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Robust and Efficient Joint Alignment of Multiple
Musical Performances

Siying Wang, Student Member, IEEE, Sebastian Ewert, Member, IEEE, and Simon Dixon

Abstract—The goal of music alignment is to map each temporal
position in one version of a piece of music to the corresponding
positions in other versions of the same piece. Despite consider-
able improvements in recent years, state-of-the-art methods still
often fail to identify a correct alignment if versions differ sub-
stantially with respect to acoustic conditions or musical interpre-
tation. To increase the robustness for these cases, we exploit in
this work the availability of multiple versions of the piece to be
aligned. By processing these jointly, we can supply the alignment
process with additional examples of how a section might be inter-
preted or which acoustic conditions may arise. This way, we can
use alignment information between two versions transitively to sta-
bilize the alignment with a third version. Extending our previous
work [1], we present two such joint alignment methods, progressive
alignment and probabilistic profile, and discuss their fundamental
differences and similarities on an algorithmic level. Our system-
atic experiments using 376 recordings of 9 pieces demonstrate that
both methods can indeed improve the alignment accuracy and ro-
bustness over comparable pairwise methods. Further, we provide
an in-depth analysis of the behavior of both joint alignment meth-
ods, studying the influence of parameters such as the number of
performances available, comparing their computational costs, and
investigating further strategies to increase both.

Index Terms—Music synchronization, multiple sequence
alignment, performance analysis, robust music alignment.

I. INTRODUCTION

DURING the last decades alignment methods in various
forms have been of central importance for the analysis,

modeling and processing of digital music recordings. By estab-
lishing links between similar sections across different recordings
or representations of music, alignment techniques enable a mul-
titude of applications, including automatic score following and
page turning [2], [3], facilitated navigation in large collections
[4], the identification of cover songs [5], query-by-example re-
trieval [6] and the integration of prior knowledge in audio source
separation [7].

In this paper, we focus in particular on the task of music
alignment, or synchronization, which is given a position in one
version of a piece of music, to locate the corresponding position
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Fig. 1. Alignment of two interpretations of Chopin Op. 24 No. 2, measures
52-57: (a) Score for the six measures. (b)/(c) CENS features (a variant of
chroma features proposed in [27]) for an interpretation by Luisada and Richter,
respectively. (d) Alignment results for the pairwise (blue), proposed progres-
sive alignment (black) and profile HMM (green); ground truth are given as
corresponding beat positions from the two versions (red).

in another version. In this context, various alignment methods
have been proposed, including Dynamic Time Warping (DTW)
[8], Hidden Markov and Semi-Markov Models (HMM) [9],
Conditional Random Fields (CRF) [10], general graphical mod-
els [11], and Particle Filter/Monte-Carlo Sampling (MCS) based
methods [3], [12]. As shown in previous studies, current meth-
ods based on such synchronization strategies yield alignments
of high accuracy in many cases [10], [13], [14]. However, a mu-
sician can interpret a piece in diverse ways, which can lead to
significant local differences between versions in terms of articu-
lation and note lengths, ornamental notes (grace notes, trills), or
the relative loudness of notes (balance). Additionally, substan-
tial differences in the acoustic environment, instrumentation
and recording conditions can reduce the alignment accuracy of
state-of-the-art methods drastically.

To improve the alignment accuracy for such difficult cases, a
recently presented concept exploits the fact that in many cases
not only two but multiple versions of a piece are available [1].
This is the case, for example, in comparative performance anal-
ysis [15]–[17] and expressivity studies [18], in music production
where corresponding audio takes need to be aligned [19], when
coordinating user-generated videos of a concert [20] or gen-
erating ground-truth for large scale distance learning [21]. If
multiple versions are indeed available, the idea is to align them
in a joint way, which facilitates the synchronization process
as every additional version presents another example of how a
musician can realize a section of a piece or which acoustic con-
ditions might prevail in a recording. Fig. 1 shows a real-world
example of a pair-wise method failing to compute a correct
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alignment between two recordings of Chopin’s Op. 24 No. 2.
Chroma features (see [22], [23] for a detailed description) for
both recordings shown in Fig. 1(b) and (c) reveal acoustical
(more noise in the C� and D chroma bands in Fig. 1(c)) and
musical differences (more pronounced staccato on the E and G
notes in Fig. 1(b)). Since the piece shows a repetitive pattern
on the chroma level, such differencescause a pairwise method
[13] to compute an incorrect alignment between the two ver-
sions. The results are shown in Fig. 1(d) as a gray alignment
path, which encodes corresponding positions between the two
recordings as computed by the method—note how the path de-
viates from the correct positions between 57.5–61.5 seconds (in
the timeline of Luisada’s version). However, as we will see, in-
cluding several recordings in a joint alignment process can lead
to a considerable increase in overall robustness and alignment
accuracy. For now, we only indicate this improvement showing
two additional paths (dashed and dotted) in Fig. 1(d) that were
computed using our joint alignment methods.

In general, a joint synchronization of music recordings can
be considered as an instance of the multiple sequence alignment
problem, a task well-studied in bio-informatics [24], [25]. In
this context, the approach presented in [1] belongs to the class
of progressive alignment (PA) methods. A second class used
in bioinformatics is commonly referred to as probabilistic pro-
file (PP) methods. As discussed in more detail below, methods
from both classes typically share specific algorithmic roots, with
some conceptual differences in the internal representation of the
sequences to be aligned. In particular, PA methods typically em-
ploy a more greedy, quickly converging approach compared to
PP methods, which often leads to a considerably higher com-
putational efficiency for the former. However, as reported in
[26], PP methods were found to yield a higher alignment accu-
racy in some bioinformatics tasks. Music recordings, however,
have properties quite different from protein sequences. First,
we do not consider structural differences between performances
(e.g. a section being left out in one version), which is in stark
contrast to biological sequences where such fundamental dif-
ferences are common. Second, music recordings change more
slowly over time leading to a high temporal correlation between
neighboring sequence elements, which again is quite different
from protein sequences. Due to these differences, it is inter-
esting to test whether a higher alignment accuracy can also be
achieved in a musical context using PP methods and how the
two methods differ in behavior in such a scenario.

As a first main contribution of this paper, we compare the
method presented in our previous work [1] with a PP method
we develop for application to music. We conduct systematic
experiments to identify their conceptual advantages and disad-
vantages in different scenarios. To increase the comparability
between the two approaches, we employ the same feature types
and configurations in both cases. As a second main contribution,
we provide additional insights into the behavior of each joint
alignment method by illustrating the influence of individual pa-
rameters with associated detailed experiments, and describe ex-
tensions to accelerate the PP method and improve the alignment
accuracy of the PA method.

The paper is organized as follows. We discuss related
work in Section II. Technical details of the two proposed

methods are described in Section III, followed by a system-
atic comparison in Section IV. In Section V, we report on
the results of our in-depth investigations of the two meth-
ods. Conclusions and discussions of future work are given in
Section VI.

