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ABSTRACT 

High Efficiency Video Coding is the latest and most advanced 

video coding standard. It supports various group of pictures (GOP) 

sizes and types such as low delay and random access. The size of 

the GOP substantially influences the temporal coding process. 

Therefore, a suitable GOP selection strategy can have a significant 

impact in the compression efficiency. In this paper, a strategy for 

GOP selection is proposed. It is derived from a new, low complexi-

ty measure of the temporal “steadiness” in the video content. Con-

trasting conventional approaches the proposed technique does not 

relies on previous estimation of motion vectors or motion infor-

mation in the video sequence. As such, it can be used for automat-

ed encoding parameter optimization at the start of the coding pro-

cess. The proposed technique leads to improved encoding efficien-

cy at a negligible computational cost, when compared with the 

standard coding settings. A comprehensive experimental evalua-

tion confirm that on average -6.69%, BD-rate gain and 14.18% 

time savings can be achieved. 

Index Terms— High Efficiency Video Coding, Group of Pic-

tures. 

1. INTRODUCTION 

The High Efficiency Video Coding (HEVC) standard [1], was 

ratified in January 2013. HEVC represents the latest generation of 

video compression standard achieving high compression efficiency 

to address the growing demand for high and Ultra-High definition 

video content [2]. HEVC reportedly achieves 50% higher coding 

compression efficiency over its predecessor H.264/MPEG4 Ad-

vanced Video Coding (AVC) [3] at equal perceptual visual quality 

level [4]. Similar to its predecessors, the HEVC encoder works by 

categorizing the pictures in a video sequence into three coding 

types, Intra, denoted as I frames, inter Predicted, denoted as P and 

Bi-directionally inter predicted, denoted as B. Each frame is pro-

cessed using a 2-D decorrelation transform followed by quantiza-

tion and entropy coding. This process is also known as a hybrid 

approach and it has been in use since the inception of video coding 

standardizations, e.g., MPEG1 and H.261 [1]. In parallel to the 

development of the standard, a reference software has been imple-

mented too. It is referred to as the HEVC Test Model (HM).  

The HEVC standard encodes slices in a sequence by dividing 

them into group of pictures (GOPs). The size of GOPs can be set 

as an encoding parameters before starting encoding process. Usual-

ly, the number of frames in a GOP represents a hard-limit for the 

delay at the decoder side, as typically all frames in the GOP need 

to be decoded before they can be displayed. HEVC was designed 

to support variable GOP size. This means that a bitstream formed 

of GOPs of different sizes is perfectly standard-compliant and 

decodable by a conventional HEVC decoder. Since, different GOP 

sizes undoubtedly leads to different coding performances in terms 

of bit rate gains and complexity, an optimal setting of the GOP 

size, leads to significant performance gains. Unfortunately, it is 

impossible to predict the best GOP size for a given video sequence 

without prior analysis or knowledge of the video content. There-

fore, developing techniques for pre-processing and automatic op-

timization of this critical encoding parameter is critical for im-

proved coding efficiency and performance gains. Further, observe 

that many typical HEVC encoder implementations assume a fixed 

GOP size for the encoding of the entire sequence. 

To the best of our knowledge, there is no reported study in the 

literature on GOP selection for HEVC. However, there are a good 

number of reported studies for GOP size selection on previous 

video coding standards. Ascenso et al. [5] proposed a method to 

select the GOP size based on Hierarchical Clustering, which uses 

block statistics. Charles et al. [6] proposed a method to select the 

GOP size based on Return Channel Suppression in Wyner-Ziv 

Video Coding, which uses rate-distortion cost to select GOP size. 

Zatt et al. [7] proposed a method to select the GOP size based on 

the video content for efficient H.264/AVC encoding, which uses 

two dimensional entropy and pixel dissimilarity to detect scene 

change then select the GOP size that will fit within the scene. Jun-

Ren et al. [8] proposed a method to select the GOP size using mo-

tion vectors and residuals to detect the scene changes and select the 

GOP size accordingly. These works assume that information about 

the motion activity or motion vectors is available.  

