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Abstract

This paper investigates the bias and the weak Bahadur representation of a local

polynomial estimator of the conditional quantile function and its derivatives.

The bias and Bahadur remainder term are studied uniformly with respect to

the quantile level, the covariates and the smoothing parameter. The order of the

local polynomial estimator can be higher than the differentiability order of the

conditional quantile function. Applications of the results deal with global opti-

mal consistency rates of the local polynomial quantile estimator, performance

of random bandwidths and estimation of the conditional quantile density func-

tion. The latter allows to obtain a simple estimator of the conditional quantile

function of the private values in a first price sealed bids auctions under the

independent private values paradigm and risk neutrality.
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1. Introduction

The conditional quantile function is a powerful tool to represent the dependence between two

variables. Let Q(α|x), α in (0, 1), be the conditional quantile function of a univariate dependent

variable Y given X = x, where X is the d dimensional covariate, Q(α|x) = inf{y : P(Y ≤ y|X =

x) ≥ α}. Under fairly general conditions, the Lévy-Smirnov-Rosenblatt transformation ensures

that there is a random variable A independent of X and uniform over [0, 1] such that

(1.1) Y = Q(A|X).

In other words, the knowledge of the conditional quantile function allows to compute the impact

on Y of a shock on X for any given A. The conditional quantile function is also central in

the identification of the impact of such shocks or of more general parameters in nonseparable

models in microeconometrics, see Chesher (2003), Chernozhukov and Hansen (2005), Holderlein

and Mammen (2007) and Imbens and Newey (2009) to mention just a few. See also Firpo,

Fortin and Lemieux (2009) or Rothe (2010) for an unconditional point of view when evaluating

distributional policy effects. Conditional quantile approaches can also be useful in industrial

organization due to the important role played by increasing functions and the equivariance

property of quantile function which states that Ψ(Q(α|x)) is the conditional quantile function

of Ψ(Y ) given X provided Ψ is an increasing transformation. See Haile, Hong and Shum (2003),

Marmer and Shneyerov (2008) and below for the case of auctions. Echenique and Komunjer

(2009) show the usefulness of a conditional quantile approach when analyzing general multiple

equilibria economic models.

However, inference with the quantile representation (1.1) is potentially difficult due to non-

separability. In a regression model Y = m(X)+ε whereX and ε are independent, the dependence

between Y and X is summarized through the regression function m(·) and does not involve the

unobserved noise ε. This contrasts with (1.1) where the random variable A may potentially

change the shape of x 7→ Q(A|x). Hence, inference in (1.1) should not focus on a particular

value of the quantile level α but should consider instead all α in an interval [α,α] close enough

to [0, 1], as recommended for instance in the case of the more constrained quantile regression

model analyzed in Koenker (2005). In practice, this often leads to consider graphical represen-

tations of the estimated curves x 7→ Q̂(α|x) for various α. A natural norm for evaluating these

estimated graphs is the uniform norm with respect to α and x, supα,x

∣∣∣Q̂(α|x)−Q(α|x)
∣∣∣.

The present paper contributes to this issue for local polynomial quantile estimators Q̂h(α|x)
which depends upon a bandwidth h. We study its bias uniformly in α and x and derive a uniform

Bahadur representation for Q̂h(α|x) and its derivatives which holds in probability, that is a
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weak Bahadur representation. In few words, a Bahadur representation is an approximation of

Q̂h(α|x) −Q(α|x) by a bias term plus a leading stochastic term up to remainder term with an

explicit order. In our setup, uniformity is with respect to the level α, the bandwidth h, and

the covariate x, implying that our Bahadur representation is an important step for the study of

supα,x

∣∣∣Q̂(α|x) −Q(α|x)
∣∣∣, see Proposition 2 below. Various other interesting results also follow

from our uniform results.

To be more specific, consider independent and identically observations (X1, Y1), . . . , (Xn, Yn)

with the same distribution than (X,Y ). Define, for α in (0, 1), the loss function

(1.2) ℓα(q) = |q|+ (2α − 1)q = 2q (α− I(q ≤ 0)) , q in R,

where R stands for the set of real numbers. It is well known that

(1.3) Q (α |x) = argmin
q∈R

E [ℓα(Y − q) |X = x ]

is the conditional quantile of Y given X = x. When d = 1, the local polynomial estimator of

order p of Q(α|x) is Q̂h(α|x) = b̂0(α;h, x) where, for b = (b0, . . . , bp)
T ,

(1.4) b̂(α;h, x) = arg min
b∈Rp+1

n∑

i=1

ℓα

(
Yi − b0 − b1 (Xi − x)− · · · − bp

p!
(Xi − x)p

)
K

(
Xi − x

h

)
.

In the expression above, p! is the factorial p×(p−1)×· · ·×1, K(·) is a kernel function and h is a

smoothing parameter which goes to 0 with the sample size. As detailed in Section 2 and studied

throughout the paper, the local polynomial estimator Q̂h(α|x) has a natural extension which

covers the multivariate case d > 1. As noted in Fan and Gijbels (1996, Chapter 5), the local

polynomial estimator Q̂h(α|x) is a modification of the Least Squares local polynomial estimator

of a regression function which uses the square loss function in (1.4) instead of the loss function

ℓα(·). A Taylor expansion

Q(α|Xi) ≃ Q(α|x) + ∂Q(α|x)
∂x

(Xi − x) + · · ·+ 1

p!

∂pQ(α|x)
∂xp

(Xi − x)p

suggests that b̂1(α;h, x), . . . , b̂p(α;h, x) estimate the partial derivatives ∂rQ(α|x)/∂xr , r = 1, . . . , p,

provided Q(α|x) is smooth enough.

Robust local polynomial estimation of a regression function and its derivatives, including

quantile methods, has already been considered in many research articles. See in particular Tsy-

bakov (1986) for optimal pointwise consistency rates, Fan (1992) for design adaptation, and

Fan and Gijbels (1996) and Loader (1999) for a general overview. The present paper is perhaps

more specifically related to Truong (1989), Chauduri (1991), Holderlein and Mammen (2009)

and Kong, Linton and Xia (2010). Truong (1989) showed that local median estimators achieve
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the global optimal rates of Stone (1982) with respect to Lm norms, 0 < m ≤ ∞, for conditional

quantile function satisfying a Lipschitz condition. Chauduri (1991) obtained a strong (that is

which holds in an almost sure sense) Bahadur representation for the local polynomial quantile

estimators when the kernel function K(·) of (1.4) is uniform. Hong (2003) extended this result

to local polynomial robust M-estimation and more general kernels. The Bahadur representa-

tion of Chaudhuri (1991) is pointwise, that is holds for some prescribed x and α and a given

deterministic bandwidth h → 0. As explained and illustrated in Kong et al. (2010), pointwise

Bahadur representations are not sufficient for many applications including plug in estimation

of conditional quantile functionals or marginal integration estimators. Hence Kong et al. (2010)

derives a strong uniform Bahadur representation for robust local polynomial M-estimators for

dependent observations. Here uniformity is with respect to the location variable x. For local

polynomial quantile estimators of order p = 1, Holderlein and Mammen (2009) considers uni-

formity with respect to α and x but they just show that their remainder term is negligible in

probability and does not obtain its order.

In this work, we study the bias term and obtain the order in probability of the Bahadur

remainder term uniformly in α, h and x for local polynomial quantile estimators. A first contri-

bution given in Theorem 1 below deals with the study of the bias of local polynomial quantile

estimators. Most of the literature has focused on the case where the order p of the local polyno-

mial is equal to the order of differentiability of x 7→ Q(α|x), say s. This is somehow unrealistic

since it amounts to assume that s is known. Since the case where p ≤ s can be easily dealt with

by ignoring higher order derivatives, we focus in the more interesting case where p > s, which

has apparently not been considered in the statistical and econometric literature. As shown in

Corollary 1, a local polynomial quantile estimator with p > s still allows to estimate Q(α|x)
with the optimal rate n−s/(2s+d) of Stone (1982). This suggests that local polynomial estimators

using high order p should be preferred since they allow to estimate in an optimal way a wider

range of smooth conditional quantile functions. Another interesting conclusion of our bias study

is that the additional local polynomial coefficients b̂v(α;h, x), v = s + 1, . . . , p can diverge and

Proposition 1 describes a simple example where it indeed happens. Hence, in the local polyno-

mial setup, a high value of b̂v(α;h, x) may also correspond to a non smooth quantile function in

which case a lower degree p < v could have been used.

Our uniform study of the Bahadur remainder term, namely Theorem 2, is the second main

contribution of the paper. A third contribution builds on the fact that Theorems 1 and 2 hold

uniformly with respect to x in a compact inner subset of the support of X. Combining these

results with a study of the stochastic part of the Bahadur representation allows us to show that
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the local polynomial quantile estimator achieves the global optimal rates of Stone (1982) for the

Lm and uniform norms provided the bandwidth goes to 0 with an appropriate rate. This result,

stated in Corollary 1, is apparently new and extends Truong (1989) which is restricted to Lipshitz

quantile functions, or Chauduri (1991) who considers pointwise optimality. A fourth contribution

uses the fact that Theorems 1 and 2 hold uniformly with respect to h in an interval [h, h].

Proposition 2 shows that a random bandwidth performs as well as its deterministic equivalent

counterpart with respect to convergence rates of the uniform norm supα,x

∣∣∣Q̂h(α|x) −Q(α|x)
∣∣∣.

Such a result gives a solid theoretical basis to Li and Racine (2008) suggestion of choosing

the local polynomial bandwidth h via a simpler cross validation procedure for the conditional

cumulative distribution function. As mentioned earlier, uniformity with respect to α and x is

also useful for graphical representations of (1.1).

A fifth contribution also exploits uniformity with respect to the quantile order α. Proposi-

tion 3 considers estimation of the conditional quantile density function

(1.5) q(α|x) = ∂Q(α|x)
∂α

=
1

f (Q(α|x)|x) .

As argued in Parzen (1979), the quantile density function q(α|x) or its inverse 1/q(α|x) is a

renormalization of the density function f(y|x) which is well suited for statistical explanatory

analysis. The function q(α|x) is also crucial for quantile based statistical inference. Indeed, the

asymptotic variance of Q̂h(α|x) is proportional to
1

nh

α(1 − α)

q2(α|x)f(x)
where f(·) is the marginal density of X, see Fan and Gijbels (1996, p. 202). Hence estimating

q(α|x) is useful to estimate the variance of Q̂h(α|x). As noted in Guerre, Perrigne and Vuong

(2009), the conditional quantile density function plays an important role in the identification of

first-price sealed bids auction models. Under the independent private values paradigm and risk

neutrality, the conditional quantile function of the private values Qv(α|x) satisfies

Qv(α|x) = Qb(α|x) + αqb(α|x)
I − 1

,

where Qb(α|x) and qb(α|x) are the conditional quantile function and quantile density function

of the bids. Hence estimating Qb(α|x) and qb(α|x) gives a straightforward estimation of the

conditional quantile function of the private values Qv(α|x) which is an alternative to the two

steps approach of Guerre, Perrigne and Vuong (2000). See Haile et al. (2003) or Marmer and

Shneyerov (2008) for a related estimation strategy.
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There is however just a few references that address the estimation of q(α|x). For the related
function q(α|x)∂F (Q(α|x)|x)∂x, Lee and Lee (2008) uses a composition approach which non-

parametrically estimates ∂F (y|x)/∂x, f(y|x) and Q(α|x) = F−1(α|x). Haile et al. (2003) and

Marmer and Shneyerov (2008) proceeds similarly. Xiang (1995) proposes the estimator

1

hq

∫
F̂−1 (α+ hqa|x) dKq(a),

where F̂ (y|x) is a kernel estimator of the conditional cumulative distribution function, Kq(·) a
probability distribution and hq a smoothing parameter. As argued in Fan and Gijbels (1996),

local polynomial estimators may have better design adaptation properties than kernel ones.

Hence we propose to use the local polynomial Q̂h(α|x) instead of the kernel F̂−1(α|x). Thanks
to uniformity with respect to α in Theorems 1 and 2, the resulting conditional quantile density

function estimator q̂(α|x) has a simple Bahadur representation which facilitates the study of its

consistency rate, see Proposition 3.

The rest of the paper is organized as follows. The next section groups our main assumptions

and notations and explained in particular how to extend (1.4) to multivariate covariates. Section

3 exposes our main results and Section 4 concludes the paper. The proofs of our statements are

gathered in two appendices.

2. Main assumptions and notations

The definition (1.4) of Q̂h(α|x) assumes that the covariate X is univariate. In the mul-

tivariate case, we use a multivariate kernel function K(z) = K(z1, . . . , zd) but we restrict

to an univariate bandwidth for the sake of simplicity. The univariate polynomial expansion

b0+ b1 (Xi − x)+ · · ·+ bp (Xi − x)p /p! is replaced by a multivariate counterpart as defined now.

Let N be the set of natural integer numbers. For v = (v1, . . . , vd) let |v| = v1 + · · · + vd and

let P be the number of v’s with |v| ≤ p. Then a generic expression for multivariate polynomial

function of order p is, for b in R
P ,

U(z)Tb =
∑

v;|v|≤p

bv
zv

v!
, where zv = zv11 × · · · × zvdd , U(z)T =

(
zv

v!
, |v| ≤ p

)
,

and v! = Πd
i=1vi!. In the expression above, the vectors v of Nd are ordered according to the

lexicographic order. The multivariate version of the local polynomial estimator (1.4) is

b̂(α;h, x) = arg min
b∈RP

Ln (b;α, h, x) with(2.1)

Ln (b;α, h, x) =
1

nhd

n∑

i=1

ℓα

(
Yi −U (Xi − x)T b

)
K

(
Xi − x

h

)
.
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As in the univariate case, the entry b̂0(α;h, x) = Q̂h(α|x) of b̂(α;h, x) is an estimator of Q(α|x).
The entry b̂v(α;h, x) can be viewed as an estimator of the partial derivative

bv (α|x) =
∂|v|Q(α|x)

∂xv11 × · · · × ∂xvdd

provided this partial derivative exists. We shall consider later on the following Hölder class.

