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Abstract
The population of cells that make up a cancer are manifestly heterogeneous at
the genetic, epigenetic, and phenotypic levels. In this mini-review, we
summarise the extent of intra-tumour heterogeneity (ITH) across human
malignancies, review the mechanisms that are responsible for generating and
maintaining ITH, and discuss the ramifications and opportunities that ITH
presents for cancer prognostication and treatment.
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The origins of intra-tumour heterogeneity
Intra-tumour heterogeneity (ITH) has been documented for many 
decades, initially from a morphological perspective1,2. Cancers of 
all types are now recognised to consist of highly diverse popula-
tions of cells3, where ITH is detectable at the genetic, epigenetic, 
and phenotypic levels (see Table 1 for a pan-cancer summary). 
Recent advances in next-generation sequencing and microarray 
technology have enabled researchers to begin to appreciate the full 
extent and complexity of ITH. As a major cause of targeted therapy 
failure and disease resistance4, ITH is a subject of much biological 
and clinical relevance.

When viewed through the lens of evolutionary biology, the 
sometimes extreme levels of diversity present in cancers5 should 
come as no surprise6. Carcinogenesis is an evolutionary process 
whereby somatic cells acquire random (epi)mutations that alter 
their phenotype, and the fittest new clones clonally expand because 
of the action of Darwinian natural selection7; repeated rounds of 
mutation and natural selection can lead to the development of a 
malignant cancer clone that is capable of migration and growth in 
remote sites. Diversity in the evolving cancer ecosystem is inevita-
ble because it fuels the evolutionary fire; there can be no “survival 
of the fittest” if all the cells in the tumour have the same fitness.

Table 1. Summary of a selection of studies revealing intra-tumour heterogeneity in space and time.

Tissue type Selected 
references Summary of measured intra-tumour heterogeneity

Kidney Gerlinger et al.8 
(2012)

Spatial genetic intra-tumour heterogeneity (ITH) measured by multi-region whole exome 
sequencing (WES) and/or single-nucleotide polymorphism (SNP) array analysis of four cases 
of renal-cell carcinoma and associated metastases. Phenotypic ITH was established by using 
immunohistochemistry and mRNA expression profiling. Reported extensive ITH and branched 
tumour evolution.

Gerlinger et al.9 
(2014)

Spatial genetic ITH measured from multi-region WES and ultra-deep targeted sequencing in 
10 clear cell renal carcinomas; 67% of non-synonymous somatic mutations identified were 
heterogeneous between sampling sites. Increasing the number of biopsies analysed increased 
the extent of ITH identified. Intra-regional (within-biopsy) subclonal structure was identified on 
comparison of variant allele frequencies (VAFs) of the genetic changes present.

Lung de Bruin et al.10 Spatial genetic ITH measured from multi-region WES and whole genome sequencing (WGS) 
from seven non-small cell lung cancers. A subclonal structure was identified between sampled 
regions, and intra-regional diversity was measured by using VAFs. Assembly of phylogenetic 
trees allowed temporal dissection of the heterogeneity in the type of genetic events; the majority 
of mutations in driver genes were identified as early events.

Zhang et al.11 Spatial genetic ITH measured from multi-region WES in 11 lung adenocarcinomas. ITH was 
identified between and within regions analysed. Patients who relapsed after surgery had a 
significantly larger proportion of subclonal mutations in the primary tumour than those who did 
not; therefore, higher ITH may be related to relapse.

Colon Dalerba et al.12 Phenotypic ITH measured from single-cell polymerase chain reaction gene expression analysis. 
The expression profiles from monoclonal tumour xenografts (implantation of a single cell) 
recreated the heterogeneity of the cellular composition of the primary tumour, demonstrating that 
transcriptional diversity in colon cancer can be explained by multi-lineage differentiation and not 
purely by clonal genetic heterogeneity.

Kim et al.13 Spatial genetic ITH measured from multi-region WES and comparative genomic hybridisation 
arrays in five primary tumours and associated liver metastases; 50–80% of all mutations 
identified were subclonal. There were regional differences in the prevalence of mutation spectra 
and other aberrations (notably, regional chromothripsis). Phylogenetic analysis identified 
branching evolution during progression, with pre-existing subclones in certain regions of the 
primary lesions related to the metastasis.

Sottoriva et al.14 Spatial genetic ITH measured from genomic profiling (WES, targeted deep sequencing, SNP 
arrays, fluorescent in situ hybridisation [FISH], and neutral methylation tag sequencing) of 
349 glands sampled from opposite sides of 15 primary lesions. The pattern of ITH was used 
to infer the mechanism of early tumour growth. ITH was uniformly high, with subclone mixing 
(variegation) in glands from distant regions and lack of evidence for recent clonal selective 
sweeps, suggestive of a “big bang” whereby tumours grow in a single expansion at an early 
stage in development, scattering the early intermixed clones.