II. RELATED WORK

Music synchronization has been an active research topic for
several decades. Early approaches [28], [29] are based on string
matching algorithms, that were used to align a symbolic music
representation, e.g. MIDI, with a given score. Since the 1990s,
the increase in computing power enabled the processing of audio
signals, and efforts have shifted towards robust feature repre-
sentations and suitable alignment methods for aligning audio
recordings. For the feature representation, a major aim is to find
an optimal, application-specific trade-off between the level of
detail preserved in a feature and its robustness against noise
and other musically irrelevant signal properties. In this context,
low-level spectral representations have been used [30]–[32] as
well as musically meaningful representations, especially pitch
and chroma features [27], [33], [34]. More recently, it was found
that accompanying such representations with features indicating
onset positions can be used to improve the alignment accuracy
[10], [13]. Other more recent developments are adaptive or learnt
feature representations [21], [34]–[36].

Once a common feature representation is chosen, the feature
sequences are aligned using a suitable method. While there are
many possible ways to classify methods, the most distinctive
differences can be found between offline and online/realtime
methods. In particular, almost all offline methods are based on
dynamic programming (DP). For example, techniques based
on DTW aim at finding an alignment minimizing the dissim-
ilarity between features assigned to each other—effectively a
constrained optimization problem that can be solved using DP
[37], [38]. Early examples of such methods exist which use
low-level [30] and mid-level [33] features.

Interpreting the synchronization problem as a latent state es-
timation problem leads to Hidden Markov Models (HMMs) in
their various forms [9], [32], [34], [39], [40]. Such models have
been particularly popular in score-to-audio alignment tasks, as
here each state intuitively corresponds to a note or a constella-
tion of concurrent notes as specified by the score, while other
assumptions about the music can be captured in higher-level
HMM structures. For examples, high-level states might encode
the current tempo [11], or each note-state can be subdivided
into attack-decay-release sub-states (or similar temporal evolu-
tions). Such high level structures lead to hierarchical HMMs
and semi-Markov graphical models, or generalizations thereof
such as Dynamic Bayesian Networks [32], [41]. It should be
noted that many of these more advanced models can still be rep-
resented as a standard HMM. Recently, CRFs have been used
for music synchronization [10]. As an advantage, CRFs loosen
several limitations of HMM-based methods in contrast to more
general DP methods, e.g. DTW. In particular, their use of so-
called feature-functions generalizes the notion of observation
probability and thus enables measuring distances between fea-
tures in a more general way than HMMs allow.



2134 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 11, NOVEMBER 2016

Several strategies have been proposed to lower the compu-
tational costs for techniques based on DP. In [42], [43], first
a rough alignment is computed on a low temporal resolution,
which is then used to constrain the alignment process at higher
resolutions—effectively a path pruning technique suitable for
offline methods. Many other techniques not only accelerate but
enable a method to align sequences online or in real-time. For
example, the method presented in [14] employs a greedy, lo-
cally optimal forward path estimation algorithm to constrain
the alignment path, while [44] employs a windowed variant of
DTW integrating ideas of the A∗ algorithm [45] to DP. Such
methods are combined in [2] with an indexing system to effi-
ciently establish a first, approximate score-to-audio positioning,
which is able to handle performances starting from arbitrary po-
sitions in a piece. Conceptually quite different from the above are
state-space methods, where states such as position or tempo are
elements of a continuous space. Transitions between states are
modeled using transition functions that, applied to the current
state, yield the next one [12]. Depending on specific properties
of the sources of noise in the model, one typically uses parame-
ter estimation methods based on the Kalman filter, particle filter
or more general MCS methods.

Aligning multiple performances of a piece of music is a rel-
atively novel concept in music processing. A generative note
duration model is proposed in [46] by coupling the tempo
curve from different audio performances. The method in [47]
uses multiple performances to improve the accuracy in an on-
line score-following application by computing several pairwise
alignments in parallel. Further, in [48] the authors align multiple
symbolic sequences for harmonic and motivic analysis.

In some sense, our idea of using multiple versions to im-
prove the performance of music alignment is similar to the
co-segmentation problem in computer vision, where the seg-
mentation accuracy can often be improved by supplying the
algorithm with additional images that share certain foreground
characteristics with a given image and segmenting them jointly
[49]. More directly relevant to our work, however, are multiple
sequence alignment methods, which have been of central im-
portance to many developments in bioinformatics. For example,
the MAFFT [50] and CLUSTAL [51] families of algorithms
have been in development for almost three decades. While a
lot of the functionality in such packages is highly specific to
the alignment of protein sequences, we can extract some central
ideas and adapt them suitably, taking music specific properties
into account. In the next section we describe two such adapted
methods: progressive and profile-based alignment and discuss
some conceptual differences between them.

III. METHODS FOR JOINT MUSIC ALIGNMENT

In theory, it is straightforward to extend many DP techniques
to multiple dimensions so that several sequences can be aligned
jointly. For example, this has been demonstrated in the context
of gesture recognition [52] and multi-modal speech recognition
[53]. However, assuming that each sequence to be aligned is
roughly of length N , the time and memory requirement to align
K versions is O(NK ), which limits K to very small values in

practice. Path pruning techniques can be used to mitigate such
problems for small values of K [54], but in general for large K,
it can be very difficult to lower the computational costs enough
to become practically feasible and find accurate alignments at
the same time.

A different strategy is to successively build up a data structure
representing an average sequence or central consensus against
which all given sequences can be aligned. By constructing this
consensus form, we can incorporate information from every
single recording such that the overall alignment becomes easier
(as the influence of outlier information can be reduced) and
therefore becomes more accurate and robust. In the following,
we present two conceptually different methods for computing
such a central consensus in a music synchronization scenario.
The differences include how the central consensus is represented
(keeping all information in contrast to averaging some) and how
it is built up (early versus late updates). Both of these affect the
resulting alignment accuracy and computational performance,
as we discuss in more detail below.

A. Progressive Alignment

Our first method can be regarded as a member of the family of
PA algorithms in the context of bioinformatics [50]. As not all
of its steps are directly interpretable from a probabilistic point
of view, we present the method as a general DP approach. The
idea is, instead of simultaneously aligning all feature sequences,
to successively add the sequences to a data structure referred
to as the template. The template comprises a set of feature
sequences that are aligned to each other, stretched in length to
have the same size—as we will see, this enables efficient access
to aligned sequence elements. After computing an alignment
between a new sequence and the template at each step, the
sequence is added using the alignment information to stretch
both the template and the sequence to have the same size. This is
repeated until all sequences are contained in the template, which
allows for efficiently deriving pairwise alignments between any
two sequences.