Consider a subset [α,α] of (0, 1) over which Q(α|x) or its partial derivatives will be estimated.

Let ⌊s⌋ be the lowest integer part of s, i.e. ⌊s⌋ is the unique integer number with ⌊s⌋ < s ≤ ⌊s⌋+1.

Then Q(·|·) is in C(L, s), L, s > 0, if

(i) for all α in [α,α], x 7→ Q(α|x) is ⌊s⌋-th continuously differentiable over the support X
of X;

(ii) for all v in N
d with |v| = ⌊s⌋, all α in [α,α], all x, x′ in X ,

∣∣bv (α|x)− bv
(
α|x′

)∣∣ ≤ L
∥∥x− x′

∥∥s−⌊s⌋

where ‖ · ‖ stands for the Euclidean norm.

Since the estimators b̂v (α;h, x) of the partial derivatives bv (α|x) converge with different rates,

we use the diagonal standardization matrix

H = H(h) = Diag
(
h|v|,v ∈ N

d, |v| ≤ p
)
.

It is well known that local polynomial estimation techniques apply at the boundaries.

However we will focus on those x which are in an inner subset X0 of the support X of X

to avoid technicalities. Our main assumptions are as follows. Let B (0, 1) be the closed unit ball
{
z ∈ R

d : ‖z‖ ≤ 1
}
.

Assumption X. The distribution of X has a probability density function f(·) with respect to

the Lebesgue measure, which is strictly positive and continuously differentiable over the compact

support X of X. The set X0 is a compact subset of the interior of X .

Assumption F. The cumulative distribution function F (·|·) of Y given X has a continuous

probability density function f(y|x) with respect to the Lebesgue measure, which is strictly positive

for y in R and x in X . The partial derivative ∂F (y|x)/∂x is continuous over R × X . There is

a L0 > 0, such that

∣∣f(y|x)− f(y′|x′)
∣∣ ≤ L0

∥∥(x, y)− (x′, y′)
∥∥ for all (x, y), (x′, y′) of X ×R.
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Assumption K. The nonnegative kernel function K(·) is Lipschitz over Rd, has a compact sup-

port K and satisfies
∫
K(z)dz = 1. For some K > 0, K(z) ≥ K I (z ∈ B (0, 1)). The bandwidth

is in [hn, hn] with 0 < hn ≤ hn < ∞, limn→∞ hn = 0 and limn→∞(log n)/(nhdn) = 0.

Assumption X is standard. Assumption F ensures uniqueness of the conditional quantileQ(α|x) =
F−1(α|x) in (1.3) and existence of the quantile density function (1.5). Assumption K allows for a

wide range of smoothing parameters h → 0 in [hn, hn]. In the univariate case d = 1, Hong (2003)

restricts to bandwidths h = O(n−1/(2p+3)), a condition which is not imposed here, and Chauduri

assumes that h has the exact order n−1/(2p+d). In the simpler context of univariate kernel re-

gression, Einmahl and Mason (2005) assumes hd ≥ C(log n)/n to obtain uniform consistency so

that Assumption K is fairly general.

3. Bias study and Bahadur representation

Applying standard parametric M -estimation theory as detailed in White (1994) or van der

Vaart (1998) suggests that the local polynomial estimator b̂(α;h, x) of (2.1) is an estimator of

b∗(α;h, x) with

(3.1) b∗(α;h, x) = arg min
b∈RP

E

[
ℓα

(
Y −U (X − x)T b

)
K

(
X − x

h

)]
.

In particular, Q∗
h(α|x) = b∗

0
(α;h, x) may differ from the true conditional quantile Q(α|x) due

to a bias term Q∗
h(α|x) − Q(α|x). Studying this bias term can be done using the first-order

condition
∂

∂bT
E

[
ℓα

(
Y −U (X − x)T b∗(α;h, x)

)
K

(
X − x

h

)]
= 0,

and the Implicit Functions Theorem. This approach gives in particular the order of the differ-

ence between b∗v(α;h, x) and the vth partial derivative bv (α|x) of Q(α|x) provided the partial

derivative exists.

Theorem 1. Assume that Q(·|·) is in a Hölder class C(L, s) with ⌊s⌋ ≤ p. Then under As-

sumptions F, K and X and provided h is small enough, there is a constant C such that for all

|v| ≤ ⌊s⌋ and n large enough,

sup
(α,h,x)∈[α,α]×[h,h]×X0

∣∣∣∣
b∗v(α;h, x) − bv (α|x)

hs−|v|

∣∣∣∣ ≤ CL.

It follows that Q∗(α|x) −Q(α|x) = O(hs) and more generally that

b∗v(α;h, x) − bv (α|x) = O
(
hs−|v|

)
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uniformly provided |v| ≤ ⌊s⌋. Since ⌊s⌋ ≤ p, the bias order hs−|v| is not affected by the order p

of the local polynomial estimator. This bias order is better than the bias order hp−|v|, |v| ≤ p,

that would be achieved by suboptimal local polynomial estimators of lower order p < ⌊s⌋.
The proof of Theorem 1 establishes a slightly stronger result since it also gives the order of

the coefficients b∗v(α;h, x) with |v| > ⌊s⌋ which correspond to partial derivatives that may not

exist. Indeed, equation (A.8) of the proof of Theorem 1 implies that

(3.2) b∗v(α;h, x) = O
(
hs−|v|

)
for |v| ≥ s

uniformly in (α, h, x) ∈ [α,α] × [h, h] × X0. See also Loader (1999, Theorem 4.2) which gives

a less precise b∗v(α;h, x) = o
(
h−|v|

)
. Hence the higher order polynomial coefficients b∗v(α;h, x),

|v| > s, may diverge when h > 0. That this may be indeed the case can be seen on a simple

regression example. Consider

(3.3) Y = m(X) + ε, m(x) =





|x|1/2 if x ≥ 0

−|x|1/2 if x < 0
,

where the U ([−1, 1]) random variable X and the N (0, 1) ε are independent. Let Φ(·) be the

cumulative distribution function of the standard normal N (0, 1). In this example, Q(α|x) =

Φ−1(α) +m(x) inherits of the smoothness properties of the regression function m(·). Note that

the differential of m(·) at x = 0 is infinite. It also follows that Q(α|x) is at best in an Hölder

class C(L, 1/2) since, for L large enough,

|m(x)−m(x′)| ≤ L
∣∣x− x′

∣∣1/2 for all (x, x′) ∈ [−1, 1]2,

an inequality that cannot be improved by increasing the exponent 1/2 as seen by taking x = 0

and x′ → 0. The next Proposition uses the behavior of m(·) at x = 0 to show that the rate given

in (3.2) is sharp.

Proposition 1. Suppose that (X,Y ) satisfies (3.3). Let b∗(α;h, x) = (b∗0(α;h, x), b
∗
1(α;h, x))

T

from (3.1) be given by a local polynomial procedure of order 1. Then under Assumption K and
∫
zK(z)dz = 0, b∗0(0.5;h, 0) = m(0)+O(h1/2) and b∗1(0.5;h, 0) diverges with the exact rate h−1/2,

lim
h→0

h1/2b∗1(0.5;h, 0) =

∫
|z|3/2K(z)dz∫
z2K(z)dz

6= 0.

The divergence of b∗1(0.5;h, 0) implies that the estimator b̂1(0.5;h, 0) will diverge in probability.

This recalls that observing a large b̂1(0.5;h, 0) is not an argument for claiming that a local

polynomial estimator of order p = 1 should be used.
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We now consider the stochastic terms Q̂h(α|x) −Q∗
h(α|x) and the rescaled

H
(
b̂(α;h, x) − b∗(α;h, x)

)
.

Let us first introduce some additional notations. Local polynomial estimation builds on a order

p Taylor expansion of Q(α|x′) with x′ in the vicinity of x. This Taylor expansion can be written

as Q(α|x′) ≃ U(x′ − x)Tbp(α|x) where bp(α|x) groups the partial derivatives of Q(α|x) with

respect to x. Consider the following counterpart of the Taylor approximation,

(3.4) Q∗(x′;α, h, x) = U(x′ − x)Tb∗(α, h, x)

Define also Si(α;h, x) = S(Xi, Yi;α, h, x) and Ji(α;h, x) = J(Xi;α, h, x) with

(3.5) Si(α;h, x) = 2 {I (Yi ≤ Q∗(Xi;α, h, x)) − α}U
(
Xi − x

h

)
K

(
Xi − x

h

)
,

(3.6) Ji(α;h, x) = 2f (Q∗(Xi;α, h, x) |Xi )U

(
Xi − x

h

)
U

(
Xi − x

h

)T

K

(
Xi − x

h

)
.

Since

U (Xi − x) = HU

(
Xi − x

h

)

and (1.2) gives

∂ℓα
∂bT

(
Yi −U (Xi − x)T b

)
K

(
Xi − x

h

)

= 2
{
I

(
Yi ≤ U (Xi − x)T b

)
− α

}
U (Xi − x)K

(
Xi − x

h

)

almost everywhere, the variables Si(α;h, x) satisfy

∂Ln

∂bT
(b∗(α, h, x);α, h, x) =

H

nhd

n∑

i=1

Si(α;h, x)

almost everywhere. Hence
∑n

i=1 Si(α;h, x) can be viewed as a score function term whereas
∑n

i=1 Ji(α;h, x) is actually similar to a second derivative of the objective function Ln although

it is not twice differentiable. Indeed, it can be shown that it admits a quadratic approximation

with second-order derivatives

H

(
1

nhd

n∑

i=1

Ji(α;h, x)

)
H.



10

Classical results of White (1994) or van der Vaart (1998) for parametric estimation suggests

that a candidate approximation for b̂(α;h, x) − b∗(α;h, x) is

−
(
H

(
1

nhd

n∑

i=1

Ji(α;h, x)

)
H

)−1
H

nhd

n∑

i=1

Si(α;h, x)

= −H−1

(
1

nhd

n∑

i=1

Ji(α;h, x)

)−1
1

nhd

n∑

i=1

Si(α;h, x).

Hence the rescaled
(
nhd

)1/2
H
(
b̂(α;h, x) − b∗(α;h, x)

)
is expected to be close to

(3.7) βn(α;h, x) = −
(

1

nhd

n∑

i=1

Ji(α;h, x)

)−1
1

(nhd)
1/2

n∑

i=1

Si(α;h, x).

n∑

i=1

Ji(α;h, x)/(nh
d) is similar to a Kernel regression estimator and obeys a Law of Large Num-

bers for triangular array which ensures that this matrix is asymptotically close to

2f (Q∗(x;α, h, x) |x)
∫

U (t)U (t)T K (t) dt.

Since this matrix is symmetric positive definite, the inverse in (3.7) exists with a probability

tending to 1. The term
n∑

i=1

Si(α;h, x)/(nh
d)1/2 has a similar kernel structure but with centered

Si(α;h, x), see (A.1) in Lemma A.1 of Appendix A. Hence

n∑

i=1

Si(α;h, x)/(nh
d)1/2 satisfies a

pointwise Central Limit Theorem, as βn(α;h, x). Hence
(
nhd

)1/2
H
(
b̂(α;h, x) − b∗(α;h, x)

)

should also be asymptotically Gaussian provided the so called Bahadur error term

(3.8) En(α;h, x) =
(
nhd

)1/2
H
(
b̂(α;h, x) − b∗(α;h, x)

)
− βn(α;h, x).

is asymptotically negligible pointwisely. But transposing the various uniform results established

in the Appendices for the leading term βn(α;h, x) of the expansion of
(
nhd

)1/2
H
(
b̂(α;h, x) − b∗(α;h, x)

)

requests a uniform study of En(α;h, x).

Techniques to study En(α;h, x) for a fixed argument α, h and x are given in Hjort and

Pollard (1993). See also Fan, Heckman and Wand (1995, p.143) or Fan and Gijbels (1996,

p.210). In our uniform setup, obtaining an uniform order for En(α;h, x) is performed using a
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preliminary uniform study of a stochastic process we introduce now. Define first

L1n(β;α, h, x)

= nhd

{
Ln

(
b∗(α;h, x) +

H−1β

(nhd)
1/2

;α, h, x

)
−Ln (b

∗(α;h, x);α, h, x)

}

=
n∑

i=1




ℓα


Yi −Q∗(Xi;α, h, x) −

U
(
Xi−x

h

)T

(nhd)
1/2

β


− ℓα (Yi −Q∗(Xi;α, h, x))





K

(
Xi − x

h

)
,

which is such that

(
nhd

)1/2
H
(
b̂(α;h, x) − b∗(α;h, x)

)
= argmin

β
L1n(β;α, h, x).