Kreso et al.15 Phenotypic ITH, measured by proliferation, survival, and chemotherapy response, identified by 
serial xenotransplantation of spatially distinct tumour regions.
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Tissue type Selected 
references Summary of measured intra-tumour heterogeneity

Brain Snuderl et al.16 Genotypic ITH using FISH to identify receptor tyrosine kinase (RTK) amplifications in archival 
glioblastoma (GBM) samples. Mosaic amplification of up to three different RTKs was observed 
in cells of the same tumour in a mutually exclusive fashion, indicating coexisting subpopulations. 
These cells shared other genetic events in TP53 or CDKN2A, signifying that they originated from 
the same precursor.

Sottoriva et al.17 Spatial genetic ITH measured from multi-region genome-wide copy number alterations (CNAs) 
from 11 GBMs. Reported extensive ITH and used phylogenetic analysis to infer early (clonal), 
intermediate (subclonal), and late (unique) events. Cellular phenotypic ITH measured from 
multi-region gene expression microarrays identified heterogeneity in phenotypic subtypes, often 
with more than one coexisting within the same tumour. Epigenetic ITH was analysed within each 
tumour region on the single-molecule level by using neutral methylation loci, with no single 
dominant clone identified in any region of the tumour analysed.

Johnson et al.18 Temporal genetic ITH measured from WES of 23 GBMs and recurrences; only half of the 
mutations detected in primary tumour were also identified in the recurrence. Genetic ITH in 
response to temozolomide therapy was also examined in these samples with hypermutation and 
notable alkylation damage mutation signatures in the recurrences.

Patel et al.19 Phenotypic ITH measured from RNA sequencing of 430 single cells sorted from five primary 
GBMs. Extensive ITH was demonstrated at the transcriptional level, in particular for RTKs. 
Although each tumour had a dominant phenotypic subtype of GBM, subsets of cells within 
the same tumour were found to express alternative phenotypic subtypes, and heterogeneity in 
subtype was associated with decreased patient survival.

Meyer et al.20 Phenotypic ITH measured from 44 single cell-derived clones from four primary GBMs. Cells 
were selected by using fluorescent-activated cell sorting for stem cell markers to enhance for 
clonogenic activity. Clones from the same tumour showed variable protein expression of key 
drivers phosphatase and tensin homolog (PTEN) and epidermal growth factor receptor, and wide 
variability in proliferation and differentiation abilities, and response to therapies. The variable 
treatment response of clones correlated with transcriptional clonal heterogeneity as assessed by 
mRNA microarray. Genetic ITH of clones was assessed using SNP arrays, and CNAs in genes/
pathways that associated with the phenotype were observed in the clones.

Blood
 
Acute 
lymphoblastic 
leukaemia (ALL)

Mullighan et al.21 Changes in genetic ITH over time in response to treatment measured by SNP array in 61 primary 
tumour-relapse sample pairs. In more than 90% of cases, there was a marked change in the 
pattern of CNAs between diagnosis and relapse, with CNAs acquired in the relapse often 
affecting cell cycle regulation and B-cell development. The diagnosis and relapse samples 
nearly always had a common clonal origin, but cells responsible for the relapse were present as 
a minor subclone in the diagnostic sample.

Anderson et al.22 Genetic ITH measured in 30 cases by using single-cell multiplex FISH with probes for common 
gene fusions and CNAs. ALLs were found to have a complex subclonal architecture and 
branching evolution. The same CNAs reoccurred in different subclones independently and in 
no preferential order. Temporal genetic ITH was observed between pre-leukaemic aplasia and 
ALL at diagnosis, as well as between diagnosis and relapse, with dynamic shifts in subclonal 
dominance.

Acute myeloid 
leukaemia (AML)

Ding et al.23 Temporal genetic ITH in response to chemotherapy measured by WGS and targeted deep 
sequencing of eight primary tumour-relapse pairs. VAFs were used to estimate clonal population 
size. Two clonal evolution patterns were identified in response to treatment: (1) acquisition of 
new mutations in the founding clone enabling it to evolve into the relapse clone and (2) an 
evolutionary bottleneck occurs, with eradication of all of the major subclones of the founding 
clone, except one. The remaining subclone gains additional mutations and expands at relapse.

Walter et al.24 Temporal genetic ITH measured by WGS and targeted deep sequencing in seven paired 
bone marrow samples from patients with secondary AML and the preceding myelodysplastic 
syndrome stage. In all cases, the founding clone progressed to acute leukaemia by acquiring 
many new mutations; there was emergence of a new subclone in some cases.

