnmnmnnamaaf +−+−++  (3. 37b) 

where in deriving the right-hand side we have also discarded the small term involving 

. The signal dynamics can therefore be measured using  2
1a

 211 fafD κ+= ,  (3. 38a) 

where κ is a constant given by 
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Combine (3.38a) and (3.35e) we get  
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If we ignore the term involving , then the error is roughly proportional to Dτ2
1a 2. This 

is consistent to our previous discussions in (3.4.1).  

Using the above criterion, we examine the sinusoid tracks to see if any of the 

previous estimates is calculated from a frame with large dynamics (i.e. Dτ2>Th, where 

Th is some threshold). If this is the case, the parameters are re-estimated using a finer 

time resolution, i.e. we choose spectra calculated with the window size 2-k·2τ so that 

D·2-2kτ2<Th, or 2-k·2τ is the smallest window size we use. Additional measurement 

points are inserted to make up the gap left from shortening of windows. The routine 

that determines the measurement points and the window size associated with each 

measurement point is given as follows. 

Let there be L+1 points in the list at the beginning, located at n0, …, nL, with 

frequency estimates , …, , and window sizes τ0̂f f̂L 0=τ1=…=τL=N, the number 

of resolutions (2-based) K; 

0. let k=1, τ=N;   

1. for l=0, 1, …, L-1, do 2~3; 

2. if D(nl)· >Th, do 3; 2τ

3. insert two new measurement points at 0.5·(nl+nl+1) and 0.5·(nl+nl-1), 

respectively, associate the window sizes τ/2 with these two points, as well 

as point nl;   

4. if no point has been inserted in the loop, then terminate the process, as all the 

measurement points are already found; 

5. get frequency estimates at all measurement points with window size τ/2 ; 

6. let L, nl, and τlf̂ l be redefined for the new point sequence with the inserted 

points; 

7. k←k+1, τ←τ/2, go to step 1 if k<K. 
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For harmonic sinusoids the frequency dynamics is proportional to the frequency 

itself. This results in the use of a high time-resolution for high frequencies, in a 

manner similar to the wavelets. 

We run a test on the same data set as in §3.3, with the window width now ranging 

between 32 and 1024. The threshold Th is set at 1/10240. The results are given in 

Table 3.7. Some modulation effect with respect to the modulator period is observed. 

The multi-resolution re-estimation method consistently outperforms the plain LSE 

method in Table 3.5, and outperforms the single-resolution re-estimation method in 

Table 3.6 when the frequency dynamics are very high.  

 TM

AM  
2 4 6 8 10 12 

1 44.59 18.06 41.59 26.50 36.82 30.96 

2 31.62 13.70 38.15 20.68 32.26 25.18 

4 36.00 11.86 42.14 15.44 36.86 19.90 

8 34.68 13.69 37.88 13.56 32.23 15.46 

16 28.03 14.15 39.94 14.89 36.36 12.62 

32 29.57 12.72 33.97 16.00 32.19 16.84 

Table 3. 7 Atom SNR of LSE method with multi-resolution re-estimation on frequency-

modulated sinusoids 

TM: modulator period, in frames; AM: modulator amplitude, in bins 

It is easy to combine the two re-estimation method by applying the single-

resolution method starting from the multi-resolution re-estimates. The result for the 

same test set is given in Table 3.8. By combining the two methods we achieve good 

results for both high and low signal dynamics. 

 



3  Measurements  120  

 

 TM

AM  
2 4 6 8 10 12 

1 36.30 39.57 44.20 48.45 56.01 51.80 

2 33.11 34.30 47.37 44.53 51.29 55.93 

4 30.83 28.68 42.07 47.16 52.99 48.91 

8 34.68 22.25 37.31 41.78 46.67 47.39 

16 28.03 19.27 34.17 41.14 46.05 46.11 

32 29.57 16.80 30.90 31.79 41.53 44.56 

Table 3. 8 Atom SNR of LSE method with multi-resolution and multi-frame re-estimation on 

frequency-modulated sinusoids 

TM: modulator period, in frames; AM: modulator amplitude, in bins 

3.5 Summary 

In this chapter we have discussed the techniques for local measurements of harmonic 

sinusoids, including pre-tracking and post-tracking measurements. Pre-tracking 

measurements are based on a stationary-sinusoid assumption due to the lack of 

knowledge of signal dynamics. The pre-tracking estimates are improved by post-

tracking re-estimation. Two types of re-estimation have been discussed in 3.3 and 3.4, 

respectively.  

Between the pre-tracking estimation and the harmonic tracking stages is the 

harmonic grouping, which derives harmonic particles from pre-detected peaks. We 

have proposed an inequality-based representation for harmonic partial frequencies 

which tolerates frequency errors and inharmonicity. In this representation the 

frequency contents of a harmonic particle is described as a region in a fundamental-

inharmonicity space. This representation will also be used as the starting point in the 

harmonic tracking stage, which is to be discussed in the next chapter. 

 



    

 

Chapter 4 
 
Harmonic sinusoid tracking 
 

This chapter is devoted to the techniques for tracking sinusoidal partials in a harmonic 

context. As stated in §2.4, a lot has been done on tracking individual sinusoids to form 

sinusoid tracks. However, in harmonic sinusoid modeling it is necessary to track 

partials with constraints on partial harmonicity. This is implemented by tracking 

harmonic particles into harmonic sinusoids, instead of tracking sinusoid partials 

individually. Like standard sinusoid modeling, the harmonic tracking is based on 

frequency and amplitude continuity criteria. The frequency continuity criterion is 

modified to model pitch continuity to prevent spurious pitch jumps within an event. 

The amplitude continuity is designed to model the variations of both the total 

amplitude and the amplitude distribution among partials. The latter models the short-

time timbre, which we assume to be continuous within an event. 

Harmonic particles are obtained by harmonic grouping, which has been discussed 

in §3.2 for a single frame. Just like tracking individual partials undermines partial 

harmonicity, the harmonic grouping on individual frames may corrupt frequency 

continuity. Therefore in the tracking stage the harmonic grouping is performed jointly 

with the tracking: once the harmonic particle at a certain frame is determined, the 

harmonic grouping in the next frame is performed with reference to the already-found 

harmonic particle, so that the frequency continuity is preserved in the harmonic 

grouping.  

This chapter is arranged as follows. 4.1 and 4.2 discuss the frequency and 

amplitude continuity criteria for tracking harmonic sinusoids. 4.3 and 4.4 discuss 

forward harmonic sinusoid tracking, where 4.3 focuses on tracking individual 

harmonic sinusoids, and 4.4 focuses on tracking multiple harmonic sinusoids. 4.5 



4  Tracking  122  

discusses end-point detection. 4.6 discusses the forward-backward tracking method 

for improved robustness, followed by a conclusion in 4.7. 

4.1 Frequency continuity 

In this section we discuss the upgrade of frequency continuity criteria to harmonic 

frequency continuity criteria. The frequency continuity criteria in [MQ86] include a 

hard criterion and a soft criterion. The hard criterion imposes a maximal frequency 

jump between consecutive frames, allowing only frequency jumps within a given 

range. Within this allowed range, the soft criterion favours smaller frequency jumps to 

larger ones. In the context of harmonic particles, we also develop a hard criterion and 

a soft criterion, as follows. 

4.1.1 Frequency evolution boundaries 

The hard criterion imposes a maximal jump on the fundamental frequency . In the 

previous chapter we have proposed to represent the frequency content of a harmonic 

particle with an area R in the -B space. Let R

1f

1f l be the -B range at frame l. Since a 

harmonic sinusoid physically represents a single musical event, it is reasonable to 

assume that B remains constant within the same track. Therefore when initializing 

R

1f

l+1 for harmonic grouping at the (l+1)th frame, we extend R along the  axis by ∆1f 0 

on both sides, where ∆0 is the maximal fundamental frequency jump allowed between 

frame l and frame l+1. However, this extension does not necessarily preserve linearity 

of R in the F-G plane. To show this, we recall that there are three types of sides in R: 

those parallel to the G axis, those passing through the origin (0, 0), and those with 

negative slopes. It is trivial to show that the linearity of the first and second type is 

preserved by the extension along the  axis. For the third type, we take a side of R 

in the F-G plane in the form (see (D.1)) 

1f

 0=−+ gkGF , k>0, g>0. (4. 1a) 

Let (F+, G+) be the point we get by extending (F, G) along the  axis by ∆1f 0. We 

have 

 0∆+=+ FF , FGFG /++ =  (4. 1b) 
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Then  

 ( ) 020
=

∆−
−+

+

+
++

F

gFkGF . (4. 1c) 

It is apparent that (4.1c), which describes part of the boundary of the extended R, is 

not linear. Therefore the Rl+1 initialized by directly extending Rl is no longer a 

polygon. Fortunately, the maximal frequency jump ∆0 does not have to be an accurate 

value or strictly constant for the whole range of B. Accordingly it is reasonable to 

initialize Rl+1 by extending the vertices of Rl then calculating the convex hull of these 

extended vertices. This is shown in Figure 4.1. 
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Figure 4. 1 Extending R to allow frequency jump 

 From (4.1c) we can further calculate 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

++

+

FFFk
g

dF
Gd 111

2
3

32

2

 (4. 1d) 

(4.1d) applies to the third-type sides of the accurately extended Rl. According to this 

equation, such a side is convex when F+>F, i.e. the side is extended by ∆0, and 

concave when F+<F, i.e. the side is extended by –∆0. These are shown in Figure 4.2 

using dashed lines for the Rl in Figure 4.1. It is apparent that the approximate Rl+1 

obtained by directly connecting the extended vertices contains the accurately extended 
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Rl. In other words, the approximation allows slightly larger positive frequency jump 

for a range of B, and slightly larger negative frequency jump for another range of B. 

F 

Rl+1

 G 

 

Figure 4. 2 Comparing accurate and approximate extensions of R 

The initial Rl+1 specifies a range to search for partials at frame l+1. The initial size 

of Rl+1 depends on the size of Rl and the maximal frequency jump, the latter being 

typically several bins. The B range may be further reduced with additional partials 

being located at frame l+1, which, in return affects the previous Rl.  

An alternative to the fundamental frequency extension scheme discussed above 

uses frequency prediction similar to [LMRR03]. That is, instead of confining the 

fundamental frequency of the (l+1)th frame  within a maximal jump from that of 

the l

1
1+lf

th frame, we generate a fundamental frequency prediction for the (l+1)th frame, 

say f0, from the previous frames.  is then confined within a maximal jump from f1
1+lf 0. 

Linear prediction of frequencies encodes the tendency of frequency change. We 

combine this tendency with the extension of R by applying it to the maximal 

frequency jumps: to confine  within (f1
1+lf 0-∆0, f0+∆0), or equivalently ( -(∆1

lf
0-f0+ ), 

+(f

1
lf

1
lf 0- +∆1

lf
0) ), we extend R along the  axis by ∆1f 0-f0+  on the left side, and by 

∆

1
lf

0+f0-  on the right side.  1
lf
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4.1.2 Comparing fundamental frequency jumps 

In standard sinusoid modeling a soft frequency continuity criterion compares 

frequency jumps to select one from multiple local peaks, all of which fall in the 

allowed frequency range derived from the hard criterion. Similarly, in harmonic 

sinusoid tracking we may have competing harmonic particles, whose -B ranges all 

fall inside the initial R

1f

l+1. The soft frequency continuity criterion is designed to 

compare them, so that small fundamental frequency jump is favoured. This is 

expressed as a continuous function  

 
p

l

ll
llf

ffpps 0

11
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1 1),(
∆
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−= +
+ , p≥1. (4. 2a) 

The subscript f stands for frequency.  is the maximal fundamental frequency jump 

specified between frames l and l+1. >0 when the frequency jump is below 

∆

0
l∆

),( 1+llf pps

0; <0 when the fundamental frequency jump is beyond ∆),( 1+llf pps 0. p is a 

balancing parameter which controls the amount of penalty done to large frequency 

jumps. The larger is p, the less (4.2a) favours small fundamental frequency jumps 

against large ones, as long as all jumps are below ∆0. The frequency predicting 

version of (4.2a) is 
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llf

ffpps 0
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1

1
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−

−= ++
+ , p≥1. (4. 2b) 

where we have replaced  with the prediction . For p=2, the scores (4.2a) and 

(4.2b) are shown in Figures 4.3 (a) and (b) respectively, in solid curves as functions of 

the fundamental frequency. Spectral peaks are found at the “×” crosses. The scores 

are positive if the frequency departure from the prediction is smaller than ∆

1
lf

0
1+lf

l, non-

positive if not.  
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Figure 4. 3 Frequency continuity scores with p=2 

(a) pure (0th-order) linear prediction; (b) 1st-order linear prediction 

Neither of the frequency continuity scores is enough for resolving competing 

harmonic particles, since there is no guarantee that the next harmonic particle of a 

harmonic track has to be the one with the smallest fundamental frequency jump in 

(4.2a), or the one with the least departure from the fundamental frequency predict in 

(4.2b). Other continuity criteria, which are mostly based on amplitudes, will be 

considered as no less important in tracking harmonic sinusoids. These are to be 

discussed in §4.2. 

4.2 Amplitude continuity 

This section discusses the amplitude continuity criteria used for harmonic sinusoid 

tracking. Unlike the frequency estimates, which almost always remain within a small 

interval around the true values, the amplitude estimates may have much larger 

departures from the true amplitudes. Therefore amplitude continuity is always 

measured using multiple amplitudes instead of using individual partials, as an 

amplitude representation summarized from multiple partials tends to be more stable 

than that derived from individual partials.  

Partial amplitudes are used in the plain form or logarithmic form. The log form is 

calculated by taking the logarithm of the plain amplitudes, floored by a minimal value. 

That is,  

f f 
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0
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  (4. 3) 
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4.2.1 Short-term amplitude continuity 

The short-term amplitude continuity criterion compares the partial amplitudes of two 

adjacent frames to measure local continuity. We study two aspects of local amplitude 

continuity, i.e. 1) the power continuity and 2) the amplitude-ratio continuity. The 

power is measured by summing up squares of individual partial amplitudes: 

 ( )∑=
m

maP 2  (4. 4a) 

We define the power continuity score as the ratio between the geometric and 

arithmetic means of the two powers: 
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The subscript “a” stands for amplitude. In statistics (4.4b) is used for measuring 

divergence: the larger the value, the higher the sample similarity. (sa)1 is amplification 

invariant, and satisfies . (s( ) 1),(0 11 ≤≤ +lla pps a)1=0 if the power is zero at either frame; 

(sa)1=1 if the power does not change from frame l to frame l+1. The amplitude ratio 

measures the distribution of the total energy among individual partials, which is 

highly relevant to the short-term timbre. It is measured by the vector of individual 

partial amplitudes divided by the square root of the power.  
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We define the amplitude ratio continuity score using their correlation coefficient: 
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This is also known as the cosine similarity, as it equals the cosine of the angle 

between the two amplitude vectors. (sa)2 satisfies ( ) 1),(0 12 ≤≤ +lla pps . (sa)2=0 if the 

two amplitude vectors are orthogonal; (sa)2=1 if the two amplitude ratios are identical. 

A quick combination of (4.4) and (4.5) is 
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From (4.6a) we can derive the contribution of the mth partial as 
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Again, we have 1)1,(0 ≤+≤ llsa ; =0 if the two amplitude vectors are 

orthogonal; =1 if the two are identical. 

),( 1+lla pps

),( 1+lla pps

Short-term amplitude continuity is used in forward-backward tracking (see §4.6) 

which requires local scores, as well as in forward tracking (see §4.3) when there are 

not enough harmonic particles to use the long-term continuity below. 

4.2.2 Long-term amplitude continuity 

The long-term amplitude continuity criterion compares a harmonic particle at frame 

l+1 with an incomplete harmonic sinusoid suspended at frame l, to measure the 

closeness of the harmonic particle to the harmonic sinusoid. There are two major 

reasons for using long-term amplitude continuity: the error propagation, and large 

instantaneous timbre dynamics during pitch variations.  

The error propagation is a major risk of using short-term amplitude continuity. 

Suppose we have two incomplete harmonic sinusoids H1 and H2 suspended at frame l, 

with  and  being their correct harmonic particle successors at frame l. The 

short-term continuity criterion connects the correct successor  to H

1
1+lp 2

1+lp

1
1+lp 1 based on the 

assumption that the correct successor  is locally closer to the current harmonic 

particle  than the incorrect one . However, if it so happened that  and  

1
1+lp

1
lp 2

1+lp 1
1+lp 2

1+lp
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appear to be so close, that H1 is extended to the incorrect successor , then it is 

likely that the tracking of H

2
1+lp

1 remains on H2 after frame l+1, until the same kind of 

“mistake” brings it back to H1 again. We refer to this event switching as error 

propagation. Although the local tracking error at frame l+1 is inevitable when  

and  are very close, the use of long-term continuity criterion can prevent error 

propagation by drawing further tracking back to H

1
1+lp

2
1+lp

1. This is done by involving 

previous harmonic particles in the continuity criterion, rather than using  alone. 2
1+lp

The amplitude ratio continuity criterion is based on the assumption that different 

parts of the same harmonic sinusoid are likely to have the same timbre. However, the 

timbre is more complicated than the amplitude ratio, and may involve the time 

variation pattern of the amplitude ratio as one aspect. The amplitude ratio itself, on the 

other hand, may have large local dynamics. The physical model behind these local 

variations is the formant structure. We assume a source-filter model, in which the 

instantaneous amplitude can be expressed as the product of the source part, which is a 

function of partial index, and a filter part, which is a function of instantaneous 

frequency:  

 , )( mmm fHAAa ⋅⋅= 1)( 2 =∑
m

mA  (4. 7a) 

where A is an overall amplitude, Am is the source factor and H(f) is the filter factor. 

The power is calculated as 
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and the amplitude ratio for the mth partial is calculated as 
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The filter factor H(f) encodes the formant structure. If we ignore it then the power 

becomes A2 and the amplitude ratio becomes Am, which are the true targets of the 

power and amplitude ratio continuity criteria. The presence of H(f), combined with 

the frequency variations, introduces unexpected dynamics to the power and amplitude 
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ratio estimates. This is typically observed in frequency modulated harmonic sinusoids 

as accompanying amplitude modulations.    

Since on the same harmonic sinusoid track the instantaneous frequency of any 

partial is determined by the instantaneous fundamental and the partial index, we have 

 )(~ 12 fPAP ⋅= , )(~ 1frAr mmm ⋅=  (4. 8) 

where )(~ 1fP  and )(~ 1fr m  are functions of the fundamental frequency . Applying 

(4.8) to (4.4b) and (4.5b) we get 
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Notice that (sa)2 only depends on the fundamental frequencies of the two frames, and 

equals 1 when the fundamentals are identical. When the difference between  and 

 becomes large, the angle between the vectors r

1
lf

1
1+lf l and rl+1departs from 0, then (sa)2 

drops from the expected value 1. However, if there is another frame k within the track, 

and  is closer to  than  is, then the angle between r1
kf

1
1+lf

1
lf k and rl+1 will, in general, 

be smaller than the angle between rl and rl+1. This is the basis for defining the long-

term amplitude ratio continuity in the k-nearest-neighbour (k-NN) [CD07] sense.  

Let H1 be an incomplete harmonic sinusoid suspended at frame l, and let l1, l2, …, 

lk be the indices of k frames of H1 whose fundamental frequencies are closest to . 