It then follows from (3.8) that

En(α;h, x) = argmin
ǫ

Ln (βn(α;h, x), ǫ;α;h, x) where

Ln (β, ǫ;α;h, x) = L1n(β + ǫ;α, h, x) − L1n(β;α, h, x).(3.9)

Hence the stochastic process Ln plays a central role in our analysis. Especially useful is the

decomposition

Ln (β, ǫ;α;h, x) = L
0
n (β, ǫ;α;h, x) + Rn (β, ǫ;α;h, x)

where L
0
n is the quadratic approximation of Ln,

L
0
n (β, ǫ;α;h, x) =

1

(nhd)
1/2

n∑

i=1

Si(α;h, x)
T (β + ǫ) +

1

2
(β + ǫ)T

(
1

nhd

n∑

i=1

Ji(α;h, x)

)
(β + ǫ)

− 1

(nhd)
1/2

n∑

i=1

Si(α;h, x)
T β +

1

2
βT

(
1

nhd

n∑

i=1

Ji(α;h, x)

)
β

=
1

(nhd)
1/2

n∑

i=1

Si(α;h, x)
T ǫ+

1

2
ǫT

(
1

nhd

n∑

i=1

Ji(α;h, x)

)
(ǫ+ 2β) ,(3.10)

and Rn is a remainder term. As in the expression above (3.9) for En(α;h, x), the variable β

above in (3.10) will be taken equal to βn(α;h, x) in the proof of Theorem 2 below. As noted

in the quadratic approximation lemma of Fan et al. (1995, p.148) in the pointwise case, the

order of En(α;h, x) is driven by the order of Rn. The proof of the next Theorem relies on an

uniform study of Rn based on a maximal inequality under bracketing entropy conditions from

Massart (2007), see the proof of Proposition A.1. This maximal inequality plays here the role of

the Bernstein inequality used in the pointwise framework of Hong (2003).
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Theorem 2. Under Assumptions F, K and X,

sup
(α,h,x)∈[α,α]×[h,h]×X0

‖En(α;h, x)‖ = OP

(
log3 (n)

nhd

)1/4

.

In the case where the lower and upper bandwidths h and h have the same order, Theorem 2

gives uniformly in h in [h, h], α and x,

Q̂h(α|x) = Q∗
h(α|x) +

eT0 βn(α;h, x)

(nhd)
1/2

+OP

(
log n

nhd

)3/4

,

where e0 is the first vector of the canonical basis of RP , which first coordinate is equal to 1 and

the other ones are equal to 0. For h of order n−1/(2p+d) as studied in Chauduri (1991, Theorem

3.2), the order of the remainder term is n−3p/(2(2p+d)) log3/4 n as found by this author. When

d = 1, Hong (2003) obtains the better order (log log n/(nh))−3/4 but his Bahadur representation

only holds pointwisely in α and x. It can be conjectured that the order (log n/(nhd))−3/4 is

optimal for Bahadur expansion holding uniformly with respect to x.

For higher order partial derivatives, Theorem 2 yields

b̂v(α;h, x) = b∗(α;h, x) +
eTvβn(α;h, x)

(nhd)
1/2

h|v|
+

1

h|v|
OP

(
log n

nhd

)3/4

,

where the vth entry of ev is 1 and the other are 0, see also Hong (2003) for a pointwise version

of this expansion and Kong et al. (2010) for a version which is uniform with respect to x. Such

expansion can be used to study the pointwise asymptotic normality of the local polynomial

quantile estimator. Combining this Bahadur representation with the bias study of Theorem 1

gives a global rate result which is apparently new. The next Corollary extends the study of local

medians in Truong (1989).

Corollary 1. Assume that Q(α|x) is in C(L, s) for some ⌊s⌋ ≤ p. Suppose that Assumptions F,

K and X hold. Then for all partial derivative order v with |v| ≤ ⌊s⌋ and all α in [α,α],

(i)
(∫

X0

∣∣∣̂bv (α;h, x)) − bv(α|x)
∣∣∣
m
dx
)1/m

= OP

(
1
n

) s−|v|
2s+d for any finite m > 0 provided h is

asymptotically proportional to n− 1

2s+d ;

(ii) supx∈X0

∣∣∣̂bv (α;h, x) − bv(α|x)
∣∣∣ = OP

(
logn
n

) s−|v|
2s+d

if h is asymptotically proportional to
(
logn
n

) 1

2s+d
.

Since the bv(α|x) are estimators of the partial derivatives of m(x) in a regression model as (3.3),

It follows from Stone (1982) that the global rates derived in Corollary 1 are optimal in a minimax

sense.
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A second application builds on the uniformity with respect to the bandwidth h of our

Bahadur representation. The next Proposition allows for data-driven bandwidths. Observe that

it also deals with the uniform norm sup(α,x)∈[α,α]×X0

∣∣∣Q̂h(α|x) −Q(α|x)
∣∣∣ which evaluates the

estimated curves (α, x) 7→ Q̂h(α|x) used in empirical graphic illustrations of (1.1).

Proposition 2. Consider a random bandwidth ĥn such that ĥn = OP(hn) and 1/ĥn = OP(1/hn)

where hn is a deterministic sequence satisfying hn = o(1) and limn→∞(log n)/(nhdn) = 0. Suppose

that Assumption K, F and X hold and that Q(α|x) is in C(L, s). Then for any v with |v| ≤ ⌊s⌋,

sup
(α,x)∈[α,α]×X0

∣∣∣̂bv(α; ĥn, x)− bv(α|x)
∣∣∣ = h−|v|

n OP

(
hsn +

(
log n

nhdn

)1/2
)
.

In particular if the exact order of ĥn is (log(n)/n)1/(2s+d) in probability, supx∈X0

∣∣∣̂bv(α; ĥ, x)− bv(α|x)
∣∣∣

has the optimal order (log(n)/n)(s−|v|)/(2s+d) of Corollary 1-(ii). It is likely that an Lm version of

Proposition 2 holds but it is slightly longer to prove. Proposition 2 can be for instance fruitfully

applied to cross-validated bandwidths for the conditional cumulative distribution as proposed

by Li and Racine (2008).

Our last application builds on the fact that Theorems 1 and 2 hold uniformly with respect

to the quantile order α. This application concerns estimation of the conditional quantile density

function (1.5). The considered estimator of q(α|x) is a conditional version of the Parzen (1979)

convolution estimator,

(3.11) q̂(α|x) = 1

hq

∫
Q̂h(a|x)dKq

(
a− α

hq

)
=

1

hq

∫
Q̂h(α+ hqt|x)dKq (t) ,

see also Xiang (1995). In the expression above, hq > 0 is a bandwidth and Kq(·) is a signed

measure over R such that ∫
dKq (t) = 0,

∫
tdKq (t) = 1.

In particular, if Kq(·) has a Lebesgue derivative dKq(t) = K ′
q(t)dt, substituting in (3.11) gives

q̂(α|x) = 1

hq

∫
Q̂h(α+ hqt|x)K ′

q (t) dt.

Computing these integrals may request intensive numerical steps so that the resulting estimator

may be difficult to implement in practice. A more realistic estimator uses a discrete measure

Kq(·) in (3.11). IfKq(·) is a linear combination of Dirac masses at tj with weights κj, j = 1, . . . , J ,

the resulting estimator

q̂(α|x) = 1

hq

J∑

j=1

κjQ̂h(α+ hqtj|x),
J∑

j=1

κj = 0 and

J∑

j=1

tjκj = 1,
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may be indeed simpler to compute. Note that this includes the well known numerical derivatives

Q̂h(α+ hq|x)− Q̂h(α|x)
hq

,
Q̂h(α|x)− Q̂h(α− hq|x)

hq
and

Q̂h(α+ hq|x)− Q̂h(α− hq|x)
2hq

.

To study the bias of q̂(α|x), we strengthen the definition of the smoothness class C(L, s) as

follows. Q(α|x) is in Cq(L, s) if

(i) Q(α|x) is in C(L, s+ 1);

(ii) For each x in X , α ∈ [α,α] 7→ q(α|x) is ⌊s⌋th differentiable;

(iii) For each x in X and all (α,α′) ∈ [α,α]2

∣∣∣∣∣
∂⌊s⌋q(α|x)

∂α⌊s⌋
− ∂⌊s⌋q(α′|x)

∂α⌊s⌋

∣∣∣∣∣ ≤ L
∣∣α− α′

∣∣s−⌊s⌋
.

We shall assume in addition that Kq(·) has a compact support and satisfies the additional

conditions ∫
tjdKq(t) = 0, j = 1, . . . , ⌊s⌋ ,

∫
|dKq(t)| < ∞.

Proposition 3. Assume that Q(α|x) is in Cq(L, s) and ⌊s+ 1⌋ ≤ p. Suppose that Assumptions

K, F and X hold with h = O(hq), hq → 0 and (log n)/(nhd) → 0. Then for any x in X0 and α

in (α,α),

q̂(α|x) = q(α|x) +OP

(
hsq +

1

(nhdhq)
1/2

)
+

log3/4 n
(
nhdh2q

)1/4OP

(
1

(nhqhd)
1/2

)
.

Taking hq and h of the same order is the optimal choice for the order of h in the expansion of

Proposition 3. This gives

q̂(α|x) = q(α|x) +OP

(
hs +

1

(nhd+1)
1/2

)
+

log3/4 n

(nhd+2)
1/4

OP

(
1

(nhd+1)
1/2

)
.

The item
(
log3/4 n

) (
nhd+2

)−1/4
OP

((
nhd+1

)−1/2
)
is given by the Bahadur error termEn(α;h, x)

of Theorem 2. The other item, OP

(
hs + (nhd+1)−1/2

)
, can be viewed as a bias variance decom-

position component. The latter is the leading term of the expansion provided nhd+2 → ∞, a

condition also used in Lee and Lee (2008) when d = 1. In this case, the optimal order for h is

n−1/(2s+d+1), which is such that nhd+2 → ∞ provided s > 1/2. In this case, the optimal rate for

pointwise estimation of q(α|x) is n−s/(2s+d+1) which, as expected from (1.5), coincides with the

optimal rate for pointwise estimation of f(y|x).
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4. Final remarks

This paper has investigated the bias and the Bahadur representation of a local polynomial

estimator of the conditional quantile function and its derivatives. Compared to the existing lit-

erature, a distinctive feature is that the bias and Bahadur remainder term are studied uniformly

with respect to the quantile level, the covariates and the smoothing parameter, extending so

Chauduri (1991) and Kong et al. (2010). Our framework also considers the case where the order

of the local polynomial estimator p is higher than the order of differentiability s of the con-

ditional quantile function. An interesting consequence of our bias study is that using a local

polynomial estimator of order p ≥ s does not affect its rate optimality.

Our uniform study of the bias and of the Bahadur remainder term are applied to derive the

global rate optimality of the local polynomial estimators of the conditional quantile function and

its derivatives with respect to Lm norms, 0 < m ≤ ∞ provided the bandwidth goes to 0 with

an appropriate rate. This extends Truong (1989) who states a similar result for local medians

and under a rather strong Lipschitz condition for the conditional quantile function. Another

application deals with the performance of randomly selected bandwidths that are shown to

perform as well as their deterministic equivalent in term of consistency rates in uniform norm.

Our framework is flexible enough to be adapted to other global norms. This new result is

especially useful in view of Li and Racine (2008) suggestion of implementing local polynomial

quantile estimation with a data-driven bandwidth given by a cross validation criterion for the

conditional cumulative distribution function. A last application to nonparametric estimation

of the quantile density function can be useful for confidence intervals and in Econometrics of

Auctions where the conditional quantile density function plays an important role.

Our uniform results can also be useful for other studies. For instance an issue far beyond the

scope of the present paper is the choice of the local polynomial order p. Local polynomial quantile

estimation can be implemented using a large p, possibly growing with the sample size. This would

allow to estimate very smooth conditional quantile function with a small bias although it may

inflate the asymptotic variance of the resulting estimator. Another approach would be to use a

data-driven local polynomial order p. Such a problem is very close to the issue of choosing the

order of the kernel when estimating a regression or a probability density function. The latter can

be addressed following the recent adaptive approach of Goldenshluger and Lespki (2008,2009)

which gives a data-driven choice of the kernel and bandwidth in the context of the continuous

time white noise model. Our uniform Bahadur representation is a preliminary step that can be

useful to extend their results to local polynomial quantile estimation.
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Appendix A: Proofs of main results

Appendix A groups the proofs of Theorems 1 and 2, Propositions 1, 2 and 3, and Corollary 1. The

proofs of intermediary results used to prove these main results are grouped in Appendix B.

We first introduce some additional notations. Sequences {an} and {bn} satisfy an ≍ bn if |an|/C ≤
|bn| ≤ C|an| for some C > 0 and n large enough. Recall that ‖ · ‖ is the Euclidean norm and B(0, 1) =
{z; ‖z‖ ≤ 1}. Let ≻ be the usual order for symmetric matrices, that is A1 ≻ A2 if and only if

A1 − A2 is a non-negative symmetric matrix. If A is a symmetric matrix, ‖A‖ = supu∈B(0,1) ‖Au‖ =

sup
u∈B(0,1) |uTAu| is the largest eigenvalue in absolute value of A. This norm is such that ‖AB‖ ≤

‖A‖‖B‖ for any matrix or vectorB. Denote by ‖·‖∞ the uniform norm, i.e. ‖f(·|·)‖∞ = sup(x,y)∈Rd×R
|f(y|x)|.
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We use the abbreviation θ = (α, h, x). In particular, Q∗(x′; θ), Si(θ) and Ji(θ) stand for Q∗(x′;α, h, x),

S(Xi, Yi;α, h, x) and J(Xi;α, h, x), see equations (3.4), (3.5) and (3.6). We abbreviate hn and hn into h

and h. Define

Θ0 = [α, α]× [0, h]×X0 , Θ1 = [α, α]× [h, h]×X0,

where X0 is as in Assumption X and [α, α] ⊂ (0, 1) is as in the definition of the smoothness class C(L, s).
For Ln (b;α, h, x) = Ln (b; θ) as in (2.1), define

L (b; θ) = E [Ln (b; θ)] =
1

hd
E

[{
ℓα

(
Y −U (X − x)

T
b
)
− ℓα (Y )

}
K

(
X − x

h

)]
.