Lymphoma Okosun et al.25 Temporal genetic ITH measured by WES/WGS in 10 follicular lymphoma cases up to, and 
including, transformation. Construction of phylogenetic trees from VAFs identified multiple 
subclones and a branching pattern of evolution. The majority of transformed samples shared 
many trunkal mutations with the untransformed samples; however, in rare cases, the transformed 
and untransformed clones shared very few mutations, indicating earlier divergence.
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Tissue type Selected 
references Summary of measured intra-tumour heterogeneity

Prostate Brocks et al.26 Epigenetic and genetic ITH measured by analysis of DNA methylation and CNAs, respectively, 
in multi-region samples (primary tumour, premalignant lesion, and lymph node metastasis) from 
five patients. Extensive variability was apparent at DNA methylation enhancer sites. Multiple 
subclonal populations were identified from both the DNA methylation and CNA datasets. There 
was a close resemblance in the structure of phylogenetic trees constructed from the epigenetic 
and genetic data, indicating a similarity in evolutionary processes.

Boutros et al.27 Spatial genetic ITH measured by WGS from multiple archival biopsies of five localised multi-focal 
cancers. Tumours were found to be highly heterogeneous in single-nucleotide variants (SNVs) 
and CNAs between sampling sites, with evidence for divergent tumour evolution.

Cooper et al.28 Spatial genetic ITH measured from WGS, targeted deep sequencing, and FISH of ERG 
alterations in multiple samples from three multi-focal prostate cancers and surrounding normal 
tissue. Clonal expansions/fields were identified in normal tissue, and some of the field genetic 
changes also were present in areas of the tumour. The field effect in normal tissue may explain 
the branching phylogenies and clone mixing observed in the tumours.

Gundem et al.29 Temporal and genetic ITH measured from WGS in 10 primary tumours and multiple subsequent 
metastases that developed after androgen-deprivation therapy. Examination of clonal 
relationships between metastatic samples identified groups of subclonal mutations across 
multiple metastases, suggesting polyclonal seeding between different sites.

Breast Park et al.30 Phenotypic and genetic ITH measured from immunofluorescence staining and FISH (for common 
CNAs) in 15 invasive breast tumours, containing both in situ and invasive subregions within the 
same tissue section. There was a high degree of intra-tumour variability in the expression of 
markers for stem-like cells (CD44+) and more differentiated cells (CD24+). There was also a high 
degree of genetic heterogeneity both within and between these distinct tumour cell populations.

Navin et al.31 Spatial genetic ITH measured from single-nucleus sequencing in 200 cells taken from different 
geographical areas of two triple-negative ductal carcinomas and one paired metastatic liver 
carcinoma. Copy number profiles were used to elucidate differences in tumour subclone 
structure and evolution.

Nik-Zainal et al.32 Genetic ITH measured using high-depth WGS data from single bulk samples taken from 21 
breast cancers. Subclonal diversity was a prominent feature with many mutations present in 
only a small amount of cells; however, all tumours contained a dominant subclone (>50% cells). 
Mutational processes were heterogeneous throughout cancer development.

Wang et al.33 Spatial genetic ITH measured from multiple single-nucleus WGS, WES, and copy number 
profiling to define clonal diversity in an oestrogen receptor (ER)-positive and a triple-negative 
carcinoma. No two single tumour cells were found to be genetically identical, and a large 
number of subclonal and unique mutations were identified. Single-molecule duplex sequencing 
estimated that many diverse mutations occurred at low VAF within the tumour.

Ovary Khalique et al.34 

(2007)
Spatial genetic ITH of 16 cases of untreated high-grade serous ovarian cancer (HGSOC) 
measured by multi-region microsatellite and SNP analysis. Reported extensive ITH in all cases.

Khalique et al.35 
(2009)

Spatial and temporal genetic ITH measured by multi-region microsatellite analysis in 22 cases 
of untreated, metastatic HGSOC. Analysis of loss of heterozygosity (LOH) values revealed that 
ITH in metastases was less than primary tumours, although this was not statistically significant. 
Phylogenetic analysis revealed that metastases are clonally related to the primary tumour; 
however, the metastatic clone may have arisen at an early or late stage in the evolution of the 
tumour.

Bashashati et al.36 Spatial and temporal genetic ITH measured by multi-region SNP array and WES of 31 samples 
from six patients with untreated HGSOC. Phenotypic ITH measured by multi-region gene 
expression profiling. Revealed the high diversity of evolutionary trajectories displayed in HGSOC 
prior to treatment intervention.

