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Abstract

This paper presents the first local search heuristic for the coupled runway sequencing
(arrival & departure) and taxiway routing problems, based on the receding horizon (RH)
scheme that takes into account the dynamic nature of the problem. As test case, we use
Manchester Airport, the third busiest airport in the UK. From the ground movement per-
spective, the airport layout requires that departing aircraft taxi across the arrivals runway.
This makes it impossible to separate arrival from departure sequencing in practice. Opera-
tionally, interactions between aircraft on the taxiways could prevent aircraft from taking off
from, or landing on, runways during the slots assigned to them by an algorithm optimizing
runway use alone. We thus consider the interactions between arrival and departure aircraft
on the airport surface. Compared to sequentially optimized solutions, the results obtained
with our approach indicate a significant decrease in the taxiway routing delay, with gener-
ally no loss in performance in terms of the sequencing delay for a regular day of operations.
Another benefit of such a simultaneous optimization approach is the possibility of holding
aircraft at the stands for longer, without the engines running. This significantly reduces the
fuel burn, as well as bottlenecks and traffic congestion during peak hours that are often the
cause of flight delays due to the limited amount of airport surface space available. Given
that the maximum computing time per horizon is around 95 seconds, real-time operation
might be practical with increased computing power.
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1 Introduction

Due to a huge increase in the air traffic over the past decade, and with further
growth forecast (EUROCONTROL, 2013), air traffic congestion on the airport sur-
face is a major constraint on efficient use of airport resources (runways, taxiways
and gates/stands). Economically, congestion could cause airborne delays, whereas
environmentally, it results in an increase in air pollutants and noise emissions. Even
though the expansion of airport capacity and the increase of traffic controllers are
the most obvious solutions, these are often not realistic due to cost and space lim-
itations. A more practical solution is the use of highly innovative decision support
systems for an effective management of existing resources. This has led research
programs, such as the Single European Sky ATM Research (SESAR) project in
Europe and NextGEN in the United States, to initiate the development of highly
complex decision support systems based on sophisticated optimization methodolo-
gies.

The existing work in the field on transportation research has mainly focused on
solving the key airport operations problems in isolation. These include gate alloca-
tion, runway sequencing, ground movement and baggage handling, with the rela-
tive importance of each varying by airport. Nevertheless, there are obvious benefits
from considering different airport operations as a unit from both economical and
environmental point of view (Atkin et al., 2010). As discussed in (Atkin et al.,
2010), the ground movement problem is that of allocating efficient taxi routes to
aircraft moving between the runways and stands. Ground movement forms the link
between other airport operations problems, including arrival sequencing, departure
sequencing and gate allocation. Indeed, an optimal departure sequence is of no use
if aircraft cannot reach the runway at allocated take-off times. In real operations,
aircraft typically leave the gates to meet on time their departure slot as soon as they
are ready for pushback. Since the amount of available airport surface is limited,
this results in bottlenecks and traffic congestion during peak hours causing flight
delays. Furthermore, arrival aircraft can have a significant effect on ground move-
ment planning, especially at airports where runway crossing is necessary for taxiing
aircraft(Mirković et al., 2016). Therefore, prior knowledge of the landing times is
required for realistic runway sequencing and ground movement optimization.

Some effort has recently been made on the design of approaches for tackling mul-
tiple problems simultaneously. For instance, the authors in (Atkin et al., 2007)
present a decision-support system based on heuristic search for the departure run-
way scheduling at Heathrow. A tabu search algorithm is used for finding good
take-off orders, which are then tested for feasibility given the holding-point re-
strictions. In (Roling and Visser, 2008), the authors propose a mixed-integer linear
programming approach that aims to optimize a weighted combination of the total
taxi time and the total holding time in such a way to deconflict the taxi plans. The
work in (Montoya et al., 2011) presents a dynamic programming algorithm for op-
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timal runway sequencing. In addition to miles-in-trail and wake vortex separation
constraints, runway crossings are also taken into account. In (Clare and Richards,
2011), the authors describe an automated tool that incorporates departure runway
scheduling with taxiway routing in continuous time at Heathrow, based on a reced-
ing horizon technique. The method adopts MILP optimization, while the proposed
model imposes the runway separation requirements as a constraint to the taxiway
routing process. The work in (Jung et al., 2011) describes an airport surface deci-
sion support tool that combines departure routing with departure sequencing, and
tests the combined solutions using a detailed simulation. In (Atkin et al., 2013),
the authors propose a two-stage approach that finds a take-off sequence in the first
stage, and then uses this in the second stage to calculate push-back times such that
an appropriate amount of the delay is absorbed at the stand, prior to starting the
engines. The feasibility of the second stage is considered within the first stage. The
work in (Weiszer et al., 2015) applies multi-objective optimisation to the integrated
problems of departure sequencing (excluding arrivals), ground movement and air-
port bus scheduling, with results showing improved fuel and time efficiency over
treating the problems in isolation. Other research considering combined airport op-
erations problems can be found in (Deau et al., 2008; Lee and Balakrishnan, 2012;
Neuman and Atkin, 2013; Nosedal et al., 2015; Weiszer et al., 2015).