Then the long-term amplitude ratio continuity is measured as 

1
1+lf
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where  stands for the harmonic particle at frame l+1. 1+lp

For the power continuity criterion, since it is not adequate to assume the power 

being a function of the fundamental frequency only, there is not a similar nearest 
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neighbour approach. We still use (4.4b) for evaluating power continuity. The long-

term version of (4.6) is 
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From (4.10b) we also derive the contribution of the mth in  as 1+lp
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Figure 4.4 compares short-term and long-term continuity criteria, where solid 

arrows indicate high continuity between atoms, and dashed ones indicate low 

continuity. Two events are shown in the figures, distinguished by “+” and “×”. The 

“×” event is the tracking target. The two events become close at frame 4, which 

renders the harmonic particle at this frame less valid for further tracking. The short-

term continuity criterion compares the current harmonic particle with harmonic 

particles of the next frame to select the best match. Whenever a spurious peak appears 

to be the most continuous to the current atom, the tracking is diverted to another route, 

as illustrated in (a) for frames 5 and 6. The long-term continuity criterion, on the other 

hand, compares candidate harmonic particles with multiple recent frames within the 

track. We focus on frame 5, where the short-term continuity criterion fails. Even if the 

current harmonic particle at frame 4 has been corrupted and votes for an incorrect 

match, the use of frames 1, 2, 3 helps to select the correct one at frame 5.  
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f f
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Figure 4. 4 Short-term and long-term continuity 

(a) tracking with short-term continuity; (b) tracking with long-term continuity. 

Long-term continuity criterion is only used in forward tracking (see §4.3) when 

there are enough harmonic particles already found, from which the k nearest 

neighbours can be chosen.   

4.3 Forward harmonic sinusoid tracking 

Starting from a harmonic particle at frame 0, the forward harmonic particle tracking 

finds a series of incomplete harmonic sinusoids Hl, l=0, 1, 2, …, Hl spanning frames 0, 

1, 2, …l, so that ∀l>0, Hl contains Hl-1 and satisfies the frequency and amplitude 

continuity criteria optimally in some sense. The forward tracking proceeds as follows: 

Let H0 include the given harmonic particle at frame 0 only, and R0 be its -B 1f

range. For l=1, 2, …, do 1~5, 

1) initialize Rl by extending Rl-1 along the  axis; 1f

2) find all harmonic particles pl, p2, …, pn using Rl at frame l;  

3) if n>1, calculate the continuity score between each of them and Hl-1, then 

choose the most continuous one, let it be p1; 

4) if n=0, terminate the loop and return; 

5) let Hl be Hl-1 plus p1. 

(a) 
 1 2 3 4 5 6  

(b) 
1 2 3 4 5 6  
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This procedure is no more than doing harmonic grouping at a sequence of frames with 

criteria slightly different from 3.2.7.1, and therefore the same algorithm is used with 

modifications reflecting the change of criteria, including the initialization of R (step 1, 

discussed in 4.1.1). Steps 2 and 3 are further explained in 4.3.1 and 4.3.2. The forward 

tracking finishes if no successor can be found within the range specified by the hard 

frequency continuity criterion. Like in standard sinusoid modeling, we call this the 

death of a harmonic sinusoid. Other conditions for terminating the harmonic tracking 

are discussed in §4.5.  

4.3.1 Harmonic grouping with predecessors 

We have mentioned that apart from those at the starting frame, which are detected 

without considering the continuity in time, all harmonic particles are grouped with 

references to other parts of the track. In the context of forward harmonic particle 

tracking at frame l>0, we refer to previous harmonic particles, or predecessors, i.e. 

those in Hl-1. In Chapter 3 the harmonic grouping uses a strength-harmonicity 

criterion for resolving competing peaks, where the strength is based on partial 

amplitudes and the harmonicity is based on partial frequencies. In the context of 

forward harmonic tracking, we replace the strength criterion with the amplitude 

continuity criterion. The strength criterion has been given as 

 ( ) )ˆ(}ˆ{ ,2,1
m

m
am

m
a asas ∑== L  (3. 27) 

To apply the amplitude continuity criterion, we replace ( )L,2,1}ˆ{ =m
m

a as  in (3.27) with 

sa(pl-1, pl) in (4.6a) or sa(Hl-1, pl) in (4.10b). Otherwise the harmonic grouping process 

remains unchanged. 

4.3.2 Comparing competing harmonic particles 

The harmonic grouping does not consider frequency continuity since it does not 

concern individual partial frequencies. The frequency continuity score is considered 

after the grouping stage, together with the amplitude continuity scores, to compare 

multiple harmonic particles that fall in the initial range Rl. For each of the harmonic 

particle, we calculate the frequency continuity score sf using (4.2a) or (4.2b), and the 

amplitude continuity score sa using (4.6a) or (4.10b). Both scores fall in the range [0, 
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1], with 0 for poorest continuity and 1 for perfect continuity. The harmonic sinusoid 

tracker combines the two by taking an average 

 fa sss ⋅−+⋅= )1( θθ , 0<θ<1. (4. 11) 

The score (4.11) is used in step 3 of the forward tracking process only. 

4.3.3 Backward tracking 

The backward harmonic sinusoid tracking is the time-reversed version of the forward 

tracking. Starting from a harmonic particle at frame 0, the backward tracking finds a 

series of incomplete harmonic sinusoids H-l, l=0, 1, 2, …, H-l spanning frames –l, –

l+1, …0, so that ∀l>0, H-l contains H-l+1 and satisfies the frequency and amplitude 

continuity criteria optimally in some sense. Backward tracking progresses in the same 

way as forward tracking. The combination of forward and backward harmonic 

sinusoid tracking from the same harmonic particle finds a complete harmonic sinusoid. 

This technique is used in [WS07] for selecting a harmonic sinusoid from an audio 

excerpt for editing purposes. 

4.3.4 Tests 

We run tests on frequency modulated harmonic sinusoids with white noise. The 

fundamental frequency ranges from 10 bins to 40 bins, the modulator amplitude fixed 

at 1 semitone, the modulator period ranges from 2 frames to 12 frames, and the SNR 

ranged from -15dB to 45dB. The partial amplitudes follow a reciprocal law regarding 

instantaneous frequency, so that there is an amplitude modulation accompanying the 

frequency modulation. Results in Table 4.1 are based on frequency continuity only. 

Results in Table 4.2 are based on frequency continuity and energy maximization. 

Results in Table 4.3 are based on frequency and amplitude continuity. It is apparent 

that the introduction of amplitude criteria helps to improve the tracking. The 

continuity criterion outperforms the energy maximization criterion when the noise is 

high, otherwise the two show similar performance. As a comparison, we have also 

tested the standard sinusoid tracking method, where the atoms in the first frame are 

initialized using the harmonic particle detector. Frequency and amplitude continuity 
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criterion is applied for comparing competing atoms. The results are given in Table 4.4. 

All results in Tables 4.1~4.3 are consistently better than those in Table 4.4. 

 

 SNR 

TM  
-15dB 0dB 15dB 30dB 45dB 

2 0.83 3.19 9.24 16.99 19.11 

4 0.76 4.96 28.34 45.86 53.37 

6 0.98 4.15 38.54 71.46 72.66 

8 0.83 5.47 36.44 84.22 86.99 

10 1.03 4.82 38.22 93.75 94.25 

12 1.27 5.45 32.13 96.99 97.21 

Table 4. 1 Peak collection rate of tracking frequency-modulated harmonic sinusoid based on 
frequency continuity only (%) 

SNR: signal-to-noise ratio; TM: modulator period, in frame 

 SNR 

TM  
-15dB 0dB 15dB 30dB 45dB 

2 4.98 22.27 29.06 25.98 24.96 

4 5.94 31.77 53.28 69.44 77.64 

6 4.67 34.21 63.97 82.41 82.63 

8 4.89 38.09 73.99 92.32 94.07 

10 5.47 38.78 80.84 97.32 98.02 

12 5.56 41.85 87.51 98.48 98.89 

Table 4. 2 Peak collection rate of tracking frequency-modulated harmonic sinusoid based on 
frequency continuity and maximal strength criterion (%) 

SNR: signal-to-noise ratio; TM: modulator period, in frames 
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 SNR 

TM  
-15dB 0dB 15dB 30dB 45dB 

2 6.12 24.53 28.88 25.60 25.54 

4 7.03 31.21 52.02 69.87 73.55 

6 7.70 35.38 61.46 76.66 80.80 

8 5.78 37.99 77.16 93.53 94.74 

10 9.14 39.28 79.77 97.23 97.90 

12 7.98 41.78 88.16 98.56 98.96 

Table 4. 3 Peak collection rate of tracking frequency-modulated harmonic sinusoid based on 
frequency and amplitude continuity (%) 

SNR: signal-to-noise ratio; TM: modulator period, in frames 

 SNR 

TM  
-15dB 0dB 15dB 30dB 45dB 

2 0.56 1.31 2.63 3.88 6.18 

4 0.55 1.79 5.21 8.75 21.61 

6 0.64 2.22 5.90 11.79 37.58 

8 0.62 1.98 5.91 16.82 51.04 

10 0.47 1.84 5.20 17.60 66.17 

12 0.60 1.84 5.67 20.30 75.48 

Table 4. 4 Peak collection rate of tracking frequency-modulated harmonic sinusoid using 
standard sinusoid analyzer based on frequency and amplitude continuity (%) 

SNR: signal-to-noise ratio; TM: modulator period, in frames 

4.4 Forward tracking of multiple harmonic sinusoids 

In polyphonic music it is usual to have concurrent pitched events, each of which can 

be modeled using a harmonic sinusoid. Tracking a harmonic sinusoid without 

considering the presence of other harmonic sinusoids tends to increase the chance of 

event switching error. In this section we discuss the method that jointly tracks 

multiple harmonic sinusoids in the forward tracking framework.  

There are two modes for the forward multiple harmonic sinusoid tracking: with or 

without newborns. Here we have cited the idea of birth used in standard sinusoid 
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modeling to refer to the emergence of sinusoids that do not connect to already existing 

tracks.  

4.4.1 Forward tracking without newborns 

Given harmonic particles , , …,  at frame 0, the forward tracking without 

newborns finds K series of incomplete harmonic sinusoids , l=0, 1, 2, …, k= 1, 

2, …, K,  spanning frames 0, 1, …, l, so that ∀l, k>0,  contains , and the 

K incomplete harmonic sinusoids suspended at frame l jointly satisfy the amplitude 

and frequency continuity criteria optimally.  

1
0p 2

0p Kp0

k
lH

k
lH k

lH k
lH 1−

Just like the forward tracking of a single harmonic sinusoid being implemented as 

harmonic grouping for a sequence of frames with continuity criteria, the forward 

tracking of multiple harmonic sinusoids can be implemented as multiple harmonic 

grouping, which has been discussed in 3.2.7.3, for a sequence of frames. The 

successors of , 1≤k≤K, are found one after another, each new one is found 

referring the already-found ones.  

k
lH 1−

The basic idea of the multi-harmonic-particle detection in 3.2.7.3 is the 

reassignment of already used peaks to other harmonic particles so that the strength-

harmonicity criterion is better satisfied. Besides the assignment of peaks to harmonic 

particles, in harmonic sinusoid tracking each harmonic particle is also assigned to an 

incomplete harmonic sinusoid as well. Accordingly, it is also necessary to consider 

reassignments of a second type, which appears as two harmonic sinusoids competing 

for harmonic particles. In the implementation we ignore the interdependency between 

the first type and second type assignments and treat them separately. The second type 

assignments are processed first, which completes a pitch tracking. The first type 

assignments come after, constrained by the results of the pitch tracking, to locate 

individual partials. The two stages are explained in 4.4.1.1 and 4.4.1.2 respectively. 

4.4.1.1 Assigning fundamental frequencies to harmonic sinusoids 

Without loss of generality, let , k=1, 2, …, K, be ordered by fundamental 

frequency,  being the lowest. At time l+1, the pitch tracking stage finds for each of 

k
lH

1
lH
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the k incomplete harmonic sinusoids a successor harmonic particle , without 

considering shared partials. This can be accomplished using the single harmonic 

sinusoid tracking method discussed in 4.3, as long as the harmonic sinusoids do not 

compete for successor harmonic particles. In the case a conflict, i.e. the optimal 

successors of two harmonic sinusoids sharing the same fundamental, is detected, we 

try to redirect one of them to its sub-optimal successor (the reassignment), so that the 

overall result is optimal. This proceeds as follows. 

k
lp 1+

1. Find the best successors of , let them be , j=1, 2, …, in the order of 1
lH 1

,1 jlp +

decreasing continuity (single harmonic sinusoid tracking, see §4.3); 

2. for k=2, 3, …, K, do 3~4; 

3. find the best successors of , let them be , j=1, 2, …, in the order of 

decreasing continuity; 

k
lH k

jlp ,1+

4. if  conflicts with any , kk
lp 1,1+

1
1,1

k
lp + 1<k, i.e. it has the same fundamental 

frequency as the latter, do 5~6; 

5. if there is neither a  nor a , do nothing; if there is  but no 

, do 5.1; if there is a  but no , do 5.2; otherwise do 5.3; 
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5.1. delete from the successor list of , so that  becomes the 

new , etc.; 

1
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1k
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5.2. delete  from the successor list of , so that  becomes the 

new , etc. (reassignment); 

k
lp 1,1+

k
lH k

lp 2,1+

k
lp 1,1+

5.3. compute and compare the continuity scores (see 

(4.11))  and ; if 

the previous is higher, then delete from the successor list of ; 

otherwise delete  from the successor list of  (reassignment); 
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6. if any change during 5.1~5.3 causes a new conflict between already found 

harmonic particles, repeat step 5 on the conflicting pair; 

7. let  be , k=1, 2, …, K. k
lp 1+

k
lp 1,1+

The reassignment above is based on a continuity-strength criterion. While continuity 

is given the highest priority, we also aim to connect to the incomplete harmonic 

sinusoids to as many harmonic particles as possible. Therefore any two of the K 

harmonic sinusoids are allowed to share a fundamental frequency only when neither 

of them have a second possible successor. Otherwise we find for each harmonic 

sinusoid a successor with a distinct fundamental frequency so that the total continuity 

is optimized (steps 5.1~5.3).  

4.4.1.2 Harmonic grouping in the presence of other harmonic particles and 
predecessors 
The harmonic particles found in step 3 in 4.4.1.1 are found independently without 

considering concurrent harmonic particles. Due to the lack of attention on conflicting 

harmonic particles in the previous stage, large sinusoidal components may be left 

unresolved while their nearby components are associated with multiple harmonic 

particles. This does not satisfy the strength-harmonicity criterion for harmonic 

particles, and should be corrected by reassignment of atoms, focusing on the atoms on 

which the harmonic particles conflict.  

For comparing different assignments, the strength-harmonicity criterion in 3.2.7.3 

is replaced by a continuity-harmonicity criterion. A new issue in the tracking of 

multiple harmonic sinusoids is the evaluation of amplitude continuity for harmonic 

particles that share partials. We derive the contribution of the mth partial  of a 

harmonic particle p

}ˆ,ˆ{ fa

l+1 to the continuity-harmonicity score by replacing the strength 

score  in (3.27) with a continuity score  as defined in (4.6b) or 

(4.10c). The short-term continuity version is  

)ˆ( mm
a as )ˆ,( m

l
m
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fl
m
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m
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m fdsapsfapspps  (4. 12a) 

and the long-term version is 

 



4  Tracking  140  

 ( ) ( ) ( )))R,ˆ((1)ˆ,(R},ˆ,ˆ{,, 111 +++ +== l
mm

fl
m
all

m
ll

m fdsaHsfaHspHs  (4. 12b) 

Now suppose a peak  is shared by two harmonic particles  and , with 

partial indices m

}ˆ,ˆ{ fa 1
1

k
lp +

2
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1 and m2, respectively,  being assigned to ,  to . We 

propose to split the amplitude a  into  and , and assign  to ,  to , for 

the continuity evaluation. The split of  follows a simple energy-preservation rule, i.e. 

. The portion assigned to each particle is determined by maximizing the 

total continuity score. For the short-term continuity it is 
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Ignoring the dependency of A1, A2 on , , the right-hand side of (4.13a) 

maximized when , with the maximal value  
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For long-term continuity this is 
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where  
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Again the maximum is found as 1221 ˆˆ aAaA = , where 
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The above result can easily be generalized to K(K≥3) harmonic particles sharing a 

peak as  
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Since harmonic particles are already found in the previous stage, there is no need 

to start from harmonic grouping as in 3.2.7.3. We proceed with conflicting partials 

directly. Whenever we detect multiple harmonic particles conflicting at a certain atom, 

we try to redirect one of them to another atom, so that the overall continuity-

harmonicity score is improved.  

Suppose at frame l+1 an atom  is shared by harmonic particles , 

, …,   as , ,…, . We calculate the improvement of the 

score obtained by redirecting  as follows. 
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3. let the atoms in the frequency range ( ) other 

than  be , k=1, 2, …; for ∀k, calculate the score s

111111 )R(,)R( 11
mk

l
mmk

l
m ff ∆+∆− +++−

}ˆ,ˆ{ fa }ˆ,ˆ{ kk fa k, contributed 

by reassigning  to , using step 4; }ˆ,ˆ{ kk fa 1
1

k
lp +

4. if  is unused, do 4.1; otherwise do 4.2; }ˆ,ˆ{ kk fa

4.1. calculate sk= ; )R},ˆ,ˆ{,( 111
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k
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k
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5. let kmax= ; if kk
smaxarg 01max sss

k
−+ ≤0, then redirecting  does not bring 

any improvement; otherwise by redirecting  to  we 

improve the overall score by 

11 )( 1
mk

lf +

11 )( 1
mk

lf + }ˆ,ˆ{ maxmax kk
fa

01max sss
k

−+ . 

The reassignment of atoms is done by repeating the above procedure for all 

conflicting atoms until no improvement can be achieved by further reassignment. 

We test the algorithm on the same test set as in 3.2.7.3 for grouping multiple 

harmonic particles. The results are given in Table 4.5. In 3.2.7.3 the results in Table 

3.4 were generated using the true but rough frequency tracks. The results here show 

similar performance as those in Table 3.4, indicating that the partial tracking does not 

go astray frequently. 
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 SNR 

B  
-10dB -5dB 0dB 5dB 10dB 

0 72.92 86.00 94.25 99.89 100 

0.0002 80.21 88.08 94.55 99.89 100 

0.0004 71.42 85.56 93.77 98.89 100 

0.0006 73.71 85.78 92.08 98.89 100 

0.0008 76.74 87.06 93.25 99.89 100 

0.001 76.48 86.43 91.94 99.89 100 

Table 4. 5 Peak collection rate of tracking two harmonic sinusoids (%) 

SNR: signal-to-noise ratio; TM: modulator period, in frames 

4.4.2 Forward tracking with “births”  

In practice few pitched sounds last forever. Accordingly almost all harmonic 

sinusoids have a beginning and an end. In standard sinusoid modeling an end 

point of a sinusoid is marked as birth or death. Typically a sinusoid is “born” 

when a spectral peak does not have a predecessor, and “killed” when it does not 

have a spectral peak as a successor. We handle the birth of a harmonic sinusoid in 

a similar way: a harmonic sinusoid is born if a harmonic particle is found, which 

does not have a harmonic sinusoid as a predecessor.  

New harmonic particles are detected from unassigned peaks using the 

strength-harmonicity criterion in 3.2.7.3. Only those new harmonic particles that 

are strong enough are considered as newborns. A hard thresholding is used to 

qualify new harmonic particles. For harmonic sinusoids with weak starts, the 

beginning may not qualify for a newborn, so the events are detected some point 

after the true onsets. All newborns are tracked backwards to locate their beginning 

points (see §4.5). The backward tracking proceeds in the same way as forward 

tracking. A death point in backward tracking marks the birth of a harmonic 

sinusoid.  
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4.5 Endpoint detection for harmonic sinusoid tracking 

As mentioned above, there are two endpoints for each harmonic sinusoid: a 

beginning and an end. We always assume that all partials of a harmonic sinusoid 

start and end at the same time. Although for events with impulsive stimuli it is 

usual for high frequency partials to fade much quicker than low-frequency ones, 

we can still tag the faded partials with zero amplitude, so that we can terminate all 

partials simultaneously. 

The end point of a harmonic sinusoid can be located where no successor 

harmonic particle can be found in forward tracking, and the starting point can be 

located where no successor harmonic particle can be found in backward tracking. 