Schwarz et al.37 Spatial and temporal genetic ITH measured by SNP array copy number profiling and selected 
WGS of 135 samples from 14 patients with HGSOC who received platinum-based chemotherapy. 
Patients who displayed a higher ITH had shorter progression-free and overall survival.
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Tissue type Selected 
references Summary of measured intra-tumour heterogeneity

Premalignant 
disease

Colonic 
adenomas

Novelli et al.38 Spatial genetic ITH in microadenomas assessed by X/Y chromosome FISH in a sex chromosome 
mixoploid mosaic (XO/XY) patient with familial adenomatous polyposis (FAP). Areas of excised 
microadenomas were of mixed XO/XY genotype, indicating polyclonality in tumour origin.

Thirwell et al.39 Spatial genetic ITH measured in multiple individual crypts from 10 FAP microadenomas. Analysis 
revealed two clones carrying different somatic adenomatous polyposis coil (APC) mutations in 
addition to the founding APC mutation, therefore indicating a polyclonal origin. Phylogenetic 
analysis using limited genetic markers (APC, KRAS, and TP53 mutations; LOH of 5p, 17p, and 
18q) in 11 sporadic carcinoma-in-adenomas revealed different subclones between regions of 
carcinoma and low- and high-grade dysplasia.

Barrett’s 
oesophagus

Maley et al.40 Spatial genetic ITH measured in 268 cases; biopsies were sampled every 1–2 cm along the 
Barrett’s segment, and genetic diversity (number of clones and genetic divergence) was 
calculated in each sample by measuring for aberrant DNA ploidy, LOH, microsatellite instability, 
and CDKN2A or TP53 mutations. Barrett’s segments with greater clonal diversity were more likely 
to progress to cancer.

Leedham et al.41 Spatial genetic ITH measured in 164 individual glands that were laser capture-microdissected 
from 16 samples of eight Barrett’s oesophagus cases. Glands were screened for tumour suppressor 
gene loss of heterozygosity (LOH) and CDKN2A/TP53 mutations. Marked heterogeneity between 
glands was identified across individual samples, and multiple independent clones were present 
(bearing no shared founder mutation between the clones). A mosaic pattern of clones across the 
Barrett’s segment was observed.

Li et al.42 Spatial and temporal genetic ITH assessed by SNP array in samples from 79 Barrett’s 
oesophagus cases that had progressed to oesophageal cancer and 169 non-progressors. 
Samples from two time points (mean of 8.6 years apart) were evaluated per case, and biopsies 
were taken at every 2 cm of the Barrett’s segment at each sampling. The non-progressor 
genomes contained a small number of limited CNA events that had typically expanded 
throughout the Barrett’s segment and then remained stable over time. In contrast, the 
progressors developed significant genomic diversity as they approached cancer diagnosis.

There are many mechanisms that contribute to ITH, and these can be 
broadly classified as “cell autonomous” or “non-cell autonomous”. 
An example of a cell-autonomous mechanism is the persistence 
of small numbers of errors that occur during DNA replication43,44. 
When multiplied by the billions of cell divisions required to pro-
duce even the smallest clinically detectable tumour (with a volume 
of approximately 1 cm3), this low level of mutation can potentially 
generate tremendous within-tumour genetic diversity. Moreover, the 
rate at which diversity is generated in a tumour is typically accel-
erated by genetic instability, likely a consequence of replication 
stress45, and the “mutator phenotype”46 that is a feature of most solid 
tumours. Furthermore, there can be rare but catastrophic DNA rep-
lication errors occurring during a single mitosis that can lead to the 
production of daughter cells with grossly altered genomes32,47,48.

A result of recent advances in next-generation sequencing is that 
single-cell whole genome sequencing is now possible (and indeed 
transcriptome sequencing too)49. Therefore, it is conceivable that 
we will soon be able to envisage mapping the genetic diversity of 
an entire tumour at cellular resolution. However, an important ques-
tion is how much of this information about genetic ITH will prove 
to be clinically relevant? Intriguingly, in some cancers (lung10,11 
and colon13,14), the key driver mutations are proven to be clonal 
(e.g. present in all tumour cells), although spatially localised drivers 
have been found in other cancer types (e.g. kidney9). The obvious 

question then becomes how many, if indeed any, of the heterogene-
ous mutations are important for tumour growth? Clearly, there is a 
need to discriminate between ITH that is attributable to “mutational 
noise” (e.g. the background mutation rate) and that which is in some 
sense “functional” for tumour development. Mathematical model-
ling of the amount of ITH that should be expected in a growing 
tumour can be helpful here, as an increase or decrease of ITH com-
pared with expectation reveals “important” evolution in the tumour 
(our effort to implement such a model50 is discussed briefly below). 
An alternative empirical approach would require the concurrent 
measurement of genotype and phenotype so that genetic ITH can be 
related to the presence of (minority) cell populations with biologi-
cally distinct function. Interestingly, measurement of the behaviour 
of different clones within a colon cancer, including their sensitiv-
ity to cytotoxic drugs, revealed marked differences in behaviour 
between tumour regions, without concomitant differences in 
genotype15. This study in particular highlights how genetic ITH can 
be a poor proxy for functional heterogeneity, and the latter is clearly 
of greater clinical relevance, especially ITH of drug response.