In recent years, several models have been proposed for the integrated arrival se-
quencing, departure sequencing and runway routing problems. Among the first such
works is a set partitioning model (Yu and Lau, 2014) that largely reduces the num-
ber of constraints and makes the problem more manageable. In the proposed model,
each possible aircraft route is regarded as a decision variable, while the constraints
enforce a minimum separation distance between aircraft at the taxiways and run-
ways. The proposed method has been tested on a small taxiway layout of 36 nodes
with one runway, and a single problem instance that includes 6 aircraft. The time
required to reach optimality for the given instance is not reported. In (Bosson et al.,
2015), the authors extended a previously developed mixed-integer-linear program-
ming approach for arrival and departure sequencing to include taxiway operations.
The approach is applied to a model of the Los Angeles International Airport, and a
preliminary case study is conducted on a set of thirteen aircraft. This test case was
solved to optimality in about 240 seconds. The work in (Bertsimas and Frankovich,
2015) presents an integer programming model that addresses simultaneously the
optimisation of arrival sequencing, departure sequencing and surface routing in a
tractable manner. The model is divided into two stages considering the problem
complexity. The first stage focuses solely on the runway capacities (i.e., runway
sequencing), while the second stage can be viewed as the routing phase which de-
termines a routing of flights to achieve a runway processing schedule close to that
obtained in the first stage. The approach results in a suboptimal solution, since run-
way sequencing and taxiway routing are performed in two separate stages. Along
with the above mentioned literature, it is also worth mentioning the Spot and Run-
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way Departure Advisor (SARDA) 1 , developed and studied by NASA. SARDA is
an algorithm for effective management of departures at an airport, which plans gate
departure times, spot crossing times, and runway sequences. So far, SARDA has
been applied at three airports in USA, chosen for their diversity in geometric and
operational characteristics.

While the works in (Bertsimas and Frankovich, 2015; Bosson et al., 2015; Yu and
Lau, 2014) present mathematical models for exact solving of the combined prob-
lem, this paper presents probably the first heuristic, based on the Iterated Local
Search (ILS) framework, for optimization of the coupled runway sequencing and
taxiway routing problems in continuous time. Furthermore our approach incorpo-
rates the receding horizon (RH) framework (Bellingham et al., 2003; Hu and Chen,
2005; Hu and Paolo, 2008; Zhan et al., 2010) to take into account the dynamic
nature of the problem. As test case, we use Manchester Airport, the third busiest
airport in the UK. The airport has two runways, which are operated in segregated
mode during busy periods. Manchester Airport has a runway crossing which makes
it impossible to separate arrival from departure runway sequencing in practice. The
proposed method considers arrival and departure sequencing as two separate yet
interrelated processes, where the arrival sequence and the departure sequence are
being optimized in a token-ring way. More precisely, the optimization of the arrival
sequence is followed by the optimization of the departure sequence, always start-
ing from the best solution found in the previous optimization phase. Each time an
arrival or departure sequence S is selected from the neighborhood to replace the
current sequence, the algorithm calls a dedicated iterative routing heuristic to de-
termine the best routing solution R for S in terms of the total taxiing delay. In this
context, the taxiing delay of an aircraft is defined as the delay of the given aircraft
over the unimpeded taxi time for its allocated route. Finally, the acceptance of S is
based on a combination of three criteria: (i) the total sequence delay of S; (ii) the
number of infeasible sequencing slots in S in terms of the corresponding routing so-
lution R; and (iii) the total taxiing delay of R. We use the term infeasible sequencing
slot to denote those slots in S that result long taxiing delays in R. Criteria (ii) and
(iii) are thus introduced for two reasons, the first being to ensure that departures are
able to reach the runway for their allocated departure slot, while holding aircraft
at stands for as long as possible. The second reason is to focus optimization on se-
quencing slots that result long taxiing delays in the corresponding routing solution.
Coupling of the two problems is achieved by imposing a sequence feasibility con-
straint in terms of the ground movement. This helps attain a significant decrease in
taxiing delay with a minimal sacrifice of the runway sequence.

