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ABSTRACT

The automated analysis of vibrato in complex music sig-
nals is a highly challenging task. A common strategy is
to proceed in a two-step fashion. First, a fundamental fre-
quency (F0) trajectory for the musical voice that is likely to
exhibit vibrato is estimated. In a second step, the trajectory
is then analyzed with respect to periodic frequency modu-
lations. As a major drawback, however, such a method
cannot recover from errors made in the inherently difficult
first step, which severely limits the performance during the
second step. In this work, we present a novel vibrato analy-
sis approach that avoids the first error-prone F0-estimation
step. Our core idea is to perform the analysis directly
on a signal’s spectrogram representation where vibrato is
evident in the form of characteristic spectro-temporal pat-
terns. We detect and parameterize these patterns by locally
comparing the spectrogram with a predefined set of vibrato
templates. Our systematic experiments indicate that this
approach is more robust than F0-based strategies.

1. INTRODUCTION

The human voice and other instruments often reveal char-
acteristic spectro-temporal patterns that are the result of
specific articulation techniques. For example, vibrato is
a musical effect that is frequently used by musicians to
make their performance more expressive. Although a clear
definition of vibrato does not exist [20], it can broadly
be described as a musical voice’s “periodic oscillation in
pitch” [16]. It is commonly parameterized by its rate (the
modulation frequency given in Hertz) and its extent (the
modulation’s amplitude given in cents 1 ). These parame-
ters have been studied extensively from musicological and
psychological perspectives, often in a cumbersome process
of manually annotating spectral representations of mono-
phonic music signals, see for example [5, 10, 18, 20, 22].

To approach the topic from a computational perspec-
tive, the signal processing community has put considerable

1 A cent is a logarithmic frequency unit. A musical semitone is subdi-
vided into 100 cents.
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Figure 1. Template-based vibrato analysis. A matching
vibrato template lets us infer the rate f and extent e of
vibrato present in the music signal.

research efforts into developing automated vibrato analysis
methods for monophonic, as well as for more complex mu-
sic signals with multiple sound sources. While some appli-
cations implicitly exploit spectro-temporal characteristics
of vibrato to approach higher-level tasks such as harmonic-
percussive decomposition [9], singing voice detection [6],
or singing voice separation [21], there also exist methods
for explicitly detecting and parameterizing vibrato com-
ponents in a given music signal. A common approach is
to perform the vibrato analysis in two consecutive steps.
In the first step, a fundamental frequency trajectory (F0-
trajectory) is estimated for the musical voice that is most
likely to exhibit vibrato. This trajectory is then analyzed in
the second step to detect and parameterize periodic mod-
ulation patterns, see for example [4, 8, 12–14, 23]. How-
ever, computing F0-trajectories for complex signals with
multiple instruments is a highly non-trivial and error-prone
task by itself [15]. Therefore, a trajectory estimated in the
first step may not appropriately reflect the relevant modu-
lation patterns. This in turn renders the vibrato detection
and parametrization in the second step problematic, if not
impossible.

To avoid the error-prone F0-estimation step, in this
work we propose a novel approach for automatically ana-
lyzing vibrato components in complex music signals. Our
core idea is to detect spectro-temporal vibrato patterns di-



rectly in a music signal’s spectrogram by locally com-
paring this representation with a set of predefined vibrato
templates 2 that reflect different vibrato rates and extents.
The measured similarity yields a novel mid-level feature
representation—a vibrato salience spectrogram—in which
spectro-temporal vibrato patterns are enhanced while other
structures are suppressed. Figure 1 illustrates this idea,
showing three different vibrato templates as well as a spec-
trogram representation of a choir with a lead singer who
starts to sing with strong vibrato in the excerpt’s second
half. Time-frequency bins where one of the templates is
locally similar to the spectrogram, thus yielding a high vi-
brato salience, are indicated in red. As we can see, these
time-frequency bins temporally coincide with the anno-
tated vibrato passage at the top of Figure 1. Additionally,
a high vibrato salience does not only indicate the presence
of vibrato in the music signal, but also reveals the vibrato’s
rate and extent encoded in the similarity maximizing tem-
plate.