In this paper, an algorithm is proposed for improved GOP se-

lection without prior knowledge or estimation of motion vectors or 

motion activity in the scene. The proposed technique is based on 

inter-frame analysis of texture changes by encoding texture infor-

mation into a single descriptor and measuring the perceived lack or 

amount of changes in this information from frame to frame. Thus, 

the proposed technique does not rely on previous estimation of 

motion vectors or motion information and can be used for auto-

mated encoding parameter optimization at the start of the coding 

process. In this paper, we call this perceived inter-frame lack of 

texture or information changes as “steadiness”. The proposed 

technique leads to improved encoding efficiency, when compared 

with the standard coding settings. The analysis conducted in this 

work also include subjective classification of the testing corpus 

according to the perceived motion activity and its use to assess the 

performance of the proposed temporal steadiness as a measure to 

derive the optimum GOP size for improved coding. 

 

2. BACKGROUND 

    During the development of the HEVC standard common test 

conditions (CTC) were devised, under which encoders should be 

tested to enable a fair comparison between different approaches. 

Among these conditions, several GOP structures are defined typi-

cally referred to as profiles. CTC define the following profiles: 

All Intra (AI): Each frame is encoded as I frame. Because no inter 

picture prediction is used, it is suitable for higher bit rate applica-



tions. The quantization parameter (QP) offset is set to 0 and kept 

constant over the whole sequence 

Random Access (RA): A hierarchical B structure is used. The 

coding efficiency achieved by the bidirectional hierarchical predic-

tion structure is higher than the other configurations. It has howev-

er a larger delay due to the picture reordering.  

Low Delay P picture (LDP): The first frame is encoded as I frame 

and the subsequent frames are encoded as P frames. Since reorder-

ing of frames is not allowed and only past frames are used for pre-

diction, the coding delay in this configuration is very small. 

Low Delay B picture (LDB): The first frame is encoded as I 

frame and subsequent frame are encoded as B frame. Moreover, 

since past I and B frame are used for prediction, a low coding de-

lay, similar to LDP, but with higher coding efficiency (because of 

bi-prediction) is achieved. 

    Each profile includes a GOP table, namely a set of rules defining 

the GOP size, structure and the QP values to encode each frame in 

the GOP, and the reference picture set to use for each of the frames 

in the GOP. The QP is computed by means of a QP offset value as 

well as the slice type (I, P or B) and its temporal ID. 

 

3. IMROVED AUTOMATED GOP SELECTION 

For this study, a corpus of 42 video sequences of 1080x720 resolu-

tions and different degrees of inter-frame activity was used. This is 

a fairly large corpus, when compared with standard data sets for 

testing video coding technology. The aim is to ensure that a good 

variety of videos is assessed to derive statistically significant con-

clusions. The corpus was first subjectively (or manually) classified, 

and then encoded with five different GOP types. The standard 

Bjøntegaard model is used to calculate the coding efficiency by 

calculating the Bjøntegaard-Delta bit-rate (BD-BR) and using it to 

confirm the subjective classification of the videos according to the 

perceived steadiness and to benchmark the proposed approach.  

3.1. Subjective classification 

The subjective classification of the video sequences according to 

their inter-frame activity was performed as follows. The corpus 

was first divided into two groups: “single” and “multi-scene” video 

sequences. Single scene sequences have a single continuous cam-

era view shot, whereas multi scene has more than one camera view 

and scene changes. Next, each one of these two groups were divid-

ed into two sub-groups according to subjectively perceived amount 

of local motion. Sequences that have visually noticeable change of 

information were classified as “active”. For example, when both 

background and foreground of the video change or small object 

move fast. On the other hand, a sequence where only a portion of 

the frame has visually noticeable changes was classified as “static”, 

e.g., when at least on average 50 percentage of the frame is static 

and the other part of the scene has small local or global activity. 

Each of these four sub groups is further divided into high (H), 

medium (M) and low (L) classes by visually estimating the average 

amount of changes throughout the sequence. For example, a sin-

gle-active video with a fast moving objects from the start to end, it 

is grouped in the H-single-active category. If it only has fast mov-

ing for around a quarter of its length and then it displays slow 

moving object, then it is classified as L-single-active. The remain-

ing videos are classified as M-single-active. The final subjective 

classification leads to a total of 12 different groups. Table I shows 

the classification of all the 42 videos according to this subjective 

assessment. 

3.2. Steadiness analysis of video sequences 

The MPEG-7 Homogeneous Texture Descriptor (HTD) was select-

ed as basis for the proposed steadiness measure. HTD is known to 

have good discriminative properties encapsulating well texture 

information form small areas in a video frame. As described in [9] 

and [10], first the mean (fav) and standard deviation (fsd) of all luma 

samples are computed. Subsequently, the frame is transformed 

using Fourier transform and expressed in the polar coordinates. 