These conditions are, however, usually too weak to terminate events due to the 

existence of noisy sinusoid peaks and concurrent harmonic sinusoids, i.e. we can 

almost always find some spurious harmonic particle as a successor to a pending 

harmonic sinusoid. Unlike the true harmonic particles, spurious harmonic particles 

consist of spurious peaks or peaks randomly spotted from harmonic events. From 

a perceptive point of view, a spurious harmonic particle, which is incorrectly 

attached to an already-finished harmonic sinusoid, will not sound like a natural 

extension of the event: it either sounds different, or isn’t audible at all. We 

develop a strength thresholding for the latter, and the continuity thresholding for 

the former. Harmonic particles that fail these thresholdings are no longer 

considered eligible successors. This helps to terminate harmonic sinusoids at 

proper points. 

4.5.1 Strength thresholding  

In strength thresholding we look at the strength of a new harmonic particle pl+1 

found as a successor to a pending harmonic sinusoid Hl. Whenever the strength 

falls below a threshold level, pl+1 is regarded as ineligible as a successor to Hl.  

The threshold is set regarding the strongest point on the harmonic sinusoid. 

That is, let the strongest frame of Hl have strength A, then the threshold is set at 

, where Th is a relative decay, in dB. For example, when Th=50, then a 10/10 ThA −⋅
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harmonic sinusoid is terminated whenever the instantaneous strength falls 50dB 

below its strongest point. 

Strictly speaking the strength threshold does not strictly apply to slow-fading 

sounds, which may accumulate very large decay over a long time before fading 

off. A moving maximal strength  is defined as the maximal strength of k+1 

frames between frames l-k and l. By defining the threshold at 

, where ε is a minimal perceptible threshold, we can track a 

slow-fading event straight down to the end where it falls out of audible range. 

lklA ,−

)10,max( 10/
,

Th
lklA −

− ⋅ε

4.5.2 Continuity thresholding  

In continuity thresholding we look at the long-term amplitude continuity of a new 

harmonic particle pl+1 found as a successor to an incomplete harmonic sinusoid Hl.  

The amplitude continuity score lies between 0 and 1. It may seem plausible to set 

a threshold for the amplitude continuity score and terminate the harmonic sinusoid 

whenever the score falls below a threshold level. However, in the context of 

polyphonic music, an amplitude estimate may represent more than one sinusoid of 

very close frequencies, which corrupts the computed amplitude continuity score. A 

typical example is the outburst of new notes that have signification overlap on the 

partials of pl+1. Due to the symmetrical nature of the continuity score, gaining such 

significant energy will appear in the score the same as losing the energy, the latter 

being a typical indicator of an end point.  

To solve this problem we use an old-plus-new model to calculate the amplitude 

continuity score, in which only a part of the partial amplitude are used so that the 

score is maximized. That is, we look for , m=1, 2, 3, …, so that , and 

the score 

mâ m
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is maximized, where ( )∑=
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Unconstrained maximum of (5.15) is obtained by letting  
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and the maximum is ∑
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then the harmonic sinusoid will not terminate at frame l. 

If (4.17) does not hold for any m, then the maximum of (4.15) is a constrained one. 

Since  whenever , at the maximum of (4.15) we either 

have , or have  and . We 

calculate the derivative (4.16a) at , m=1, 2, …. Let N
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We try to find a maximum using the conditions  and , 
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process above.  

4.6 Forward-backward tracking 

One drawback of the forward tracking of harmonic sinusoids is that all tracking 

decisions are made locally. Whenever two concurrent harmonic particles at frame l+1 

compete for a successor pl+1 of a pending harmonic sinusoid Hl, the decision is made 

immediately without referencing into the future; neither is there a chance to cancel an 

incorrect assignment of pl+1 when the error becomes obvious some frames later. In 

forward-backward tracking, multiple harmonic particles are reserved at each frame as 

candidates. A harmonic sinusoid is tracked out of these candidates globally to avoid 

making too-early decisions.  

The forward-backward scheme [ASP91] is well know in dynamic programming 

methods, such as the dynamic time warping and hidden Markov models. In a forward-

backward tracking we look for a sequence (s1, s2, …, sL), s1∈S1, s2∈S2, …, sL∈SL, so 

that a cost function c(s1, s2, …, sL) is maximized or minimized, where the sets S1, 

S2, …, SL are known a priori. The cost function is supposed to be cumulative, i.e.  

 c(s1, s2, …, sL)=c(s1, s2, …, sl)⊕c(sl, sl+1, …, sL),  (4. 21a) 
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where the scalar operator ⊕ satisfies associativity and preserves monotonicity:  

 c(x1)⊕c(x2)≥c(y1)⊕c(y2), if x1>y1 and x2>y2.  (4. 21b) 

For sl, c(s1, s2, …, sl) is known as the backward cost function and c(sl, sl+1, …, sL) the 

forward cost function. According to the definition of ⊕, to find the optimal sequence 

for frames 1, 2, …, L given sl, one only need to find two optimal subsequences for 

frames 1, …, l and l, …, L independently. The global optimal sequence if found by 

trying out all sl∈Sl.  

We apply the forward-backward tracking in finding a harmonic sinusoid between 

two given harmonic particles at the ends. That is, we have S1={p1}, SL={pL}, and look 

for p2, …, pL-1, so that the tracking criterion is satisfied optimally by the harmonic 

particle sequence p1, …, pL. This task specification comes from the application of 

harmonic sinusoids for audio editor purposes, in which a user is allowed to specify 

two points in the time-frequency plane, from which a harmonic sinusoid is tracked out.  

Like in the multiple harmonic sinusoid tracking, we separate the pitch tracking 

and partial tracking in two stages: the pitch tracking is performed first, then the partial 

tracking is performed with reference to the pitch tracking result. Each of the two 

stages is a forward-backward process. In pitch tracking the state set Sl contains pitch 

candidates for frame l, while in partial tracking the state set Sl contains harmonic 

particle candidates for the chosen pitch at frame l. By ignoring the dependency of 

pitch tracking on partial tracking results, we get a sub-optimal harmonic sinusoid 

instead of an optimal one, at the benefit of limiting the size of the state sets Sl, l=1, …, 

L. 

Figure 4.5 compares forward and forward-backward tracking. Target harmonic 

particles are given as “×”, and spurious ones as “+”. Strong/weak local continuities 

between harmonic particles are pictured as solid/dashed arrows. The final route is 

pictured in dark colour. The target event is corrupted in frame 4, which leads to its 

weak continuity to frame 3. In forward tracking a connection is made from the current 

incomplete track to the most continuous harmonic particle, short-term or long-term, in 

the next frame. Therefore if the most continuous harmonic particle is a spurious one, 

the tracking fails at this frame. This error may propagate, as shown in (a) after frame 4. 
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In forward-backward tracking, the continuity is optimized globally, so that the strong 

continuity between target harmonic particles in frames 4~6 may “make up” for the 

weak continuity between frames 3 and 4. If the harmonic particles can be externally 

specified, e.g. for frames 1 and 6, then the error in Figure 4.5(a) can be safely avoided. 

The emphasis on global optimization may lead to local errors such as at frame 2 in 

Figure 4.5(b). However, in the long run it is safer than local optimization as long as 

the cost function is well chosen. 

f f

t/frames t/frames

 1 2 3 4 5 6  1 2 3 4 5 6  

(a) (b)  
Figure 4. 5 Forward and forward-backward tracking 

(a) forward searching; (b) forward-backward searching 

4.6.1 Cost function  

We express the cost function in an cumulative form as 
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Two scoring functions in the form of  are the short-term amplitude 

continuity score  and the fundamental frequency continuity score 

. The two can be combined together as (4.11), which is also in the form of 

. In our implementation we simply choose . An 

alternative is taking the logarithm: 
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4.6.2 Forward-backward pitch tracking  

Starting from k1=1, p1
1=p1, the forward-backward tracking is performed using a 

standard Viterbi algorithm as follows. 

1. For l=2, 3, …, L-1, do 2~5; 

2. for k=1, …, kl-1, do 3; 

3. initialize  from , and find successors πk
lR k

l 1R − 1, π2, …, of  using  

and calculate , and set prev(

k
lp 1−

k
lR ,

),( 1 j
k
lps π− jπ )= , j=1, 2, … ; k

lp 1−

4. add all harmonic particles found in 3 into a list ; L,2,1)( =j
j

lp

5. if any two successors in , say , an successor of , and , an 

successor of , have the same fundamental frequency, then delete  

if , or delete  if ; 

j
j

lp )( 1j
lp 1

1
k
lp −

2j
lp

2
1

k
lp −

1j
lp

),(),( 2211
11

j
l

k
l

j
l

k
l ppspps −− ≤ 2j

lp ),(),( 1122
11

j
l

k
l

j
l

k
l ppspps −− <

6. initialize  from , for k=1, …, k1R −L LR L-1, calculate  if  falls in 

the range given by , and choose the largest one, let it be ; 

),( 1 L
k
L pps −

k
Lp 1−

1−LR 1−Lp

7. for l=L-1, …, 2, let . )(1 ll pprevp =−

Steps 1~5 proceeds forward, while step 6 proceeds backward. The forward 

tracking and backward tracking meet at frame L-1. Since the frequency range of the 

states tends to increase with each forward or backward step, and since there are L-2 

forward steps and only 1 backward step, at the meeting frame L-1 the forward range is 

likely to be much larger than the backward range. As only the candidates within both 

ranges can contribute to the final result, a large part of  is actually useless. 

To help reducing unnecessary computation we can move the meeting point backward, 

say to frame l. The forward searching is performed on frames 1 to l, and the backward 

searching is performed on frames L to l.  

L,2,11)( =− j
j
Lp
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4.6.3 Forward-backward partial tracking on given pitch track  

Now we consider multiple harmonic particles which have the same fundamental at 

frame l. In the pitch tracking algorithm in 4.6.2 a decision is made immediately to 

keep at most one of them in step 5. This is a local decision based on short-term 

continuity between two frames. By making this early decision we keep tight control of 

the size of Sl during the tracking, at the cost of getting a sub-optimal results of the 

harmonic particles. To find optimal harmonic particles on the pitch track, we reselect 

harmonic particles for all the frames in the forward-backward framework so that the 

cost function (4.22) is optimized. The algorithm is almost the same as the pitch 

tracking, except that in step 3 we initialize  from  and the fundamental , and 

the condition in step 5 is modified from identical fundamental to identical harmonic 

particle. 

k
lR k

lR 1−
1

lf

 SNR 

TM  
-15dB 0dB 15dB 30dB 45dB 

2 14.65 22.54 26.74 20.33 20.04 

4 17.68 32.56 55.24 76.08 83.31 

6 18.49 37.04 57.61 85.29 93.13 

8 18.45 38.72 72.87 94.67 99.46 

10 18.67 40.84 79.92 97.99 99.96 

12 18.43 42.77 85.05 99.20 100 

Table 4. 6 Peak collection rate of tracking frequency-modulated harmonic sinusoid based on 
frequency and amplitude continuity using forward-backward tracking (%) 

SNR: signal-to-noise ratio; TM: modulator period, in frames 

We run a test on forward-backward tracking using the same test set as in §4.3, 

where we tested forward tracking only. The results are given in Table 4.6. The 

forward-backward method has obvious advantage over the forward method when the 

noise level is high. It is also interesting to compare these results to those in Table 3.2, 

which were obtained using true but rough fundamental tracks. At high noise levels 

and fast modulation rates the tracking method shows less peak collection due to 

tracking errors. However, when the noise level is low and modulation is slow, the 
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tracking results are better than in Table 3.2, which can be credited to the forced 

continuity in inharmonicity and amplitudes. 

4.7 Summary 

In this chapter we have discussed the harmonic tracking criteria and algorithms. The 

tracking is mostly based on frequency and amplitude continuities. The polygonal 

representation in Chapter 3 is used in harmonic sinusoid tracking to specify the 

searching range, while several continuity scores are used for comparing the candidates 

that fall in this range. The forward tracking algorithm can be regarded as an extended 

version of the tracking method in standard sinusoid modeling, with special 

consideration on colliding partials. In the end we proposed to use forward-backward 

method for the specific task of finding a harmonic sinusoid to fill the gap between two 

given harmonic particles.  

 

 



    

 

Chapter 5 
 
Applications 
 

This chapter proposes several applications of the harmonic sinusoid model. There are 

two main mechanisms that enable the applications: extraction and parameterization. 

Extraction refers to the retrieval of a pitched event from a mixture of events as an 

isolated sound. By extraction we are able to perform an operation, which is originally 

designed for a single pitched event, on an event within a mixture. Parameterization 

refers to the quantization of physical or musical properties of a pitched event into 

sinusoidal parameters. By studying these parameters it is possible to extract mid- or 

high-level information that is not directly available from the waveform; by modifying 

these parameters it is possible to modify the audio object by its mid- or high-level 

properties. 

This chapter is arranged as follows. In 5.1 we discuss the resynthesis of harmonic 

sinusoids from harmonic sinusoidal parameters, then use it for evaluating harmonic 

sinusoid modeling. In 5.2 we present the application of harmonic sinusoids in audio 

editors, which enables some functionality not available in conventional editing tools. 

In 5.3 we propose several other possibilities for applying harmonic sinusoid models, 

followed by a conclusion in 5.4. 

5.1 Harmonic sinusoid resynthesis 

Since the conversion of a harmonic sinusoid model to a sinusoid model is trivial, a 

harmonic sinusoid can be resynthesized using the sinusoid resynthesizer discussed in 

§2.5. The general theories of the synthesis have already been discussed in Chapter 2. 

This section only considers some specific issues in the synthesis following the re-

estimation (§3.3) stage. 
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 In [MQ86] and [Serra89], given two sets of parameter estimates at 0 and N, the 

amplitude and phase angle between the two measurement points are interpolated 

using the two sets of estimates only. This processing does not guarantee the continuity 

of the frequency derivative. In [GMMRP03] this is solved by estimating the 

frequency derivative explicitly at the measurement points. In our work we take a 

different approach. Since we have used the cubic spline in post-tracking estimation of 

sinusoidal parameters [WS06] (also see §3.3), which connects frequencies measured 

from multiple frames with continuous 2nd-order derivative, it is straightforward to 

apply this to the reconstruction of the sinusoids.  

The cubic splines are computed during the re-estimation stage. Between each pair 

of adjacent measurement points nl and nl+1, l=1, 2, …, L-1, the frequency is 

interpolated as a trinomial: 

 
32)(~ atbtctdtnf ll +++=+o

 (5. 1a) 

We integrate (5. 1a) fixing the phase angle of point nl at lϕ̂  and get 

 nlll nanbncdtnn δπϕϕ +⎟
⎠
⎞

⎜
⎝
⎛ ++++=+ 432

432
2ˆ)(~  (5. 1b) 

where δn, usually a polynomial of n, is the correction term. The choice of δn depends 

on the continuity requirement. For example, to preserve phase and frequency 

continuity requires  
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and to preserve phase, frequency and frequency derivative continuity requires 
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where . The amount of correction is proportional to δlll nnn −=∆ +1 N. In the minimal 

correction sense, we find the minimal δN that, when applied to (5.1b), satisfies  

 πϕϕ kn lll 2~)(~
11 += ++ , k∈Z. (5. 3) 
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The spectral-domain resynthesis method concerning parameters estimated using 

multiple resolutions is given in Appendix G. 

The sinusoids can be subtracted from the original signal to get the residue. In 

standard sinusoid modeling the sum of sinusoid comprise the deterministic part of the 

audio, while the residue composes the stochastic part. The deterministic part is 

directly composed of individual sinusoid partials, without a mid-level structure; the 

stochastic part represents the original signal minus the deterministic part [Serra89]. 

More detailed study of the stochastic part decomposes it into transients and noise 

[LS98].  

5.1.1 Tests 

With the resynthesized harmonic sinusoid we are able to evaluate the harmonic 

sinusoid modeling by the error between the original and resynthesized signals. We run 

tests on four groups of synthesized signals. The samples are 44100 points long. 

Amplitude and frequency laws include constant, exponential, and sinusoid-modulated 

variations. Partial amplitudes are designed to follow a 1/m rule, i.e. amplitudes are 

reciprocal to the partial index. We use the frame size 1024 and hop size 512. The 

fundamental frequency ranges from 5 bins to 40 bins (1bin=1/1024), spanning 3 

octaves. We sample this range every semitone at 37 different pitches. White noises 

are added to the test sampled optionally. The modeling error is evaluated by a signal-

to-noise ratio, where the noise refers to the difference between the original clean 

signal waveform and the resynthesized harmonic sinusoid. Errors are measured 

independently for each test sample, then averaged over groups of samples. In these 

tests post-tracking re-estimation is only performed on the amplitudes using (3.34a). 

5.1.1.1 Constant harmonic sinusoids 

This group includes 925 test samples, with the 37 fundamental frequencies  from 

5bins to 40 bins, 5 stiffness coefficients B from 0 to 0.0008, and 5 signal-to-noise 

ratios (SNR) from -15dB to 45dB. The phase angles are taken at random. The results 

are given Table 5.1. For stationary sinusoids the modeling is very successful, with 

more than 99.9% sinusoid peaks correctly collected into the partials when the SNR is 

above 15dB. We constantly get slightly better results for higher stiffness coefficients. 

1f
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This is due to the constraint of B above zero, which makes it easier to collect spurious 

peaks with a positive frequency departure than a negative one. 

 SNR 

B  
-15dB 0dB 15dB 30dB 45dB 

0 -0.9 14.8 30.6 45.7 60.7 

0.0002 0.3 16.2 32.1 47.2 62.1 

0.0004 0.6 16.5 32.4 47.5 62.3 

0.0006 0.8 16.8 32.7 47.7 62.6 

0.0008 1.0 17.0 32.8 47.9 62.7 

Table 5. 1 Resynthesis SNR on constant harmonic sinusoids (dB) 

SNR: signal-to-noise ratio; B: stiffness coefficient 

5.1.1.2 Constant pitch with exponential amplitude 

This group includes 1850 test samples, with 37 fundamental frequencies  from 5 

bins to 40bins, 2 stiffness coefficients B at 0 and 0.0005, 5 amplitude decay rates α at 

-0.5, -1, -1.5, -2, -2.5 dB/frame (here “per frame” means per hop size, i.e. per 512 

points) , and 5 SNRs from -15dB to 45dB. The results are given in Table 5.2. 

1f

 SNR 

α  
-15dB 0dB 15dB 30dB 45dB 

-0.5 -0.2 15.2 31.0 46.3 61.2 

-1 -0.5 13.9 30.0 45.6 59.7 

-1.5 -0.9 12.9 21.7 44.5 56.1 

-2 -1.3 11.8 23.7 43.2 49.3 

-2.5 -1.8 12.5 21.9 26.7 22.0 

Table 5. 2 Resynthesis SNR on harmonic sinusoids with exponential amplitudes (dB) 

SNR: signal-to-noise ratio; α: decay rate, in dB/frame 
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The decay rate has a very regular effect on the error, partially because the signal drops 

below noise level after certain points. Although in this test all partials have the same 

decay rate, for partial-dependent decay rates, which is common in real music signals, 

the behaviour is similar: all partials that falls below the noise level become hard to 

pick up. Unlike matching pursuits [GB03], sinusoid modeling does not assume any 

specific coupling between partial amplitudes. 

5.1.1.3 Constant pitch with modulated amplitude 

This group includes 550 samples, with 22 fundamental frequencies  from 5bins to 

40bins (3 octaves on diatonic scale) , 5 modulation depths d at 0.1, 0.2, …,  0.5, 5 

modulator periods T

1f

M at 2, 4, …, 10 frames, SNR is fixed at 15dB. The results are 

given in Table 5.3. The error increases with modulation depth and frequency. 

 TM

d  
2 4 6 8 10 

0.1 28.17 30.34 30.55 30.57 30.60 

0.2 24.64 29.57 30.36 30.56 30.56 

0.3 21.85 28.60 30.15 30.42 30.49 

0.4 19.74 27.54 29.77 30.31 30.44 

0.5 18.09 26.58 29.48 30.17 30.39 

Table 5. 3 Resynthesis SNR on harmonic sinusoids with modulated amplitudes (dB) 

TM: modulator period, in frames; d: modulating depth 

5.1.1.4 Pitch modulation with constant amplitudes 

This group includes 550 samples, with 22 fundamental frequencies  from 5bins to 

40bins (3 octaves on diatonic scale), 5 modulator amplitudes d at 0.3, 0.6, …, 1.5 

semitones, 5 modulator periods T

1f

M at 2, 4, …, 10 frames, SNR ratio is set to 15dB. 