We also use Kh(z) = K(z/h). It is convenient to change b into its standardization B = Hb and to define

B̂(θ) = Hb̂(θ) and B∗(θ) = Hb∗(θ). Absolute constants are denoted by the generic letter C and may

vary from line to line.

The following argument is used systemically. Recall that X0 is an inner subset of the compact X
under Assumption X. Hence for any (x, h) ∈ X0 × K, x + hz is in X under Assumption K provided h is

small enough.

The next lemma is used in the proof of Theorems 1 and 2. Its proof is given in Appendix B with

the proof of the other intermediary results.

Lemma A.1. Under Assumption F, K and X, we have for h small enough,

(i) b∗(θ) exists and is unique for all θ in Θ0.

(ii) B∗(θ) = Hb∗(θ) satisfies

E [Si (θ)] =

∫ {
F
(
U (z)T B∗(θ)|x + hz

)
− F (Q(α|x + hz) |x+ hz )

}
f(x+ hz)U(z)K(z)dz = 0,(A.1)

lim
h→0

sup
θ∈Θ0

‖B∗(θ)−B∗(α; 0, x)‖ = 0,(A.2)

where B∗(α; 0, x) = (Q(α|x), 0, . . . , 0)T .
(iii) for all (x′, θi) in X ×Θ1, i = 1, 2,

|Q∗(x′; θ1)−Q∗(x′; θ2)| ≤ Ch−p(1 + h−1) ‖θ1 − θ2‖ .

(iv) There exists C such that, for all θ in Θ1, all x′ in X and all x in X0,

f (Q∗(x′; θ)|x′)K

(
x− x′

h

)
≥ CK

(
x− x′

h

)
.

A.1. Proof of Theorem 1. Since Q(·|·) is in C(L, s), the Taylor-Lagrange Formula and Assumption K

yield that there exists t = t(h, x, z) in (0, 1) such that for h small enough and all (x, z) in X0 ×K,

Q(α|x+ hz) =
∑

0≤|v|≤⌊s⌋

bv(α|x)
v!

(hz)v +
∑

|v|=⌊s⌋

(hz)v

v!
(bv(α|x+ thz)− bv(α|x))

= U(z)THb(α|x) + ǫ(θ, z).(A.3)
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In the equation above, bv(α|x) is the vth partial derivatives of Q(α|x) with respect to x and b(α|x) =
(bv(α|x), |v| ≤ ⌊s⌋, 0, . . . , 0)T ∈ R

P . Since Q(·|·) ∈ C(L, s),

(A.4) lim
h→0

sup
(θ,z)∈Θ1×K

∣∣∣∣
ǫ(θ, z)

hs

∣∣∣∣ ≤ CL.

Let

I(θ, z) =

∫ 1

0

f
(
Q(α|x + hz) + t

(
U(z)TB∗(θ)−Q(α|x+ hz)

)
|x+ hz

)
dt.

Assumptions F, K, X, Q(·|·) ∈ C(L, s) and (A.2) give

(A.5) lim
h→0

sup
(θ,z)∈Θ0×K

|I(θ, z)− f(Q(α|x)|x)| = 0.

A Taylor expansion with integral remainder gives

F
(
U(z)TB∗(θ)|x+ hz

)
− F (Q(α|x+ hz)|x+ hz) =

(
U(z)TB∗(θ) −Q(α|x+ hz)

)
I(θ, z).

Substituting in the first-order condition (A.1) yields

(A.6)

∫
U(z)

(
U(z)TB∗(θ) −Q(α|x+ hz)

)
I(θ, z)f(x+ hz)K(z)dz = 0.

We show that the matrix
∫
U (z)U (z)T I (θ, z) f (x+ hz)K (z) dz has an inverse. Indeed, Assumptions

K and X, (A.5) and h small enough give that uniformly in θ in Θ0 and A in R
P ,

AT

∫
U (z)U (z)T I (θ, z) f (x+ hz)K (z)dzA =

∫ ∥∥∥U (z)T A

∥∥∥
2

I (θ, z) f (x+ hz)K (z) dz

= (1 + o(1)) f (Q(α|x)|x)
∫ ∥∥∥U (z)

T
A

∥∥∥
2

K (z)dz

≥ C ‖A‖2 ,

using the fact that A 7→
∫ ∥∥∥U (z)

T
A

∥∥∥
2

K (z)dz is a square norm and norm equivalence over R
P . It

follows that
∫
U (z)U (z)

T
I (θ, z) f (x+ hz)K (z)dz is strictly positive definite and has an inverse which

satisfies, for n large enough

(A.7) sup
θ∈Θ0

∥∥∥∥∥

[∫
U (z)U (z)

T
I (θ, z) f (x+ hz)K (z)dz

]−1
∥∥∥∥∥ < ∞.

(A.6) and (A.3) give

Hb∗(θ) = Hb(α|x) +
[∫

U(z)U(z)T I(θ, z)f(x+ hz)K(z)dz

]−1 ∫
ǫ(θ, z)I(θ, z)f(x+ hz)U(z)K(z)dz.

It then follows from (A.4) and (A.7) that

‖Hb∗(θ)−Hb(α|x)‖

≤
∥∥∥∥∥

[∫
U(z)U(z)T I(θ, z)f(x+ hz)K(z)dz

]−1
∥∥∥∥∥

∥∥∥∥
∫

ǫ(θ, z)I(θ, z)f(x+ hz)U(z)K(z)dz

∥∥∥∥

≤ CLhs(A.8)

uniformly in θ in Θ0. This ends the proof of the Theorem and also establishes (3.2) since b(α|x) =

(bv(α|x), |v| ≤ ⌊s⌋, 0, . . . , 0)T . ✷
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A.2. Proof of Proposition 1. Let ϕ(t) = exp(−t2/2)/
√
2π, Φ(t) =

∫ t

−∞ ϕ(u)du be the p.d.f and c.d.f

of the standard normal. The regression model (3.3) is such that

F (y|x) = Φ (y −m(x)) , f(x) = I (x ∈ [−1, 1]) .

(A.2) gives that limh→0 maxz∈K

∣∣U(z)TB(0.5;h, 0)
∣∣ = Q(0.5|0) = m(0) = 0. Hence (A.6), (A.5) and

Assumption K give

(1 + o(1))ϕ(0)

∫
U(z)

(
U(z)TB(0.5;h, 0)−m (hz)

)
K(z)dz = 0.

Recall that U(z) = (1, z)T , so that the equation above gives

 b0(0.5;h, 0)

hb1(0.5;h, 0)


 = (1 + o(1))

(∫
U(z)UT (z)K(z)dz

)−1

 h1/2

∫
m(z)K(z)dz

h1/2
∫
|z|3/2K(z)dz




= (1 + o(1))h1/2



∫
m(z)K(z)dz

∫
|z|3/2K(z)dz∫
z2K(z)dz


 .✷

A.3. Proof of Theorem 2. We first state some intermediary results. The two following propositions

deals with the remainder term Rn (β, ǫ; θ) =
∑n

i=1 Ri (β, ǫ; θ) from (3.10), where

Ri (β, ǫ; θ)

=

{
ℓα

(
Yi −Q∗(Xi; θ)−

U
(
Xi−x

h

)T
(β + ǫ)

(nhd)
1/2

)
− ℓα

(
Yi −Q∗(Xi; θ)−

U
(
Xi−x

h

)T
β

(nhd)
1/2

)}
K

(
Xi − x

h

)

− 1

(nhd)
1/2

Si(θ)
T ǫ− 1

2
ǫT
(

1

nhd
Ji(θ)

)
(ǫ+ 2β) .

Define also

Ri (β, ǫ; θ) = Ri (β, ǫ; θ) +
1

2
ǫT
(

1

nhd
Ji(θ)

)
(ǫ+ 2β)(A.9)

=

{
ℓα

(
Yi −Q∗(Xi; θ)−

U
(
Xi−x

h

)T
(β + ǫ)

(nhd)
1/2

)

−ℓα

(
Yi −Q∗(Xi; θ)−

U
(
Xi−x

h

)T
β

(nhd)
1/2

)

−2 {I (Yi ≤ Q∗ (Xi; θ))− α} U
(
Xi−x

h

)T
ǫ

(nhd)
1/2

}
K
(Xi − x

h

)
,

R1
i (β, ǫ; θ) = Ri (β, ǫ; θ)− E [Ri (β, ǫ; θ) |Xi ] ,(A.10)

R2
i (β, ǫ; θ) = E [Ri (β, ǫ; θ) |Xi ]−

1

2
ǫT
(

1

nhd
Ji(θ)

)
(ǫ+ 2β) ,(A.11)

which are such that

Rn (β, ǫ; θ) = R
1
n (β, ǫ; θ) + R

2
n (β, ǫ; θ) , R

j
n (β, ǫ; θ) =

n∑

i=1

R
j
i (β, ǫ; θ) , j = 1, 2.
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Proposition A.1. Consider two real numbers tβ, tǫ > 0 which may depend upon on n with tβ ≥ 1,

tǫ ≥ 1/n and (tβ + tǫ)
1/2

/tǫ ≤ O

((
nhd

)1/4
/ log1/2 n

)
. Then, under Assumptions F, K and X and for

n large enough,

E

[
sup

(β,ǫ,θ)∈B(0,tβ)×B(0,tǫ)×Θ1

∣∣R1
n (β, ǫ; θ)

∣∣
]
≤ C

log1/2 n
(
nhd

)1/4 tǫ (tβ + tǫ)
1/2

.

Proposition A.2. Consider two real numbers tβ , tǫ > 0 which may depend upon on n with tβ ≥ 1 and

tβ/tǫ = O
(
nhd/ log1/2 n

)
. Then, under Assumptions F, K and X and for n large enough,

E

[
sup

(β,ǫ,θ)∈B(0,tβ)×B(0,tǫ)×Θ1

∣∣R2
n (β, ǫ; θ)

∣∣
]
≤ C

tǫ (tβ + tǫ)
2

(
nhd

)1/2 .

The next lemma is used to bound the eigenvalues of
∑n

i=1 Ji(θ)/(nh
d) from below. It implies in

particular that all the βn(θ) in (3.7), θ in Θ1, are well defined with a probability tending to 1. Let γ
n
(θ)

be the smallest eigenvalue of the nonnegative symmetric matrix
∑n

i=1 Ji(θ)/(nh)
d.

Lemma A.2. Under Assumptions F, K and X, infθ∈Θ1 γ
n
(θ) ≥ γ + oP(1) for some γ > 0.

Lemma A.2 together Lemma A.3 below gives supθ∈Θ1 ‖βn(θ)‖ = OP

(
log1/2 n

)
.

Lemma A.3. Suppose that Assumptions F, K and X are satisfied. Then

sup
θ∈Θ1

∥∥∥∥∥
1

(nhd)
1/2

n∑

i=1

Si(θ)

∥∥∥∥∥ = OP

(
log1/2 n

)
.

The rest of the proof of Theorem 2 is divided in two steps. In what follows

tn = t
log3/4 n

(nhd)1/4
, t > 0.

Under Assumption K, (log n)/(nhd) = o(1) so that tn = o
(
log1/2 n

)
. In the sequel, tn will play the role

of tǫ whereas tβ will be chosen such that tβ ≍ log1/2 n. Hence

(tβ + tǫ)
1/2

tǫ
≍ (nhd)1/4 log1/4 n

t log3/4 n
=

1

t
O

(
(nhd)1/4

log1/2 n

)
,

tβ
tǫ

≍ (nhd)1/4 log1/2 n

t log3/4 n
= O

(
nhd

logn

)1/4

= o

(
nhd

log n
× log1/2 n

)
= o

(
nhd

log1/2 n

)
.

Hence these choices of tβ and tǫ satisfy the conditions of Propositions A.1 and A.2 provided t is chosen

large enough.

Step 1: order of sup(ǫ,θ)∈B(0,tn)×Θ1 |Rn(βn(θ), ǫ; θ)|. Consider η > 0 arbitrarily small. Let γ be as in

Lemma A.2. Since Lemmas A.2 and A.3 give supθ∈Θ1 ‖βn(θ)‖ = OP

(
log1/2 n

)
, there is a Cη such that,
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for n large enough,

P

(
sup

(ǫ,θ)∈B(0,tn)×Θ1

|Rn(βn(θ), ǫ; θ)| ≥
γt2n
4

)

≤ P

(
sup

(ǫ,θ)∈B(0,tn)×Θ1

|Rn(βn(θ), ǫ; θ)| ≥
γt2n
4

, sup
θ∈Θ1

‖βn(θ)‖ ≤ Cη log
1/2 n

)

+P

(
sup
θ∈Θ1

‖βn(θ)‖ > Cη log
1/2 n

)

≤ P

(
sup

(β,ǫ,θ)∈B(0,Cη log1/2 n)×B(0,tn)×Θ1

|Rn(β, ǫ; θ)| ≥
γt2n
4

)
+ η.

Propositions A.1 and A.2, Rn = R
1
n + R

2
n and the Markov inequality give

P

(
sup

(β,ǫ,θ)∈B(0,Cη log1/2 n)×B(0,tn)×Θ1

|Rn(β, ǫ; θ)| ≥
γt2n
4

)

≤ C

t2n



tn

(
Cη log

1/2 n+ tn

)1/2
log1/2 n

(
nhd

)1/4 +
tn

(
Cη log

1/2 n+ tn

)2

(
nhd

)1/2




=
C

tn

log3/4 n

(nhd)1/4

((
Cη +

tn

log1/2 n

)1/2

+

(
log n

nhd

)1/4 (
Cη +

tn

log1/2 n

)2
)
.

The definition of tn, tn = o
(
log1/2 n

)
and Assumption K give

(A.12) lim sup
n→∞

P

(
sup

(ǫ,θ)∈B(0,tn)×Θ1

|Rn(βn(θ), ǫ; θ)| ≥
γt2n
4

)
= η +O

(
C

1/2
η

t

)
when t → ∞.