To describe the alignment procedure in more detail, we as-
sume that we have K different versions of a piece and that
their feature sequences are denoted by Xk = (xk

1 , . . . , xk
Nk

)
with k ∈[1 : K] and xk

n ∈ F , where F denotes a suitable fea-
ture space. Further, we refer to our template data structure as
Z, which we initialize to X1 . As part of the alignment process,
we align the remaining feature sequences X2 , . . . , XK succes-
sively to Z, updating Z after each step. To this end, let Xk

denote the sequence to be aligned and Z = (z1 , . . . , zM ) the
current template of length M . Each zm ∈ (F ∪ {G})k−1 con-
tains k − 1 feature vectors or gap symbols G, and we denote the
individual components by z1

m , . . . , zk−1
m ∈ F ∪ {G}. The idea

behind the gap symbol will be discussed below. Further, to sim-
plify the notation later, we denote the sequence (zr

1 , . . . , zr
M ) by

Zr for r ∈ 1, . . . , k − 1.
An alignment between Z and Xk is defined as a sequence

p = (p1 , . . . , pL ) with p� = (m�, n�) ∈ [1 : M ]×[1 : Nk ] for
� ∈ [1 : L] satisfying 1 = m1 ≤ m2 ≤ . . . ≤ mL = M and
1 = n1 ≤ n2 ≤ . . . ≤ nL = Nk (boundary and monotonicity
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conditions), as well as p�+1 − p� ∈ {(1, 1), (1, 0), (0, 1)} (step
size condition). To compute an alignment p between Z and Xk ,
we first define a dissimilarity measure for individual elements
from Z and Xk . More precisely, we compute a cost matrix
Cr ∈ RM ×Nk comparing each pair of elements in Zr and Xk ,
by:

Cr (m,n) =

{
c(zr

m , xk
n ), zr

m �= G,

CG, zr
m = G,

where c : F × F → R is a suitable dissimilarity measure be-
tween feature vectors and CG > 0 is a constant referred to as
the gap penalty. By combining these individual cost matrices
Cr to a merged cost matrix C ∈ RM ×Nk , we obtain a dissim-
ilarity measure between every sequence element in Z and Xk .
A simple yet effective combination is averaging:

C(m,n) =
1

k − 1

k−1∑
r=1

Cr (m,n).

This process is illustrated with an example of aligning five
synthetic recordings in Fig. 2, where a template (Fig. 2(a))
containing four sequences of chroma-based vectors (with yel-
low entries indicating gap symbols) is aligned to a fifth se-
quence (Fig. 2(b)). The resulting four cost matrices C1 to C4

are shown in Fig. 2(c-f), using CG = 3 and a cosine distance
c(z, x) = 2 − 〈z ,x〉

‖z‖‖x‖ . The resulting merged cost matrix C is
shown in Fig. 2(g).

Note that we also tried other combination strategies, including
weighting schemes, taking the minimum over the individual cost
matrices or more general order statistics including the median
and other percentiles. We also tested using logistic regression to
learn a dissimilarity measure based on the individual cost matri-
ces to optimize for overall alignment accuracy. However, using
the same experimental setup as described in Section IV-A, re-
placing only the combination strategies, none of these strategies
yielded consistently better results than the averaging described
above.

Once a merged cost matrix is computed, we can apply DP
similar to DTW or Viterbi decoding to derive an alignment be-
tween Z and Xk . An alignment p having minimal total cost
among all possible alignments is called an optimal alignment.
To determine such an optimal alignment, we recursively com-
pute an accumulated cost matrix D of size (M × Nk ), where
the matrix entry D(m,n) contains the total cost of an optimal
alignment between (z1 , . . . , zm ) and (x1 , . . . , xn ):

D(m,n) := min

⎧⎪⎨
⎪⎩

D(m − 1, n − 1) + w1C(m,n),
D(m − 1, n) + w2C(m,n),
D(m,n − 1) + w3C(m,n),

for m,n > 1. Furthermore, D(m, 1) :=
∑m

k=1 w2C(k, 1) for
m > 1, D(1, n) :=

∑n
k=1 w3C(1, k) for n > 1, and D(1, 1) :=

C(1, 1). The weights (w1 , w2 , w3) ∈ R3
+ can be used to ad-

just the preference over the three step sizes. By tracking the
choice for the minimum starting from D(M,N) back to D(1, 1),
an optimal alignment can be derived in a straightforward way
[55], [56].

Once an alignment p is computed, we integrate Xk into Z.
To this end, we use p to stretch Z and Xk to the same length,
such that corresponding features are aligned and become part
of the same element of Z. There are several ways to define this
stretch. A first idea is to simply set

z̃� =
(
z1
m�

, . . . , zk−1
m�

, xk
n�

)
,

where Z̃ = (z̃1 , . . . , z̃L ) denotes the updated template and
p =

(
(m1 , n1), . . . , (mL, nL )

)
. This simple solution, however,

introduces a temporal uncertainty: if the step size (1, 0) or (0, 1)
is used in p, an element in Z or Xk is aligned to several elements
in the other sequence, respectively. Therefore, with this simple
update rule some elements of Z or Xk would occur several
times in Z̃ causing a temporal uncertainty, as features of the
next sequence can equally well be aligned against the original
or a copied feature in a template sequence.

Due to these issues, we now introduce a rule that replaces
copies of elements with a gap symbol. To this end, we first
define the terms

Ep
1 (m) := argmin

{ñ |(m,ñ)∈p}
C(m, ñ),

Ep
2 (n) := argmin

{m̃ |(m̃ ,n)∈p}
C(m̃, n).

If an element in one sequence is aligned to several in the other
sequence, we can use E1 and E2 to find the pair of elements
that has the lowest cost. With this we define our update rule as
follows:

z̃� =

⎧⎪⎨
⎪⎩

(z1
m�

, . . . , zk−1
m�

, xk
n�

), if (m�, n�) = Ep
1 (m�)=Ep

2 (n�)
(z1

m�
, . . . , zk−1

m�
,G), if (m�, n�) �= Ep

2 (n�)
(G, . . . , G, xk

n�
), if (m�, n�) �= Ep

1 (m�)

Intuitively, for the case that p aligns an element m of one
sequence to multiple elements of the second sequence, this up-
date rule uses C to select the best of these multiple elements
to align with m, and then the remaining elements are aligned
to new gap symbols. This contrasts with the simple rule where
the multiple elements would be aligned to copies of m. We will
investigate the importance of the gap symbol in Section V-B.
Also, the order in which feature sequences are aligned is crucial
to PA method, which will be discussed in Section V-C.

B. Probabilistic Profile

Another central class of multiple sequence alignment meth-
ods are PP methods. For these methods, the central consen-
sus data structure takes the form of a Hidden Markov Model
(HMM), in a specific configuration. In the following, we de-
scribe such a profile HMM which we adapt for the music syn-
chronization scenario, see also [24] for similar concepts as used
in bio-informatics.

The topology of our profile HMM is illustrated in Fig. 3. Over-
all, the model contains three different types of states: Match
states (M), Insert states (I) and Delete states (D). Intuitively,
the series of match states will encode the core of a consen-
sus sequence representing the commonalities among different
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Fig. 2. Aligning the fifth recording with the template of the first four recordings: we compare the feature sequence of the fifth recording (b) with each feature
sequence in the template (a: yellow blocks indicate the gaps) to obtain four cost matrices (c, d, e, f); we combine these cost matrices together into a single cost
matrix to compute the alignment (g: the ground truth onset position for the alignment between the fourth and the fifth recording is stretched according to the gap
inserted version of the fourth feature sequence, in order to be fitted onto the cost matrix between the template and the fifth recording). The resulting alignment path
between the fourth and fifth recordings is shown in (h).

Fig. 3. Topology of a Profile HMM [24].

recordings, while the insert and delete states are used to model
the temporal diversity. To find meaningful parameters for the
various probability distributions involved, each given sequence
is interpreted as a noisy observation of the consensus sequence
with insertions and deletions, and thus can be used to train the
model using a Baum–Welch procedure. Interpreted in this way,
it should be noted that the match states do not necessarily cor-
respond to musically meaningful events like specific chords or
note constellations as specified by a score.