A further source of ITH is the persistence of a cancer stem cell (CSC) 
hierarchy, a factor that may be described as either cell-autonomous 
(i.e. “stemness” is governed by a cell’s genetic or epigenetic 
makeup) and non-cell autonomous (i.e. “stemness” is governed by 
external factors within an environmental “niche”). Although a strict 
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hierarchy of differentiation is described as a feature of haematopoi-
etic cancers51, a form of CSC architecture may significantly contrib-
ute to ITH in solid tumours. There is evidence of a CSC hierarchy in 
mouse models of brain cancer52,53, where a small subpopulation of 
cells is responsible for sustaining tumour growth. The definition of 
a CSC continues to be debated54, but if CSCs are defined simply as 
the population of cells with long-term self-renewal capability, then 
following debulking chemotherapy tumour regrowth is determined 
by the prevalence of the CSC phenotype amongst the surviving 
cells18. The question of the plasticity of the stem cell phenotype is 
an interesting topic of discussion. It is noteworthy that observations 
of cell populations growing in vitro55 and genetically engineered 
mouse models of intestinal tumourigenesis56 suggest that bidirec-
tional phenotype switching can occur (even in the absence of clonal 
selection), questioning whether the “stemness” of a tumour cell is 
strictly intrinsically defined. Plasticity of a CSC phenotype can be 
viewed as a form of epigenetic heterogeneity within the tumour.

Heterogeneity in the microenvironment of a cancer can be 
described as a non-cell autonomous driver of cancer cell diversity62; 
in a highly diverse microenvironment, different cellular phenotypes 
may be selected for or against in different regions of the tumour. 
For example, any sizeable tumour will inevitably contain areas 
of hypoxia and normoxia. In a hypoxic region, an anaerobically 
metabolising cell is expected to have a fitness advantage over an 
aerobically metabolising cell and so should repopulate the hypoxic 
region, but the opposite should be true in a normoxic region63. Such 
different phenotypes may be genetically determined (such as the 
case of VHL/HIF1 mutants in kidney cancer)64, or they may be a 
consequence of plasticity in cellular behaviours15, and further-
more there may be feedback between the tumour cells and their 
microenvironment that drives specialisation of tumour cells and the 
concomitant strengthening of microenvironmental gradients.

A further example of a non-cell autonomous driver of ITH is the 
interactions between subclones of the tumour. In experimental 
systems, synergistic or predatory interactions between phenotypi-
cally distinct clones drive tumour growth15,58,59,65–67. Intermixing 
of clonally distinct populations is a feature of many tumours and 
has been particularly well documented in gliomas16. If interactions 
between cells within a tumour are critical for tumour maintenance, 
then reducing the tumour population size below some critical 
threshold—called an Allee threshold—may be an effective cancer 
treatment61. The logic behind this idea is that small populations are 
not able to produce sufficient density of cooperative factors that are 
necessary for tumour maintenance (such as diffusible growth fac-
tors) and so small populations are unviable. The interplay between 
clones that are producers (e.g. angiogenic cells) versus consumers 
(e.g. aerobically respiring non-angiogenic cells) should, theoreti-
cally, also influence phenotypic diversity within a cancer. Clearly, 
tumour cells can also benefit from factors produced by the stro-
mal cells in their microenvironment68. Clonal interference refers 
to the situation where two or more clones of similar fitness each 
impede the growth of the other by competing equally well for 
limited resources, and theoretical models of cancer growth predict 
that clonal interference should slow cancer evolution and lead to the 
longer-term maintenance of multiple distinct clonal populations69. 
Interactions between tumour cells and the immune system also 

shape ITH: for example, the immune system predates the tumour 
cells, and tumour cells that have evolved to avoid immune detection 
will persist and perhaps clonally expand in the tumour70.

Recognising that there is a dynamic interplay between tumour 
cells and their microenvironment, and between tumour cells them-
selves, means that cancers are best viewed as complex evolving 
ecosystems60. In the cancer ecosystem, the relative fitness conferred 
by a new mutation is defined by microenvironmental context6,57, 
where the context refers to both the neighbourhood of tumour and 
stromal cells and more broadly diffusible factors. Importantly, the 
ecological viewpoint provides a single framework to understand the 
seemingly distinct contributions of cell-autonomous and non-cell 
autonomous factors to ITH. This is because the ecological view 
forces us to recognise that all the evolution within a tumour is only 
ever driven by selection in the current microenvironment context: 
cell-autonomous drivers provide an advantage to the cell in their 
current context, and non-cell autonomous factors can drive evolu-
tion by changing that context.