The remainder of this paper is structured as follows. In
Section 2 we describe our template-based vibrato analysis
approach in detail. In Section 3, we evaluate the perfor-
mance of our proposed method, both by means of a quanti-
tative evaluation on a novel dataset as well as by discussing
illustrative examples. Finally, in Section 4, we conclude
with an indication of possible future research directions.
Note that this paper has an accompanying website at [2]
where one can find all audio examples and annotations
used in this paper.

2. TEMPLATE-BASED VIBRATO ANALYSIS

In this section, we describe our proposed template-based
vibrato analysis approach. We discuss relevant spectro-
gram representations (Section 2.1) and describe how the
vibrato templates are modeled (Section 2.2). Both our
choice of spectrogram representation and the vibrato tem-
plate’s design are motivated by the correlation-like similar-
ity measure that we use to locally compare the templates
with the spectrogram. We then introduce the derivation of
the vibrato salience spectrogram (Section 2.3) and com-
ment on our approach’s computational complexity (Sec-
tion 2.4). As a running example, we use the choir signal
from Figure 1.

2.1 Spectral Representation

Given a discrete music signal x : Z→ R, we first compute
the short-time Fourier transform (STFT) X : Z × Z → C
of x by

X(m, k) =
∑
r∈Z

w(r)·x(r+mH)·exp(−2πikr/N) , (1)

where m is the frame index, k is the frequency index, N
is the frame length, w is a window function, and H is the

2 Note that this approach is conceptually similar to the Hough trans-
form [3], a mathematical tool known from image processing for the de-
tection of parameterized shapes in binary images. However, the Hough
transform is known to be very sensitive to noise and therefore not suitable
for detecting vibrato patterns in spectrograms that are commonly rather
noisy.
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Figure 2. Spectrogram representations of the input sig-
nal x. (a): Magnitude spectrogram. (b): Log-frequency
spectrogram. (c): Binarized log-frequency spectrogram Y .

hopsize (w.l.o.g. we assume m, k ∈ Z). Figure 2a shows
an excerpt of our example signal’s magnitude spectrogram
|X| where one can clearly see wave-like vibrato patterns
in the lead singer’s fundamental frequency and its over-
tones. However, due to the STFT’s linear frequency sam-
pling, the vibrato patterns’ amplitudes increase with higher
overtones.

In the context of our template-based analysis it is de-
sirable that vibrato patterns stemming from the same fre-
quency modulated tone have the same amplitude that di-
rectly reflects the vibrato’s extent. We therefore compute
a log-frequency spectrogram from the STFT X , using a
phase vocoder-based reassignment approach as discussed
in [7, Chapter 8] or [14]. In this representation, which can
be seen in Figure 2b, frequency bands are spaced logarith-
mically and have a constant logarithmic bandwidth speci-
fied in cents. This ensures the desired property in this spec-
trogram representation.

In a last step, we normalize the spectrogram in order to
achieve two goals. First, we aim to make the representa-
tion independent of the signal’s volume such that we can
also detect vibrato in quiet signal passages. Second, when
locally comparing our vibrato templates with the represen-
tation, the resulting similarity measure should yield values
in a fixed range. A method that showed to be simple and
effective to achieve both goals is spectrogram binarization,
where we set the ten percent highest values of each frame
in the log-frequency spectrogram to one and all remaining
values to zero. This yields a binarized log-frequency spec-
trogram Y : Z× Z→ {0, 1}, see Figure 2c. In our exper-
iments, we choose parameters such that Y has a time res-
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Figure 3. Generation of a vibrato template T with a vi-
brato rate f = 5 Hertz, extent e = 50 cent, and a duration
of ` = 0.4 seconds. (a): Sinusoidal vibrato trajectory s.
(b): Vibrato template T .

olution of roughly 150 frames per second and a frequency
resolution of ten bands per semitone.

2.2 Vibrato Templates

Next, we introduce a set T of templates that reflect spectro-
temporal vibrato patterns as expected in Y . Let us model
such a template T ∈ T for vibrato having a rate of f
Hertz, an extent of e cents, and a duration of at least ` sec-
onds. When locally comparing the template T with Y , one
should obtain high similarity values when T is aligned with
a matching spectro-temporal vibrato pattern in Y and low
values otherwise. The idea is therefore to have a positive
portion in T that reflects the spectro-temporal vibrato pat-
tern as well as a negative portion that prevents the template
from correlating well with regions in Y that are homoge-
neously equal to one.