After that, Gabor filter is applied to strengthen the image direction-

al information. The outcome of Gabor filter is denoted as             

Hi (ω, θ) = Gsr (ω, θ) × F(ω, θ), where i is the number of sub 

bands generated by dividing the frequency domain, i∈ {1, 2... 30}. 

Finally, 30 energy coefficients [e1, e2... e30] and 30 energy 

deviations [d1, d2... d30] are computed. The HTD of a given block 

in a frame is computed as a 62-component feature vector: 

HTD = [fav, fsd, e1, e2... e30, d1, d2... d30].  

The similarity between two feature vectors HTDi and HTDj is 

usually computed using the distance (1) below. Here, α is a weight 

value to compensate scale differences between HTD components. 

 
(1) 

Observe that (1) is a combination of continuous L1 and L2 

norms and it has been confirmed to achieve good discrimination 

power when comparing two blocks in two images or for judging 

image similarity in visual information retrieval. In our application, 

we need to divide each frame in small blocks of fix size and extract 

the HTD descriptor for each block. To measure the steadiness be-

tween two consecutive frames we split each frame into blocks of 

small size and then we estimate the difference between two blocks 

in two consecutive frames at the same position. Since we need a 

single value for the steadiness of the whole block, we add up all 

the resulting differences over the whole frame. The results of this 

process using (1) lead us to conclude that it fails to provide a good 

measure for the target steadiness in video sequences.  

 
Fig. 1: Plots for “steadiness” of few selected sequences using (1). 

The main reason for this is the fact that we are interested on 

measuring steadiness over the whole frame at once, regardless the 

intensity of steadiness in isolated or large image regions. Basically, 

(1) provides a high granularity measure, while we need a more 

Coarse metric. As a simple example, let’s assume we have an im-

age of dimension 1280x1280, which is split into 100 blocks of 

dimension 128x128. If just 10% of the image, i.e., 10 blocks, have 

extreme large HTD differences L according to (1), while the re-

maining 90 block are completely steady, then the overall steadiness 



measure will be 10L. On the other hand, a different video may 

have random motion activity everywhere, giving HTD differences 

smaller than (but close to) L/10 for each block. This would be still 

a reasonable large amount of activity but in this case it appears 

everywhere in the frame. Here, the overall steadiness will be meas-

ured as smaller than 10L. Clearly, this result is completely wrong 

since we want the first case to show higher steadiness than the 

second case. This analysis has been cemented with a thorough 

experimental evaluation, which rules out the use of (1) to measure 

steadiness in the sense addressed in this work. Fig. 1 displays 

“steadiness plots” using (1) for six different sequences. Here, the 

optimum GOP size is given in brackets after the sequence name. 

Clearly, these GOP sizes mix randomly and obviously, it is impos-

sible to discriminate them using this measure. 

Following the previous analysis, a different measure was de-

rived. To allow for variable granularity the HTD vector values are 

first normalized: 

CQ=(C - Cmin)/( Cmax - Cmin)QL 

where CQ is the normalized vector value, QL is a fixed scaling 

or quantization factor, C is the original vector value, Cmin and Cmax 

are minimum and maximum vector values. Next, CQ is further 

quantized by rounding it to the next integer value. Thus, the final 

normalized and quantized HTD vector values are given as: 

ĈQ = round (CQ) (2) 

Using (2), we obtain Ĥ = (ĈQ1, ĈQ2 … ĈQ62). To measure the 

steadiness between two consecutive frames we split each frame 

into blocks of size 128x128. For each block, the Ĥ vector is calcu-

lated. Then, the difference between two blocks, Bi and Bj, in two 

consecutive frames and at the same position is estimated using: 

D(Bi, Bj) = VL - d(Ĥi, Ĥj), (3) 

where VL is the length of the vector, i.e., 62, and d represents 

the Hamming Distance between the two vectors Ĥi and Ĥj. Observe 

that (3) is a sort of “inverted” Hamming distance in which the ze-

ros (rather than the non-zeros) are counted.  

Finally, for two consecutive frames, the values of (3) in each 

block are summed up. The resulting value Z, as given by (4), is 

then regarded as a measure for the steadiness of the underlying 

subsequent frames. Here, n is total number of blocks in the frame. 

In the sequel we call the values Z given in (4) as “zero-counts”.  