We list the resynthesis SNR’s in Table 5.4. Only amplitude re-estimation is used in 

the post-tracking stage to generate these results. 
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If we compare Table 5.4 with Table 5.3, we see that a frequency modulation of as 

small as 0.3 semitones brings more error than an amplitude modulation of 50% the 

central value.  

 TM

d  
2 4 6 8 10 

0.3 14.5 23.6 27.9 29.0 29.3 

0.6 10.8 17.9 21.5 25.4 27.0 

0.9 7.7 14.7 17.7 21.3 24.0 

1.2 6.0 11.2 13.0 18.5 21.0 

1.5 4.8 8.3 7.8 13.0 18.9 

Table 5. 4 Resynthesis SNR on harmonic sinusoids with vibrato (dB) 

TM: modulator period, in frames; d: modulator amplitude, in semitones 

5.2 Application for audio editing 

An audio editing operation generates an output audio signal from an input audio 

signal. It can be as simple as modifying basic audio parameters, such as timing, pitch 

or loudness, of the input, or as complicated as swapping two musical instruments in a 

duo. It is common in an audio editor for a user to select a part of the whole signal as 

the target for editing, so that the unselected part remains unmodified. To make it 

possible, the editor must be able to decompose the original signal into the target and 

non-target parts. The sinusoid model decomposes a sound into deterministic and 

stochastic parts, therefore enables a user to select the deterministic or stochastic part. 

It also enables a user to select a sinusoidal partial, since it decomposed the 

deterministic part into sinusoids. However, the sinusoid model does not provide a 

straightforward way to access individual events. The harmonic sinusoid model, on the 

other hand, decomposes the deterministic part into musical notes explicitly. With this 

mechanism, we are able to select a note as the target for editing, and perform standard 

editing operations on it as if it is an isolated excerpt, without disturbing other audio 

events.  
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There are three ways to apply audio editing operations: 1) apply to resynthesized 

harmonic sinusoids (time-domain post-synthesis editing); 2) apply to sinusoidal 

parameters (parameter-domain pre-synthesis editing); 3) apply to reconstructed 

parameter sequences during the resynthesis (in-synthesis editing). Time-domain 

editing only applies to standard audio editing operations defined for general 

waveform audio, while parameter-domain and in-synthesis editings apply to a wide 

range of operations, enabled by the direct access to the model parameters. The in-

synthesis editing allows free control of parameters at all samples, including non-

measurement points, while the parameter-domain editing only have direct control at 

the measurement points. In the following we only discuss time- and parameter-

domain editings. The in-synthesis editing involves the same operations as the 

parameter-domain editing, but applies them at every sample instead of at every frame. 

Figure 5.1 compares the three types of editing, where the dashed-line box outlines 

the synthesizer, and the cylinder with “Ed” marks where the modification takes place. 
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Figure 5. 1 Three ways to apply harmonic sinusoids for audio editing 

(a) time-domain; (b) parameter-domain; (c) in-synthesis. 
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5.2.1 Selecting a target 

To perform any audio editing with harmonic sinusoid, the user must be able to specify 

a target event first. This selection operation must be easy to access, non-ambiguous, 

and real-time or almost real-time. The spectrogram (Figure 5.2) provides a good 

image of signal contents with acceptable separation of concurrent events, therefore 

can serve as the interface for selecting a target event. The simplest way to indicate a 

target event is by providing a non-ambiguous pair of time and frequency values found 

on the target, which the harmonic sinusoid tracker uses as the starting point for 

tracking. In the case that the tracking goes astray, it is convenient to select another 

pair on the same event. Then the tracking can be forced toward the given direction in 

the forward-backward framework. 

Figure 5.2 (a) is the spectrogram of a solo piano recording; Figure 5.2 (b) is the 

spectrogram of a solo voice with orchestral accompaniment. The tracking results are 

shown in Figures 5.2 (c) and (d). In the piano example the third note is selected to be 

the target, and in the singing example it is the voice. Sound examples are found in 

\examples directory, named after the figure indices. 
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(a) (b) 

(c) (d)  

Figure 5. 2 Spectrograms 

(a) piano recording; (b) solo voice with accompaniment; 
(c)(d) tracking results of the above 

 

5.2.2 The residue 

To modify one event within a mixture without changing the other events, we 

decompose the mixture as an event plus a residue, modify the event, and finally add 

the modified event back onto the residue. The residue is usually calculated by 

subtracting the reconstructed event from the mixture, known as subtractive synthesis. 

Recall the harmonic sinusoids plus noise model 

  (5. 4a) n

K

k

k
nn rxx += ∑

=1

where xk is the kth pitched event, and r is the stochastic part of x. Let  be the 

reconstructed waveform of event x

1~x
1. By subtracting , we get a residue 1~x 1r : 
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Subtractive synthesis is the only way to ensure perfect reconstruction when no 

modification is done. However, since the modeling of sinusoids with high dynamics is 

not perfect, i.e. 1~x  is only an approximation of x1, a small error 11 ~
nn xx −  is left in the 

residue. 11 ~
nn xx −  has the same time-frequency coverage as x1 itself, which creates a 

“phantom” echo of the subtracted event. This echo does not necessarily affect the 

editing quality if the modified event is to be added back to the same position in the 

time-frequency plane, since the echo will probably be perceptually masked by the 

modified event [Moore97].  

Other methods for calculating the residue include spectral notching and noise 

modeling. In the spectral notching method a band-stop filter is applied to several bins 

around the event. This eliminates all signal components close to the removed event, 

including what is supposed to be left in the residue. The noise modeling method 

models the stochastic part, i.e. the residue after all harmonic sinusoids have been 

removed, with a smooth power spectrum. That is, we write  
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The term  is a “true” but bad residue containing all the echoes due to 

inaccurate modeling. The noise modeling technique replace it with a “good” residue 
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x~  is not a perfect reconstruction of x, but they have the same deterministic parts and 

similar (in the power spectrum sense) stochastic parts, so they will sound similar. The 

residue for 1~x  is generated as  
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1~
nr  does not carry an echo of x1.  

Figure 5.3 shows the resynthesized harmonic sinusoids and corresponding 

subtractive residues for the two examples above. Clean subtraction is achieved for the 

piano example, while a “phantom” echo is left from the vocal excerpt. This highlights 

the necessity of parameter re-estimation for varying-frequency sinusoids. Audio 

samples of these are found in /examples. 

(a) (b) 

(c) (d) 
 

Figure 5. 3 Extracted event and residue 

(a)(b) resynthesized harmonic sinusoids; (c)(d) residues calculated by subtraction 

In the following we denote the input signal x, the reconstructed event 1~x , the 

residue xc, the modified event 1~y , and the output signal y. 

5.2.3 Cut, copy and paste 

These operations are extremely common in editors that handle objects. As the 

harmonic sinusoid modeling represents a pitched event as an object, it is possible to 

cut, copy and paste it in an audio editor. The cut operation is implemented as 
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 , c
nn xy = clipboardx →1~ , (5. 5a) 

and paste is implemented as 

 clipboardx ←1~ ,  (5. 5b) 1~
nnn xxy +=

It is common to do time-shifting by combining the cut and paste operations: 

  (5. 5c) 1~
kn

c
nn xxy −+=

where k is the time shift, in samples. 

5.2.4 Amplification 

Time-domain amplification operation is performed as 

 11 ~~
nnn xAy =  (5. 6a) 

where An is a gain factor for point n. The parameter-domain version is 

 ( ) ( )x
m
lny

m
l aAa

l
ˆ= , ∀l, m (5 .6b) 

Pure amplification is specified by setting An (or ) as a constant. Using pure 

amplification it is possible to re-balance between notes or voices, or the same note in 

difference channels. These are basic operations in the remixing of already mixed 

audio. 

lnA

Time-variant amplification uses non-constant gain factors, known as envelopes. 

Typical envelopes include rectangular windows for trimming an event, fade-in and 

fade-out windows, and sinusoid or other periodic windows for amplitude modulation. 

Unlike the time-domain method, the parameter-domain method does not have direct 

access on the gain factors between measurement points, which are implicitly 

interpolated after the modification. Since slow variation is assumed during resynthesis, 

in parameter domain we cannot implement fast-varying amplitude envelope.  

Figure 5.4 gives several examples of amplification. In Figures 5.4 (a) and (b) the 

two harmonic sinusoids are amplified by 6dB. Figure 5.4 (c) illustrates the artificial 

amplitude modulation on a selected event. These examples are also found in audio 

format in \examples. 
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(a) (b) (c)  
Figure 5. 4 Amplification on selected event 

(a)(b) constant amplification; (c) amplitude modulation 

(a) (b)  
Figure 5. 5 Time stretching 

(a) α=2; (b) α=0.6 

(a) (b) (c)  
Figure 5. 6 Pitch shifting 

(a) up by a triton; (b) up by a fifth; (c) pitch modulation 

(a) (b) (c)  
Figure 5. 7 Frequency de-modulation 

(a) a vibrato; (b) de-modulated vibrato; (c) de-modulated glissando 
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5.2.5. Filtering 

Time-domain filtering is performed as 

 hxy *~~ 11 = , or ∑ −=
m

mnmn hxy 11 ~~  (5. 7a) 

where h is the response of the filter. Time-variant filtering is implemented by using 

time-dependent response, say hn: 

 ∑ −=
m

mnmmn hxy ,
11 ~~  (5. 7b) 

The filter response h is determined from specifications on frequency response using 

some filter design procedures. Let the desired frequency response be H(f), parameter-

domain filtering is implemented as frequency-dependent amplification: 

 ( ) ( )x
m
l

m
ly

m
l afHa ˆ)ˆ(~ ⋅= , ∀l, m (5. 7c) 

Time-variant filtering is implemented using frame-dependent frequency response: 

 ( ) ( )x
m
l

m
lny

m
l afHa

l
ˆ)ˆ(~ ⋅= , ∀l, m (5. 7d) 

While the frequency response is frame-dependent, the synthesizer smoothly 

interpolates it from one frame to the next. 

5.2.6. Time stretching 

Time-domain time stretching is implemented on 1~x  with standard time-stretching 

methods [Portnoff81, LD99]. In parameter domain time stretching is performed on the 

measurement time parameters: 

 ( ) ( )( )cxlcyl nnnn −+= α , ∀l (5. 8) 

where nc is a position chosen to have the same timing in x and y, i.e. the fixed point, 

and α is the stretching rate. When α>1 the harmonic sinusoid is stretched; when 

0<α<1 it is compressed; when α<0 it is reversed with stretching rate -α.  

Figure 5.5 shows time stretching. In (a) the third piano note is stretched by 100%, 

while in (b) the selected vocal part is compressed by 40%. The audio examples are 

found in \examples. 
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5.2.7. Pitch shifting 

From the time-scale modification point of view, a pitch shifting given the shifting rate 

α (new pitch divided by the original pitch) is equivalent to time stretching of 

stretching rate α coupled with resampling of resampling rate α. Time-domain pitch 

shifting is implemented on 1~x  with standard pitch-shifting methods [Portnoff81]. In 

the parameter domain, pitch shifting is performed on individual partial frequencies:  

 m
l

m
l ff ˆ2~ 12/ ⋅= β , ∀l, m (5. 9a) 

where β=12·log2α is the amount the shifting in semitones. When β>0 the pitch is 

shifted up; when β<0 it is shifted down. An anti-alias filter should be applied in 

combination with upward pitch-shifting: 
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Frequency modulation is implemented using pitch shifting with a frame-dependent 

amount of shift. 

The pitch shifting in (5.9a) moves the formants along with the partials. Since the 

positions of the formants characterise the shape and size of a resonant body, shifting 

the formants along may alter the resonant characteristics, and therefore affect the 

perception of the sound source. 

Figure 5.6 gives several examples of pitch shifting. In (a) the third piano note is 

shifted up by 6 semitones (a “triton”); in (b) the voice is shifted up by 5 semitones. 

Figure 5.6 (c) illustrates the artificial pitch modulation on the selected note. These 

examples are also found in audio format in \examples. 

5.2.8. Amplitude and frequency demodulation 

Demodulation is the inverse process of modulation. While in modulation a modulated 

signal is generated from a carrier and a modulator, in the reverse process a carrier and 

a modulator is separated from a modulated signal.  
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In real-world music, amplitude modulation may appear by itself, while frequency 

modulation is almost always accompanied by amplitude modulation (see 1.2.3). Here 

we consider these two cases.  

5.2.8.1. Pure amplitude de-modulation 

For the mth partial, let the estimates of a modulated amplitude be , the carrier 

amplitude be 

mâ

ma , and the modulator be ma , so that 

 m
l

m
l

m
l aaa +=ˆ , ∀l, m (5. 10a) 

We always assume that the carrier varies slower than the modulator, to estimate 
ma and ma  we decompose  into a slow-varying part and a fast-varying part, assign 

the previous to 

mâ

ma , and the latter to ma . It is up to the user to decide where to draw 

the line between “slow” and “fast”. For example, if we find the slow-varying part by 

the following moving average: 
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where w is a low-pass window function defined on [-1, 1], then the window width 2K 

controls the balance between slow and fast. The larger is K, the slower-varying is m
la .  

The parameter-domain amplitude de-modulation is given as 

 ( ) ( )x
m
ly

m
l aa =ˆ , ∀l, m (5. 11a) 

and the re-modulation is given as 

 ( ) ( ) ( ) ][ˆ x
m
lx

m
ly

m
l aEdaa +=  (5. 11b) 

where Ed[·] represents a general operator. For example, Ed[·] being an amplifier 

changes the modulating depth, and Ed[·] being a time stretcher changes the 

modulating rate. 
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Amplitude de-modulation is difficult in time-domain processing unless all partials 

of 1~x  are modulated with the same modulator phase and the same modulating depth.  

5.2.8.2 Frequency de-modulation 

The frequency estimate  can be decomposed into a carrier mf̂ mf  and a modulator 
mf  in the same way as the amplitude estimate. The parameter-domain frequency de-

modulation is given as 

 ( ) ( )x
m

ly
m

l ff =ˆ  (5. 12a) 

and the re-modulation is given as 

 ( ) ( ) ( ) ][ˆ
x

m

lx
m

ly
m

l fEdff +=  (5. 12b) 

However, frequency modulation rarely comes without accompanying amplitude 

modulation. When the frequency estimates are de-modulated, so should the 

accompanying amplitude modulation. However, the frequency-modulation-related 

amplitude modulation is a complicated phenomenon out of the scope of this thesis. 

Here we only propose a method based on the simplified source-filter model given in 

(1.19a): 

 ))(())(()( l
mm

ll
m

flsm
m
l nfAAnfAnAAa ≡=  (5. 13a) 

where A , defined as )( lsl nAA = , is a slow-varying amplitude carrier, and  

combines the source model A

)( fAm

m and filter model Af. A  is estimated as the slow-varying 

part of the overall amplitude. For every partial m, is expressed as a function of f by 

mapping the frequency and amplitude estimate pairs {

mA

( ) ( ) lx
m
lx

m
l Aaf ˆ,ˆ }l onto a f-A 

plane, then fit the points with a smooth curve. The de-modulation of amplitudes is 

then given as 

 ( ) ( )( )y
m

l
m
fly

m
l fAAa ˆˆ =  (5. 13b) 
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In other words, ( )y
m
lâ  (divided by A ) is predicted as a median of those amplitude 

estimates (divided by A ) which have the same partial index and are closest in 

frequency to ( )y
m

lf̂ .  

Pure frequency de-modulation is accomplishable in time-domain processing as 

pitch-dependent pitch shifting. Frequency de-modulation coupled with amplitude de-

modulation is difficult in time domain. 

Figure 5.7 illustrates the joint amplitude-frequency demodulation. Figure 5.7 (a) is 

the spectrogram of a vocal vibrato, with the harmonic tracking results. Figure 5.7 (b) 

gives the de-modulated vibrato, which shows high stability in articulation. In Figure 

5.7 (c) we apply the demodulation on the accompanied vocal excerpt, in which case 

the vibrato accompanying a vocal glissando is removed. These excerpts are also found 

as audio files in \examples. 

5.2.9. Section summary 

In §5.2 we have discussed the applications of harmonic sinusoids for audio editing. 

The examples given in this section are only basic operations. There are many other 

possibilities of applying harmonic sinusoid model for audio editing, such as adding 

and removing partials, imposing and removing formants, swapping parameters 

between events, etc. Some of these are not possible without harmonic sinusoid 

modeling. 

5.3 Other applications 

Apart from the above, the harmonic sinusoid modeling also enables a wide range of 

other applications, some of which are listed in this section. 

5.3.1 Instrument / singer recognition 

Most music we encounter in daily life are polyphonic, in which multiple pitched 

music notes are allowed at the same time. The polyphony adds to the difficulty of 

some music information retrieval tasks which are designed to extract information 

regarding individual musical notes, or a monophonic excerpt. Examples of such tasks 
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include pitch identification and musical instrument / singer recognition. When the 

monophonic methods are applied to polyphonic, it is either that the result be given an 

alternative interpretation, such as predominant pitch instead of plain pitch [KVH00], 

or some specific method be introduced to combat the influence of the unwanted 

contents [BE01, TWRCY03]. The harmonic sinusoid, on the other hand, directly 

represents a single music note within an audio mixture, so a monophonic retrieval 

method can be directly applied to it without considering other components. A very 

similar idea has been explored in [FKGKOO05] for singer identification, with 

promising results. Standard recognizers use spectral features such as the linear 

prediction cepstrum coefficient (LPCC) [MG76], or Mel-frequency cepstrum 

coefficients (MFCC) [Logan00], most of which can be calculated directly from the 

sinusoidal parameters instead of from resynthesized audio.   

5.3.2 Advanced audio annotation 

In music information retrieval tasks it is crucial to have a properly annotated database. 

The type of annotation used is determined by specific retrieval tasks, e.g. onsets 

positions are annotated for onset detection, pitch values and duration are annotated for 

transcription, etc. Most currently available annotations fall into a when-and-what style, 

i.e. something happens at some time. With such an annotation, a label identifying 

“what” is tagged onto a point or a segment on the time axis, which maps onto the 

audio content.  

One problem of this kind of annotation is the polyphony, i.e. concurrent events. In 

the current method all events that happen at the same time are tagged to the same 

position. Accordingly, when one is trying to locate some event A, a tag is associated 

with the duration of A only. Using this information one may access an audio excerpt 

containing the event A, but probably not only A. In other words, one has direct access 

only to the duration of an event, but not to the event itself. 

With the help of harmonic sinusoid model, it is possible to annotate a pitched 

event as a harmonic sinusoid. In this case the label is tagged onto a time-varying track 

in the time-pitch plane instead of an interval on the time axis alone. The additional 

dimension makes it possible to discriminate between annotated concurrent events, and 
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to refer to one event among concurrent events at a higher SNR. Even in the 

monophonic case, the harmonic sinusoid modeling is useful in providing detailed 

annotations of time-varying parameters, such as the instantaneous pitch within a 

vibrato. 

5.3.3 Weak onset detection 

Music onset detection has been extensively addressed in [BDADDS05] and 

[Dixon06]. In these works the onsets are detected according to variations of audio 

properties. This idea, however, does not work for events with slow starts (fade-in), 

since they lack obvious variations. For the same reason, offset detection is difficult for 

the onset detection methods, since many offsets happen as fade-outs.  

The problem is that few onset detection methods consider the relation between 

onsets and events, i.e. an onset exists if and only if there is an event it can be attached 

to. In [WS05] we proposed a method for discarding spurious onsets when no new 

events can be detected. This can also be carried out inversely: if there is an event A 

detected at time t1, but A is not detectable at time t0<t1, then there exists an onset of A 

between t0 and t1. Since the harmonic sinusoid model explicitly models pitched events, 

they can be used to detect onsets, especially those with slow starts. There can still be 

problem of locating a weak onset accurately in time. However, this can be hard for a 

human annotator too.  