Assuming a sinusoidal vibrato, we can describe the vi-
brato’s trajectory (up to phase) by

s(t) = e sin(2πft) , (2)

t ∈ [0, `]. Figure 3a shows such a trajectory for f =
5 Hertz, e = 50 cent, and ` = 0.4 seconds. The trajec-
tory is then discretized such that its time- and frequency
resolution matches the binarized log-frequency spectro-
gram. Time-frequency bins that are close to s are assigned
with positive values, while bins having a certain distance
from s get negative values. To allow for some tolerance
of the width of vibrato patterns in Y , the remaining time-
frequency bins are defined to be zero. Finally, positive and
negative entries in T are normalized to sum up to one and
minus one, respectively, see Figure 3b.

2.3 Vibrato Salience

In order to locate and parameterize vibrato structures in
the binarized log-frequency spectrogram Y , we aim to
compute a vibrato salience spectrogram S—a kind of
mid-level feature representation—in which vibrato struc-
tures are enhanced while other kinds of structures are sup-
pressed. To this end, we define the vibrato salience spec-
trogram ST for a single vibrato template T : [0 : A− 1]×
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Figure 4. Vibrato salience spectrogram computation.
(a): Process to compute ST . The similarity-maximizing
shift (µ, κ) that maps (m, k) onto an index pair in I is indi-
cated by a green arrow. (b): Vibrato salience spectrogram
S.

[0 : B − 1] → R, A,B ∈ N. The computation process is
illustrated in Figure 4a. Let I be the set of all index pairs
(a, b) ∈ [0 : A−1]×[0 : B−1] such that T (a, b) is positive
(the indices of all red entries in Figure 3b). Furthermore,
let

Y (µ,κ)(m, k) = Y (m− µ, k − κ) , (3)

µ, κ ∈ Z, denote a version of Y that is shifted by µ and κ
indices in time- and frequency direction, respectively. In-
tuitively, the vibrato salience ST (m, k) should be high if
Y (m, k) is part of a spectro-temporal vibrato pattern as
reflected by T . To this end, we verify if there is a shift
(µ, κ) that aligns Y (m, k) (red dot in Figure 4a) with one
of the positive entries in the vibrato template T such that
T and Y (µ,κ) are similar (the optimal shift for our exam-
ple in Figure 4a is indicated by a green arrow). To compute
ST (m, k), we therefore maximize the correlation-like sim-
ilarity measure

c(T, Y ) =

A−1∑
a=0

B−1∑
b=0

T (a, b)Y (a, b) (4)

over all shifts (µ, κ) that map (m, k) onto one of the index
pairs in I:

ST (m, k) = max
{(µ,κ):(m,k)−(µ,κ)∈I}

c(T, Y (µ,κ)) . (5)

The full vibrato salience spectrogram can then be com-
puted by maximizing over all vibrato templates T ∈ T :

S(m, k) = max
T∈T

ST (m, k) . (6)



-0 dB -5 dB -10 dB
Item name Lx Lvib TB-A F0-M TB-A F0-M TB-A F0-M BL

Sound On Sound Demo—Mystery 9.79 1.78 0.83 0.93 0.84 0.86 0.73 0.30 0.31
Giselle—You 5.12 2.99 0.91 0.94 0.91 0.88 0.86 0.53 0.73
Leaf—Full 5.36 1.64 0.84 0.86 0.74 0.29 0.82 0.00 0.46
Phre The Eon—Everybody is Falling Apart 2.47 0.47 0.98 0.97 0.96 0.97 0.95 0.00 0.32
Secretariat—Borderline 7.69 1.98 0.79 0.69 0.73 0.76 0.79 0.00 0.41
Sunshine Garcia Band—For I Am The Moon 12.54 3.36 0.63 0.73 0.67 0.62 0.74 0.44 0.42
Angela Thomas Wade—Milk Cow Blues 4.50 2.10 0.44 0.82 0.32 0.63 0.32 0.00 0.63
Triviul—Dorothy 5.22 0.85 0.77 0.88 0.73 0.85 0.65 0.00 0.28
Funny Valentines—Sleigh Ride 7.18 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00

∅ 6.65 1.69 0.80 0.87 0.77 0.76 0.76 0.25 0.39

Table 1. Quantitative evaluation (F-measure), comparing our proposed template-based detection approach TB-A, F0-based
vibrato detection F0-M (manual vibrato selection in F0-trajectories), and a baseline BL. Lengths of the signals (Lx) and
accumulated lengths of ground truth vibrato passages (Lvib) are given in seconds.