 

(4) 

3.3. Automated GOP Selection Using Steadiness 

Using the results of (4) and comprehensive empirical observations 

of the behavior of this measure over the whole test corpus, an au-

tomatic strategy for optimal GOP selection was derived. This strat-

egy is based on a basic analysis of the behavior of the mean μ and 

variance σ2 of obtained zero-counts Z for all sequences in the test 

corpus. The first observation is that optimal GOPL4, GOP4 and 

GOP8 tends to cluster within the first quartile of all estimated 

means in the observation data, while GOP16 and GOP32 tend to 

cluster above the first quartile. Therefore, assuming that λ is the 

point of separation between the first 25% of data then: if μ < λ then 

the optimal GOP size is with high probability GOPL4, GOP4 or 

GOP8. Otherwise, the optimal GOP size is with high probability 

GOP16 or GOP32. This empirical observation sets the first corner 

stone for the strategy for automated GOP selection. Furthermore, if 

we assume that the zero-counts obtained by (4) are normalized to 

the unit and the observed data obeys a uniform density function, 

then λ=0.25. Note that this critical assumption, i.e., that the mean 

of the zero-counts obey a uniform distribution, is reasonable, since 

for a given random video it is impossible to predict its correspond-

ing steadiness, without any prior analysis or knowledge on the 

actual video.  

   Another important aspect is that the means μ of the optimum 

zero-counts for GOPL4, GOP4, GOP8 and GOP16 distribute over 

intervals of same length but with GOPL4 and GOP4, as well as, 

GOP8 and GOP16 presenting significant overlaps. On the other 

hand, it appears that the corresponding variances significantly 

differ in each case and therefore σ2 can be used to better discrimi-

nate these four groups of GOPs. These observations lead to the 

strategy outlined below: 

Pseudo-algorithm for automatic GOP selection  

if (μ < λ/3) then GOPL4 

else if (μ < 2λ/3 ∧  σ2> ε) then GOP4 

else if (μ < λ  ∧  3σ2  [λ, 2λ]) then GOP8 

else if (μ < 4λ/3) then GOP16 

else if (μ >= 4λ/3) then GOP32 

else GOP8 

 

 

Here, the value of the parameter ε serves to separate GOPL4 

and GOP4. Observe that this separation is delicate since there is no 

clear relation between steadiness, or amount of local motion, and 

these two GOP sizes. However, empirical observations again led us 

to conclude that a very small number in the variance of the data σ2 

can be used to separate GOPL4 and GOP4. This number is set to 

ε=0.01 in the proposed algorithm assuming again that the zero-

counts are normalized to the unit.  

 
Fig. 2. Zero-count plots for few selected sequences. 

Finally, the GOP separation is completed by exploiting the condi-

tion 3σ2 [λ, 2λ], since in the majority of cases large GOPs exhibit 



large variances too. This last observation brings the final element 

needed to derive the proposed algorithm. 

 

4. RESULTS 

The proposed algorithm was implemented and tested using 

the HM code version 12.0 and the corpus of 42 HD test sets from 

JCT-VC, SVT, MoCA [11], Peach [12], and hdrsamples.com [13]. 

All tests run using 2.4 GHz Intel Westmere (E5645) machines with 

24 GB of RAM. The experiments were performed according to the 

JCT-VC CTC [14]. Results are presented in terms of luma BD-

rates, where negative BD-rate values represent efficiency gain with 

respect to the anchors and positive time saving values represent 

speed-up gain with respect to the anchor. All the video sequences 

were encoded with four different QP values (22, 27, 32, and 37) 

and for five different GOP types, namely low delay 4, random 

access 4, 8, 16, and 32. The BD-rate was calculated using PSNR 

value of the luma components of each four GOP types except ran-

dom access 8 (RA8). RA8 was used as an anchor against all others 

to calculate the BD-rates differences against this anchor. 

In addition, the total encoding time was computed for each of 

the 4 tested QPs according to the formula ΔTi= ((TA-TM)/TA)100, 

where TA denotes the total encoding time for the anchor setting 

(RA8) and TM denotes the total encoding time for the alternative 

testes setting. Finally, the mean value of ΔTi for all 4 QP test points 

was computed to obtain the average encoding speed-up ΔT. It is 

important to note that the IP values for the performed test are set as 

follows:  IP value 32 for video sequences with frame rates 24, 25 

and 30. IP value 64 for video sequences with frame rates 50 or 60. 