To describe the model in more detail, we use the same notation
as above and assume K different versions of a piece with cor-
responding feature sequences denoted by Xk = (xk

1 , . . . , xk
Nk

)
for k ∈ [1 : K], where each xk

n ∈ F . Further, we assume a
general familiarity with HMMs and refer for details to [56].
To define the structure of the profile HMM, we first choose
the length L of model: The number of M and D states is L,
respectively, while there are L + 1 I-states, compare Fig. 3.
While L could simply be a constant (as often used in bio-
informatics), we obtained the best results by adapting L to the
length of the given feature sequences. More precisely, we set
L = median(N1 , . . . , NK ), which fixes the overall topology,
compare Fig. 3. Other choices we tested include the minimum,
maximum and twice the maximum instead of the median, but
those led to a lower overall alignment accuracy in our experi-

ments. From a generative point of view, we start from a non-
emitting Begin state. From there we can enter the first match
state and draw a feature vector according to the corresponding
observation probability. Since match states do not have self-
transitions, we either enter the second match state, enter the
first insert state or the second delete state. Insert states have self
transitions and thus can generate an arbitrary number of fea-
ture vectors according to their observation probability—useful
for modeling observation sequences that locally have a lower
tempo compared to the consensus sequence. Delete states are
non-emitting states and, since transitions between them are al-
lowed, can be used to skip an arbitrary number of match states—
useful for modeling observation sequences with a higher local
tempo. Note that by allowing direct jumps from a match state to
subsequent, non-neighboring match states, one could also model
deletions in a different way. The separate delete states, however,
are introduced to avoid the problem of specifying a maximal
length for such jumps and deletions. The possible transitions
are shown in Fig. 3.

To represent the observation probabilities of the match and
insert states, we use multinomial Gaussian distributions with
means μM

� , μI
� and covariance matrices σM

� , σI
� . A benefit of us-

ing a Gaussian distribution is that the parameters have a straight-
forward interpretation. In particular, the means are elements of
the feature space F and thus the sequence μM

1 , . . . , μM
L can be

interpreted as encoding our consensus feature sequence, while
the insert state means μI

1 , . . . , μ
I
L encode typical features we

additionally observe for recordings with a slow tempo. For the
covariances we use diagonal matrices, as otherwise we would
need to estimate a number of parameters for each state equal
to the square of the dimension of the feature space [56], and
we typically do not have enough feature sequences as training
material to do so reliably. Also, it is reasonable to assume that
the dimensions in the feature vector are roughly decorrelated in
the given data, and if not this could be done as a pre-processing
step. Note that instead of generating the observation model arti-
ficially from the score as the audio-score alignment task [32], we
learn our consensus feature sequence from the feature sequences
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of all the performances. Regarding the transition probabilities,
we only need to estimate a low number of parameters due to
the sparsely connected structure of the profile HMM: three for
each state (compare Fig. 3). Instead of fixing them to specific
values, we found that estimating them from data improved the
overall alignment accuracy. In particular, learnt from data, the
transition probabilities encode how likely the sequences are to
deviate from the consensus sequence locally, thus provide addi-
tional guidance during the alignment process.

Parameters of the model are estimated using expectation-
maximization (EM), i.e. the multiple sequence variant of the
Baum–Welch algorithm [56]. As in a music synchronization
scenario the number of available sequences is typically several
orders of magnitude smaller than in bioinformatics, the ini-
tialization strategy is crucial to avoid running into poor local
maxima of the objective, i.e. the likelihood function we try to
maximize using EM. We obtained the highest alignment accura-
cies as follows. We initialized the match and insert means using
the feature vectors of a sequence having length L (as chosen
above). Excluding that sequence from the training procedure
enabled the model to properly account for the other sequences
without overfitting the initializing sequence. Other strategies
to obtain a proper initialization led to lower alignment accu-
racies. For example, we tried random initializations as well as
resampling all sequences to the same length (corresponding to
a linear stretch), followed by averaging. The covariance matri-
ces were uniformly initialized to a fixed, relatively high value
as a measure to overcome over-fitting. Additionally, to avoid
the collapsing-Gaussian problem, we constrained the estimated
variances to a reasonable minimum [24]. The transition proba-
bilities were initialized uniformly, with the exception for match-
match and delete-insert transitions: the former are encouraged
and the latter discouraged. After training the profile HMM, we
compute alignments between the model and each sequence us-
ing the Viterbi algorithm. Pairwise alignments between any two
sequences can be derived using the model as a central interme-
diary. This last step is illustrated with an example of aligning the
same recordings also used in Fig. 2. We show the observation
probabilities (log-scaled) in Fig. 4(a) and (b) for two sequences
against a number of match states based on the trained profile
HMM. The optimal state sequence found via Viterbi decoding
for each sequence is illustrated as an alignment path in white
(alignments against non-match states are not directly visible in
the figure and the path is interpolated accordingly). Based on
the first alignment we can align a given feature vector in the
first sequence to states in the profile HMM, which then can be
aligned to feature vectors in the second sequence using the other
alignment. The resulting pairwise alignment between the given
feature sequences is illustrated in Fig. 4(c). We refer for more
details on the training and decoding process to [24], [56].

C. Accelerating Alignments Using Multi-Scale DP

To obtain alignments of high accuracy, it is necessary to use
features with a high temporal resolution. The resulting increase
in length of the feature sequences compared to lower resolutions,
however, also leads to a considerable increase of the computa-

Fig. 4. Emission probability matrices for match states with alignment path
(blue) between states and observations of (a) the fourth recording and (b) the
fifth recording. The values on color bar are in log scale. Note that the extremely
low probabilities (white area) on the top left and the bottom right corner result
from the path constraint described in Section III-C; (c) The resulting alignment
path between the fourth and fifth recordings.

tional costs for the alignment methods described above. In par-
ticular, assuming that all sequences are roughly of length N , the
time and memory requirements of the DP technique presented
in Section III-A as well as of the Baum–Welch (in each itera-
tion) and Viterbi algorithms used in Section III-B are quadratic
in N . Therefore, for large N , the alignment problem can easily
become computationally impractical or even infeasible.

To increase the computational efficiency for both joint
alignment methods, we adapted the multi-scale alignment
strategy proposed in the context of DTW in [42], [43]. The
general idea is to recursively project a path obtained on a coarse
feature resolution level to a next higher resolution and to refine
the projected alignment on that level. This way, only entries
(corresponding to aligned positions in progressive alignment,
or feature-state combinations in the profile HMM) around the
projected path in a matrix need evaluating. As shown in [42],
this strategy is particularly useful for music due to the high
temporal correlation between neighboring feature vectors, i.e.
the temporal feature resolution can be decreased without losing
the information necessary to find the correct path on the coarser
level. Since progressive alignment and the Baum–Welch/Viterbi
algorithms share common algorithmic roots, we can adopt the
multi-scale strategy for both methods. More precisely, similar
to [13], [42], we use a total of four different feature resolutions,
with the lower three ones obtained from the highest using low-
pass filtering (smoothing) and down-sampling. The resulting
temporal resolutions are 1 sec, 0.5 sec, 0.1 sec and 0.02 sec.
After computing an alignment (or a Baum–Welch iteration) on a
coarsest level, we project the path to the next finer resolution and
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constrain alignments to run in a neighborhood of the projected
path. The size of the neighborhood was defined as in [13], [42].
This is illustrated in Fig. 4(a) and (b) for the profile HMM: An
alignment path computed on a coarse level was projected to
the final feature resolution, where it is used to constrain which
entries in the observation probability matrix are computed.
Entries outside the constraint region are formally given an
extremely low probability (white entries). Similar constraint
regions are also applied during the computation of the observa-
tion and posterior probability matrices used in the Baum-Welch
algorithm. During our experiments, we observed similar
speed-ups as reported in [42], i.e. the resulting methods were
typically faster by a factor of 40–100 depending on the length of
the recordings used—without a decrease in alignment accuracy.