Figure 4b shows the vibrato salience spectrogram S re-
sulting from the binarized log-frequency spectrogram Y
shown in Figure 4a. Note that by the vibrato template’s de-
sign and Y (m, k) ∈ {0, 1}, one obtains S(m, k) ∈ [−1, 1]
for all m, k ∈ Z. While the vibrato structures present in
Y are also clearly visible in S, the horizontal structures as
well as the glissando at the excerpt’s beginning do not cor-
relate well with the vibrato templates. They are therefore,
as intended, suppressed in S.

2.4 Computational Complexity

The vibrato salience spectrogram’s derivation as defined in
the previous section is a computationally expensive pro-
cess. When implemented naively, it is necessary to use
a quadruply nested loop to iterate over all combinations of
time-frequency bins (m, k) in Y , vibrato templates T ∈ T ,
index shifts {(µ, κ) : (m, k) − (µ, κ) ∈ I}, and index
pairs (a, b) in T . However, note that many computations
are redundant and that it is therefore possible to optimize
the calculation process, for example by exploiting two-
dimensional convolutions. Furthermore, one can speed
up the derivation by considering only a limited frequency
range in Y as well as by applying further heuristics such
as only taking into account vibrato salience values above a
threshold τ ∈ [−1, 1]. Although still being computation-
ally demanding, the derivation therefore becomes feasible
enough to be used in practice. For example, deriving S
for a music signal with a duration of 60 seconds takes our
MATLAB implementation roughly 40 seconds on a stan-
dard computer.

3. EXPERIMENTS

In this section, we present our experimental results. In
Section 3.1, we quantitatively evaluate our proposed ap-
proach in the context of a vibrato detection task. Then,
in Section 3.2 we demonstrate the method’s potential for
automatically analyzing vibrato rate and extent. Finally,
in Section 3.3, we indicate open challenges and potential
solutions.

3.1 Evaluation: Vibrato Detection

In a first experiment, we considered the task of temporally
identifying vibrato passages in a music signal. We there-
fore compiled a dataset of nine items (see Table 1), which
are excerpts of music signals from the “Mixing Secrets”
multitrack dataset [17]. Each item consists of a mono-
phonic vocal signal xvoc and a polyphonic accompaniment
signal xacc. Annotations of vibrato passages in the vocal
signals were created manually to serve as ground truth for
the subsequent evaluation (none of the accompaniment sig-
nals xacc has vibrato). To vary the difficulty of the vibrato
detection task, we created three different mixes for each
of the items—one were xvoc and xacc were mixed with-
out modification (-0 dB), one were xvoc was attenuated by
-5 dB prior to mixing the signals, and a third mix with xvoc
being attenuated by -10 dB.

To construct an automated vibrato detection procedure
based on our proposed template-based analysis approach,
we first computed vibrato salience spectrograms S for all
of the resulting 27 mix signals. Since only high vibrato
salience values in S are likely to indicate the presence of
spectro-temporal vibrato patterns, we then chose a thresh-
old τ ∈ [−1, 1]. Time instances where the maximal vibrato
salience in a frame exceeded τ were then labeled as having
vibrato while all other time instances were labeled as hav-
ing no vibrato. For this experiment we used a set T of 30
templates, reflecting vibrato rates from five to seven Hertz
in steps of 0.5 Hertz, as well as extents from 50 to 100
cents in steps of 10 cents. These parameters were chosen
particularly to detect the vibrato in singing voice as these
are typical vibrato rates and extents for human singing,
see [10, 11]. All templates had a length corresponding to
` = 0.4 seconds. The threshold τ was experimentally set
to τ = 0.55, yielding good vibrato detection results for all
items in the dataset.