5.3.4 Music coding 

The harmonic sinusoid model is compatible the MPEG-4 “Harmonic and Individual 

Lines plus Noise” coding tool [PEF98, PM00], with extra structures such as the 

inharmonicity, and models smooth parameter adaptation between frames.  

5.3.5 Analysis of music performance 

The harmonic sinusoidal parameters reflect several technical aspects of music 

performance, including pitch contour, dynamics, damping, tremolos and vibratos, 

timbre control, etc. Musicologists can use these details to study the specific 

articulations or to compare different performances. It is also possible to automatically 

monitor training sessions for educational purposes. 
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5.3.6 New audio features 

The harmonic sinusoid provides a moderately compact representation which 

effectively preserves the information of a pitched sound. Features can be extracted 

from sinusoidal parameters to compare the similarity between harmonic sinusoids. 

Some instruments are known to have distinct characteristics in the harmonic sinusoid 

representation, such as missing partials, which are not effectively represented by other 

features. 

5.4 Summary 

In this chapter we have discussed several applications of harmonic sinusoid models, 

including audio editing, musical instrument recognition, etc. These applications are 

enabled by harmonic sinusoid modeling in two ways: the extraction of pitched events 

from other events, and the quantification of harmonic sinusoidal parameters. In short, 

the harmonic sinusoid model offers an inspection into the harmonic structure of 

individual events, and functions as an interface between waveform audio and note-

level representations of music. 
 

 



    

 

Chapter 6
 
Conclusion and perspectives 
 

This chapter summarizes the work presented in this thesis, and highlights its 

contributions to the research. In the perspective section we summarize several weak 

points of the current system, and propose how the modeling can be further improved. 

6.1 Thesis summary 

This thesis presents the theory, implementation, and applications of the harmonic 

sinusoid model. The harmonic sinusoid is introduced to represent the deterministic 

component of a pitched event in the sound. Unlike the standard sinusoid model, which 

describes the deterministic audio components in a general sense without 

distinguishing their sources, the harmonic sinusoid model explicitly represents the 

deterministic parts of individual sound sources (or multiple sources in unison), 

therefore provides a note-level representation of music audio. 

Chapter 1 defines the definition of the model directly in 1.1, and examples of 

harmonic sinusoids are given in 1.2 with music acoustical contexts. We have also 

discussed several aspects of the time-varying sinusoid, including the uniqueness and 

slowness issues, and its behaviour in the frequency domain.  

Chapter 2 reviews the techniques used in standard sinusoid modeling, including 

peak picking, parameter estimation, sinusoid tracking and resynthesis methods. In 

addition to a brief overview, for peak picking and frequency estimation we have 

explored the methods analytically to show why, and how well, they work. For 

resynthesis we reformulated the standard trinomial frequency-phase interpolation in a 

interpolation-plus-correction frame work, which leads to the finer resynthesis method 

to be given in Chapter 5. After reviewing the standard sinusoid model we show how 
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this model can be upgraded to the harmonic sinusoid model, give the outline of the 

harmonic sinusoid modeling system, and draw a comparison with the standard 

sinusoid modeling system.  

Chapter 3 presents methods for measuring harmonic sinusoidal parameters. The 

LSE estimator is presented in 3.1, with emphasis on its frequency-domain 

implementation, and a discussion of its behaviour on time-varying sinusoids. 3.2 

discusses harmonic grouping, i.e. grouping sinusoid atoms into harmonic particles 

according to partial harmonicity. The core technique in harmonic grouping is a robust 

inequality-based representation of harmonic frequencies, which tolerates missing 

partials, frequency estimation errors, as well as selected type of inharmonicity. Under 

this model a group of harmonic frequencies is represented as an area in some 

fundamental-inharmonicity plane. Several aspects of this model are discussed in 

3.2.3~3.2.6. In 3.2.7 we finally present the harmonic grouping techniques based on 

the inequality model. 3.3 and 3.4 are devoted to post-tracking estimation of time-

varying sinusoids. Two independent algorithms are presented to show how the 

knowledge on parameter variation can be used for estimating sinusoidal parameters at 

higher accuracy. 

Chapter 4 discusses harmonic sinusoid tracking. The inequality-based harmonic 

frequency representation is used for providing frequency evolution boundaries to 

ensure the continuity of inharmonicity property. Frequency and amplitude continuity 

criteria are discussed in 4.1 and 4.2, respectively. 4.3 discusses forward tracking of a 

single harmonic sinusoid, based on the continuity criteria. The forward tracking is 

performed jointly with harmonic grouping to ensure harmonic particles being optimal 

in the continuity sense. 4.4 discusses the extension of this tracking scheme onto 

multiple harmonic sinusoids, which combines the method for grouping multiple 

harmonic particles in Chapter 3, and the forward tracking method in 4.3. Finally we 

discussed the application of forward-backward method in harmonic sinusoid tracking, 

which shows better performance in a noisy environment.  

Chapter 5 presents applications of the harmonic sinusoid model. We first discuss 

the harmonic sinusoid synthesizer to conclude the analyzer-synthesizer modeling 

cycle. The emphasis of the application part is put on audio editing. The harmonic 
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sinusoid model enables two new features for audio editing: object-based editing 

allows a user to modify a selected pitched event with little effect on other events, and 

the direct access to sinusoidal parameters provides possibilities for new sound effects. 

Several other applications are briefly proposed as suggestions for future investigation. 

6.2 Contributions 

The main contributions of this thesis are listed as follows. 

• Harmonic sinusoid modeling system (2.6). This thesis formulates harmonic 

sinusoid modeling as an analysis and synthesis system based on harmonic 

particles, which can be regarded as an upgrade from standard sinusoid modeling 

in a similar framework, but with distinct internal structures and algorithms. A 

harmonic sinusoid directly models the deterministic part of a pitched audio event, 

therefore have a wider spectrum of applications than the individual sinusoids in a 

standard sinusoid model. 

• Robust representation of harmonic frequency contents (3.2.3). The inequality-

based representation of harmonic frequencies provides a way for combating 

several issues that corrupt the harmonic grouping of sinusoid atoms, including the 

absence of partials, inaccurate frequency estimates, and inharmonicity.   

• Method for finding harmonic signal components (harmonic particles) from the 

spectrum (3.2.7). The harmonic grouping method based on the above harmonic 

frequency representation is capable of finding harmonic particles against noise, 

weak or masked partials, frequency estimation errors, and inharmonicity. A 

method for finding concurrent harmonic particles considering shared spectral 

peaks is also proposed. 

• Continuity criteria for tracking harmonic partials (4.1 and 4.2). Unlike the 

standard sinusoid modeling, which tracks sinusoids using frequency continuity 

only, in harmonic sinusoid tracking we use a combination of continuity criteria 

concerning both amplitude and frequency, and even higher-level clues such as the 

amplitude distribution among partials.  
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• Joint operation of harmonic grouping and harmonic tracking (4.3~4.6). Unlike the 

standard sinusoid modeling, which tracks sinusoids by connecting pre-detected 

sinusoid atoms, in harmonic sinusoid track we propose to perform harmonic 

grouping jointly with the tracking process to guarantee inharmonicity continuity 

and tracking criteria optimization. This joint operation can be applied in both the 

forward and the forward-backward tracking schemes.  

• Methods for estimating sinusoids using the knowledge of signal dynamics (3.3). 

The accurate estimation of the parameters of time-varying sinusoids remains a 

bottleneck of accurate sinusoid analysis and synthesis. However, after the tracking 

stage, it is possible to re-estimate the parameters using the information embedded 

in the tracks. For the specific case of the LSE estimator, we examine its behaviour 

when applied to time-varying sinusoids to show how the parameter variation 

affects the estimation accuracy, then propose a methods to correct the error. In a 

wider sense, we have proposed a de-variation method that works with a general 

sinusoid estimator (Appendix E.3). 

• Method for choosing the window size according to signal dynamics (3.4). As 

signal dynamics are better captured by shorter windows, we have proposed a 

method for automatically selecting a shorter window size when the signal 

dynamics is too high for the current window. This method is less accurate than the 

above re-estimation method but is able to work with higher signal dynamics than 

the above method can handle. 

• Application of harmonic sinusoids for audio editing (5.2). This is probably the 

most straightforward application of the harmonic sinusoid modeling. We have 

shown that with harmonic sinusoids, we can achieve standard audio editing 

operation on individual pitched sounds within a mixture, or invent new sound 

effects not easily available with conventional methods. 

Minor contributions include 

• Discussions on time-varying sinusoids, which, although plays a central role in 

standard sinusoid modeling, has been largely ignored (1.3, 1.4). The discussion on 
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the Fourier transform of time-varying sinusoids leads to both post-tracking 

parameter estimation methods.  

• An analytical review of DFT-based frequency estimation methods (2.2). 

• Spectral-domain resynthesis of time-varying sinusoids with multiple resolutions 

(Appendix F). 

• An application of harmonic particles for audio transcription [WS05b]. 

• Proposals of applications of harmonic sinusoids (5.3). 

6.3 Perspectives 

The current harmonic sinusoid modeling techniques can be further improved on 

several aspects, listed as follows. 

• The partial harmonicity has its origin in one-dimension simple harmonic 

oscillation of a string and an air column, as well as periodically-stimulated 

resonant bodies. It, however, does not describe membrane or bar vibration, which 

lies behind many percussion instruments such as the semi-pitched kettledrum, or 

the pitched marimba. The sinusoid modeling of these instruments requires partial 

frequency coupling rules different from simple harmonicity.  

• Even for harmonic instruments, there may exist extra partials that do not fall 

within a harmonic context, known as phantom partials [Conklin99]. They are 

either generated from multiple vibrating bodies, such as unison strings in a piano, 

or from non-linear coupling between vibrating modes. These can be picked up by 

introducing individual spectral lines into the model, or be included in a more 

comprehensive harmonic model.  

• Many pitched musical events involve transients, especially at the onsets. The 

harmonic sinusoid model does not come with transients, therefore is incapable of 

representing these events in a perceptually complete form. It is desirable to 

develop transient detection and representation methods that can associate 

transients with corresponding harmonic sinusoids and draw an end to this 

incompleteness. 
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• Harmonic tracking can be further refined by introducing finer frequency and 

amplitude continuity criteria, exploring the use of forward-backward tracking with 

beam trimming, or tracking harmonic sinusoids using sound source profiles. On 

the other hand, since the harmonic sinusoids represent note-level events, which 

are directly perceivable by human, it is also interesting to develop human-aided 

tracking algorithms to boost performance. 

• The current harmonic sinusoid modeling treats very close (or overlapping) partials 

from two or more harmonic sinusoids as a shared partial. Although the 

distribution of a shared partial has been discussed in the maximal-continuity sense 

in (4.14c), there is no guarantee that it is an optimal solution. Better techniques to 

resolve shared partials may require further investigations. 

• On the synthesizer side, a more accurate modeling of time-varying sinusoids is 

necessary for obtaining cleaner residues. The current re-estimation method can at 

the best achieve an optimal frame-level approximation of an arbitrary sinusoid 

track, but has little capacity on the sub-frame level parameter variations. A better 

method will probably work on a smaller scale than frames, or even operate on 

sample-level, to gain full control of parameter variations. 

 

Finally, a wide variety of applications of harmonic sinusoids has been left 

unexplored. Some possible applications have been suggested in 5.3. However, we 

believe there are always other possibilities beyond our imagination, and it is crucial to 

work with potential users of this technique to find new applications, which in turn will 

raise additional issues for further developing the techniques. The harmonic sinusoid 

model builds a direct connection between waveform audio and musical notes, through 

which now it is time for each side to venture into the other. 
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Appendix A
 
Sinusoids and Fourier transforms 
 

A.1 Pre-defined functions 

A.1.1 Dirac Delta function 

The Dirac delta function δ(x) is defined as  
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A.1.2 Discrete sinc function 

The N-point discrete sinc function sincN(k) is defined as 

 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧
±±=−

=

−

otherwise

N
kN

k

etcNNk

k

N
kN

N
,

sin

sin

.,2,,0,)1(

)(sinc

)1(

π
π  (A. 2) 

The discrete sinc function is the amplitude spectrum of the discrete rectangular 

window function, defined as 
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Let l=0 and n=N, then the DTFT of (A.3a) is 

  (A. 3b) )(sinc)( )1(
,0 NfNef N

fNj
N

−−= πI

When N is even, sincN(k) is a periodic function of k with period 2N, and has zeroes 

at all integer k except multiples of N. There is a main lobe between the first pair of 
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zeros -1 and +1. When |k|<<N, the envelope of sincN(k) drops from the maximum 0 

like 1/k, and approximates the following continuous sinc function  
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by the relation 
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A.2 Cosine window family 

A window function w supported on [a, b] is a member of cosine window family if  
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This definition covers all regular functions that are symmetric on [a, b]. A narrower 

definition requires that m be limited below some small integer M, and w be low-pass. 

The discrete version the cosine window family is obtained by directly sampling 

w(t). Throughout this thesis the size of a discrete window function, say N, is always 

an even number: 
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Some typical window functions of this family are listed in the following table.  
 

Name Expression on 0≤n<N c0 c1 c2

Rectangular 1=nw  1 - - 

Hann 
N

nwn
π2cos5.05.0 −=  0.5 0.25 - 

Hamming 
N

nwn
π2cos46.054.0 −=  0.54 0.23 - 

Blackman 
N

n
N

nwn
ππ 4cos08.02cos5.042.0 +−=  0.42 0.25 0.04 

Table A. 1 Cosine window functions 

 

A.3 Proofs of propositions in Chapter 1 

A.3.1 Proposition 1.1 

Proposition 1.1 Let x be a slow-varying sinusoid , then its windowed DFT 

can be written as 

nj
nn eax ϕ=
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where the term εk is bounded by  
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Let x~  be a constant sinusoid  
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and αn, βn be defined as 
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the mean-value theorem ensures that  

 an ∆≤ supα , fn ′≤ sup2πβ . (A. 6c) 
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 (A. 6d) 

using the inequality x2+2cosx>2, it is easy to show that 

 xe jx <−1  (A. 6e) 

So (A.6d) can be written as 

 nNN j
nnn
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2/
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where 1≤nγ . Now we calculate the windowed DFT 
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This together with (1.22b) concludes the proof.■ 

A.3.2 Proposition 1.2 

Proposition 1.2 Let x be a sinusoid with constant amplitude and varying frequency, 

i.e. , its instantaneous frequency f be within the interval F=(fnj
n ex ϕ= 1, f2) during [0, 

N], and Xk be its DFT. Given an integer L, 3≤L<<N, then the amplitude spectrum at k 

is bounded by 
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if k is at least 1.5M bins from F, i.e. 0≤k<Nf1-1.5M or Nf2+1.5M<k<N/2-1. 

Let M=N/L. We divide the rectangular window 1[0, N] into L-1 parts as , 
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For l=2, 3, …, L-2, wl is a Hann window supported on [(l-1)M, (l+1)M]; for l=0 and 

l=L-1, wl is a fade-out or fade-in window involving half unity and half Hann window. 

Let Al and Bl be the left and right boundaries of wl. Now we have 
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where Xl is the DTFT of x·wl. According to Proposition 1.1, we have 

 ( ) )()( fffWefX llMl
j

l
mL εϕ +−=    (A. 7c) 

where 

 ∑
−

=

−⋅′≤
1

2)(sup)(
l

l

B

An
nll lMnwff πε  (A. 7d) 

lsup  is a simple form of . It follows that  
ll BnA <<sup

 

( )

( ) ∑ ∑∑

∑∑

−

=

−

=

−

=

−

=

−

=

−′+−≤

+−=

1

1

1
2

,

1

1

1

1

1

1

)(sup

)()(

L

l

B

An
nll

L

l
lMl

L

l
l

L

l
lMl

j

l

l

lM

lMnwfffW

fffWefX

π

εϕ

   (A. 7e) 

For the first term, when 2≤l≤L-2, wl is a 2M-point Hann window, whose half main 

lobe width is L/N. So if f is more than 1.5L/N from F, then ( )lMl ffW −  is below the 

second side-lobe peak (-41dB), i.e. ( ) LNffW lMl /0.01<− . When l=1 or l=L-1, 

( )lMl ffW −  has -23dB drop at 1.5L/N, i.e. ( ) LNffW lMl /0.71<− .  Then 
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For the second term we have 
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where we have used the equation 
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This, together with (A.7e) and (A.7f), concludes the proof.■ 

Corollary 1.3 is proved by using Hann windows for l=1 and l=L-1 instead of the 

fade-out and fade-in windows. In this case (A.7f) is replaced by  
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The rest of the proof is the same. 

A.3.3 Proposition 1.4 

Proposition 1.4 Let x=acosφ=bcosθ, a>0, b>0, 1,0 A
b
b

a
a

≤
′′

≤ , 2,0 A
b
b

a
a

≤
′′′′

≤ , 

02 >=′ fπϕ , 02 >=′ gπθ ,  1,0 Fgf ≤′′≤ , 
2

)()( πτθτϕ −=−=− , 
2

)()( πτθτϕ == , 

then 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

++++
≤− 12

112 2,
)(2

)tan(tan)tantan(2
min F

gf
FAfgA

gf τ
π

ϕθπϕθπ
, (1. 29a) 

 , (1. 29b) 1
22|| Fπτθϕ ≤−

 1
22

cos
),max(sin

F
b

ba
πτ

ϕ
ϕθ

≤
−

, when x≠0.  (1. 29c) 

 



Appendix A.  Sinusoids  195  

To prove (1.29a), we calculate the derivatives of acosφ=bcosθ: 
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To show the other half, let h=f-g, apparently 12|| Fh ≤′ , and 
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This, together with (A.8d), conclude the proof of (1.29a). 

To show (1.29b), let θϕψ −= , then 0)()( ==− τψτψ , hπψ 2=′ . Obviously 

|ψ| has its maxima at a zero of h. Let it be t0, then 
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Therefore  
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From (A.8i) we directly have 
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since sin function is monotonic on [–π/2, π/2].  ■ 

A.3.4 Slowest-varying sinusoids 

Proof of 1.30c: The necessary condition to minimize 
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subject to the condition 
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We use the Lagrange multiplier λ(t). Let  
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From (A.9d) we have 
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Eliminating λ we get 

 0 . (1. 30c) )1(tan )4( =−+′′− ϕηϕη aa

■ 

Proof of 1.31b: The necessary condition to minimize 

 ∑ ∆−+∆=
n

aI 222 ))(1()( ϕηη  (1. 31a) 

subject to the condition 

 nnn xa =ϕcos . (A. 10a) 

Again using the Lagrange multiplier we write 

  (A. 10b) ∑ −−∆−+∆=
n

nnnn xaaL )cos())(1()( 222 ϕλϕηη

To minimize L we calculate the partial derivatives: 

 0cos)2(2 11 =−−−=
∂
∂

+− nnnnn
n

aaa
a
L ϕλη , (A. 10c) 

 0sin)446)(1(2 2211 =+++−−−=
∂
∂

+−+− nnnnnnnn
n

aL ϕλϕϕϕϕϕη
ϕ

. (A. 10d) 

Eliminating λn we get 

 0)446)(1(tan)2( 221111 =++−−−+−− +−+−+− nnnnnnnnnn aaaa ϕϕϕϕϕηϕη .(A. 10e) 

By writing (A.10e) using difference operators we get (1.31b).■ 

 



    

 

Appendix B 
 
Sinusoid measurements I: 

DFT-based sinusoid estimators 
 

B.1 Detecting sinusoids as spectral peaks 

B.1.1 Proof of Proposition 2.1 

Proposition 2.1 (windowed DFT): If the window spectrum W(f) satisfies that 

|W(f)|>|W(g)|, ∀ ≤0.5/N, 0.5/N< | <1-0.5/N, || f | g )( gfN −⋅ ∈Z, then a constant 

complex sinusoid xn=aej(2πfn+φ) (0≤ f <0.5) has a global windowed DFT peak at bin k, 

where k/N is closest to f. 