Step 2: supθ∈Θ1 ‖En (θ)‖. Consider τn ≥ tn and ǫ = τne, ‖e‖ = 1 so that ‖ǫ‖ ≥ tn. Since ℓα(·) is

convex, ǫ 7→ Ln(β(θ), ǫ; θ) is convex. This gives since Ln(β(θ), 0; θ) = 0 and Ln = L
0
n + Rn

tn
τn

Ln (βn(θ), ǫ; θ) =
tn
τn

Ln (βn(θ), ǫ; θ) +

(
1− tn

τn

)
Ln (βn(θ), 0; θ)

≥ Ln

(
βn(θ),

tn
τn

ǫ; θ

)
= Ln (βn(θ), tne; θ)

≥ L
0
n (βn(θ), tne; θ) + Rn (βn(θ), tne; θ) .

Hence En(θ) = argminǫ Ln(βn(θ), ǫ; θ) and the latter inequality give

{‖En(θ)‖ ≥ tn} ⊂
{

inf
ǫ;‖ǫ‖≥tn

Ln(βn(θ), ǫ; θ) ≤ inf
ǫ;‖ǫ‖<tn

Ln(βn(θ), ǫ; θ)

}

⊂
{

inf
ǫ;‖ǫ‖≥tn

Ln(βn(θ), ǫ; θ) ≤ Ln(βn(θ), 0; θ) = 0

}

⊂
{

inf
e;‖e‖=1

[
L
0
n (βn(θ), tne; θ) + Rn (βn(θ), tne; θ)

]
≤ 0

}

⊂
{

inf
‖ǫ‖=tn

L
0
n (βn(θ), ǫ; θ) − sup

‖ǫ‖=tn

|Rn (βn(θ), ǫ; θ)| ≤ 0

}
.
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Since
{
sup
θ∈Θ1

‖En(θ)‖ ≥ tn

}
=
⋃

θ∈Θ1

{‖En(θ)‖ ≥ tn} ,

this gives

{
sup
θ∈Θ1

‖En(θ)‖ ≥ tn

}
⊂

⋃

θ∈Θ1

{
inf

‖ǫ‖=tn
L
0
n (βn(θ), ǫ; θ)− sup

‖ǫ‖=tn

|Rn (βn(θ), ǫ; θ)| ≤ 0

}

⊂
{

inf
θ∈Θ1

inf
‖ǫ‖=tn

L
0
n (βn(θ), ǫ; θ) ≤ sup

(ǫ,θ)∈B(0,tn)×Θ1

|Rn (βn(θ), ǫ; θ)|
}
.(A.13)

Consider first infθ∈Θ1 inf‖ǫ‖=tn L
0
n (βn(θ), ǫ; θ). The definition (3.10) of L0

n gives, for any ǫ with ‖ǫ‖ = tn,

L
0
n (βn(θ), ǫ; θ) =

1

2
ǫT

(
1

nhd

n∑

i=1

Ji(θ)

)
ǫ ≥ 1

2
γ
n
(θ)t2n.

Hence (A.13), Lemma A.2 and (A.12) give

lim sup
n→∞

P

(
sup
θ∈Θ1

‖En(θ)‖ ≥ tn

)
≤ lim sup

n→∞
P

(
sup

(ǫ,θ)∈B(0,tn)×Θ1

|Rn (βn(θ), ǫ; θ)| ≥
γ
n
(θ)t2n

2

)

≤ lim sup
n→∞

P

(
sup

(ǫ,θ)∈B(0,tn)×Θ1

|Rn (βn(θ), ǫ; θ)| ≥
γt2n
4

)

= η +O

(
C

1/2
η

t

)
when t → ∞.

Since the latter can be made arbitrarily small by taking η arbitrarily small and then t large enough, the

Theorem is proved. ✷

A.4. Proof of Corollary 1. Part (i) follows from Theorems 1 and 2 and the triangular inequality,

together with (∫

X0

‖βn(α;h, x)‖m dx

)1/m

= OP(1).

We now prove the latter. Lemma A.2 and the Hölder inequality give, since X0 is compact,

(∫

X0

‖βn(α;h, x)‖m dx

)1/m

= OP



∫

X0

∥∥∥∥∥
1

(nhd)1/2

n∑

i=1

Si(α;h, x)

∥∥∥∥∥

2[m]+2

dx




1/(2[m]+2)

.

Since E[Si(θ)] = 0, the Marcinkiewicz-Zygmund inequality (see Chow and Teicher, 2003), (3.5) and

hd ≥ C(log n)/n give

E
1/(2[m]+2)



∥∥∥∥∥

1

(nhd)1/2

n∑

i=1

Si(θ)

∥∥∥∥∥

2[m]+2

 ≤ CE

1/(2[m]+2)



(

1

nhd

n∑

i=1

‖Si(θ)‖2
)[m]+1




≤ C


 1

(nhd)[m]+1

n∑

i1,...,i[m]+1=1

E

[
I

(
Xi1 − x

h
∈ K

)
× · · · × I

(
Xi[m]+1

− x

h
∈ K

)]


1/2

= O(1),
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uniformly in x. Part (ii) similarly follows from Lemmas A.2 and A.3 which gives supθ∈Θ1 ‖βn(θ)‖ =

OP

(
log1/2 n

)
. ✷

A.5. Proof of Proposition 2. Let h = hn/C and h = Chn. The condition on hn ensures that h and h

satisfy Assumption K for all C > 1. Recall that Lemma A.2 together Lemma A.3 gives supθ∈Θ1 ‖βn(θ)‖ =

OP

(
log1/2 n

)
. Hence (3.8), Theorems 1 and 2 give, for all C > 1,

sup
(α,x,h)∈[α,α]×X0×[h,h]

∣∣∣̂bv(α; ĥ, x)− bv(α|x)
∣∣∣ = h−|v|OP

(
hs +

(
logn

nhd

)1/2
)

= h−|v|
n OP

(
hs
n +

(
logn

nhd
n

)1/2
)

.

This ends the proof of the Proposition since lim infn→∞ P

(
ĥn ∈ [h, h]

)
can be made arbitrarily close to

1 by increasing C. ✷

A.6. Proof of Proposition 3. Substituting (3.8) in (3.11) yields

q̂(α|x) − q(α|x) =
1

hq

∫
Q(α+ hqt|x)dKq(t)− q(α|x)

+
1

hq

∫
(Q∗(α+ hqt|x)−Q(α+ hqt|x)) dKq(t)

+

∫
eT0 βn (α+ hqt;h, x)

hq (nhd)
1/2

dKq(t) +

∫
eT0 En (α+ hqt;h, x)

hq (nhd)
1/2

dKq(t).

Theorems 1 and 2 with h = O(hq) and hq → 0 give

1

hq

∫
(Q∗(α+ hqt|x)−Q(α+ hqt|x)) dKq(t) = O

(
hs+1

hq

∫
|dKq(t)|

)
= O(hs

q),

∫
En (α+ hqt;h, x)

hq (nhd)
1/2

dKq(t) =
log3/4 n
(
nhdh2

q

)1/4OP

(
1

(nhqhd)
1/2

)
.

Hence it remains to show that

1

hq

∫
Q(α+ hqt|x)dKq(t)− q(α|x) = O

(
hs
q

)
,(A.14)

1

h
1/2
q

∫
βn (α+ hqt;h, x) dKq(t) = OP(1).(A.15)

The two next steps establish these two equalities.

Step 1: proof of (A.14). Let q(j)(α|x) = ∂jq(α|x)/∂xj . Since Q(α|x) ∈ C(L, s + 1), the Taylor-

Lagrange Formula gives, for some ω in [0, 1],

Q(α+ hqt|x)−Q(α|x) =
⌊s⌋∑

j=0

q(j)(α|x)
(j + 1)!

(hqt)
j +

q(⌊s⌋)(α+ ωhqt|x)− q(⌊s⌋)(α|x)
(⌊s⌋+ 1)!

(hqt)
⌊s⌋ .



25

The definition of the smoothness class Cq(L, s) gives
∣∣∣q(⌊s⌋)(α+ ωhqt|x) − q(⌊s⌋)(α|x)

∣∣∣ ≤ L |hqt|s−⌊s⌋ .

Hence, since the support of Kq(·) is compact,
∫
|dKq(t)| < ∞ and

∫
dKq(t) = 0,

∫
tdKq(t) = 1,

∫
t2dKq(t) = · · · =

∫
t⌊s⌋dKq(t) = 0,

1

hq

∫
Q(α+ hqt|x)dKq(t) =

Q(α|x)
hq

∫
dKq(t) + q(α|x)

∫
tdKq(t) +

hqq
(1)(α|x)
2

∫
t2dKq(t)

+ · · ·+ h
⌊s⌋
q q(⌊s⌋)(α|x)
(⌊s⌋+ 1)

∫
t⌊s⌋dKq(t) +O(hs)

= q(α|x) +O(hs).

Step 2: proof of (A.15). Let θt = (α+ hqt, h, x), θ = θ0. Since
∫
dKq(t) = 0, (3.7) gives

1

h
1/2
q

∫
βn (θt) dKq(t) =

1

h
1/2
q

∫
(βn (θt)− βn (θ)) dKq(t)

=
1

h
1/2
q

∫ 


(
1

nhd

n∑

i=1

Ji (θ)

)−1

−
(

1

nhd

n∑

i=1

Ji (θt)

)−1




1

(nhd)
1/2

n∑

i=1

Si(θ)dKq(t)(A.16)

+
1

h
1/2
q

∫ (
1

nhd

n∑

i=1

Ji (θt)

)−1
1

(nhd)
1/2

n∑

i=1

{Si (θ)− Si (θt)} dKq(t).(A.17)

Since A 7→ A−1 is Lipshitz over the set of semi-definite positive matrices A with smallest eigenvalue

bounded from below by γ, Lemmas A.2 and A.3, (3.6) and Assumption F yield that (A.16) satisfies
∥∥∥∥∥∥

1

h
1/2
q

∫ 


(
1

nhd

n∑

i=1

Ji (θ)

)−1

−
(

1

nhd

n∑

i=1

Ji (θt)

)−1




1

(nhd)
1/2

n∑

i=1

Si(θ)dKq(t)

∥∥∥∥∥∥

≤ OP(1)

h
1/2
q

∫ ∥∥∥∥∥
1

nhd

n∑

i=1

{Ji (θt)− Ji (θ)}
∥∥∥∥∥

∥∥∥∥∥
1

(nhd)
1/2

n∑

i=1

Si(θ)

∥∥∥∥∥ |dKq(t)|

≤ OP(logn)
1/2

h
1/2
q

∫
1

nhd

n∑

i=1

|Q∗ (Xi; θt)−Q∗ (Xi; θ)| I
(
Xi − x

h
∈ K

)
|dKq(t)| .
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The definition (3.4) of Q∗(X ; θ) and (A.8) give, since Q(α|x) ∈ C(L, s + 1) and because the support of

Kq is compact,

1

h
1/2
q

∫
1

nhd

n∑

i=1

|Q∗ (Xi; θt)−Q∗ (Xi; θ)| I
(
Xi − x

h
∈ K

)
|dKq(t)|

=
1

h
1/2
q

∫
1

nhd

n∑

i=1

∣∣∣∣∣U
(
Xi − x

h

)T

(Hb∗(θt)−Hb∗(θ))

∣∣∣∣∣ I
(
Xi − x

h
∈ K

)
|dKq(t)|

≤ C
1

nhd

n∑

i=1

I

(
Xi − x

h
∈ K

)
1

h
1/2
q

∫
‖Hb∗(θt)−Hb∗(θ)‖ |dKq(t)|

≤ OP(1)
1

h
1/2
q

(∫
‖Hb(α+ hqt|x)−Hb(α|x)‖ |dKq(t)|+O(hs+1)

)

≤ OP(1)
1

h
1/2
q

(∫
|Q (α+ hqt|x)−Q (α|x)| |dKq(t)|+O

(
hs+1 + h

))
= OP

(
h1/2
q

)
.

This gives that the item in (A.16) is OP

(
h
1/2
q

)
= oP(1).

For (A.17), Lemma A.2, E[Si(θt)] = 0, (3.5), Q∗(X ; θt) = Q∗(X ; θ)+O(hq) uniformly with respect to

t in the support of Kq and X ∈ x+hK (as easily seen arguing as in the equation above) and Assumptions

F, X give
∥∥∥∥∥∥

1

h
1/2
q

∫ (
1

nhd

n∑

i=1

Ji (θt)

)−1
1

(nhd)
1/2

n∑

i=1

{Si (θ)− Si (θt)} dKq(t)

∥∥∥∥∥∥

≤ OP(1)

h
1/2
q

∫ ∥∥∥∥∥
1

(nhd)
1/2

n∑

i=1

{Si (θ)− Si (θt)}
∥∥∥∥∥ |dKq(t)|

=
OP(1)

h
1/2
q

E

[∫ ∥∥∥∥∥
1

(nhd)
1/2

n∑

i=1

{Si (θ)− Si (θt)}
∥∥∥∥∥ |dKq(t)|

]

≤ OP(1)

h
1/2
q

∫
E
1/2



∥∥∥∥∥

1

(nhd)
1/2

n∑

i=1

{Si (θ)− Si (θt)}
∥∥∥∥∥

2

 |dKq(t)|

=
OP(1)

h
1/2
q

∫
Var1/2

(
1

hd/2
{S (θ)− S (θt)}

)
|dKq(t)|

= OP(1)

∫ [∫ (
1

hq

∫ Q∗(x+hz;θ)+Chq

Q∗(x+hz;θ)−Chq

f(y|x+ hz)dy

)
I (z ∈ K) f(x+ hz)dz

]1/2
|dKq(t)|

= OP(1).✷

Appendix B: Proofs of intermediary results

B.1. Proof of Lemma A.1. Recall

U(X − x)Tb = U(X − x)TH−1B = U

(
X − x

h

)T

B

and define

L̃(B; θ) = L (b; θ) =
1

hd
E
[{
ℓα(Y −U((X − x)/h)TB)− ℓα(Y )

}
Kh(X − x)

]
.
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The change of variable x1 = x+ hz gives

L̃(B; θ) =
1

hd

∫ [∫ (
ℓα(y −U

(
x1 − x

h

)T

B)− ℓα(y)

)
f(y|x1)dy

]
f(x1)K

(
x1 − x

h

)
dx1

=

∫ [∫ (
ℓα(y −U (z)

T
B)− ℓα(y)

)
f(y|x+ hz)dy

]
f(x+ hz)K (z) dz,(B.1)

showing that L̃ (B; θ) is also defined for h = 0.