Multi-faceted networks are challenging to understand, and con-
sequently computational or mathematical models are increasingly 
recognised as essential tools to integrate and interpret the complex, 
multi-scale data derived from the interplay between tumour sub-
clones and their interactions with the microenvironment (ref. 71 
provides an overview). Part of the value of mathematical models 
is the ability to elucidate the underlying (perhaps simple) causes 
of intricate patterns in complex systems. For example, our own 
work has used a simple mathematical model of mutation dur-
ing the first few rounds of cell doubling at the start of tumour 
growth to explain the complex pattern of genetic ITH observed in 
cancer50. We note that this kind of approach can help to delineate 
“important” ITH from the inconsequential “mutational noise” 
mentioned above. More generally, such models can be used to 
generate new hypotheses concerning the generation and mainte-
nance of ITH, and the effects of ITH on tumour evolution, and to 
predict response to therapy and recurrence.

In summary, the fact that tumours are an evolving ecosystem means 
that ITH is inevitable, and consequently ITH is observed in all 
tumour types and premalignant diseases where it has been looked 
for. We devote the remainder of this review to understanding the 
consequences of ITH for cancer prognostication and treatment.

Intra-tumour heterogeneity and prognostication
Traditionally, cancer prognosis has been determined by the pres-
ence or absence of a particular feature within a tumour. Histopa-
thology remains the mainstay of this approach: tumours are scored 
for stage (how far the cancer has invaded) and grade (a measure of 
how abnormal the cancer cells appear and how disrupted the tissue 
architecture of the tumour is compared with normal tissue). Molec-
ular markers have entered clinical practice too, most prominently 
assessment of oestrogen receptor (ER), progesterone receptor (PR), 
and HER2 status in breast cancer73,74 (to determine prognosis and 
treatment choice). Relatedly, genetic analysis is employed to pre-
dict the likely efficacy of targeted therapies by testing whether 
the tumour contains pre-existing resistant clones; for example, 
colorectal cancers are screened for KRAS mutations as the presence 
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of a KRAS mutant clone means that the anti-epidermal growth fac-
tor receptor (anti-EGFR) antibody cetuximab will be an ineffective 
treatment75.

Clearly, ITH presents a major obstacle for such “feature-based” 
prognostic markers, simply because if the feature being assayed 
for is not present in the particular biopsy analysed but is present 
elsewhere in the tumour then prognosis will be incorrectly assigned 
(Figure 1A). A striking demonstration of this was provided by 
Gerlinger and colleagues when they compared gene expression-
based prognostic signatures derived from spatially distinct regions 
on a single renal cancer and reported that the different regions 
of the same tumour can harbour either good- or bad-prognosis 
signatures; therefore, a single biopsy would not sufficiently repre-
sent the tumour composition8. Epistatic interactions (perhaps driven 
by unmeasured genes) could also potentially alter the prognostic 
value of individual molecular feature (Figure 1C). There is also 
an issue of what feature (or indeed set of features) to include in a 
prognostic assay. One of the striking findings of the recent large-
scale extensive molecular characterisations of tumours, such as 
The Cancer Genome Atlas project (http://cancergenome.nih.gov), 

is that every tumour appears molecularly unique or, in other words, 
that there appear to be many different ways to produce a particular 
cancer. This rampant inter-tumour heterogeneity may preclude 
a “one size fits all” approach to feature-based prognostic mark-
ers since a particular prognostic feature is unlikely to work for all 
cancers of a particular type (Figure 1B). Relatedly, the differences 
between cancers of distinct types may mean that a particular feature 
is unlikely to have broad prognostic value (Figure 1D), although there 
is evidence suggesting that integral biochemical cellular features 
such as the ability to form proper DNA segregation machinery77,78 
or to properly regulate adhesion79 may have potential in this respect.

The idea that some molecular changes may be integral to tumour 
biology, and so not subject to ITH, is supported by an intriguing 
study of renal cancers that provides a counterpoint to the find-
ings of Gerlinger and colleagues. Rini and colleagues used a large 
cohort of renal cancers to derive a 16-gene signature that predicted 
recurrence76. Importantly, the authors also performed multi-region 
sampling on a small number of samples to demonstrate little or 
no ITH in their gene signature, which, counter to the findings of 
Gerlinger and colleagues, would suggest that sampling one biopsy 

Figure 1. Intra-tumour heterogeneity and prognostication. (A) Intra-tumour heterogeneity means a targeted biopsy may miss a lesion with 
a poor prognostic signature (“red” phenotype) within the tumour (majority of tumour has a “blue” phenotype that is associated with a good 
prognosis). (B) Differences between tumours (inter-tumour heterogeneity) mean that a single prognostic biomarker may be unsuitable for use 
in some tumours that have evolved along a different carcinogenic pathway; this yellow tumour does contain either the previously identified 
good (blue) or bad (red) phenotypes. (C) Epistasis between genes (or other intra- or inter-cellular interactions) can alter the prognostic 
value of any individual feature; here, the presence of the “green” mutation may alter the bad prognosis of the “red” mutation assayed in (A). 
(D) Inter-cancer heterogeneity means that a feature-based prognostic marker developed for one cancer type is unlikely to work in another 
cancer type.
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can in fact be enough to infer prognosis. In broad terms, the prog-
nostic importance of ITH is likely to be dependent on many factors 
such as tumour type, tumour stage, and treatment regime, and criti-
cally the nature of the biomarker itself.