Recall equation (1.23): 

  (1.23) )/()/(2 fNkaWeewaeX j

n

nNkfj
n

j
k −⋅== ∑ − ϕπϕ

Let k be the integer closest to Nf, i.e. |k/N-f | ≤ 0.5/N, and let l be an integer 

between 0 and N-1 so that l≠k. Obviously ( ) klfNkfNlN −=−−−⋅ )/()/( ∈Z, 

0.5/N≤|l/N-f |<1-0.5/N. If |l/N-f | > 0.5/N, we immediately have |Xk|>|Xl|, following the 

assumptions on W. If |l/N-f | = 0.5/N, we immediately have l/N-f = -(k/N-f ). Since |W| 

is symmetric, |Xk|=|Xl|. The identity holds only once for all 0≤l<N, l≠k, which 

guarantees that |Xk|=|Xk+1| and |Xk|=|Xk-1| do not hold at the same time. Therefore bin k 

is a global peak.■ 

B.1.2 Proof of Proposition 2.2 

Proposition 2.2 (noise tolerance): Let x be a complex sinusoid mixed with noise r, i.e. 

xn=aej(2πfn+φ)+rn (0≤ f <0.5), W(f) be the window spectrum, K be a positive integer, 



Appendix B.  Sinusoid estimators  199  

then the windowed spectrum Xk has a local peak within K bins from Nf, provided that 

|Rk|<0.5aW(0)∆ for Nf-1-K<k<Nf+1+K, where ∆ is defined as 

 L
KLZL

∆=∆
≤∈ + ,

max , 
)0(

)/()(
inf

/5.0 W
NLfWfW

NfL

+−
=∆

≤
. (2.2) 

Let k be the integer closest to Nf, i.e. |k-Nf|≤0.5. To show the existence of a local 

peak, we only need to find L, 1≤L≤K, so that Lkk XX −> , Lkk XX +> . Due to the 

linearity of DFT, we have  

 .  (B. 1a) k
j

k RfNkaWeX +−⋅= )/(ϕ

Therefore 

 
( )

( ) Lkk

Lk
j

k
j

Lkk

RRNLfNkWfNkWa

RNLfNkaWeRfNkaWeXX

+

++

−−+−−−≥

++−⋅−+−⋅=−

)//()/(

)//(/ ϕϕ

(B. 1b) 

and 

 
( )

( ) Lkk

LkkLkk

RRNLNkfWNkfWa

RRNLfNkWfNkWaXX

−

−−

−−+−−−=

−−−−−−≥−

)//()/(

)//()/(
 (B. 1c) 

where we have used the symmetry of w. Let  

 L
KLZL

L ∆=
≤∈ + ,

1 maxarg , (B. 1d) 

i.e. ∆= , then L
1L∆ 1∈Z+, L1≤K, and 

 ∆≥
+−

)0(
)/()( 1

W
NLfWfW

, ∀|f|≤0.5/N.  (B. 1e) 

Following (B.1b) and (B.1c) 

 0)0(5.02)0(
1

≥∆⋅−∆>− + aWaWXX Lkk  (B. 1f) 

 0)0(5.02)0(
1

≥∆⋅−∆>− − aWaWXX Lkk  (B. 1g) 

These conclude the proof.■ 
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B.1.3 Proof of Corollary 2.4 

Corollary 2.4 (sinusoidal noise): Let the noise r be a constant sinusoid, i.e. 

rn=bej(2πgn+θ), then xn=aej(2πfn+φ)+rn has a local windowed spectral peak within K bins 

from Nf, provided that b<a∆s, where ∆s is defined as  

 , )(max
,

Ls
KLZL

s ∆=∆
≤∈ + ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+±+±
+−

=∆
≤ )/()(

)/()(
inf)(

/5.0 NLhfWhfW
NLfWfW

L
Nfs , h=g-f. (2. 4) 

Let k be the integer closest to Nf, i.e. |k-Nf|≤0.5. To show the existence of a local 

peak, we only need to find L, 1≤L≤K, so that Lkk XX −> , Lkk XX +> .Calculating 

the DFT we get 

  (B. 2a) )/()/( gNkWbefNkWaeX jj
k −+−= θϕ

Again we compare the main peak Xk with a bin L bins away: 
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 (B. 2b) 
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 (B. 2c) 

where we have used the symmetry of w. Let  

 )(maxarg
,

1 LL s
KLZL

∆=
≤∈ +

 (B. 2d) 

i.e. ∆s=∆s(L1), then L1∈Z+, L1≤K, and 

 sNLhfWhfW
NLfWfW

∆≥
+±+±

+−
)/()(

)/()(

1

1 , ∀|f|≤0.5/N. (B. 2e) 

Following (B.2b) and (B.2c), we have 

 ( ) ( ) 0)//()/(
1

>+−+−⋅−∆≥− + NLgNkWgNkWbaXX sLkk  (B. 2f) 

 ( ) ( ) 0)//()/(
1

>+−+−⋅−∆≥− − NLgNkWgNkWbaXX sLkk  (B. 2g) 

■ 

B.2 Frequency estimation methods 

B.2.1 Proof of (2.6b) 

Since the standard FFT method only concerns the power (amplitude) spectrum, we 

use the 0-centred DFT instead of 0-based DFT, so that W(f) and ε are both real. In the 

context of zero-padding  becomes a continuous variable. Combining (2.5a) 

and (2.5b) we get  

Nkf /ˆ =

 ( ) ( fWeaWeaX jj
k 2

22
++= − δδ ϕϕ )  (B. 3a) 

We calculate the power spectrum 
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 ( ) ( ) ( ) ( )( )fWWfWWaX k 22cos2225.0 2222 ++++= δδϕδδ  (B. 3b) 

To find the spectral peak we let 
fd

Xd k

ˆ

2

=0 and get 

 ( ) ( )
ϕε
ϕεδδ
2cos1
2cos2

+
+

+′−=′ fWW  (B. 3c) 

It follows that  
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ε
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−
+
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1
1

2 fWW  (B. 3d) 

On the other hand,  

 ( ) ∑∑ =
′

⎟
⎠

⎞
⎜
⎝

⎛
=′

n
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n
n nnwnwW πδππδδ 2sin22cos     (B. 3e) 

Under the condition δ  <0.5/N, |2πδ n|≤π/2, ∀–N/2<n<N/2, so that in (B.3e) the term 

nwn2πδ n does not change sign, and  
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So that 
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 (B. 3g) 

Combining (B.3d) and (B.3g) we get 
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■ 
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B.2.2 Spectral peak of time-varying sinusoids 

  (B. 4a) ))(2(exp)()(
00 ∫+=
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dttfjnanx πϕ

We calculate its windowed DTFT 
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and the power spectrum 
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where  

 ∆φmn=φn-φm-2πg(n-m).  (B. 4d) 

To locate the DTFT peak we let the derivative of |X(g)|2 be zero at : f̂
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where wmn=(n-m)wmwn. Using the equation xxx sincsin ⋅= ππ , we get 
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After some rearrangement of the summing indices, we get 
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■ 

B.2.3 Frequency reassignment method 

The Frequency reassignment method estimate the frequency as 

 



Appendix B.  Sinusoid estimators  204  

 w
k

w
k

X
X

N
kf

'

Im
2
1ˆ
π

−=  (2. 11) 

Let wn,  be the sampled versions of w(t), nw′ w′ (t), with sampling period 1, and W(f), 

(f) be their DTFTs. We have )1(W

 )(2)( fWfjfW cc ⋅=′ π  (B. 5a) 
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As we consider real symmetric windows only, Wc(f) is real. So 
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Given equation (1.23)1 we have 
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Therefore 
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where δ=k/N-f. The frequency estimation error is  

                                                           
1 A linear phase shift (which corresponds to a half-frame time shift) is omitted here. This does not 
affect the outcome of (B.5g).  
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B.2.4 Derivative method 

Let x be a constant complex sinusoid, then 
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This leads to (2.15), which estimates the frequency without any error. Now let x be a 

real sinusoid, so that 
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where we have substituted δ=k/N-f, and φ is taken at the window centre. Then 
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when f is not too low, i.e. |ε|<<1. The estimation error is then  
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where 0≤θ≤1 is number introduced from using the mean value theorem. This 

concludes the proof of (2.16). ■ 

B.2.4 Phase vocoder (phase difference) method 

Now let x be a constant real sinusoid, i.e. a complex sinusoid plus its conjugate, then  
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When f is well above the pass-band of W, i.e. |ε|<<1, the frequency estimation error is  
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where the inequality is shown by notice the numerator and denominator being points 

on a circle centred at 1 with radius |ε|. This concludes the proof of (2.18). ■ 
 

 



    

 

Appendix C
 
Sinusoid measurements II: 

The LSE sinusoid estimator 

 

C.1 Computation of the sinc function and its derivatives 

To find the optimal frequency of a sinusoid in the LSE sense, one needs to calculate 

the sinc function defined as a periodical function with period 2N and 
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as well as its 1st- and 2nd-order derivatives. 1st-order derivative is necessary for using 

gradient method of optimization, and 2nd-order derivative is necessary for Newton or 

conjugate gradient methods. We calculate only for |x|<<N. 

There is a numerical risk in calculating the sinc function when x is very close to 

zero. Since sin(πx/N) is N times smaller than the numerator, it underflows before the 

numerator does. So instead of comparing x with 0, We compute sin(πx/N) first then 

compare it with 0. The computation of the sinc function is as follows.  
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The 1st-order derivative of the sinc function is periodical with 2N and 
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There is a new numerical risk in the subtraction. When x is close to zero, x
N
x ππ cossin  

is the magnitude of πx/N, yet the difference in the numerator is the magnitude of 

(πx)3/3N. Therefore the subtraction result is likely to suffer considerable loss of 

precision. Dividing this result by 
N
xπ2sin  may incur large error. We expand 
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xxf πππππ cossin1cossin)( −=  in the Taylor form in the vicinity of 0. To do 
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When |x| becomes smaller than some threshold, we use ( )
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⎜
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N
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N
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x ππππ cossin1cossin −  for the calculation. The switching point is determined 

by comparing the error bounds of the two computations. The error of direct 

computation comes from limited word length. Let it be L. In the floating point case 

both the minuend and the subtrahend have an error bound 2-L-M, where 0.5≤2Mπx/N<1. 

The subtraction result therefore has an error bound 4·2-L·
N
xπ . The error of the 

trinomial computation comes from the residue, which can be estimated as 
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which has a bound 
N
xx ππ

6
)( 4

. The trinomial function has a lower error bound when 

(πx)4<24·2-L. The switch point can therefore be chosen at . For 

Intel 64-bit double precision floating point, L=53, then the switching point can be 

chosen at 7.23×10

4/11 L−− )224(x ⋅= π

-5.  

However, the switching between the two computation methods leads to 

discontinuity at the switching point. To preserve continuity, we use a switching 

interval with overlap-add. That is, we pick a pair of thresholds Th1, Th2, 0<Th1<Th2, 

and preferably they lie on different sides of the ideal switching point. When |x|>Th2 

we calculate 
N
xx

N
x

N
x ππππ cossin1cossin −  directly; when |x|<Th1 we calculate it 

using the trinomial; in between the two thresholds we linearly interpolate the two. The 

routine for computing )( xf π  is 
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The complete routine for calculating the 1st-order derivative is 
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The 2nd-order derivative of the sinc function is periodical with 2N and 
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There are two subtractions here. The first one is the same as in the 1st-order derivative, 

for which we can use the same treatment as above. The second subtraction, 
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When the 2nd-order derivative is computed along with the sinc function and the 1st-

order derivative, previous results can be reused to calculate 
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C.2 Computing λ(f) and its derivatives 
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As mentioned in 3.1, it is of great help if the window DTFT  has a closed 

analytic form from which it can be directly calculated for any f. This is the case with 

the cosine window family, i.e. window functions in the form of 
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Then 

 
2 Where we have omitted the caps “^” from λ and f. 
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ImH(f) vanishes when , i.e. the window function has a vanishing 

moment not lower than the Hann window. To calculate 

0)1( =−∑
m

m
m c

)/( fNkH − , it is efficient to 

proceed with the index l=k-m, so that the triangular functions are called a minimal 

times. 

During the LSE iterations, there is no need for the phase angle, as we are only 

interested in |λ(f)|2||W(f)||2 . Then there is no need to multiply the factor  for 

calculating <X, W(f)>. 

Nfje π−

The derivatives of |λ(f)|2 are necessary for LSE searching. We have 
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To calculate <X, W(f)> and its derivatives, we substitute k
k

k XX )1(~ −= , then an 

equivalent form of <X, W(f)> is 
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The derivatives of Re H(k/N-f) are calculated by 
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or 
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The first set of computations (C.5o) and (C.5p) is faster, but the second set (C.5q) and 

(C.5r) is safer when any of the angles is close to zero. The derivatives of Im H(k/N-f) 

are calculate by 
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When ImH(f) vanishes for the window function, so do its derivatives. 

C.3 Using LSE method on non-stationary sinusoids 

We apply the LSE estimator, in its simplified version, on time-varying sinusoids. Let 

our sinusoid be 
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The square norm of the inner product is  

 ∑∑
−

=

−

=

∆=><
1

0

1

0

22 cos)(,
N

n

N

m
mnmmbbNf ϕWX  (C. 9a) 

To maximize the above we set its derivative regarding f to 0: 
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where sinc(x) is the continuous sinc function. ■ 

We study the amplitude and frequency symmetry as follows. Let 
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where * stands for subscripts and superscripts such as mn, etc., and 
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Using the same technique as in deriving (3.9c) (see 3.1.3), we get 
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If the estimate is assigned to the window centre, then the frequency estimate error is  
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We make the following observations regarding the results. 

1. In the context of slow parameter variation, the even parts of the parameters have 

much higher amplitude level than the odd parts.  

2.  and , in general, represent the even and odd parts of the amplitude 

respectively, while  and  represents the even and odd parts of the 

frequency.  As a result  is roughly associated with the even part, and  with 

the odd part, of the amplitude.  vanishes if the amplitude is even-symmetric. 
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3. (C.15a) shows that the odd part of the frequency contributes to the estimate only if 

the amplitude has an odd part too. In other words, if the frequency is odd-

symmetric (subject to a constant shift) and the amplitude is even-symmetric, then 

the LSE estimator does not incur a frequency estimation error. In particular, the 

LSE estimator is accurate in measuring the instantaneous frequency of a linear 

chirp. 

 



    

 

Appendix D
 
Calculations in the harmonic particle detector 

 

D.1 Solving inequality system (3.17) 

Let 
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m , , then the inequality system 

(3.17) becomes 
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In practice there is always a reasonable range for =(F)1f 1/2 and B=G/F.  can never 

be below 0 or above 1/2 (or N/2 bins, where N is the size of the DFT), and the 

stiffness coefficient B is always positive and below some B

1f

M<<1. Let a pre-

determined range of F be g0-<F<g0+, then we can initial the range R by 

  (D. 2) 
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⎪
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This is shown in Figure D.1. 
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G 

G=BMF 

R 

g0- g0+  F 
Figure D. 1 Preset range of R in F-G plane 

We proceed with the M inequalities one by one. The solution of +− <+< mm gkGFg  

is a stripe in the F-G plane that falls between the two parallel lines  and 

. So for each inequality of (D.1), we use these two lines to cut off the 

part of R that lies outside them. Accordingly R becomes smaller and smaller as more 

and more partials are added. If at any stage R becomes empty, then the solution set of 

(D.1) is empty. Throughout this process R is a convex polygon.  

−=+ mgkGF

+=+ mgkGF

We represent R by its N vertices in the format {N; (Fn, Gn)0≤n<N}, arranged in 

clockwise order and starting from the leftmost (smallest F) vertex. In the case of two 

leftmost vertices, i.e. there being a left most side normal to the F axis, we arrange the 

vertex list to start from the upper one (larger G) and end at the lower one. For 

example, the range R in Figure D.1 is represented as {4; (Fn, Gn)n=0,1,2,3}, with 

F0=F3=g0-, F1=F2=g0+, G0=BMg0-, G1=BMg0+, G2=G3=0. 

With R initialized as {N; (Fn, Gn)0≤n<N}, now we wish to apply the constraints 

 and  to R. To apply any linear constraint aF+bG+c<0, we 

collect all the vertices that satisfy the constraint. There are three possibilities: 

+<+ mgkGF −>+ mgkGF

1. no vertex satisfies it, then R is reduced to Ф; 

2. all vertices satisfy it, then the constraint does not change R at all; 

3. some vertices satisfy it and some do not, then since R is a vertex polygon and 

aF+bG+c<0 is a linear constraint, all vertices that satisfy the constraint adhere 

together and so do the rest. There are two possibilities: 
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3.1. both (F0, G0) and (FN-1, GN-1) satisfy the constraint, then there exist ns≤N-1 

and ne≥1, ne<ns, so that vertices ns, ns+1, …, N-1, 0, …, ne-1 satisfy the 

constraint, and vertices ne, …, ns-1 do not. We calculate the intersection of 

line l: aF+bG+c=0 with the line segment connecting vertices ns-1 and ns, 

name it (Fs, Gs), and with the line segment connecting vertices ne-1 and ne, 

name it (Fe, Ge), then update the vertex sequence of R as 

0, 1, ..., ne-1, e, s, ns, …, N-1. 

3.2. either (F0, G0) or (FN-1, GN-1) does not satisfy the constraint, then there exist 

0≤ns<ne≤N, so that vertices ns, ns+1, …, ne-1 satisfy the constraint, and 

vertices 0, …, ns-1, (this part does not exist if ns=0) and ne, …, N-1 (this part 

does not exist if ne=N) do not. We calculate the intersection of line l with the 

line segment connecting vertices ns-1 and ns (or N-1 and 0 if ns=0), name it 

(Fs, Gs), and with the line segment connecting vertices ne-1 and ne (or N-1 

and 0 if ne=N), name it (Fe, Ge), then update the vertex sequence of R as 

0, 1, …, ne-1, e, s,  if ns=0, or 

s, ns, ns+1, …, ne-1, e, if  ns≠0 and Fs<Fe, or 

e, s, ns, ns+1, …, ne-1, if  ns≠0 and Fs>Fe

All the three sequences are clockwise. Now we show that their leftmost 

vertices are 0, s, and e respectively. The first case if obvious, since vertex 0 

is the leftmost point of R. When ns≠0, then vertex 0 may fall on l, on the left 

side of l, or on the right side of l. First let it be on l, then either ns=1 (so s=0) 

or ne=N (so e=0), in both cases vertex 0, the leftmost point of R, is one of s 

or e. Then we let vertex 0 be on the left side of l, so the vertices s, ns, 

ns+1, …, ne-1, e are not on the left side (Figure D.2). Each of the vertices, 

say (Fn, Gn), casts an image, say ( nF ′ , nG′ ), on line l, where the line between 

it and vertex 0 crosses l. And since these vertices come clockwise regarding 

vertex 0, so do their image points. Noticing the slope of l is always negative, 

these clockwise image points come in left-to-right order, so Fs= <sF ′ nF ′≤Fn, 

i.e. s is the leftmost vertex. Similarly, if vertex 0 is on the right side of l, then 

e s the leftmost vertex. In any of the three cases, the leftmost point is either s 
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or e, and can be found by comparing Fs and Fe. In the rare case that Fs=Fe, 

i.e. adding a fundamental frequency to R, we further compare Gs and Ge. 

F 

 
Figure D. 2 Cutting R with linear constraints 

D.2 Minimal-maximum search for (3.26c) 
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The maximum is taken over 2M functions. To make it explicit, we define kl=ml
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then (D.3) becomes  
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We use the symbol  to refer to a sequence of points in the F-G plane, 

indexed on n. Any point (F, G) inside R must have θ(F, G)<1; any point (F, G) on one 

nnn GF )ˆ,ˆ(

(F0,G0) 

(F5,G5) 

ns=1 l 
(F1,G1) 

(Fs,Gs) 
(F2,G2) 

(F3,G3) (F4,G4)
ne=4 (Fe,Ge) 

(F’2,G’2) 

(F’3,G’3) 

G 
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side of R must have θ(F, G)=1, except the two sides given by G=0 and G=BMF. To 

find the minimal maximum, we compute a sequence of points , n=1, 2, …, so 

that they all fall on R and θ  decreases with n, until at some point we reach the 

minimum.  