Proof of (i). It is sufficient to show that B∗(θ) = argminB∈RP L̃(B; θ) exists and is unique. Note that

B 7→ L̃(B; θ) is convex by (B.1) because ℓα(·) is convex. Since lim|t|→+∞ ℓα(t) = +∞ and U(z)TB di-

verges almost everywhere when ‖B‖ diverges, (B.1) gives that lim‖B‖→+∞ L̃(B; θ) = +∞. Hence L̃(B; θ)

has a minimum. We show that this minimum is unique by showing that B 7→ L̃(B; θ) is strictly convex

for all θ in Θ0. We compute the first and second B-derivatives of L̃(B; θ). Equation (1.2) gives that for

almost all B,
∂ℓα

(
y −U(z)TB

)

∂BT
= 2

(
I
(
y ≤ U(z)TB

)
− α

)
U(z)

which is bounded for z in the compact K. Assumptions F, K and X, the Lebesgue Dominated Convergence

Theorem and (B.1) yield that

L̃(1)(B; θ) =
∂L̃(B; θ)

∂BT
= 2

∫ (∫ (
I
(
y ≤ U(z)TB

)
− α

)
f(y|x+ hz)dy

)
f(x+ hz)U(z)K(z)dz

= 2

∫
F
(
U (z)

T
B|x+ hz

)
f(x+ hz)U(z)K(z)dz − 2α

∫
f (x+ hz)U(z)K (z) dz.(B.2)

Applying again the Dominated Convergence Theorem yields that

(B.3) L̃(2)(B; θ) =
∂2L̃(B; θ)

∂BT∂B
= 2

∫
f(U(z)TB|x+ hz)f(x+ hz)U(z)U(z)TK(z)dz.

For all A 6= 0 in R
P , (B.3), Assumptions F, K X and x ∈ X0 give

AT L̃(2)(B; θ)A = 2

∫
f(U(z)TB|x+ hz)f(x+ hz)ATU(z)U(z)TAK(z)dz

= 2

∫
f
(
U(z)TB|x+ hz

)
f (x+ hz)

∥∥∥U (z)
T
A

∥∥∥
2

K (z)dz > 0.(B.4)

Hence L̃(2)(·; θ) is a positive definite symmetric matrix for all θ in Θ0 and B in R
P so that the strictly

convex function L̃(B; θ) achieves it minimum for a unique B∗(θ).

Proof of (ii). Consider a fixed h to be chosen small enough, and let Θ̃0 be the corresponding Θ0,

which is compact. The proof of (i) yields that B∗(θ) is unique for all θ in Θ̃0 and is the unique solution

of the first-order condition L̃(1)(B; θ) = 0, that is

(B.5)

∫
F
(
U (z)

T
B|x+ hz

)
f(x+ hz)U(z)K(z)dz = α

∫
f (x+ hz)U(z)K (z)dz,

see (B.2), so that (A.1) is proved. In particular, B∗(α; 0, x) is the unique solution of L̃(1)(B;α, 0, x) = 0.

If h = 0, the first order condition (A.1) is equivalent to
∫

F (U(z)TB∗(α; 0, x)|x)U(z)K(z)dz = α

∫
U(z)K(z)dz.
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Let BT
0 (α|x) = (Q(α|x), 0, . . . , 0) in R

P . Since U(z)TB0(α|x) = Q(α|x), B0(α|x) satisfies the first-order

condition equation above. Hence B∗(α; 0, x) = B0(α|x) by uniqueness.

We now show that B∗(θ) is continuously differentiable in θ over Θ̃0 and give bounds for B∗(θ),

∂L̃(1)(B∗(θ); θ)/∂θT and L̃(2)(B∗(θ); θ). As shown above, B 7→ L̃(1)(B; θ) is continuously differentiable

and L̃(2)(B; θ) is a symmetric positive definite matrix for all B in R
P and so has an inverse. Assumptions

F, K and X yield that F (U(z)TB|x + hz) and f(x + hz) are bounded and have bounded θ-partial

derivatives over Θ̃0 provided h is small enough. Hence the Dominated Convergence Theorem and (B.2)

yield that L̃(1)(B; θ) is continuously differentiable in θ over Θ̃0. Then the Implicit Function Theorem

(see e.g. Zeidler (1985), p.130) and the first-order condition L̃(1)(B∗(θ); θ) = 0 yields that B∗(θ) is

continuously differentiable in θ over Θ̃0, with

(B.6)
∂B∗(θ)

∂θT
= −

[
L̃(2)(B∗(θ); θ)

]−1 ∂L̃(1)(B∗(θ); θ)

∂θT
.

Recall now that Θ0 ⊂ Θ̃0 when h tends to 0. Hence continuity of B∗(·), ∂L̃(1)(·, ·)/∂θT and compactness

of Θ̃0 give

lim
h→0

sup
θ∈Θ0

‖B∗(θ)−B∗(α; 0, x)‖ = 0,

lim
h→0

sup
θ∈Θ0

∥∥∥∥∥
∂L̃(1)(B∗(θ); θ)

∂θT
− ∂L̃(1)(B∗(α; 0, x);α, 0, x)

∂θT

∥∥∥∥∥ = 0.(B.7)

Since the first limit is (A.2), (ii) is proved.

Proof of (iii). We bound the partial derivative (B.6). Observe that (A.2), the expression ofB∗(α; 0, x),

the compactness of Θ0 and Assumption F yield that there is a compact B such that B∗(θ) is in B for all

θ in Θ0, provided h is small enough. Then (B.3) and (B.4) give that uniformly in θ in Θ0,

L̃(2)(B∗(θ); θ) ≻ C

∫

B(0,1)

U(z)U(z)T dz.

Hence (B.6) and (B.7) give

(B.8) lim
h→0

sup
θ∈Θ0

∥∥∥∥
∂B∗(θ)

∂θT

∥∥∥∥ ≤ C

∥∥∥∥∥∥

(∫

B(0,1)

U(z)U(z)T dz

)−1
∥∥∥∥∥∥
lim
h→0

sup
θ∈Θ0

∥∥∥∥∥
∂L̃(1)(B∗(θ); θ)

∂θT

∥∥∥∥∥ ≤ C.

Let us now return to the proof of (iii). The differentiability results above yield that θ ∈ Θ1 7→
Q∗(x′; θ) = U((x−x′)/h)TB∗(θ) is continuously differentiable in θ. We have for all x, x′ in X and h ≥ h,

∥∥∥∥U
(
x− x′

h

)∥∥∥∥ ≤ C

hp ,

∥∥∥∥
∂

∂θT
U

(
x− x′

h

)∥∥∥∥ ≤ C

hp+1 .

Hence for h small enough, (A.2) and (B.8) yield that for all θ in Θ1 and x′ in X ,

∥∥∥∥
∂Q∗(x′; θ)

∂θT

∥∥∥∥ =

∥∥∥∥∥

[
∂

∂θT
U

(
x− x′

h

)T
]
B∗(θ) +U

(
x− x′

h

)T
∂B∗(θ)

∂θT

∥∥∥∥∥

≤
∥∥∥∥

∂

∂θT
U

(
x− x′

h

)∥∥∥∥ ‖B∗(θ)‖ +
∥∥∥∥U

(
x− x′

h

)∥∥∥∥
∥∥∥∥
∂B∗(θ)

∂θT

∥∥∥∥ ≤ Ch−p
(
1 + h−1

)
.

The Taylor inequality shows that (iii) is proved.
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Proof of (iv). The change of variable x′ = x + hz shows that it is sufficient to prove that, for all θ

in Θ0 and z in K,

f(Q∗(x+ hz; θ)|x+ hz) ≥ C with f(Q∗(x+ hz; θ)|x+ hz) = f(U(z)TB∗(θ)|x + hz),

which is true for h small enough by (A.2) and under Assumption F which gives that f(y|x) ≥ C > 0 for

y in any compact subset of R and any x in X0. ✷

B.2. Proof of Proposition A.1. The proof of the Proposition uses the two following Lemmas. In what

follows, the stochastic processes R(·; ·), R1(·; ·) and R2(·; ·) have the same distribution than the Ri(·; ·),
R1(·; ·) and R2(·; ·) in (A.9), (A.10) and (A.11). Define also

(B.9) δ(β, θ) = U

(
X − x

h

)T
β

(nhd)
1/2

.

Lemma B.1. Under Assumptions F, K and X, we have

Var (R(β, ǫ; θ)) ≤ C
‖ǫ‖2 (‖β‖ + ‖ǫ‖)

n (nhd)
1/2

.

Proof of Lemma B.1. Observe ℓα(t) = 2
∫ t

0 (α − I(z ≤ 0))dz. Hence (A.9) and (B.9) yield

(B.10) R (β, ǫ; θ) = 2Kh(X − x)

∫ δ(β,θ)+δ(ǫ,θ)

δ(β,θ)

(I (Y ≤ Q∗(X ; θ) + t)− I (Y ≤ Q∗(X ; θ))) dt.

The Cauchy-Schwarz inequality give

R (β, ǫ; θ)2 = 4Kh(X − x)2

(∫ δ(β,θ)+δ(ǫ,θ)

δ(β,θ)

(I (Y ≤ Q∗(X ; θ) + t)− I (Y ≤ Q∗(X ; θ))) dt

)2

≤ 4Kh(X − x)2 |δ(ǫ, θ)|
∣∣∣∣∣

∫ δ(β,θ)+δ(ǫ,θ)

δ(β,θ)

(I (Y ≤ Q∗(X ; θ) + t)− I (Y ≤ Q∗(X ; θ)))
2
dt

∣∣∣∣∣

< 4Kh(X − x)2 |δ(ǫ, θ)|
∣∣∣∣∣

∫ δ(β,θ)+δ(ǫ,θ)

δ(β,θ)

I (|Y −Q∗(X ; θ)| < |t|) dt
∣∣∣∣∣ .

Hence Assumption F and (B.9) give

E
[
R2 (β, ǫ; θ) |X

]
≤ 4Kh (X − x)

2 |δ(ǫ, θ)|
∣∣∣∣∣

∫ δ(β,θ)+δ(ǫ,θ)

δ(β,θ)

{∫
I (|y −Q∗(X ; θ)| < |t|) f(y|X)dy

}
dt

∣∣∣∣∣

≤ 4Kh (X − x)
2 ‖f(·|·)‖∞ |δ(ǫ, θ)|

∣∣∣∣∣2
∫ δ(β,θ)+δ(ǫ,θ)

δ(β,θ)

|t|dt
∣∣∣∣∣

≤ CKh (X − x)
2
δ(ǫ, θ)2 (|δ(β, θ)| + |δ(ǫ, θ)|)

≤ C
K2
(
X−x
h

) ∥∥U
(
X−x
h

)∥∥3

(nhd)
3/2

‖ǫ‖2 (‖β‖ + ‖ǫ‖) .
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Then, under Assumptions K and X,

Var (R (β, ǫ; θ)) ≤ E[R2 (β, ǫ; θ)] = E
[
E[R2 (β, ǫ; θ) |X ]

]

≤ C ‖ǫ‖2 (‖β‖ + ‖ǫ‖)
(nhd)

3/2

∫
K2

(
x′ − x

h

)∥∥∥∥U
(
x′ − x

h

)∥∥∥∥
3

fX (x′) dx′

≤ C ‖ǫ‖2 (‖β‖ + ‖ǫ‖)
(nhd)

3/2
hd

∫
K2 (z) ‖U (z)‖3 fX (x+ hz)dx′ ≤ C

‖ǫ‖2 (‖β‖+ ‖ǫ‖)
n (nhd)

1/2
.✷

Define

F = F
(
tβ , tǫ,Θ

1
)
=
{
R (β, ǫ; θ) , (β, ǫ, θ) ∈ B(0, tβ)× B(0, tǫ)×Θ1

}
.

The next lemma studies coverings ofF with brackets
[
R,R

]
. Recall that the bracket

[
R,R

]
=
[
R(X,Y ), R(X,Y )

]

is the set of random variables r = r(X,Y ) such that R ≤ r ≤ R almost surely.

Lemma B.2. Under Assumptions F, K and X and if tβ + tǫ ≥ 1 and n is large enough,

(i) There are some σ2 and w, with

σ2 ≍ t2ǫ(tǫ + tβ)

n(nhd)1/2
, w ≍ tβ + tǫ

(nhd)1/2
,

such that for all integer number k ≥ 2, (β, ǫ, θ) in B(0, tβ)× B(0, tǫ)×Θ1,

E

[
|R(β, ǫ; θ)− E [R(β, ǫ; θ)]|k

]
≤ k!

2
wk−2σ2.