IV. COMPARING PAIRWISE, PROGRESSIVE AND PROFILE-HMM
BASED ALIGNMENT

The two methods described in Section III differ considerably
on a formal level, with one being described as an optimiza-
tion and the other as a probabilistic inference problem. On the
algorithmic level, however, there are many similarities. In partic-
ular, under certain conditions, DTW is equivalent to a negative
log-likelihood implementation of an HMM using multinomial
Gaussian distributions for the observations, an implementation
type highly advisable for HMMs due to its numerical stability
[56]. This is the case if we limit ourselves to using a Euclidean
distance to compare features and use additive instead of multi-
plicative weights for different step sizes. With these limitations,
the application of a logarithm transforms the HMM-likelihood
from a product of probabilities to a sum of log-probabilities,
which for the case of a Gaussian takes the form of a Euclidean
distance. One can show that the result is equivalent to DTW
by interpreting the features of one DTW sequence as HMM
states, using the features as the mean of the corresponding Gaus-
sians and adding some non-emitting states to model certain step
sizes—see [56], [57] for some discussion.

Given these algorithmic similarities between general DTW
and HMM, it is interesting to note where the central concep-
tual differences between our two approaches are and how they
could affect the alignment results. A first difference is adapt-
ability in size. Our progressive method retains every feature
sequence it encounters, gradually adapting the size of the tem-
plate as needed. Our profile HMM has a fixed size and topology
once the parameter L is set during the initialization. A second
difference is early versus late merging. Here, the progressive
method merges information from features only at the distance
level (computing the cost matrix C), which could be called late-
merging. In contrast, the profile HMM learns a consensus in the
form of a sequence of means for the match states: for a given
match state, the mean is computed during the maximization step
in Baum–Welch as a weighted sum of feature vectors (where
the weights correspond to the posterior probabilities computed
using the forward-backward procedure). Therefore, the averag-
ing of information is already done at the feature level, which
could be called early-merging. A third difference is the dis-
tance measure. In a progressive method one is free to choose or

TABLE I
CHOPIN MAZURKAS AND THEIR IDENTIFIERS USED IN OUR EXPERIMENTS. THE

LAST TWO COLUMNS INDICATE THE NUMBER OF PERFORMANCES AVAILABLE

FOR THE RESPECTIVE PIECE AND THE NUMBER OF EVALUATED UNIQUE PAIRS

ID Piece No. Rec. No. Pairs

M17-4 Opus 17 No. 4 62 1891
M24-2 Opus 24 No. 2 62 1891
M30-2 Opus 30 No. 2 34 561
M63-3 Opus 63 No. 3 81 3240
M68-3 Opus 68 No. 3 49 1176

design a distance measure to compare feature vectors. In a profile
HMM, distances correspond to observation probabilities and as
such one typically has to choose from specific families of distri-
butions (like the Gaussian family). While this is a limitation on
the one hand, it enables the learning of parameters. In our case,
we can learn and adapt the covariance matrices, which concep-
tually can be regarded as local feature distances adapted to the
sequences. A fourth difference is the greediness of updates. To
process a single sequence, the progressive method computes an
alignment with the current template and updates the template
before the next sequence is processed. The profile HMM em-
ploys the forward-backward procedure as part of Baum-Welch
to compute the posterior, which conceptually can be interpreted
as computing a soft alignment between each given feature se-
quence and the states in the profile HMM. Interpreted this way,
in each iteration of Baum–Welch the profile HMM first com-
putes an alignment for every single sequence before it updates
its parameters. In this respect, the progressive method is more
greedy compared to the profile HMM.

Overall, it is difficult to argue whether, for example, the in-
crease in flexibility resulting from adaptability in size could give
our progressive method an advantage over our profile HMM, or
whether the greedy updates of the progressive method not only
lower the computational costs but also reduce its alignment ac-
curacy (as the profile HMM updates might be more robust due
to taking all feature sequences into account). Therefore, we con-
duct in this section a series of experiments to assess the align-
ment quality of both methods under real-world conditions. To
maximize the comparability, we use the same features for both
methods and choose the best parameter configuration we could
identify, i.e. the set of parameters maximizing the alignment
accuracy, as described below. Furthermore, to identify whether
our methods indeed have benefits over standard synchronization
methods, we include the results for two widely-used pairwise
methods [13], [14]. While the method presented in [14] uses a
different set of features, the method presented in [13] is directly
comparable to our methods as the same types of features are
being used.

A. Dataset and Settings

1) Dataset: For our evaluation, we use a dataset consist-
ing of 288 recordings for five of Chopin’s Mazurkas, with
30–80 individual performances per piece, see Table I. The
dataset is highly useful in our context for several reasons. First,
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TABLE II
ALIGNMENT ERROR (MEAN AND STANDARD DEVIATION OF ABD, IN

MILLISECONDS) FOR THREE TYPES OF ALIGNMENT METHODS

AND A RANDOM BASELINE

Pairwise Pairwise Profile Progressive
I [14] II [13] HMM Alignment Baseline

ID mean std mean std mean std mean std mean std

M17-4 116 638 68 19 62 12 59 12 3997 1908
M24-2 79 35 39 20 33 9 31 6 2726 2485
M30-2 69 121 30 8 32 7 30 5 2403 1401
M63-3 181 1332 46 32 39 11 40 11 2874 1846
M68-3 212 1444 58 23 51 19 46 13 1947 1177

interpretations of Mazurkas are often quite expressive leading to
considerable differences in terms of timing, dynamics, balance,
articulation and playing style. Second, the recordings were made
in a time span ranging from 1931 to 2002 across a wide range
of venues, often resulting in extensive differences regarding the
noise level, reverberation and room acoustics, acoustical prop-
erties of the instrument in use, recording equipment and audio
quality as well as stylistic choices typical for a specific time
period. Overall, these differences present substantial challenges
to an automatic alignment method.

To evaluate our methods, we can exploit another unique prop-
erty of the dataset. In particular, corresponding positions across
different performances were manually annotated on the beat
level as part of the Mazurka project,1 which enables a straight-
forward evaluation of automatic alignment methods as described
next. Since handling structural differences is out of our scope,
we exclude performances with structural differences (such as
additional repetitions of a part of a piece) from our experiments.