)ˆ,ˆ( nn GF

)ˆ,ˆ( nn GF

We start from a starting point ∈R. This can be conveniently taken at any 

vertex. In the n

)ˆ,ˆ( 00 GF

th step, n=1, 2, …, we move from  to , so that 

θ < θ . Regarding each step, we denote the starting position as (F0, 

G0) and end position as (F1, G1). The polygon R is described with a vertex list {N; 

(F

)ˆ,ˆ( 11 −− nn GF )ˆ,ˆ( nn GF

)ˆ,ˆ( nn GF )ˆ,ˆ( 11 −− nn GF

n, Gn)0≤n<N}, where the vertices are arranged in clock-wise order. Let eF and eG be 

unit vectors in the F and G direction respectively, and the vector pointing from the (Fn, 

Gn) to the next vertex in the list be rn. Then 

  (D. 5a) 
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We also refer to the side of R starting from (Fn, Gn) as rn. The side of R that comes 

before rn, i.e. the side that ends at (Fn, Gn), is denoted as rn-. Obviously 
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The following results will be useful in determining the minimal-maximum searching 

directions: 

1. A vector r starting from a point on side rn points inside R if and only if 

(r×rn)·(eF×eG)>0;  

2. A vector r starting from the vertex (Fn, Gn) points inside R if and only if 

(r×rn)·(eF×eG)>0 and (r×rn-)·(eF×eG)>0; 

3. A point (F, G) is on the R side of rn if and only if (F-Fn)eF+(G-Gn)eG points 

inside R; 
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4. A point (F, G) is inside the polygon R if (F, G) is on the R of any rn, n=1, …, 

N-1. 

D.2.1 Local and global minimal maximum 

We first study the local minimal maximum. Let (F, G) be a point in the F-G plane, 

and Or(F, G) be an r-vicinity of point (F, G) within polygon R, i.e.  

 Or(F, G)={(f, g)|(f, g)∈R, (f-F)2+(g-G)2<r2}.  (D. 6a) 

We say that (F, G) is a local minimal maximum of {el }0≤l<2M, if ∃r>0, so that ∀(f, 

g)∈Or(F, G), θ(f, g)≥θ(F, G). When r is small enough, the shape of Or(F, G) depends 

on the position of (F, G) in R. If (F, G) is inside R, Or(F, G) is a circle; if (F, G) lies 

on one side of R excluding the two ends, Or(F, G) becomes half circle; and if (F, G) is 

a vertex of R, then Or(F, G) is a sector, with the circular centre at (F, G). The shape of 

Or(F, G) determines the feasible searching directions from point (F, G). We 

summarize these directions by defining  
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I we express a vector  in short form (f, g), we get GF gf ee +
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DR(F, G) is the collection of unit vectors pointing from (F, G) toward anywhere inside 

R. Since R is convex, DR(F, G) gives the feasible searching directions at (F, G). For a 

small enough r, (f, g)∈Or(F, G) if and only if there exists 0≤r0<r and ),( GF δδ  

∈ , so that (f, g)=(F, G)+r),(R GFD 0(δF, δG). The following proposition gives the 

condition for a point (F, G) to be a local minimal maximum.  

Lemma : ∇el(F, G) has constant direction, 0≤l<2M-1. 
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To show this we calculate ( )
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Proposition D.1: Let = =…= =θ(F, G). (F, G) is a local 

minimal maximum if and only if ∀e∈D

),(
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First let (F, G) be a local minimal maximum, and e∈DR(F, G). As all el’s are 

continuous with bounded gradients, there exists r1>0 so that one of , …,  

remains being the maximal e

1l
e

Kle

l within . Consider (f, g)=(F, G)+r),(
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GFOr 0e, 

0<r0<min(r, r1). Let the maximal el at (f, g) be . According to the definition of 

minimal maximum, (F, G)≤ (f, g). As 
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gradients  have constant directions. This concludes the proof of the proposition. 
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The following proposition shows that the local minimal maximum is unique. 

Proposition D.2: A local minimal maximum in R is the minimal maximum in R.  

Let (F, G) be a local minimal maximum in R, 

= =…= =θ(F, G). Suppose there is another (f, g)∈R, so 

that max
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can not be a local minimal maximum, which contradicts our assumption. Therefore 

such an (f, g) does not exist, so (F, G) must be the minimal maximum in R. ■ 

These two propositions make sure that we only need to find a local minimal 

maximum that satisfies the condition in Proposition D.1 for solving (3.26c). In each 

step, we determine how to find (F1, G1) according to the position of (F0, G0) and the 

number of equal maxima at (F0, G0).  

D.2.2 Conditions of (F0,G0) 

There are three different positions of (F0, G0), i.e. inside R, on a side of R, or at a 

vertex of R. At each position there are three different conditions for maxlel, i.e. a solo 

maximum, two equal maxima, and more than two equal maxima.  

D.2.2.1 (F0, G0) being inside R.  

When (F0, G0) is inside R, all directions are feasible as the searching direction. 

(1a) There are more than two equal maxima at (F0, G0). Let the equal maxima be 

= =…= , K>2. The following proposition shows 

that there exist l1, l2∈{l

)0,0(
1

GFel )0,0(
2

GFel )0,0( GFe
Kl

k|k=1, …, K}, so that down the decreasing direction of curve 

,  and  remain maximal of the 2M relative errors.  21 ll ee = 1le 2le

Proposition D.3: if (F0, G0)∈R is not a minimal maximum, and = =…=  are 

K equal maxima at (F0, G0), K>2, then there exist l1 and l2, 1≤l1, l2≤K, so that ∀

1≤k≤K, along the decreasing direction of = , -

1e 2e Ke

1le 2le ke 1le  is non-increasing.  

Since (F0, G0) is not a minimal maximum, there exists e∈DR(F0, G0), so that ∀

1≤k≤K, 0<⋅∇ eke . This in turn implies that if we put these gradients in the F-G plane, 

the set of gradient points is linearly separable from the origin. Accordingly, the 

convex hull, let it be H, of all the gradient points does not contain the origin. Then 

there exists one side of H, let it be h, that separates H from the origin. Let its ends be 

∇el1 and ∇el2. 

The increasing direction of the curve =  is given as  1le 2le
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where the partial operators FF ∂∂=∇ / , GG ∂∂=∇ / . This vector is normalized so 

that δ12·∇el1=δ12·∇el2=1. An unnormalized version is given as 
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It is easy to show that δ12·∇12=1. ∇12 is interpreted as the altitude vector of the triangle 

(O, ∇el1, ∇el2) from the origin O. It is then straightforward to verify that along the 

opposite direction of ∇12, ek-e1 is always non-increasing, because ∇(ek-el1) always 

points to the same side of h as ∇12, perpendicular h (Figure D.3). ■ 

 

 

Figure D. 3 Geometric definition of ∇12

We define the pair l1 and l2 that satisfy proposition D.3 an equal-maximum pair. 

This proof not only shows that there exists such a pair l1 and l2, but also provides a 

way to find them. In most cases K=3, then it is easy to test the signs of ∇12·∇(el3-el1), 

∇13·∇(el2-el1), and ∇23·∇(el1-el2). If all the three are negative, then (F0, G0) is the 

minimal maximum. If there is one being positive, say ∇pq·∇(er-ep), then we can set 

l1=p and l2=q. If there are two being positive, we choose the faster decreasing pair by 

picking the one with the larger |∇pq|. In the rare case of K>3, we use the direct method 

given in Proposition D.3. However, we must first find the side of H that separates H 

∇ek ∇el1

∇el2

∇(ek-el2) 
∇ek

∇el1 ∇el2
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from the origin. To do this we first find a direction r in which all the K maxima 

increase. This is done by collecting the direction angles of the K gradients  into a 

smaller-than-π range. If this is impossible, then (F0, G0) is a minimal maximum 

already. Otherwise, denote the smallest angle θ

kl
e∇

1, the largest θ2<θ1+π. Any direction 

within range (θ2+π/2, θ1+3π/2) is a decreasing direction of all the K errors. We can 

choose –r to be any vector with a direction angle in this range, and choose l1 by 

picking out the smallest r⋅∇ ke . It is apparent that the line passing  and 

perpendicular to r separates the origin from all other gradient points. This implies that 

the direction angles of all 

1le∇

1lk ee ∇−∇ (k≠l1) are within a scope of π. We select the two 

with the smallest and largest angles, l2 is then chosen between them by testing that the 

line determined by it and ∇el1 separates the other from the origin.  

Starting from (F0, G0) with l1 and l2 being the equal-maximum pair, we search 

the curve =  down the decreasing direction until at some point (F1, G1) there is 

another l3, 0≤l3<2M-1, so that = = , or until the 

search meets a side of R. We call this searching mode equal-maximum search. 

1le 2le

)1,1(1 GFel )1,1(2 GFel )1,1(3 GFel

)

)

(1b) There are two equal maxima at (F0, G0), say = . We do 

an equal-maximum search starting at (F0, G0) with = . 

)0,0(1 GFel 0,0(2 GFel

1le 2le

(1c) There is one maximum at (F0, G0), say . We calculate the gradient 

∇e

)0,0(1 GFel

l1. Starting from (F0, G0), we search down the direction∇el1 until at some point (F1, 

G1) there is another l2, 0≤l2<2M-1, so that = ) , or until the 

search meets a side of R. We call this searching mode single-maximum search. 

)1,1(1 GFel 1,1(2 GFel

D.2.2.2 (F0, G0) being on one side of R.  

Let it be the side stating from (Fn, Gn). Denote the other end of that side as n+, so 

n+=n+1 if n<N-1, n+=0 if n=N-1. The searching direction is constrained to a scope of π. 

(2a) There are more than two equal maxima at (F0, G0). This is a very rare case. Let 

the maxima be = =…= , K>2. We have shown that 

if (F0, G0) is not the minimal maximum, then there exists at least one pair of l1 and l2 

)0,0(
1

GFel 0,0(
2

GFel )0,0( GFe
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so that down the decreasing direction el1=el2, el1 and el2 remain maximal. If any of 

these pairs satisfies that the decreasing direction of el1=el2 points inside R, than we do 

the equal-maximum search starting at (F0, G0), down el1=el2. Unlike the previous 

case (1a), this time we need to pick out all the (l1, l2) pairs that remain maximal down 

the curve el1=el2. From the proof of proposition D.3 we derive the follow corollary. 

Proposition D.4: if = =…=  are K equal maxima at (F0, G0)∈R, K>2, and let 

H be the convex hull of the gradient points ∇e

1e 2e Ke

1, ∇e2, …, ∇eK, then l1 and l2, 1≤l1, 

l2≤K, is an equal-maximum pair if and only if the line passing the gradient points ∇el1 

and ∇el2 separates H from the origin. 

The proof is trivial. Proposition D.4 assures that equal-maximum pairs appear as 

adjacent sides of H. To find all the equal-maximum pairs, we locate the first one as 

discussed after proposition D.3. Then we try to extend at end ∇el1 and ∇el2 in exactly 

the same way as we find l2 using l1. If it is successful on either end, we repeat this 

process, until no more points can be involved. If any of these direction points inside R, 

we start an equal-maximum search. 

However, if all these directions point out of R, then we test the two directions 

along side rn to see if all the K maxima decrease together along either. If they do, we 

denote the slowest-decreasing one el1 and search down that direction until there is 

another l2, so that el1=el2, or until the search reaches a vertex of R. We call this a 

single-maximum side search. If on both direction along rn at least one of the maxima 

increases, then the following proposition shows that (F0, G0) is a minimal maximum. 

Proposition D.5: if in both directions d1 and d2, e1, e2, …, eK decrease, and d1 and d2 

point to different sides of vector e, then either on e or on -e, e1, e2, …, eK decrease.  

Let the direction angles of e be 0, of d1 be η1, of d2 be η2, of -∇ek be θk, without 

loss of generality, let 0<η1<π, -π<η2<0. Apparently d1 cannot be directly opposite d2, 

so either η1<η2+π or η1>η2+π. First let η1<η2+π. Then ∀k, from -∇ek·d1>0 and -

∇ek·d2>0 we know that –π/2<η1-π/2<θk<η2+π/2<π/2. Therefore along e, e1, e2, …, eK 

decrease. Similarly, if η1>η2+π, we wrap the angles below 0 by +2π, so η2 becomes 
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2η′ =η2+2π <η1+π, π< 2η′ <2π. Then ∀k, from -∇ek·d1>0 and -∇ek·d2>0 we know that 

π/2< 2η′ -π/2< kθ′ < 1η′ +π/2<3π/2. Therefore along -e, e1, e2, …, eK decrease. ■ 

Comment: To determine whether it is e or –e down which e1, e2, …, eK decrease, 

we draw a line l so that d1 and d2 lies on the same side of l, then the decreasing 

direction is the one of ±e on the same side of l.  

Proposition D.5 says that if there is an equal-maximum search direction not 

included in DR(F0, G0), and e1, …, eK do not descend together down either direction 

along side rn, then they don’t descend together down any direction in DR(F0, G0). 

According to Proposition D.1, (F0, G0) is a minimal maximum.  

(2b) There are two equal maxima at (F0, G0), say, el1=el2. This can be regarded as a 

special case of (2a).  

(2c) There is a single maximum at (F0, G0), say, el1. We check to see if -∇e1 points 

inside R. If yes, we do the single-maximum search starting at (F0, G0) down. If not, 

we find the decreasing direction along the side rn, and do the single-maximum side 

search. However, if -∇e1 is perpendicular to side rn and points outside R, then (F0, G0) 

is the minimal maximum, according to Proposition D.1.  

F.2.2.3 (F0, G0) being a vertex. 

Let this vertex be n, i.e. (F0, G0)=(Fn, Gn). We denote the next vertex n+, and the 

previous vertex n-.  

(3a) There are more than two maxima at (F0, G0). This is a very rare case. Let the 

equal maxima be el1=el2=el3…=elK, K>2. The processing under this condition is 

similar to that for condition (2a). We first check for all the equal-maximum search 

directions at (F0, G0) to see if any is in DR(F0, G0), and do the equal-maximum 

search if so. If not, we examine the searching directions along rn or rn-. If all of e1, 

e2, …, eK descend in either direction, we do the single-maximum side search. If not, 

the following corollary ascertains that (F0, G0) is a minimal maximum. 

Corollary of Proposition D.5: if in both directions d1 and d2, e1, e2, …, eK decrease, 

and the vectors ea and eb form an angle less than two right angles, so that d1 is inside 

this angle and d2 is outside, then in either direction ea or eb, e1, e2, …, eK decrease. 

 



Appendix D.  Harmonic particle detector  231  

We consider whether d1 and d2 lie on the same side of ea. If they do, then they 

must be on different sides of eb. According to the comment after proposition D.5, 

down eb, e1, e2, …, eK decrease. On the contrary, if d1 and d2 lie on different sides of 

ea, Proposition D.5 ensures that e1, e2, …, eK decrease either in direction ea if  d1 and 

d2 lie on the same side of eb, or in the direction of -ea if d1 and d2 lie on different sides 

of eb. In the latter case, we apply Proposition D.5 regarding directions -ea and r1 and 

prove that e1, e2, …, eK decrease in direction eb. ■ 

(3b) There are two equal maxima at (F0, G0). This is a very rare case, and can be 

regarded as a special case of (3a).  

(3c) There is a single maximum at (F0, G0), say, el1. We check to see if –∇e1 points 

inside R. If yes, we do the single-maximum search starting from (F0, G0). If not, we 

check the two directions rn and rn-. If el1 decreases in either direction, we do the 

single-maximum side search along the corresponding side. If not, (F0, G0) is a 

minimal maximum, according to the corollary above. 

D.2.3 The three searching modes 

Now we have finished discussing the nine conditions at the (F0, G0). There are three 

types of searching involved. We detail them as follows. 

D.2.3.1 Equal-maximum search 

Starting at (F0, G0) with =  being the maximum, move along the curve =  

in the decreasing direction until at some point (F1, G1) there is another l

1le 2le 1le 2le

3 so that 

= = , or the search meets a side of R. 3le 1le 2le

This is the only curve search of the three types, i.e. the searching route =  is 

not a straight line. =  may have up to 2 intersections with e

1le 2le

1le 2le l1=ek, k≠l1, k≠l2, as 

well as up to 2 intersections with any side of R. Apparently (F1, G1) shall be chosen 

as the el1=el2=ek point closest to (F0, G0) on the decreasing side, or, if it is outside R, 

the intersection of el1=el2 with a side of R between this point and (F0, G0). The 

intersections are solved using procedures discussed in D.2.3.4 (A).  
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After we get the solution of el1=el2=ek closest to (F0, G0), let it be (F2, G2), we 

test if (F2, G2) is inside R. This is done by testing (F2, G2) is on the polygon side of 

each side rn of R. If (F2, G2) lies inside R, we set (F1, G1)=(F2, G2), and start next 

step with starting point (F1, G1) inside R with 3 equal maxima (condition 1a). If (F2, 

G2) is out of side rn, we solve for intersections of el1=el2 with rn using the method in 

C.2.3.4 (B). As (F0, G0) and (F2, G2) are on two sides on rn, it is guaranteed that 

there exist an (F3, G3) being on line rn and on curve el1=el2 between (F0, G0) and (F2, 

G2). In most cases (F3, G3) is on side rn, then we set (F1, G1)=(F3, G3). However, if 

(F3, G3) is not on side rn, it must be outside either the previous or the next side, let it 

be rm. Then (F3, G3) and (F0, G0), both on curve el1=el2, are on different sides of rm, 

hence we can solve for an intersection of el1=el2 with rm, say (F4, G4). This process 

can carry on until we find the first intersection of el1=el2 with a side of R, let it be (F1, 

G1). We start the next step at (F1, G1) with two equal maxima (condition 2b).  

D.2.3.2 Single-maximum search 

Starting at (F0, G0) with  being the maximum, move down a given direction 

(typically –∇e

1le

l1), in which  decreases, until at some point (F1, G1) there is another 

l2 so that = , or the search meets a side of R.  

1le

2le 1le

The meeting point of the searching path with =  can be solved by the method 

in D.2.3.4 (B). We pick the point that is closest to (F0, G0) down the decreasing side, 

let it be (F2, G2). We then test if (F2, G2) is inside R. If it is, we start the next step at 

(F2, G2) with two equal maxima (condition 1b). If not, find the intersection of the 

searching path with R, which is very similar to the process discussed in D.2.3.1. Let it 

be (F1, G1). We then start the next step at (F1, G1) with one maximum (condition 2c). 

2le 1le

D.2.3.3 Single-maximum side search 

Starting at (F0, G0) on side rn of R with  being the maximum, move along that side 

down the decreasing direction of , until at some point (F1, G1) there is another l2 

so that = , or the search reaches one end of r

1le

1le

2le 1le n. 
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The meeting point of the rn with =  can be solved by the method in D.2.3.4 

(B). We pick the point that is closest to (F0, G0) down the decreasing side. Let it be 

(F2, G2). If this point is within side R, then we start the next step at (F2, G2) with two 

equal maxima (condition 2b); otherwise we start the next step at the vertex at the end 

of r

2le 1le

n in the decreasing direction (condition 3c).  

D.2.3.4 Calculating the intersections 

A. Solving equations el1(F, G) = el2(F, G)=el3(F, G). 

We know that el1(F, G) is in the form of 
l

l

m

m
ll fGkFm

∆
−+ ˆ

 or 
l

l

m
ll

m GkFmf
∆

+−ˆ
.  

We rewrite them in a standard format: 

 1111 fGkFme ′−+′= , 2222 fGkFme ′−+′= , 3333 fGkFme ′−+′= . (D. 9a) 

where  

 
1

1
1 lm

lmm
∆

±=′ , 
1

1ˆ
1 l

l

m

mff
∆

±=′ , 
2

2
2 lm

lmm
∆

±=′ , 
2

2ˆ
2 l

l

m

mff
∆

±=′ ,  

 
3

3
3 lm

lmm
∆

±=′ , 
3

3ˆ
3 l

l

m

mff
∆

±=′ . (D. 9b) 

( ± : + if lm
ll fGkFm ˆ−+ >0, - if lm

ll fGkFm ˆ−+ <0.) 