One of this experiment’s main objectives was to com-
pare our template-based method’s performance with F0-
based strategies as discussed in Section 1. To emulate
such an approach, we used MELODIA [14]—a state-of-
the-art algorithm for estimating F0-trajectories of predom-
inant musical voices in complex music signals—to esti-



mate trajectories for all mix signals. Instead of automat-
ically analyzing the extracted trajectories in a second step,
we then manually inspected them for passages that reflect
vibrato. This was done to obtain an upper bound on the
performance an automated procedure could achieve in this
second step when detecting vibrato solely based on the es-
timated F0-trajectory.

We then computed precision (P), recall (R), and F-
measure (F) for the detection results of our automated
template-based procedure (TB-A), for the procedure based
on the manually inspected F0-trajectory (F0-M), as well
as for a baseline approach that simply labels every time
instance as having vibrato (BL):

P =
TP+ ε

TP+ FP + ε
,R =

TP+ ε

TP+ FN+ ε
,F =

2PR

P + R
. (7)

Here, TP is the number of true positives, FP the number
of false positives, FN the number of false negatives, and
ε > 0 ∈ R is some small number to prevent division by
zero. Note that all music signals and annotations used in
the experiment can be found at this paper’s accompanying
website [2].

The evaluation’s results are summarized in Table 1
which shows for each item its name, the music signal’s
length, the accumulated duration of vibrato in this signal,
as well as the F-measures of TB-A and F0-M for the three
different mixes (-0 dB, -5 dB, and -10 dB). The F-measure
for the baseline BL is indicated in the last column and the
table’s last row indicates mean values. Here we can ob-
serve a clear trend. For mixes where xvoc was not at-
tenuated (-0 dB), both TB-A and F0-M yield average F-
measures (F = 0.80 and F = 0.87) clearly above the
baseline BL (F = 0.39). For this mixing condition, F0-M
outperforms our template-based approach. However, recall
that F0-M constitutes an upper bound on the performance
of F0-based vibrato detection approaches. Automating the
vibrato detection step may therefore result in lower scores.

For mixes where xvoc was attenuated by -5 dB, the av-
erage F-measure of TB-A only slightly decreases to F =
0.77, while the performance of F0-M drops to F = 0.76.
This tendency becomes even more extreme when consider-
ing vocal signals attenuated by -10 dB where TB-A’s per-
formance stays almost constant (F = 0.76) while F0-M’s
average F-measure goes down to F = 0.25, many of the
individual items scoring F-measures of zero.

The reason for this trend becomes obvious when inves-
tigating individual items. Figure 5 depicts the vibrato de-
tection results of both TB-A and F0-M in all mixing con-
ditions for the item Leaf—Full. In the condition -0 dB,
the results of TB-A (Figure 5a) and F0-M (Figure 5b)
coincide well with the ground truth (Figure 5c), leading
to high F-measures (F = 0.84 and F = 0.86). Here,
our template-based analysis approach detects most of the
spectro-temporal vibrato patterns in the signal’s spectro-
gram (time-frequency bins where the vibrato salience ex-
ceeds the threshold τ are indicated in red in Figure 5a).
F0-M also achieves a good result since the F0-trajectory
extracted by MELODIA (indicated in blue in Figure 5b)
captures the singing voice’s fundamental frequency well
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Figure 5. Comparison of TB-A and F0-M for the item
Leaf—Full. (a): TB-A. Automatically derived vibrato pas-
sages are indicated in red. (b): F0-M. Manually annotated
vibrato passages in the trajectory are indicated in blue.
(c): Ground truth annotation.

in this mix. However, this changes when attenuating the
vocal signal by -5 dB. While TB-A still identifies many
vibrato patterns, therefore detecting the vibrato present in
the mix (F = 0.74), the F0-estimation becomes problem-
atic and MELODIA retrieves only a small segment of the
singing voice’s F0-trajectory correctly, leading to a poor
vibrato detection (F = 0.29). When attenuating xvoc
by -10 dB, the F0-trajectory’s estimation fails completely
(F = 0.00) since MELODIA’s assumption of a predom-
inant melodic voice is violated. On the other hand, our
proposed detection procedure is capable of detecting the
vibrato in the mix.

As a final remark, note that our proposed approach also
succeeds to recognize that the item Funny Valentines—
Sleigh Ride does not contain any vibrato at all.