2) Evaluation Measure: We use the manually annotated beat
positions as follows to evaluate the alignment accuracy: given
an alignment path between two versions of a piece, we locate
for each annotated beat position in the one version the corre-
sponding position in the other version. The absolute differences
between the manually annotated beat positions and those ob-
tained from the alignment are computed and averaged for all
beats. The average (in milli-seconds) is employed as the evalua-
tion measure, which is referred to as the average beat deviation
(ABD) in the following. It is measured for each Mazurka and
each pair of recordings in our experiments. Note that the number
of pairs for one Mazurka is a binomial coefficient, for example,
for M17-4 our setup contains 62 recordings, which results in(62

2

)
= 1891 unique pairs and corresponding ABD values, see

Table I. Further, to increase the interpretability of the evaluation
results, we include in Table II the results for a baseline method
that simply linearly stretches the shorter to the longer recording
to obtain an alignment.

3) Features and Parameters: For the pairwise method [13]
and our two joint alignment methods, we use a combination of
CENS [27], which is a type of chroma feature with uniform
energy distribution, and DLNCO features [13], which estimate
onset positions separately for each chroma, both with a 20ms

1http://www.mazurka.org.uk

Fig. 5. Comparison of the pairwise alignment method [13] with our proposed
progressive alignment method and profile HMM method. The boxplots illustrate
the distribution of the ABD values for each Mazurka separately on a logarithmic
scale.

temporal resolution. For the pairwise method and progressive
alignment, we use the cosine distance for CENS and the Eu-
clidean distance for DLNCO, as proposed in [13]. Further, we
set the weights (w1 , w2 , w3) = (2, 1.5, 1.5) for both methods,
use a gap penalty CG = 3.6 and sort the feature sequences to
be aligned according to their length from short to long. (We
investigate the influence of these parameters in more detail in
Section V). The pairwise method described in [14] employs
spectrogram-based features and the Euclidean distance to com-
pare them. We use the default settings provided with the method.

B. Comparison Between the Pairwise and Joint Alignments

Before we begin our more detailed investigation of individ-
ual components in our methods, we start with a more general
comparison of the alignment accuracy of the pairwise and joint
alignment methods. The distribution of the ABD values for all
pairs is summarized for each of the five Mazurkas separately in
Table II as well as in the boxplots,2 shown in Fig. 5. As a refer-
ence, we additionally include in Table II the results of another
widely used pairwise method, referred to as method I [14], and
the baseline method, which uses a linear stretch as discussed in
Section IV-A2.

As shown in Table II, both joint alignment methods reduce
the mean ABD compared to the pairwise method II [13], for

2We use standard boxplots: the box gives the 25th and 75th percentiles (p25
and p75 ), where the center bar indicates the median. The whiskers extend to the
smallest data point greater than p25 − 1.5(p75 − p25 ) and the largest data point
less than p75 + 1.5(p75 − p25 ), and the outliers are plotted as red crosses.
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Fig. 6. Histograms of beat deviation using the pairwise alignment method,
the progressive alignment and profile HMM method.

most pieces. For example, the mean ABD for M68-3 drops
from 58ms using pairwise alignment, to 51ms with the profile
HMM alignment (decrease by 12%), and even lower to 46 ms
with the progressive alignment (decrease by 21%). On average,
the mean ABD drops by 12% using the profile HMM and by
15% using progressive alignment. However, a more consider-
able improvement resulting from the joint alignment methods is
a higher robustness. As can be seen from Fig. 5, the inter-quartile
range is smaller for all five pieces using either of the two joint
alignment methods, and the number of large-value outliers is
drastically reduced. We can also measure this improvement by
the decrease of the standard deviation (std), which for M68-3 is
17% using the profile HMM (drops from 23 ms to 19 ms) and
43% using progressive alignment (from 23 ms to 13 ms). This
decrease is even greater for other Mazurkas (M24-2 and M63-3).
On average, the standard deviation of ABD is reduced by 51%
using the profile HMM and 58% using progressive alignment.

Overall, the two joint alignment methods are more stable
compared to pairwise alignment, as both of them provide a
higher robustness against large alignment errors, which also
leads to an increase in alignment accuracy. As an exception, the
improvement on M30-2 is limited, as the mean ABD using the
progressive alignment is the same as using pairwise alignment,
while the profile HMM is a bit worse, and the std drops only
slightly (from 8 ms to 7 ms using profile HMM and to 5 ms
using progressive alignment). However, the experimental results
indicate that this piece is relatively easy to align, since the
mean ABD using pairwise alignment is 30 ms (which is already
low compared to the feature resolution level of 20 ms) and
the outliers are few and not as extreme as in other pieces. In
this case, there is less room for the joint alignment methods
to improve. This result matches the main effect we observe
from the joint alignment, which is a gain in robustness against
strongly incorrect alignments.

To test this hypothesis further, we conducted another exper-
iment to show which error level is improved the most by our
methods. To this end, we show in Fig. 6 a histogram of the de-
viation for all individual beats using all alignment pairs without
averaging (corresponding to around 2.5 million evaluated beats).
It shows that both joint alignment methods reduce the number
of alignment errors clearly in the range of 100 ms–1000 ms beat
deviation.

We illustrate the superior robustness of our joint alignment
methods over pairwise methods, with an example aligning

performances of Op. 24 No. 2 by Luisada and Richter. Fig. 1
shows an excerpt of the alignment which is problematic for pair-
wise method II [13]. As shown in the corresponding score, the
six measures are mainly composed of repeated notes or chords
with expressive markings. In addition to differences in balance
(the relative loudness), as we can see from the CENS features,
the two performers also play differently with regard to the tim-
ing. Furthermore, the two recordings contain different degrees
of noise. In the presence of the above differences, the pairwise
method fails to identify the correct alignment, see the solid path
in Fig. 1, compared to the annotated beat positions (red dots).
The other two alignments, which are shown as dashed and dot-
ted paths in Fig. 1, result from our two joint alignment methods.
In computing them, we include five other recordings, whose
information helps to stabilize the alignment. As a consequence,
we see that these two paths coincide almost always with the
ground truth annotations.

C. Comparison of the Two Joint Alignment Methods

As shown in Table II and Fig. 5, the two joint alignment
methods have a similar alignment accuracy and robustness, with
the profile HMM having a slightly higher mean and std ABD
for some pieces. To find out whether these small differences
are statistically significant, we conducted a t-test to compare
ABD values for all alignment pairs using the PA and PP meth-
ods. It indicates that there is a statistically significant difference
in the ABD value using PA method (M = 42, SD = 14) and
PP method (M = 44, SD = 16); t(8758) = 20.4, p = 1e − 90.
However, despite the significance, the difference between the
two is relatively small in this experiment, which is also reflected
by Cohen’s measure for effect size: ds = 0.1, indicates that the
statistical significance is mainly reached due to the fairly large
sample size. Therefore, in the next section, we will conduct a
series of experiments on both joint alignment methods, to better
understand their behavior in other scenarios, to give an in-depth
analysis of the influence of their parameters and to show possible
extensions to further improve their performance.

V. FURTHER INVESTIGATIONS OF THE JOINT

ALIGNMENT METHOD

In this section, we conduct six groups of additional experi-
ments to further understand the behaviour of our joint alignment
methods. We start with investigating the effect the number of
available performances has on our methods. Next, we study the
influence of the gap concept and the gap penalty parameter on
the progressive alignment method, followed by an analysis of
the influence of the order in which recordings are aligned. Af-
ter that, we implement Viterbi training as an alternative model
training method to the Baum-Welch process, in order to further
accelerate the profile HMM. As a reverse idea, we also intro-
duce an iterative extension to our PA method and study whether
it can be used to exchange computation time for an increase
in alignment robustness. Finally, we provide the evaluation re-
sults for new pieces with highly precise ground truth to further
test how our methods behave under clean recording conditions
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Fig. 7. Comparison between the pairwise alignment [13] and two joint
alignment methods for subset Experiments.