The proposed HTD based algorithm produces the average 
BD-rate gains of -6.69%, -15.22%, -14.36% for Y, U and V com-

ponents respectively, and time savings of 14.18% (see Table I). It 

is important to note that the above time saving value includes the 

HTD processing time of 160 frames of the corpus. This was calcu-

lated by running RA-Main 8 with HTD processing enabled to pro-

cesses fist 160 frames only. Then, encoding time for RA-Main 8 

with HTD was subtracted from encoding time for RA-Main 8 only 

to obtain the difference, which corresponds, to the HTD processing 

overhead. Finally, these times were added to the encoding times 

for different GOP types. 

This proposed algorithm selects the optimal configuration in 

most of the cases, delivering substantial BD-rate gains while re-

ducing the computational cost. 

 

5. CONCLUSIONS 

 

The proposed method proves that selecting the GOP 

type for video sequence will improve the compression effi-

ciency of HEVC in terms of quality as well as speed. Even 

though, the proposed algorithm produced a significant gain 

in BD-rate and time saving, it is using fixed GOP type for 

the entire sequence by first analyzing it using HTD. Future 

work includes varying the GOP type within the video se-

quence to obtain even higher coding gains. 
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TABLE I.  PROPOSED METHOD RESULTS WITH 

SUBJECTIVE CLASSIFICATION AND THEIR HTD Z MEAN 

AND VARIANCE OF ALL THE TEST SEQUENCES. 
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H 
Riverbed 7.05 0.15 L4 -4.73 -23.46 

Tractor 12.58 2.42 4 -1.43 -0.42 

M 

BQTerrace 37.28 161.61 32 -6.3 30.1 

ParkJoy 17.99 24.48 16 -0.42 7.42 

ParkRun 69.84 2.80 32 -0.12 39.08 

Station 30.02 31.33 16 -3.43 -1.56 

BasketballDrive 18.24 16.22 8 0 -3.15 

Stockholm 74.09 0.58 32 -11.66 28.9 

Sunflower 18.67 46.23 16 -1.23 1.72 

BBB24 39.24 31.70 32 -13.76 21.14 

DucksTakeOff 24.03 18.43 16 5.12 8.5 

L 

ChristmasTree 29.14 3.88 16 -2.69 5.83 

CrowdRun 32.80 9.66 16 -0.14 7.36 

Mobcal 80.01 29.49 32 -8.33 27.11 

ParkScene 35.84 3.03 32 -9.19 19.99 

Walking 22.94 151.08 16 -2.54 6.05 

Wisley2 66.44 3.57 32 -11.79 32.38 

RushHour 21.07 2.72 16 -0.09 -1.05 

Flamingo 37.84 12.99 32 -4.58 12.98 

S
ta

ti
c 

H Cactus 42.36 3.33 32 -4.18 27.04 

M 

FourPeople 83.87 2.27 32 -12.22 19.91 

Meerkat 43.60 76.84 32 -4.98 20.9 

Vidyo4 81.86 4.46 32 -12.51 19.87 

Train 56.84 191.39 32 -5.92 21.16 

Highway 59.91 58.48 32 -10.51 16.44 

L 

KristenAndSara 82.52 3.39 32 -10.41 18.44 

Vidyo1 85.48 2.38 32 -11.13 18.62 

Johnny 84.47 3.59 32 -10.77 18.14 

Vidyo3 86.74 9.20 32 -10.35 17.4 

M
u

lt
i-

sc
en

e A
ct

iv
e
 H 

LoP1 40.38 15.80 32 -3.64 27.06 

LoP2 32.78 26.38 16 -2.68 10.15 

LoP3 24.07 19.40 16 -3.72 13.32 

Exodus1 23.78 34.59 16 0.01 2.69 

Tennis 10.27 60.49 4 -2.63 -0.07 

M Exodus3 47.29 118.83 32 0.93 20.39 

L 
BBB2 50.12 25.55 32 -19.83 19.65 

Kimono1 17.93 70.97 16 -0.71 1.66 

S
ta

ti
c 

H 
BBB10 52.32 459.15 32 -15.18 18.1 

Exodus2 52.63 113.54 32 -16.37 13.67 

M 
BBB5 88.09 55.11 32 -19.74 15.78 

BBB17 79.52 519.73 32 -21.08 14.82 

L BBB19 60.73 752.07 32 -6.11 21.67 

Average -6.69 14.18 

a. Zero in the BD and Timesaving means no gain against GOP8. 

b. BBB is Big Buck Bunny, an animated cartoon and number 2 

is second batch of 552 frames. 

c. Lop is Life of Pi draft is a movie trailer version and number 1 

is first batch of 395 frames. 
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