However, it is not all doom and gloom. Approaching ITH from an 
evolutionary perspective suggests a new approach to prognostica-
tion that exploits ITH rather being hindered by it. The idea is that 
the evolvability of a population is determined (somewhat) by the 
degree of diversity present in that population (Figure 2). To under-
stand this idea, suppose there are two populations of cells: one 
where all the cells are identical to one another (low diversity) and 
one where all the cells are phenotypically distinct (high diversity). 
If the cells in the first scenario experience a new selective pressure 
(e.g. a cytotoxic drug), then either all the cells are perfectly adapted 
and nothing happens, or the population is eradicated. When the 
same selective pressure is applied in the second scenario, the sensi-
tive cells in the phenotypically diverse population will be killed off 
and any (perhaps minor) subclone that was resistant to the pressure 
will survive and grow to dominate the tumour in the absence of 
competing clones. Therefore the idea is that more diverse tumours 
are more likely to be more evolvable and hence more likely to 
generate a metastatic clone or contain a clone that is resistant to 
therapy (or both): hence, the theory is that tumours with higher 
levels of ITH should have a worse prognosis.

Empirical studies support the idea of quantification of ITH as a prog-
nostic biomarker. Originally, measurements of intra-lesion genetic 

diversity within the premalignant condition Barrett’s oesophagus 
were found to be strong predictors of cancer development risk40, 
and the prognostic value of the diversity signal appeared largely 
robust to the statistic used to quantify it80. Clonal diversity has also 
been found to be higher in breast cancer subtypes associated with 
a worse prognosis30 and is associated with worse overall survival 
in head and neck cancers81, acute myeloid leukaemia82, ovarian 
cancers37, and lung cancers11. Importantly, the prognostic value of 
ITH measures does not appear to be limited to measure of genetic 
heterogeneity, since quantification of morphological heterogeneity 
in the organisation of tumour and stromal cells in breast cancers83 and 
the ITH of positron emission tomography-computed tomography 
signal in lung cancers84 has also been reported to significantly corre-
late with outcome. These studies give support to the idea that quan-
tification of ITH, as a measure of the carcinogenic process itself 
rather than a specific feature of that process, may be a universal 
prognostic biomarker suitable for use in all cancer types. Further 
work is required to determine which features of tumour biology 
should be assessed for heterogeneousness in order to best deter-
mine prognosis. For example, much genetic ITH may be irrelevant 
for tumour biology (as discussed above) and so naive genetic ITH 
measures may have limited prognostic value.

Intriguingly, tumours that have underlying defects in DNA repair 
(such as mismatch repair85,86 or polymerase-epsilon87 defective 
tumours of the colon), which are expected to have very high levels 
of genetic ITH, paradoxically have very good prognoses88–90. Simi-
larly, with an expression-based signature to quantify the degree 

Figure 2. Intra-tumour diversity as a universal prognostic marker. A homogeneous tumour (A) will be eradicated in response to a 
selective pressure such as chemotherapy, whereas a heterogeneous tumour (B) is more likely to contain a pre-existing resistant clone that 
survives the selective pressure and seeds the repopulation of the tumour. 
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of chromosomal instability (CIN) in breast cancers, a meas-
ure which likely correlates with ITH, the patients with the worst 
outcome were those whose tumours had intermediate levels of CIN, 
whereas patients whose tumours had very high levels of CIN had 
better outcomes91. One possible explanation for these data is that 
very high mutation rates, while generating lots of diversity that 
makes the tumour more evolvable, also generate lots of deleteri-
ous variants that impede clone growth. A further contributing factor 
to this favourable prognosis (at least in tumours with an elevated 
point mutation rate, such as microsatellite unstable tumours) is the 
elevated immunogenicity of tumours with a high mutation rate, a 
feature that is the result of the generation of many immunogenic 
neo-antigens, which stimulate the host immune system92. Effective 
ITH-based prognostic markers will need to address such complexi-
ties of tumour evolution to be broadly useful. We note too that exist-
ing broad molecular classifications of cancer (such as microsatellite 
versus chromosomally unstable cancers in the colon) can have sig-
nificant prognostic value themselves, and consequently ITH-based 
measures may be useful only to stratify within such molecularly 
defined subgroups.