(compared to the highly varied acoustic scenarios available in
the Mazurka dataset).

A. Subset Experiments

In the previous experiments, we used large numbers (30 to
80) of performances of each piece to perform joint alignments.
However, there is not always such a large number of different
versions available for the same piece. Therefore, in this experi-
ment, we investigate how many recordings we need to observe
an improvement in robustness using the joint alignment methods
compared to a pairwise method.

We perform experiments with subsets of different sizes rang-
ing from 3 to 10 recordings. For each size, we randomly choose
10 sets from all the recordings of a given piece. Numerical re-
sults for the pairwise alignment method [13] are compared with
both progressive alignment and PP methods in Fig. 7. As shown,
the progressive alignment method decreases the mean and std
ABD for subsets of all sizes steadily, compared to the pairwise
method. The difference when there are only three recordings
available is relatively small but still measurable, and it becomes
more pronounced when more recordings are included in the
alignment procedure. The results indicate that progressive align-
ment can improve the alignment accuracy and robustness even
with a small set of recordings, i.e. it is not necessary to have a
large number of versions in order to benefit from our method.

On the other hand, the Profile HMM method is worse in
terms of mean and std ABD than both pairwise and progressive
alignment methods when only a few recordings are available.
The main reason here is that the profile HMM employs training
data to adjust the internal sequence representation to the given
data, and with so little training data this capability simply can-
not yet unfold its advantages. Its performance improves with
larger subsets, as more data is available in the model training.
This behavior could indicate that the increase in alignment ac-
curacy for profile HMM based methods as reported in some bio-
informatics-related publications might only be achievable if a
similar number of training sequences is available. Since there are
often several thousand sequences available in bio-informatics
[58], the situation is quite different to music processing where
such a high number cannot be expected.

B. Gap Penalty

To avoid a possible temporal uncertainty caused by copying
features, we insert a special gap symbol when updating the
template (Section III-A). We study the influence of these gaps on

Fig. 8. ABD values for five Mazurka pieces with progressive alignment using a
gap-less variant and different values of gap penalty, compared with the pairwise
alignment method [13]. The cross markers represent the mean ABD and the
error bars show the standard deviation.

the alignment accuracy by experimenting with different values
of the gap penalty parameter and a gap-less variant.

For the gap-less variant we use the simple strategy described
in Section III-A and set z̃� = (z1

n�
, . . . , zk−1

n�
, xk

m�
). Comparing

the results for this gap-less variant with the baseline pairwise
method in Fig. 8, we can see that the gap-less version leads
to small improvements, mostly with respect to robustness
as indicated by the decrease in dispersion. However, these
improvements are more pronounced using the proposed
progressive method with a gap penalty value of 3.6. Further, the
gap-less variant does not reduce the mean ABD compared to the
pairwise alignment. This behavior could indicate that copying
the features to stretch the newly aligned sequence, as done
in the gap-less variant, indeed leads to a temporal uncertainty in
the features causing the loss of alignment accuracy compared
to the gap-variant.

However, from Fig. 8 we can also see that the value of the
gap penalty needs to be sufficiently large, at least larger than
the maximum value of the local cost measure (which is 3.0 in
our case), to ensure every gap is sufficiently penalized. On the
other hand, if the value is too large, features in the new sequence
xk

m�
are not likely to get aligned to the zl if it contains a gap

which can lead to a loss of accuracy as well. We found 3.6 a
suitable value for the gap penalty during the development of the
method using only M17-4. As seen in Fig. 8, this value yields the
best results for the remaining Mazurkas as well. Furthermore, it
works well with additional pieces in Section V-F.

C. Alignment Order

As described in Section III-A, the template Z in our pro-
gressive method is built up gradually by successively aligning
the feature sequences X1 , . . . , XK . The order in which they
are aligned should be chosen with care for two reasons. Firstly,
feature sequences at the beginning have less information from
other versions to stabilise the alignment. Secondly, errors made
at an early stage may propagate to the following alignments.
Therefore, we compare four different ordering strategies in our
next experiments: The first strategy is ordering versions ran-
domly. Next, we use two length-based ordering strategies, where
versions are sorted by their duration in ascending or descend-
ing order. For the last strategy, we try to find an order for the
sequences such that each sequence being aligned is the easiest
to be aligned among all remaining sequences, in some sense.
More precisely, we first compute for each pair of recordings an
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Fig. 9. ABD values for five Mazurka pieces with progressive alignment us-
ing different alignment orders and the iterative extension, compared with the
pairwise alignment method [13].

alignment and a corresponding total cost using the baseline pair-
wise method [13]. We normalize each cost by dividing it by the
length of the corresponding alignment path. The pair with the
smallest normalized cost defines the first two feature sequences
to be aligned, i.e. X1 and X2 . Next, we set X3 to the feature
sequence where the sum of its normalized costs to X1 and X2

is the smallest among all remaining sequences. We continue
choosing the next version that has the lowest sum of normalized
costs between itself and each one of the previously placed ver-
sions. This procedure is repeated until all recordings are sorted.
Note that this strategy is considerably more computationally
expensive than the first three.

Results are shown in Fig. 9, where we excluded the random or-
der strategy as the resulting error was relatively high and would
have occluded the nuances in the other strategies. As indicated
by the results, the alignment order is indeed important in pro-
gressive alignment. The progressive alignment with a descend-
ing length-based order shows improvements in both accuracy
and robustness over the pairwise method for most pieces. The
ascending length-based order leads to an even better result. The
possible reason could be that the template monotonically grows
in length with each sequence being aligned: with a descending
length based order, the difference in length between the template
and the sequence to be aligned will become large when aligning
the last several sequences, much larger than for the ascending
length-based order where the template length grows slowly with
the sequences being aligned. That may lead to a slight alignment
accuracy drop when aligning shorter sequences at the end as the
DTW weights in use have a slight bias in favor of the main
diagonal direction, i.e. (w1 < w2 + w3) (Section IV-A). Both
the ascending length-based and the cost-based order strategy
decrease the mean ABD and the standard deviation without any
significant differences between them. Due to the considerable
difference in computational costs between these two strategies,
we propose the use of the ascending length-based order.