(ii) Let τ in (0, 1) be a bracket length. There is an set of brackets Iτ =
{[
Rj,τ , Rj,τ

]
, 1 ≤ j ≤ eH(τ)

}

such that

F ⊂
⋃

1≤j≤eH(τ)

[
Rj,τ , Rj,τ

]
,

E

[∣∣Rj,τ −Rj,τ

∣∣k
]
≤ k!

2
wk−2τ2 for all integer number k ≥ 2 and all j in

[
1, eH(τ)

]
,

H(τ) ≤ C log

(
n(tβ + tǫ)

τ

)
for all τ , tβ and tǫ.

Proof of Lemma B.2. Define for β in R
P

R̃(β; θ) = 2Kh(X − x)

∫ δ(β,θ)

0

(I (Y ≤ Q∗(X ; θ) + u)− I (Y ≤ Q∗(X ; θ))) du.

Let sgn(t) = I(t ≥ 0)− I(t < 0). Observe that R̃(β; θ) ≥ 0 with

R̃(β; θ) = 2Kh(X − x)

∫ |δ(β,θ)|

0

|I (Y ≤ Q∗(X ; θ) + sgn(δ(β, θ))u) − I (Y ≤ Q∗(X ; θ))| du

= 2Kh(X − x)|δ(β, θ)|
∫ 1

0

|I (Y ≤ Q∗(X ; θ) + δ(β, θ)v) − I (Y ≤ Q∗(X ; θ))| dv

= 2Kh(X − x)|δ(β, θ)|
∫ 1

0

I (Y −Q∗(X ; θ) lies between 0 and δ(β, θ)v) dv.(B.11)

(B.10) and δ(β, θ) + δ(ǫ, θ) = δ(β + ǫ, θ) give

R(β; ǫ, θ) = R̃(β + ǫ; θ)− R̃(β; θ).(B.12)
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It also follows from (B.9) and Assumption K that for all β in B (0, tβ + tǫ) and all θ in Θ1

(B.13)
∣∣∣R̃(β; θ)

∣∣∣ ≤ 2

∥∥∥∥U
(
X − x

h

)∥∥∥∥K
(
X − x

h

) ‖β‖
(nhd)

1/2
≤ w

2
, w ≍ tβ + tǫ

(
nhd

)1/2 .

Part (i) follows from Lemma B.1 and (B.12) which give

E

[
|R(β, ǫ; θ)− E [R(β, ǫ; θ)]|k

]

= E

[∣∣∣R̃(β + ǫ; θ)− E

[
R̃(β + ǫ; θ)

]
−
(
R̃(β; θ) − E

[
R̃(β; θ)

])∣∣∣
k−2

|R(β, ǫ; θ)− E [R(β, ǫ; θ)]|2
]

≤
(
2× w

2

)k−2

Var (R(β, ǫ; θ)) ≤ wk−2σ2.

The proof of part (ii) will be divided in three steps. Let F̃t be {R̃(β; θ), (β, θ) ∈ B(0, t)× Θ1} . For the

sake of brevity we abbreviate Rj,τ , Rj,τ into Rj , Rj .

Step 1 : Coverings of F and F̃t, t = tβ + tǫ ≥ 1. We show in this step that it is sufficient to find a

covering of F̃t with H(τ) = H(τ ; t) brackets satisfying

E

[∣∣Rj −Rj

∣∣k
]

≤ k!

8

(
w

2

)k−2

τ2,(B.14)

H(t) ≤ C log

(
nt

τ

)
.(B.15)

Indeed, consider two such coverings of F̃tβ and F̃tβ+tǫ ,

F̃tβ ⊂
⋃

1≤j≤eH1(τ)

[
R1

j , R
1

j

]
, F̃tβ+tǫ ⊂

⋃

1≤j≤eH2(τ)

[
R2

j , R
2

j

]
,

H1(τ) ≤ H2(τ) = H(τ, tβ + tǫ). Consider a R(β, ǫ; θ) in F . Since R̃(β; θ) ∈
[
R1

j1 , R
1

j1

]
and R̃(β + ǫ; θ) ∈

[
R2

j2 , R
2

j2

]
for some j1 and j2, (B.12) implies that R(β, ǫ; θ) ∈

[
R2

j2 −R
1

j1 , R
2

j2 −R1
j1

]
. Hence these eH

′(τ)

brackets form a covering of F with, using (B.14) and (B.15),

E

[∣∣∣R2

j2 −R1
j1 −

(
R

2

j2 −R1
j1

)∣∣∣
k
]

≤ 2k−1

(
E

[∣∣∣R2

j2 −R2
j2 |
∣∣∣
k
]
+ E

[∣∣∣R1

j1 −R1
j1 |
∣∣∣
k
])

≤ 2k
k!

8

(
w

2

)k−2

τ2 =
k!

2
wk−2τ2,

H ′(τ) = H1(τ) +H2(τ) ≤ C log

(
n (tβ + tǫ)

τ

)
.

Step 2: Preliminary results for the construction of a covering of F̃t. We bound the increments of

(β, θ) 7→ Q∗(X ; θ),Kh(X − x), δ(β, θ). Lemma A.1-(iii) gives that for all θ, θ′ in Θ1

|Q∗ (X ; θ)−Q∗ (X ; θ′)| ≤ Ch−p(1 + h−1) ‖θ − θ′‖ .

Under Assumption K
∣∣∣∣K
(
X − x

h

)
−K

(
X − x′

h′

)∣∣∣∣ ≤ C

(∥∥∥∥
x− x′

h′

∥∥∥∥+ ‖X − x‖
∣∣∣∣
1

h
− 1

h′

∣∣∣∣
)

≤ C

(
1

h
‖x− x′‖+ 1

h2 |h− h′|
)

≤ C

h2 ‖θ − θ′‖ .
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For the increments of δ(β, θ), define U = U(X − x), U′ = U(X − x′), H′ = H(h′). This gives

|δ(β, θ) − δ(β′, θ′)|

=

∣∣∣∣∣U
T H−1

(nhd)
1/2

(β − β′) + (U′ −U)
T H−1

(nhd)
1/2

β′ +U′T

(
H−1

(nhd)
1/2

− H′−1

(nh′d)
1/2

)
β′

∣∣∣∣∣

≤ C

∥∥∥∥∥
H−1

(nhd)
1/2

∥∥∥∥∥ ‖β − β′‖+ ‖x− x′‖
∥∥∥∥∥

H−1

(nhd)
1/2

∥∥∥∥∥ ‖β
′‖+ C ‖β′‖

∥∥∥∥∥
H−1

(nhd)
1/2

− H′−1

(nh′d)
1/2

∥∥∥∥∥

≤ C(1 + t)

hp
(
nhd

)1/2
(
‖β − β′‖+ ‖x− x′‖+ 1

h
|h− h′|

)
≤ C(1 + t)

hp+1
(
nhd

)1/2 (‖β − β′‖+ ‖θ − θ′‖) .

Step 3 : Construction of the covering of F̃t. Define

ρ(q, δ) = |I (q ≤ δ)− I (q ≤ 0)| = I (q ∈ (0, δ]) I (δ ≥ 0) + I (q ∈ [δ, 0)) I (δ < 0) ,

r(q, δ) =

∫ 1

0

ρ(q, δv)dv.

Hence (B.11) shows

R̃(β; θ) = 2Kh(X − x)|δ(β, θ)|r (Y −Q∗(X ; θ), δ (β, θ)) .

For any η > 0, there exists functions ρ(q, δ) = ρ
η
(q, δ) and ρ(q, δ) = ρη(q, δ) and an open set D = Dη ⊂ R

2

such that

ρ− (i) 0 ≤ ρ(q, δ) ≤ ρ(q, η) ≤ ρ(q, δ) ≤ 1 for all (q, δ), with ρ(q, δ) = ρ(q, η) = ρ(q, δ) if (q, δ) ∈ R
2 \Dη,

ρ− (ii) sup(q,δ)∈Dη

(∣∣∣∂ρ(q,δ)∂q

∣∣∣+
∣∣∣∂ρ(q,δ)∂δ

∣∣∣+
∣∣∣∂ρ(q,δ)∂q

∣∣∣+
∣∣∣∂ρ(q,δ)∂δ

∣∣∣
)
≤ Cη−1/2,

ρ− (iii) D ⊂ D′ =
{
(q, δ) ∈ R

2; |q| ≤ Cη−1/2 or |q − δ| ≤ Cη−1/2
}
.

Define r(q, δ) =
∫ 1

0 ρ(q, vδ)dv, r(q, δ) =
∫ 1

0 ρ(q, vδ)dv and

R(β, θ) = 2Kh(X − x)|δ(β, θ)|r (Y −Q∗(X ; θ), δ (β, θ)) ,

R(β, θ) = 2Kh(X − x)|δ(β, θ)|r (Y −Q∗(X ; θ), δ (β, θ)) .

Since K(·) ≥ 0, ρ-(i) gives that these functions are such that

(B.16) R(β, θ) ≤ R̃(β, θ) ≤ R(β, θ).

We now bound R(β, θ)−R(β′, θ′) and R(β, θ) −R(β′, θ′). We have

|R(β, θ)−R(β′, θ′)| ≤ 2 |Kh(X − x)−Kh′(X − x′)| |δ(β, θ)|r (Y −Q∗(X ; θ), δ (β, θ))

+2Kh′(X − x′)|δ(β, θ) − δ(β′, θ′)|r (Y −Q∗(X ; θ), δ (β, θ))

+2Kh′(X − x′)|δ(β′, θ′)| |r (Y −Q∗(X ; θ), δ (β, θ))− r (Y −Q∗(X ; θ′), δ (β′, θ′))| .
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Hence Step 1, ρ-(i,ii), (B.9) and the Taylor inequality give for all (β, θ), (β′, θ′) in B(0, t)×Θ1, provided

n is large enough,

|R(β, θ) −R(β′, θ′)| ≤ C

[
t

hp(nhd)1/2
‖θ − θ′‖

h2 +
1 + t

hp+1(nhd)1/2
(‖θ − θ′‖+ ‖β − β′‖)

]

+Cη−1/2

[‖θ − θ′‖
hp+1 +

1 + t

hp+1(nhd)1/2
(‖θ − θ′‖+ ‖β − β′‖)

]

≤ C

(
1 + η−1/2

)
(1 + t)

hp+2 (‖θ − θ′‖+ ‖β − β′‖) .

Arguing symmetrically gives

∣∣R(β, θ) −R(β′, θ′)
∣∣ ≤ C

(
1 + η−1/2

)
(1 + t)

hp+2 (‖θ − θ′‖+ ‖β − β′‖) .

We now construct the brackets. Recall that there is a covering of B(0, t)×Θ1 withN balls B ((βj , θj), η),

θj = (αj , hj , xj), with center (βj , θj) and radius η such that

(B.17) N ≤ max

(
1,

CtP

ηP+d+2

)
,

see van de Geer (1999, p.20). Define

R′
j = R(βj , θj)− Cη

(
1 + η−1/2

)
(1 + t)

hp+2 , R
′

j = R(βj , θj) + Cη

(
1 + η−1/2

)
(1 + t)

hp+2 ,

(B.18) Rj = max
(
0, R′

j

)
, Rj = min

(
w

2
, R

′

j

)
.

Bounding R(β, θ)−Rj and R(β, θ)−Rj for (β, θ) in B ((βj , θj), η), (B.16) and (B.13) give

(B.19) R′
j ≤ Rj ≤ R̃(β, θ) ≤ Rj ≤ R

′

j .

It then follows that
{[
Rj , Rj

]
, j = 1, . . . , N

}
is a covering of F̃t with, since 0 ≤ Rj ≤ Rj ≤ w/2,

(B.20)
∣∣Rj −Rj

∣∣ ≤ w

2
≍ C

t
(
nhd

)1/2 .
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We now bound E

[(
Rj −Rj

)2]
and E

[∣∣Rj −Rj

∣∣k
]
. (B.19), ρ-(i,iii), (B.9) and Assumptions F, K

give

E

[(
Rj −Rj

)2] ≤ E

[(
R

′

j −R′
j

)2]
≤ 2E

[(
R (βj , θj)−R (βj , θj)

)2]
+ Cη2

(
1 + η−1/2

)2
(1 + t)

2

h2(p+2)

≤ 8E
[
K2

hj
(X − xj) δ

2 (βj , θj) (r (Y −Q∗ (X ; θj) , δ (βj , θj))− r (Y −Q∗ (X ; θj) , δ (βj , θj)))
2
]

+C
(1 + t)

2

h2(p+2)

(
η2 + η

)

≤ 8E

[
K2

hj
(X − xj) δ

2 (βj , θj)

∫ (∫ 1

0

I ((y −Q∗(X ; θj), vδ (βj , θj)) ∈ D) dv

)2

f(y|X)dy

]

+C
(1 + t)

2

h2(p+2)

(
η2 + η

)

≤
8hd

j ‖β‖2

nhd
j

∫
K2(z) ‖U(z)‖2

×
[∫ ∫ 1

0

I ((y −Q∗(xj + hjz; θj), vδ (βj , θj)) ∈ D) dvf(y|xj + hjz)dy

]
f(xj + hjz)dz

+C
(1 + t)

2

h2(p+2)

(
η2 + η

)

≤ C
(1 + t)2

h2(p+2)

(
η2 + η + η1/2

)
.

This together with (B.20) give for any integer number k ≥ 2

E

[∣∣Rj −Rj

∣∣k
]
≤
(
w

2

)k−2

E

[(
Rj −Rj

)2] ≤ k!

8

(
w

2

)k−2

× C
(1 + t)

2

h2(p+2)

(
η2 + η + η1/2

)
.

Hence (B.14) holds if η satisfies

η =
C

3
min



(

h2(p+2)

(1 + t)
2

)1/2

τ,
h2(p+2)

(1 + t)
2 τ

2,

(
h2(p+2)

(1 + t)
2

)2

τ4


 .