Intra-tumour heterogeneity and treatment
Resistance to chemo- and targeted-therapy, and concomitant treat-
ment failure, occurs in the majority of cases72,93–97. Pre-existing 
ITH can be (indirectly) attributed as the underlying cause of these 
treatment failures. Tumours, at the stage when they are treated, 
contain many billions of cells and it appears an almost mathemati-
cal certainty that at least a few of these cells will have evolved a 
therapy-resistant phenotype. Indeed, in patients with colorectal 
cancer treated with the anti-EGFR antibody cetuximab, empirical 
measurements show that KRAS-mutant clones that likely existed at 
undetectably low frequency prior to the initiation of therapy expand 
exponentially at the administration of therapy98 and similar dynam-
ics have been observed in a variety of other malignancies, including 
lung99,100, leukaemia23,101, and melanoma102,103.

Is ITH an insurmountable barrier to effective cancer treatment? It 
is clearly a major challenge, and accordingly one approach that 
has been suggested is to try to suppress the level of ITH within a 
tumour (by targeting the drivers of genetic instability) in order to 
provide a more homogenous tumour that may be more pliable with 
treatment104. An exciting but radically different approach is to try 
to use the presence of ITH itself in order to increase the efficacy 
of cancer treatment105. The approach, termed adaptive therapy, is 
based on the maxim that “nothing comes for free”. This is the idea 
that resistance to a particular therapeutic agent inevitably carries 
some cost to the cancer cell, so that in the absence of therapy a 
resistant clone is at a disadvantage and so will be outcompeted by 
any remaining sensitive cells. The adaptive therapy approach is 
therefore to pulse the drug in such a manner that when the drug 
is present the sensitive cell population is killed off and the resist-
ant cell population prospers, whereas when the drug is absent the 
resistant population is outcompeted by the sensitive population. In 
theory, if the sensitive population is able to outcompete the resist-
ant population sufficiently well, this treatment regime will mean 
that the tumour remains sensitised to the drug over long time 
frames while the size of tumour population as a whole is effectively 
constrained106,107. In a melanoma xenograft model, this idea appears 
efficacious108. Translation of this idea to the clinic would require 

the development of appropriate monitoring tools that indicate when 
to provide/withdraw treatment; this is clearly a major challenge in 
itself. It is important to note that the idea behind adaptive therapy 
is not to affect a cancer cure—indeed, the idea is predicated on the 
assumption that this is impossible with a single agent—but rather to 
extend the effectiveness of a particular agent indefinitely and in so 
doing make the cancer a chronic rather than fatal disease. 

Other approaches have been proposed that similarly attempt to 
steer the evolutionary response of a tumour to treatment109,110. The 
general idea of these innovative proposals is that it is possible to 
predict which phenotypes will emerge from a heterogeneous popu-
lation under treatment, and so the next therapy can be applied in 
order to treat the emergent clone. This logic provides the ration-
ale behind attempts to “vertically” combine targeted therapies 
(targeting multiple members of the same pathway) to prevent 
resistance to a single agent emerging because of the selective pres-
sure the mono-agent provides for the emergence of a clone with a 
mutation in a gene downstream of the original drug target111,112. In 
general, combination therapies may also help to tackle the issue of 
pre-existing resistance in heterogeneous tumours, since the chance 
of a cell being doubly resistant to two different therapies should 
be proportional to the probability that the cell is resistant to any 
one therapy individually, and so if mono-therapy resistance is rare 
in the tumour cell population, then doubly resistant cells should 
be vanishingly rare indeed113. An emerging theme of combina-
tion therapy is the use of both targeted and non-specific therapies, 
such as immunotherapy. For example, a combination of BRAF and 
MEK inhibitors with adoptive cell transfer (ACT) immunotherapy 
in a BRAF-driven mouse model of melanoma has been shown to 
induce complete tumour regression114. However, it should be noted 
that combining multiple therapies may carry the cost of increased 
toxicity to normal tissue. Together, these data and theoretical stud-
ies suggest that therapeutic regimes will need to be personalised 
for the evolutionary response of an individual tumour in order to 
effectively tackle the problem of ITH.

Conclusions
ITH is an inevitable feature of all cancers and presents challenges 
to our understanding of tumour biology and our ability to prognose 
and treat cancer. But it is our opinion that these challenges are not 
insurmountable, and in fact understanding the processes generat-
ing ITH provides us with a window to understand the very driv-
ers of carcinogenesis itself. From a more clinical perspective, 
quantification of ITH offers an exciting opportunity to improve 
prognostication, and exploiting rather than ignoring ITH has the 
potential to improve the efficacy of existing cancer therapies.
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