D. Viterbi Training

Since the progressive alignment and the profile HMM have
comparable alignment accuracies on larger datasets (Section
IV), we compare their computational complexities to see
whether other factors contribute to choosing one approach
over the other when many versions of a piece are avail-
able. Therefore, we now inspect the computational complex-
ity of both methods. To this end, let K be the number of
recordings, each having about N features. To align the k-

Fig. 10. The convergence of ABD with increasing number of iterations for
two model learning methods.

th recording to the template, the PA method computes k − 1
cost matrices each with a time and memory requirement of
O(N 2) (the acceleration technique described in Section III-C
with a fixed number of feature resolutions does not change the
complexity level for this step). Since we repeat this step K

times, we compute K (K−1)
2 cost matrices, thus the method is

in O(K2N 2) (just as standard pairwise methods). In a single
Baum-Welch iteration of the profile HMM, we compute K for-
ward matrices and K backward matrices of size 3N 2 (since we
have three states per feature in the profile HMM). If we set the
number of Baum-Welch iterations to a fixed value independent
of the number of available recordings, the overall complexity
is in O(KN 2). Therefore, for a high number of recordings,
the profile will eventually be the preferable approach, as the
complexity is lower and with a high number of recordings the
difference in alignment accuracy between the PA and PP method
vanishes as well. In practice, with 10 Baum-Welch iterations,
the runtime for the profile HMM will be lower for more than
≈ 120 recordings, as in this case K becomes higher than the
ratio of constant factors influencing the absolute runtime of the
profile HMM to that of progressive alignment (assuming similar
runtime costs for the observation probabilities and the local cost
measure).

The number of iterations we need, however, depends on
the convergence behavior of the method. Therefore, we con-
ducted an experiment to investigate this behavior. More pre-
cisely, Fig. 10 shows the ABD for each piece after each Baum-
Welch iteration. As we can see, the method typically converges
rather quickly, with only little change after the first five to ten
iterations (which motivated us to limit the number of iterations
to 10 in the initial experiment).

A further technique often used in large scale procedures in
speech processing to accelerate the training is Viterbi Training
[24]. Here the idea is to replace the forward-backward proce-
dure with a simple Viterbi decoding. This way, instead of a soft
value encoding the probability of being in a certain state at a
certain time frame, the Viterbi decoding makes a hard choice
and sets the probability of the state-time pair to 1 if it is on the
most probable path, and to 0 otherwise. The parameter update
remains conceptually identical. In practice, Viterbi training of-
ten converges faster than Baum-Welch in terms of the number
of iterations but is more prone to local minima of the likelihood
function due to the hard decision made during the decoding.
Further, a single iteration with Viterbi training is about twice as
fast as one iteration of Baum–Welch as the backward procedure
becomes unnecessary.
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We implemented Viterbi training for our profile HMM and
include the convergence results in Fig. 10. As we can see, while
each iteration is indeed more efficient with Viterbi training, the
number of iterations necessary to reach convergence is about the
same. Further, with Viterbi training , there is a slight but con-
sistent loss of alignment accuracy caused by not maximizing
the likelihood function as Baum–Welch does [24], which makes
Viterbi training more likely to get stuck in a local optimum.
Therefore, Viterbi Training could be most useful as an alterna-
tive to Baum–Welch process, to accelerate the model training if
the number of available recordings is very high, however, at the
cost of a slight drop in alignment accuracy.

E. Iterative Alignment

As mentioned in Section IV, progressive alignment is greedier
regarding the updating process. Intuitively, this greediness may
lead to an accuracy drop, as reported in some bio-informatics
tasks. In particular, the first alignments need to be more reliable
as they have less information available and, at the same time,
will influence the alignment with all remaining sequences. To
circumvent this potential problem, we now introduce an iterative
extension to our progressive alignment that can be used to fur-
ther refine the template. The basic idea is to remove individual
versions from the template and re-align them to the remaining
template. Specifically, we take out one version at a time, start-
ing from the first one, and perform the alignment between this
version and the template of the remaining versions. We evaluate
the resulting template after re-alignment using a score value,
defined as the sum of the alignment costs between all pairs in
this template (which can easily be extracted from the template).
If the alignment score decreases, we keep the updated template,
otherwise, we restore the previous template. This process of
re-alignment is continued until no further improvement can be
achieved.

We test the iterative refinement process with both ascending
length based order and cost based order. As shown in Fig. 9,
the iterative process does not lead to a substantial improvement
for any of the five Mazurka pieces. Overall, in our experiments,
we found that our progressive alignment is able to deliver align-
ments of both high accuracy and robustness with a single pass
using a suitable alignment order.

F. Further Evaluation

Although the Mazurka data is highly varied in terms of
acoustic conditions and expressive local tempo variations
(Section IV-A), the pieces are all of the same style and by one
composer. Therefore, we now conduct on additional experiment
using a set of four excerpts compiled in [59] from: Mozart Pi-
ano Sonata No. 11 in A major, KV331 first movement, Schubert
German Dance D.783, No. 15, Chopin Etude in E major, Op. 10,
No.3, and Chopin Ballade in F major, Op. 38. Each excerpt has
22 performances by skilled pianists recorded on a Bösendorfer
computer-monitored piano. Compared to the Mazurka dataset,
there are several major differences. First, all recordings were
made using the same instrument under the same recording con-
ditions and at the same time, such that the acoustic conditions

TABLE III
COMPARING THE PAIRWISE ALIGNMENT, PROFILE HMM AND PROGRESSIVE

ALIGNMENT METHOD IN TERMS OF AVERAGE NOTE ONSET DEVIATION (IN

MILLISECONDS)

Pairwise II [13] Progessive Profile HMM

Piece mean std mean std mean std

KV331 21 4 21 4 20 4
D783 27 7 24 4 27 8
Etude 26 6 24 3 24 3
Ballade 30 8 29 5 31 8

do not differ much within the dataset. Second, the recording
quality is very high and contains only little reverberation. Third,
compared to the Mazurka pieces with manually annotated beat
positions, this dataset contains precise onset annotations for
each note. To account for the higher quality annotations, we
change the evaluation measure from ABD to average note onset
deviation in this section.

By providing cleaner acoustic conditions, we can use this
dataset to test whether our methods also improve the align-
ment accuracy in less difficult scenarios, or whether a pairwise
method can translate the clean conditions into higher accuracies
than our proposed methods. The results for the pairwise align-
ment [13] and the two joint alignment methods are shown in
Table III, where we used the same settings as described in
Section IV-A3. First, we can see that the results reflect the
recording quality in this dataset, with relatively low alignment
errors for all three methods. Further, we can see that also us-
ing this dataset our joint alignment methods slightly improve
the mean of the alignment error, with the progressive align-
ment slightly ahead of the profile HMM. More importantly,
we observe a similar behavior regarding the robustness of the
alignments as before, with a considerably lower standard devi-
ation for the joint methods: compared to the pairwise method,
our progressive alignment again lowers the standard deviation
by between 38% and 50%—despite the higher audio quality.
These results demonstrate that our method indeed can be used
to remove many outlier alignments, where the pairwise method
fails to compute an accurate alignment.

VI. CONCLUSION

In this paper, we introduced two methods for the joint align-
ment of multiple performances of a piece of music: a PA and a PP
method. As demonstrated by our experiments using recordings
of Chopin Mazurkas, both methods can be used to improve the
alignment accuracy and robustness over state-of-the-art pair-
wise methods. An increase in accuracy using a method from
the PP family over a member of the PA family as reported in
bioinformatics could not be observed in our music synchro-
nization scenario, but the superior computational complexity of
our PP method makes it an interesting option if the number of
available recordings is a hundred or higher. We conducted addi-
tional experiments to investigate the behavior of our joint align-
ment methods by testing the influence of various parameters and
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analyzed the performance of various extensions aiming to in-
crease their alignment accuracy and computational efficiency.
In particular, experiments with smaller datasets showed that our
method can outperform state-of-the-art pairwise methods even
if only a small set of recordings is available.
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