Recall now that τ < 1, t ≥ 1 and that h ≥ Cn−1/d under Assumption K. The bound (B.17) for

N = exp(H(τ)) gives taking η as above

eH(τ) ≤ max


1,

CtP

min

((
h2(p+2)

(1+t)2

)1/2
τ, h2(p+2)

(1+t)2
τ2,
(

h2(p+2)

(1+t)2

)2
τ4
)P+d+2




≤ max

(
1,

Ct3n(4p+4)/d

τ

)P+d+2

.

It then follows for n large enough

H(τ) ≤ (P + d+ 2)max

(
0, log

(
Ct3n(4p+4)/d

τ

))
= C

(
3 log t+

4p+ 4

d
logn− log τ

)
≤ C log

(
tn

τ

)
,

and (B.15) is proved. This ends the proof of the Lemma. ✷
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Let us now return to the proof of Proposition A.1. Define X = (X1, · · · , Xn). The definition of R1
n

and (A.10) give

E

[
sup

(β,ǫ,θ)∈B(0,tβ)×B(0,tǫ)×Θ1

∣∣R1
n (β, ǫ; θ)

∣∣
]

= E

[
sup

(β,ǫ,θ)∈B(0,tβ)×B(0,tǫ)×Θ1

∣∣∣∣∣

n∑

i=1

(Ri (β, ǫ; θ)− E [Ri (β, ǫ; θ) |X])
∣∣∣∣∣

]

≤ E

[
sup

(β,ǫ,θ)∈B(0,tβ)×B(0,tǫ)×Θ1

∣∣∣∣∣

n∑

i=1

(Ri (β; ǫ, θ)− E [Ri (β; ǫ, θ)])

∣∣∣∣∣

]

+E

[
sup

(β,ǫ,θ)∈B(0,tβ)×B(0,tǫ)×Θ1

∣∣∣∣∣E
[

n∑

i=1

(Ri (β, ǫ; θ)− E [Ri (β, ǫ; θ)]) |X
]∣∣∣∣∣

]

≤ 2E

[
sup

(β,ǫ,θ)∈B(0,tβ)×B(0,tǫ)×Θ1

∣∣∣∣∣

n∑

i=1

(Ri (β, ǫ; θ)− E [Ri (β, ǫ; θ)])

∣∣∣∣∣

]
.

Let H(·), σ and w be as in Lemma B.2. Recall that tβ + tǫ ≥ 1 and that σ < 1 ≤ n(tβ + tǫ) for n large

enough under the assumptions for tβ and tǫ of the Proposition. It follows from Massart (2007, Theorem

6.8) that

E

[
sup

(β,ǫ,θ)∈B(0,tβ)×B(0,tǫ)×Θ1

∣∣∣∣∣

n∑

i=1

(Ri (β, ǫ; θ)− E [Ri (β, ǫ; θ)])

∣∣∣∣∣

]
≤ C

(
n1/2

∫ σ

0

H(u)1/2du+ (w + σ)H (σ)

)
.

Since σ < 1, Lemma B.2 gives, for all u in (0, σ], H(u) ≤ C log(n(tβ + tǫ)/u). This gives

n1/2

∫ σ

0

H1/2(u)du ≤ (nσ)1/2

(∫ σ

0

H(u)du

)1/2

≤ C(nσ)1/2

(∫ σ

0

log

(
n(tβ + tǫ)

u

)
du

)1/2

= C(nσ)1/2
(
σ

(
log

(
(tβ + tǫ)n

σ

)
+ 1

))1/2

≤ Cn1/2σ log1/2
(
(tβ + tǫ)n

σ

)
.

The order for σ given in Lemma B.2, assumption on tβ + tǫ and Assumption K give

log (n(tβ + tǫ)/σ) ≤ C log



n3/2

(
nhd

)1/4
(tβ + tǫ)

1/2

tǫ


 ≤ C log



n3/2

(
nhd

)1/2

log1/2 n


 ≤ C logn.

Substituting gives

E

[
sup

(β,ǫ,θ)∈B(0,tβ)×B(0,tǫ)×Θ1

∣∣R1
n (β, ǫ; θ)

∣∣
]
≤ C

(
n1/2σ log1/2 n+ (σ + w) logn

)

≤ C
tǫ(tβ + tǫ)

1/2

(
nhd

)1/4 log1/2 n


1 + log1/2 n




1

n1/2
+

(tβ + tǫ)
1/2

tǫ

(
nhd

)1/4





 ≤ C

tǫ(tβ + tǫ)
1/2

(
nhd

)1/4 log1/2 n.✷

B.3. Proof of Proposition A.2. The proof of Proposition A.2 follows the same steps of the proof of

Proposition A.1 and we only sketch it. The integral expression of R(β, ǫ; θ) in (B.10) and the expression

(A.11) of R2(β, ǫ; θ) give

R2(β, ǫ; θ) = 2Kh (X − x)

∫ δ(β,θ)+δ(ǫ,θ)

δ(β,θ)

(F (Q∗ (X ; θ) + u|X)− F (Q∗ (X ; θ) |X)) du− 1

2nhd
ǫTJ(θ)(ǫ+2β).
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The definition (3.6) of J(θ) gives

R2(β, ǫ; θ)

= 2Kh (X − x)

∫ δ(β,θ)+δ(ǫ,θ)

δ(β,θ)

(F (Q∗ (X ; θ) + u|X)− F (Q∗ (X ; θ) |X)− uf (Q∗ (X ; θ) |X)) du

= 2Kh (X − x)

∫ δ(β,θ)+δ(ǫ,θ)

δ(β,θ)

u

{∫ 1

0

(f (Q∗ (X ; θ) + vu|X)− f (Q∗ (X ; θ) |X)) dv

}
du.

Define

r(β; θ) = 2Kh (X − x)

∫ δ(β,θ)

0

u

{∫ 1

0

(f (Q∗ (X ; θ) + vu|X)− f (Q∗ (X ; θ) |X)) dv

}
du

which is such that R2(β, ǫ; θ) = r(β+ ǫ; θ)−r(β; θ). Since |f(q+v|x)−f(q|x)| ≤ L0|v| under Assumption

F, (B.9) gives

∣∣R2(β, ǫ; θ)
∣∣ ≤ Kh(X − x)L0

∣∣∣∣∣

∫ δ(β,θ)+δ(ǫ,θ)

δ(β,θ)

u2du

∣∣∣∣∣ ≤ CKh(X − x)|δ(ǫ, θ)|(|δ(β, θ)| + |δ(ǫ, θ)|)2

≤ C

∥∥∥∥U
(
X − x

h

)∥∥∥∥
3

K

(
X − x

h

) ‖ǫ‖ (‖β‖+ ‖ǫ‖)2

(nhd)
3/2

,(B.21)

|r(β; θ)| ≤ CKh(X − x)|δ(β, θ)|3 ≤ C

∥∥∥∥U
(
X − x

h

)∥∥∥∥
3/2

K

(
X − x

h

) ‖β‖3

(nhd)
3/2

.

The latter inequality gives for all β in B(0, tβ + tǫ) and all θ in Θ1

|r(β; θ)| ≤ w′

2
, w′ ≍ (tβ + tǫ)

3

(
nhd

)3/2 .

It follows from (B.21) that, for all (β, ǫ) in B(0, tβ)× B(0, tǫ),

Var
(
R2(β, ǫ; θ)

)
≤ E

[
R2(β, ǫ; θ)2

]

≤ C

(
‖ǫ‖ (‖β‖+ ‖ǫ‖)2

(nhd)
3/2

)2 ∫ ∥∥∥∥U
(
x′ − x

h

)∥∥∥∥
4

K2

(
x′ − x

h

)
f(x′)dx′

≤ C
‖ǫ‖2 (‖β‖ + ‖ǫ‖)4

(nhd)
3 hd

∫
‖U (z)‖4 K2 (z)dz ≤ (σ′)

2
, σ′ ≍ tǫ (tβ + tǫ)

2

n3/2hd
.

Then constructing brackets as in Lemma B.2 and arguing as in the proof of Proposition A.1 give

E

[
sup

(β,ǫ,θ)∈B(0,tβ)×B(0,tǫ)×Θ1

∣∣R2
n(β, ǫ; θ)− E

[
R

2
n(β, ǫ; θ)

]∣∣
]

≤ n1/2σ′ log1/2
(
n(tβ + tǫ)

σ′

)
+ (σ′ + w′) log

(
n(tβ + tǫ)

σ′

)
.

Since (B.21) yields for all (β, ǫ, θ) ∈ B(0, tβ)× B(0, tǫ)×Θ1

∣∣E
[
R

2
n(β, ǫ; θ)

]∣∣ =
∣∣nE

[
R2(β, ǫ; θ)

]∣∣ ≤ CnE

[∥∥∥∥U
(
X − x

h

)∥∥∥∥
3

K

(
X − x

h

) ‖ǫ‖ (‖β‖+ ‖ǫ‖)2

(nhd)
3/2

]

≤ C
tǫ (tǫ + tβ)

2

(
nhd

)1/2 ,
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substituting gives, using tβ ≥ 1, tβ/tǫ = O
(
nhd/ log1/2 n

)
and Assumption K which ensures log

(
n5/2hd/tǫ

)
=

O(log n),

E

[
sup

(β,ǫ,θ)∈B(0,tβ)×B(0,tǫ)×Θ1

∣∣R2
n(β, ǫ; θ)

∣∣
]

≤ E

[
sup

(β,ǫ,θ)∈B(0,tβ)×B(0,tǫ)×Θ1

{∣∣R2
n(β, ǫ; θ)− E

[
R

2
n(β, ǫ; θ)

]∣∣+ E
[
R

2
n(β, ǫ; θ)

]}
]

≤ C
tǫ (tβ + tǫ)

2

nhd


1 +

tβ + tǫ

tǫ

(
nhd

)1/2


 log1/2

(
n5/2hd

tǫ (tβ + tǫ)

)
+ C

tǫ (tǫ + tβ)
2

(
nhd

)1/2 ≤ tǫ (tǫ + tβ)
2

(
nhd

)1/2 .✷

B.4. Proof of Lemma A.2. Lemma A.1 (iv) and Assumptions K and F give that there is a C > 0 such

that for all θ in Θ1 and all i,

Ji (θ) ≻ CMi (θ) , Mi (θ) = 2Kh (Xi − x)U

(
Xi − x

h

)
U

(
Xi − x

h

)T

.

Hence for all θ in Θ1,

(B.22)
1

nhd

n∑

i=1

Ji (θ) ≻
C

nhd

n∑

i=1

Mi (θ) = Mn (θ) .

The entries of Mn (θ) write

C

nhd

n∑

i=1

(
Xi − x

h

)v1+v2

K

(
Xi − x

h

)
, 0 ≤ |v1| , |v2| ≤ p.

Let M(θ) be the matrix with entries

C

hd
E

[(
X − x

h

)v1+v2

K

(
X − x

h

)]
, 0 ≤ |v1|, |v2| ≤ p.

Arguing as in the proof of Proposition A.1 for each of the entries of Mn (θ) gives

sup
θ∈Θ1

‖Mn(θ)−M(θ)‖ = oP (1) .

Assumptions K, F and X give, for all u in R
P , all x in X0 and h small enough,

uTM(θ)u =
C

hd
E

∑

0≤|v1|,|v2|≤p

uv1uv2

(
X − x

h

)v1+v2

K

(
X − x

h

)

= C
∑

0≤|v1|,|v2|≤p

uv1uv2

∫
zv1+v2K(z)f(x+ hz)dz = C

∫ 


∑

0≤|v|≤p

uvz
v




2

K(z)f(x+ hz)dz

≥ C

∫

B(0,1)


 ∑

0≤|v|≤p

uvz
v




2

dz ≥ C ‖u‖2 ,

where the last bound uses the fact that

u 7→



∫

B(0,1)




∑

0≤|v|≤p

uvz
v




2

dz




1/2
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is a norm and that norms over RP are equivalent. Hence (B.22) and ‖Mn(θ)−M(θ)‖ = oP (1) yield that

there is a γ > 0 such that infθ∈Θ1 γ
n
(θ) ≥ infθ∈Θ1 inf‖u‖=1 u

T
Mn(θ)u ≥ γ + oP(1) . ✷

B.5. Proof of Lemma A.3. The first order condition (A.1) implies that E[Si(θ)] = 0. Consider the v

coordinate of Si(θ),

Sv,i(θ) = 2 {I (Yi ≤ Q∗(Xi; θ))− α}
(
Xi − x

h

)v

K

(
Xi − x

h

)
.

Hence Assumptions K and X give, uniformly in θ ∈ Θ1 and for all i,
∣∣∣∣∣
Sv,i(θ)

(nhd)
1/2

∣∣∣∣∣ ≤ w′′, w′′ ≍
(
nhd

)−1/2

,

Var

(
Sv,i(θ)

(nhd)
1/2

)
≤ E



(

Sv,i(θ)

(nhd)
1/2

)2

 ≤ E



((

Xi−x
h

)v
K
(
Xi−x

h

)

(nhd)
1/2

)2

 =

hd

nhd

∫
(zvK (z))2

≤ (σ′′)
2
, σ′′ ≍ n−1/2.

Hence arguing as in the proof of Proposition A.1 gives, under Assumption K,

E

[
sup
θ∈Θ1

∣∣∣∣∣
1

(nhd)1/2

n∑

i=1

Sv,i(θ)

∣∣∣∣∣

]
= O

(
n1/2σ′′ log1/2 n+ (σ′′ + w′′) log1/2 n

)
= O

(
log1/2 n

)
.

The Markov inequality then shows that the Lemma is proved. ✷
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