So that the equations are written as 

 222111 fGkFmfGkFm ′−+′=′−+′ , 333111 fGkFmfGkFm ′−+′=′−+′ .(D. 9c) 

Substitute with  

 GkFx 1+=   (D. 10) 

we get 

 221
2

211 fGhxmfxm ′−+′=′−′ , 331
2

311 fGhxmfxm ′−+′=′−′ . (D. 11a) 

where 

 , . (D. 11b) 2
1

2
21221 mmkkh −=−= 2

1
2
31331 mmkkh −=−=

 



Appendix D.  Harmonic particle detector  234  

Then 

 Ghxmffxm 21
2

2121 +′=′−′+′ , Ghxmffxm 31
2

3131 +′=′−′+′ . (D. 12) 

Then 

Ghmffxffmxmm 21
2

2
2

12121
22

2
2

1 )()(2)( ′=′−′+′−′′+′−′ , 

 . (D. 13a) Ghmffxffmxmm 31
2

3
2

13131
22

3
2

1 )()(2)( ′=′−′+′−′′+′−′

Let  

 , ,  (D. 14a) 2
2

2
112 mmh ′−′=′ 2

3
2

113 mmh ′−′=′

eliminating x2
 we get: 

 
( )

( )Ghhmhhm

ffhffhxffhffhm

3112
2

32113
2

2

2
1312

2
1213131212131 )()()()(2

′′−′′=

′−′′−′−′′+′−′′−′−′′′
. (D. 14b) 

That is  

 G=ax+b,  (D. 15a) 

where  

 ( )
3112

2
32113

2
2

131212131 )()(2
hhmhhm

ffhffhma
′′−′′

′−′′−′−′′′
= , 

3112
2

32113
2

2

2
1312

2
1213 )()(

hhmhhm
ffhffhb

′′−′′
′−′′−′−′′

= . (D. 15b) 

We then have a simple quadratic equation 

 ( ) 0)()(2 21
2

2
2

1221
2

2121
2

12 =′−′−′+′−′−′′+′ bhmffxahmffmxh . (D. 16) 

After solving x we calculate  G =ax+b. 

However, if it happens that  we cannot derive (D. 15b). In 

this case we derive from (D.14b) 

03112
2

32113
2

2 =′′−′′ hhmhhm

 ( ))()(2
)()(

131212131

2
1213

2
1312

ffhffhm
ffhffhx

′−′′−′−′′′
′−′′−′−′′

= ,  (D. 17a) 

then calculate 
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21

2
2

2
12121

2
12 )()(2

hm
ffxffmxhG

′
′−′+′−′′+′

=  if h21≠0,  (D. 17b) 

or  

 
31

2
3

2
13131

2
13 )()(2

hm
ffxffmxhG

′
′−′+′−′′+′

=  if h31≠0.  (D. 17c) 

After calculating x and G, we calculate F by F= x2-k1G. 

B. solving equation el1(F-1+λδF, G-1+λδG) = el2(F-1+λδF, G-1+λδG). 

We know that el1(F, G) is in the form of 
l

l

m

m
ll fGkFm

∆
−+ ˆ

 or 
l

l

m
ll

m GkFmf
∆

+−ˆ
.  

We rewrite in a standard format: 

 1111 fGkFmel ′−+′= , 2222 fGkFmel ′−+′= , (D. 18a) 

where 

 
1

1
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2
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±=′ .  (D. 18b) 

( : + if ± lm
ll fGkFm ˆ−+ >0, - if lm

ll fGkFm ˆ−+ <0). 

Then our equation becomes  

 

212122

111111

)()(

)()(

fGkFGkFm

fGkFGkFm

′−+++′=

′−+++′

−−

−−

λδδ

λδδ
 (D. 18c) 

Substitute  

 )()( 1111 −− +++= GkFGkFx λδδ ,  (D. 19a) 

then  

   (D. 19b) )()( 1111
2

−− +++= GkFGkFx λδδ

and 
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The equation becomes  
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2
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))(()( f
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This is then written as a simple quadratic equation regarding x: 
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After solving x we can calculate 
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When we search down the reverse gradient direction, let the gradient direction be of 

el1 be ±(1, k1), then 1m=Fδ , 1kG m=δ , and the equation of x is  
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After solving x we calculate 
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Appendix E
 
Calculations in the re-estimation of sinusoids 

 

E.1 De-averaging amplitudes 

An instantaneous amplitude a  estimated using (3.34a) can be written as the weighted 

average of the instantaneous amplitude within the frame: 

ˆ
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∑
−

=

−

== 1

0

2

1

0

2

ˆ N

n
n

N

n
nn

w

aw
a  (3. 34b) 

where w is the window function used in (3.34a).  

We formulate the de-averaging of (3.34b) as follows. Given the instantaneous 

amplitude estimates , , …, , find a0â hâ Lhâ 0, …, aLh, so that by interpolating a0, …, 

aLh as {an}n=-N/2, …, Lh+N/2, we have 
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nNlhn
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a , l=0, 1, …, L. (E. 1) 

In this de-averaging problem we have L+1 variables and L+1 equations. Obviously 

the de-averaging process significantly depends on the interpolation method. We 

assume that the interpolated amplitude is linear time-invariant regarding a0, …, aLh, 

i.e.  

 .  (E. 2a) ∑=
l

l
nlhn gaa

g is known as the interpolation kernel, and 

 ) ,   (E. 2b) ( lkg l
kh −= δ l

mhn
ml

n gg −
+ =

From the second equation we immediately have 
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  (E. 2c) ∑
=

−=
L

l
lhnlhn gaa

0

0

This is a convolution with the impulse response g. In the context of slow amplitude 

variation, g is always low-pass.  

As an example we look at the quadratic interpolation with overlap-add. Given 

three consecutive amplitude estimates a(l-1)h, alh, a(l+1)h, we can use a parabolic 

function to interpolate between (l-1)h and (l-1)h as 

 2)1(22)1( 2
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An interpolation of the amplitude track can be implemented by overlap-adding these 

parabolic amplitudes: 
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where the overlap-add window v satisfies 

 httv ≥∀= ,0)(  (E. 5a) 

 )()( tvtv −=  (E. 5b) 

 0)()( =′′=′ hvhv  (E. 5c) 

 0,1)()( ≤≤−∀=++ thhtvtv  (E. 5d) 

It can be shown that  

 1 (E. 5e) )( =−∑
∞

−∞=l
lhtv

The interpolated amplitude track (E.4) has continuous 1st- and 2nd-order derivatives. 

Combining (E.3) and (E.4) we get 

 

( )

( )
hn

h
nvhn

a
h

hnvhnvn
a

h
hnvhnvhn

a
h

vhnn
aa

hn
hk

hnn
hk

nhn
kh

n
hknkh

<≤
−

+⎟
⎠
⎞

⎜
⎝
⎛ −−+

+

⎟
⎠
⎞

⎜
⎝
⎛ +−−−

+
−

=

−
+

−
+

−
−+

0,
2

)(
2

)2(2)(

2
)(2)2()(

2
)(

2)2(2)1(

22)1(

 (E. 6) 

 



Appendix E.  Re-estimation  239  

Compare (E.2a) and (E.6) we get 
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where “\” is the modulo operator and “ ⎣ ⎦ ” is the integer floor operator. A more 

practical computation of g is 
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Combining (E.1) and (E.2a) we get 
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This is a multi-diagonal linear system of order L+1. By solving this system we get the 

de-averaged amplitude. 

E.2 De-averaging frequencies 

An instantaneous frequency  estimated using the LSE method can be written as the 

weighted average of the instantaneous frequency within the frame (3.9c). For de-

averaging we use (3.33) and rearranging the summing indices as: 
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where 
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w is the window function used in the LSE estimation. Unlike the amplitude case, for 

frequency the averaging weights  depend both on the estimate  itself and on the 

frequency track f(t). In the re-estimation process the dependency on  is not a 

problem since it is already known. However, the dependency on f(t) makes the de-

averaging problem highly non-linear. In the iterative framework we may use the 

frequency from the last iteration, i.e. an  interpolated from , to 

calculate the averaging weights, so that the weights have no dependency on f(t). 

l
mna f̂

f̂

)(ˆ tf Lllhf ,,0}ˆ{ L=

Like the amplitude interpolation, we assume that the frequency interpolation is 

linear regarding the samples, i.e. 

 ,  (E. 10) ∑=
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where g is the interpolation kernel. Then we can calculate 
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  (E. 11) 

 



Appendix E.  Re-estimation  241  

Combining (E. 9a) and (E. 10) we get 
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This is again a multi-diagonal linear system of order L+1. By solving this system we 

get the de-averaged frequency. 

E.3 De-variation method 

As discussed in Chapter 3, large parameter estimation errors occur as the result of 

large parameter dynamics. The de-averaging method is proposed by observing that the 

frequency estimate on a time-varying sinusoid is a weighted average of local 

instantaneous frequencies (see (3.33)), and the amplitude estimated from (3.34a) is a 

weighted average of local instantaneous amplitudes (see (3.34b)). When a rough 

sinusoid track is known, using these equations we know what the weights are like, and 

therefore are able to invert the averaging process. 

The de-variation method, alternatively, tries to remove the variations from the 

parameters using the rough sinusoid track. The idea is given in Figure E.1. The solid 

line is the true signal track that is not directly observable, and the dashed line is the 

estimated track. If we subtract the dashed track from the solid one, we get the red 

track, which has a much slower variation and much easier to estimate accurately. 

After we have estimated this “difference track”, it can be simply added back to the 

original estimate, i.e. the dashed track, as a re-estimation. Like the de-averaging 

method, this de-variation method can be performed iteratively. 
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t Figure E. 1 De-variation method 

The de-variation method proceeds as follows. Let Fi stand for a set of frequency 

estimates, Ai stand for a set of amplitude estimates, Pi={Fi, Ai}. F0={ , , …, }. 

For i=1, 2, …, do 1~5, until ∆ is below some threshold, or i is above a maximal 

number of iterations: 

0̂f 1̂f Lf̂

1) interpolate the frequency estimates Fi-1 as , and the amplitude estimates 

A

)(1 tf i−

i-1 as ai-1(t); 

2) for l=0, 1, …, L, do 3 and 4; 

3) let x, f, and a be the signal, interpolated frequency tracks, and interpolated 

amplitude track, of the lth frame, all shifted to centre at 0, calculate 

 ∫ −−=
n tdftfj

n
n

n ex
a
ay 0 )())0()((20 π  (E. 13) 

(y is the de-variationed version of x, where the frequency variation is 

removed by the multiplication with a phase term, and the amplitude 

variation is removed by the division using the interpolated amplitude track. 

In particular, if the interpolated tracks are accurate and x is noise-free, then 

y is a constant.) 

4) estimate the frequency, amplitude and phase angle of y; 

5) let Pi be the collection of the new estimates evaluated in the above loop, 

calculate the distance ∆ between Pi-1 and Pi. 
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When the iteration finishes the final Pi is returned as the re-estimated result. The 

de-variation method is more general than the de-averaging method as there is no 

constraint on what estimator to use. If the LSE method is used, the method can be 

implemented in a stable way by keeping watch on the square error, so that the error 

never grows from one iteration to the next. 

  

 

 



    

 

Appendix F
 
Spectral domain resynthesis 
 

The direct synthesis method, when applied to the interval nl~nl+1, requires calculating 

∆nl points for each partial. When the number of partials is large, the computation cost 

becomes heavy. However, in frequency domain a sinusoid appears within a very small 

band, and it is possible to approximate its spectrum with only a few operations. The 

spectral resynthesis of a harmonic sinusoid builds the short-time Fourier transform of 

the combination of sinusoids, then use inverse DFT to get time-domain resynthesis. 

To connect the rebuilt signals smoothly at the frame boundaries, an overlap-add 

method is used. [MQ86] suggests that the overlap rate should be kept high for good 

results. In our system we use an overlap rate of 50%, but allow multiple frame widths. 

This multi-resolution overlap-add synthesis may accompany the multi-resolution re-

estimation method detailed (§3.4), or stand alone using single-resolution estimates.  

F.1 Overlap-add 

In frame-based synthesis the overlap-add (OLA) method is often used for connecting 

frames to eliminate abrupt discontinuity [AR77]. In spectral synthesis we use a 1/2 

overlap rate, which also requires 1/2 overlap on the analyzer side. That is, let 2h be 

the window size for the DFT and let it be constant, then the hop size between adjacent 

windows is set to h. The measurement points are chosen at h, 2h, …, l·h, …, with the 

lth frame centred at l·h, spanning the duration of 2h from (l-1)h to (l+1)h. Let the 

rebuild signal of the lth frame be ]~,,~,~[~
2,1,0, hllll xxxx L= , and let w be a low-pass 

synthesis window function of size 2h, spanning the duration from 0 to 2h, then in the 

OLA method  is rebuilt as x~

 ∑ −−−−=
l

hlnhlnln wxx )1()1(,
~~  (F. 1) 
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That is, we weight the resynthesized frame using window function w, align each 

frame to its expected position, then sum them up. w is chosen so that 1) it is non-

negative and symmetric, 2) it has a maximum at the central point h, 3) it fades away at 

both ends, and 4) they overlap-add to identity, i.e. 

 1)1( =∑ −−
l

hlnw  (F. 2) 

Examples of window functions that meet all the conditions include the Hann window 

and triangular window. 

The OLA processing is h-shift invariant, that is, shifting the time axis by a 

multiple of h does not disturb the resynthesis result. However, only when h=1 is it 

shift invariant, otherwise it introduces a modulation artefact with period h. An 

overlap-add window that satisfies (F.2) leads to the constant OLA, which eliminates 

amplitude modulation due to the shift variance on stationary sinusoids.  

Since the overlap-add window is low-pass, it typically has faster decay than the 

sinc function, which characterize the DFT of a sinusoid. Since the computation cost of 

synthesizing the spectrum is roughly proportional to the number of bins in the 

resynthesized spectrum, by synthesizing the spectrum of a windowed sinusoid we are 

able to save computation by using fewer bins, as when the spectrum decays faster the 

energy is more concentrated.  

F.2 Quasi-stationary partials 

When a partial varies very slowly within the considered frame, we approximate its 

spectrum with that of a constant sinusoid, that is 

  (F. 3a) 
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Constant B indicates how many bins are in the resynthesis. All bins that are more than 

B bins from the frequency estimate are discarded. 

Let  be the parameter set estimated for the m}ˆ,ˆ,ˆ{ m
l

m
l

m
l fa ϕ th partial of frame l, then 

we synthesize its spectrum using (F.3a) 
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  (F. 3b) 
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The summary windowed spectrum lX~ is then calculated as 
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,  (F. 3c) 

F.3 Fast-varying partials 

In the overlap-add method each frame is independently synthesized as a stationary 

sinusoid without frequency or amplitude variation. While the overlap-add process 

interpolate between two frames in time domain, there is no explicit interpolation on 

amplitude or frequency. When the frequency dynamics is low, the resynthesized 

windowed spectra of individual frames overlap in the time-frequency plane (Figure 

F.1, (a)). When they are summed up the spectrum covers the complete range of the 

instantaneous frequency, and gives a smooth adaptation between parameter sets. 

However, when the frequency dynamics is high, e.g. the frequency jump between 

frames is larger than with which the windowed spectra may overlap (Figure F.1, (b)), 

then the resynthesized spectrum becomes discontinuous in the time-frequency plane, 

leaving large areas in the time-frequency plane, where the sinusoid pass by, empty, 

which is far from the typical behaviour of a time-varying sinusoid.  
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Figure F. 1 Synthesizing sinusoid particles within a partial 

In Appendix A.3.2 we have divided a frame of time-varying sinusoid into several 

overlapping segments to estimate the spectrum. By giving each segment its own 

frequency centre, we are able to synthesize detailed frequency (and amplitude too) 

variation within a frame. Figure F.1 (c) shows this idea. Compared to (b), it uses a 1/3 

window length (therefore 3 times bin width), and 3 times the number of frames. On 

one hand, by increasing the number of frames in the same duration, we cut down the 

frequency jump between adjacent frames. On the other, by reducing the window 

length, we increase the frequency coverage of each atom. This combination of 

changes makes the individual spectra meet together seamlessly in Figure F.1 (c), so 
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that the summary spectrogram covers the complete frequency range in a way a time-

varying sinusoid does. 

In practice all the window widths are powers of 2. A frame of size 2h is always 

aligned to multiples of h. We call the centre of a DFT frame used in the synthesizer a 

synthesis point. Each synthesis point is associated with a window size. If the 

multiresolution re-estimation in §3.4 has been used, then we can use all the final 

measurement points as synthesize points, along their windows sizes. From each 

measurement point a sinusoid atom is constructed. Finally the harmonic sinusoid is 

constructed by summing up all the atoms. 

However, even if we only have a single-resolution sinusoid track, it is also 

possible to do a multi-resolution synthesis. To do this we first find the synthesis 

points along with there window sizes, associate with each point the sinusoidal 

parameters obtained from interpolating between the measurement points. When this is 

done we can calculate the atoms, and finally, the harmonic sinusoid. The synthesis 

points are found by comparing the frequency jump between adjacent atoms and the 

bandwidths of them to see if the jump is covered within the bandwidths. We define 

the single-sided bandwidth of a sinusoid atom as 1/N, where N is the window width 

for synthesizing the atom. For the Hann window this is the 6dB bandwidth. To select 

the synthesis points, we start from the measurement points, with their original window 

sizes, and do the following. 

Let there be L+1 points in the list, located at n0, …, nL, with frequency estimates 

0f̂ ˆ, …, , frame width NLf 0, …, NL, and single-sided frequency spans b0, …, 

bL; 

1. for l=0, 1, …, L-1, do 2~3; 

2. if bl+bl+1<| |, do 3; 1
ˆˆ

+− ll ff

3. insert a new point at 0.5·(nl+nl+1), let its frame width be nl+1-nl, single-sided 

frequency span be 1/(nl+1-nl), and get the frequency estimate at this point; 

4. if no point has been inserted in the loop, then terminate the process, as all the 

synthesis points are already found; 
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5. for l=1, 3, …, L-1, do 6; 

6. if new points have been inserted at 0.5·(nl+nl+1) and 0.5·(nl+nl-1), then 

Nl←0.5Nl, bl←2bl; 

7.  let L, nl, , Nlf̂ l and bl be redefined for the new list with inserted points, go to 

step 1. 

The main point of step 6 is to smooth the sequence of window sizes. Intuitively, if 

there is one point inserted on each side of nl, it implies that the frequency variation 

near nl is faster than the window size Nl can catch up with, then it is natural that Nl be 

reduced. 

To construct a signal using multiple window widths, we synthesize a spectrogram 

for each window width, rebuild a time-domain signal from this spectrogram using the 

overlap-add method, and finally sum them up. However, the constant sum criterion 

for the resynthesis windows is not satisfied where the window width switches 

between frames. This is shown in Figure F.2. In the figure the solid horizontal line 

represents the time axis and the triangles above this line represent synthesis windows. 

The dashed line marks the sum of the window functions. In (a) and (b) only one of the 

two window widths is used, and the windows sum up to identity. (c) is derived by 

inserting synthesis points between the measure points of (b), marked by the arrows. 

Consequently, a different window size is chosen for these points and some of the 

original points in (b), which results in a non-constant sum of windows. One way to 

preserve the constant-sum property is shown in (d). When two adjacent windows have 

different window widths, we shorten the longer one on the half that meets the shorter 

one, so that it fades off when the shorter window reaches the maximum. To 

implement this nonsymmetric window, one simply treat it as a full-length window 

with leading or trailing zeros, and calculate its DTFT W(f), then use it in (F.3a) along 

with other frames of the same width. 

 



Appendix F.  Spectral synthesis  250  

(a) (b)

(c) (d)
 

Figure F. 2 Spectral synthesis using multiple frame widths 
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