3.2 Evaluation: Vibrato Analysis

As we have seen in the previous section, the vibrato
salience spectrogram S can be used to determine when vi-
brato is present in a music signal. Additionally, when com-
puting S, we also implicitly obtain information about the
vibrato’s parameters. The rate and extent of vibrato present
in the music signal are encoded by the similarity maximiz-
ing vibrato templates T in Equation (6). In Figure 6a, we
see the log-frequency spectrogram of a mixture of piano
music (no vibrato) and three consecutive artificial vibrato
tones. The tones have vibrato rates of seven, five, and ten
Hertz and extents of 40, 200, and 70 cents, respectively.
Time-frequency bins where the vibrato salience exceeds
τ are indicated in red. Note that for this experiment we
used a much larger template set T , consisting of 285 tem-
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Figure 6. Vibrato rate and extent analysis. (a): Log-
frequency spectrogram. Time-frequency bins (m, k) with
S(m, k) > τ are indicated in red. (b)/(c): Vibrato rate and
extent of the template T with the highest vibrato salience
per frame.

plates that reflected vibrato rates from four to eleven Hertz
in steps of 0.5 Hertz, as well as extents from 30 to 210 cents
in steps of 10 cents. Figures 6b/c indicate the vibrato rate
and extent of the vibrato template T that maximized the
vibrato salience per frame. The two plots correctly reflect
the tones’ vibrato rates and extents, while showing only a
few outliers. Note that values in the plots are quantized
since our approach can only give estimates for rates and
extents as they are reflected by one of the templates in T .
This kind of vibrato analysis could be helpful in scenarios
like informed instrument identification when it is known
that different instruments in a music signal perform with
different vibrato rates or extents.

3.3 Challenges

In general, our proposed procedure yields useful analysis
results for the music examples discussed in the previous
sections. We now want to discuss a few difficult examples.

One potential source for incorrect analysis results are
false positives as visualized in Figure 7a, which shows
a log-frequency spectrogram excerpt of Sunshine Garcia
Band—For I Am The Moon from our dataset. In this ex-
cerpt, one of our vibrato templates T is similar enough
(with respect to our similarity measure) to a non-vibrato
spectro-temporal pattern to yield vibrato salience values
above the threshold τ . This could cause incorrect vibrato
detection results or meaningless vibrato parametrizations.
However, we experienced such spurious template matches
to often occur in an isolated fashion. Here, one could ex-
ploit additional cues such as multiple template matches at
the same time instance due to overtone structures of instru-
ments to reinforce the vibrato analysis’ results.
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Figure 7. Error sources for our template-based vibrato
analysis. (a): Spurious template matches. (b): Vibrato
does not have a sinusoidal form.

The opposite situation is visualized in Figure 7b. It
shows a log-frequency spectrogram excerpt of “Gute
Nacht”, a song from Schubert’s “Winterreise” for piano
and tenor. In this excerpt, the singer sings a long note with
strong vibrato. However, although there is a template re-
flecting an appropriate vibrato rate and extent in our tem-
plate set T , the vibrato is not detected by our procedure.
This is the case since by our vibrato template’s design—as
described in Section 2.2—we generally assumed vibrato to
have a sinusoidal spectro-temporal structure. This assump-
tion is violated in the shown vibrato pattern. However, our
approach is conceptually not limited to sinusoidal vibrato
templates and one could further improve the templates’ de-
sign in order to also capture these kind of vibrato patterns.

4. CONCLUSIONS AND FUTURE WORK

In this paper we presented a novel approach for analyzing
vibrato in complex music signals. By locally comparing a
signal’s spectrogram with a set of predefined vibrato tem-
plates, we derived a vibrato salience spectrogram—a kind
of mid-level feature representation—in order to locate and
parameterize spectro-temporal vibrato patterns. Our ap-
proach has the advantage that the analysis does not rely on
the estimation of a (possibly erroneous) F0-trajectory. Ex-
periments indicated that our proposed procedure allows for
a more robust vibrato detection than F0-based approaches,
in particular for complex music signals.

In future work we would like to further explore the use
of vibrato templates in various application scenarios. For
example, deriving spectral masks from the vibrato salience
spectrogram S could open up novel ways of decomposing
a music signal into vibrato and non-vibrato components.
Furthermore, we believe that the use of vibrato templates
could be beneficial for tasks like F0-tracking [14, 19] or
performance analysis [1].
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