For experimental evaluations, we compare our runway sequencing and routing re-
sults with sequentially optimized runway sequencing and routing solutions (when
taxiway routing is not considered during runway sequencing, while a routing solu-
tion is optimized given a runway sequence). Compared to sequentially optimized

1 http://www.aviationsystemsdivision.arc.nasa.gov/research/surface/sarda.shtml
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solutions, the results obtained with our approach indicate that there is generally
no loss in performance in terms of the runway sequencing delay for a regular day
of operations, in spite of the sequence feasibility constraint imposed by ground
movement. Since runway sequences and taxiway routes with the proposed method
are performed at the stands, this facilitates the possibility of holding aircraft at the
stands for longer, without the engines running, which significantly reduces the fuel
burn.

The paper is organized as follows. Section 2 provides a thorough description and
formulation of the problem. The proposed approach for the coupled runway se-
quencing and taxiway routing problems is given in Section 3. Section 4 shows
experimental results and comparisons, followed by conclusions in Section 5.

2 Problem description and formulation

This work focuses on the coupled runway sequencing (including both arrivals and
departures) and ground movement optimization in continuous time. Maximization
of runway throughput and minimization of the total taxi times are considered as
primary and secondary objectives respectively. Before describing the approach for
simultaneous optimization of the considered problems, we briefly describe the lay-
out of our test case, Manchester Airport, followed by a detailed description and
formulation of the problems.

2.1 Manchester Airport

According to CAA statistics ((Civil Aviation Authority, 2013) and (Civil Aviation
Authority, 2014)), Manchester is the third busiest airport in the UK in both an-
nual passengers (20.7M) and aircraft movements (159 000). A stylized diagram of
the airport is given in Figure 1. It has several interesting features from a ground
movement perspective. The airport has three terminals, two runways (05L/23R and
05R/23L) and 148 aircraft stands. Of the stands, 54 are shadowed such that they
cannot be used when larger aircraft are on the adjacent stands. 57 stands are served
by terminal piers, and 91 are remote (accessed by bus transfer from the terminal).
Access to runway 05R/23L is achieved by crossing 05L/23R. Access to stands on
the apron serving terminal 2 and part of terminal 1 is via two taxiways. Owing to
the limited number of terminal stands, aircraft on longer stopovers are often towed
to remote stands, placing further demand on the taxiways. In this work, we assume
that a gate is available at any given time. Furthermore, we do not consider towing
aircraft from one gate to another, as we do not take into account the gate allocation
problem. However, this could be an interesting extension for a future work.
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Fig. 1. Stylised diagram of Manchester Airport showing the terminals (grey), runways
(black) and major taxiways (black). The apron (red hatched) can only be reached by two
taxiways: this bottleneck restricts access to around half of the airport’s stands, including
those for T2, part of T1, and remote stands. The taxiways coloured with blue strips are
crossings of runway 05R/23L: during busy periods in two-runway operating mode, all de-
partures must make this runway crossing, timed to take place between arrivals.

The majority of the time (with the exception of unusual prevailing wind condi-
tions), the airport switches between two operating modes over the course of a day.
In mixed runway mode, the airport uses runway 05L/23R for both arrivals and de-
partures. In segregated runway mode (busy periods in the daytime only), runway
05L/23R is used for arrivals and 05R/23L is used for departures. Given that busy
periods are the most critical for airport management, this work considers the segre-
gated runway mode.

2.2 Runway sequencing

Given a set of aircraft for landing / take-off, the aim of the runway sequencing prob-
lem (Dear, 1976; Psaraftis, 1978) is to increase the runways’ throughput, while
guaranteeing a minimal separation between aircraft to ensure safety and control
congestion. Despite some similarities between arrival and departure sequencing
(both can be modelled as machine scheduling problems), there are important dif-
ferences between these processes in practice, lying in the details of the separation
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rules, constraints, and objective functions. There exist different variations of the
runway sequencing problem, depending on the number of runways considered, and
depending on the mode in which the individual runways are managed (either seg-
regated or mixed). As mentioned previously, we focus on two-runway operations
in segregated mode. The runway sequencing constraints and objectives are detailed
in the following sections.

2.2.1 Runway separations

The runway operations are constrained by three types of separations: (i) the wake-
vortex separation; (ii) the aircraft speed separation; and (iii) the en-route separation.

The wake-vortex separation is to ensure that wake vortices left by the earlier air-
craft i have dissipated before the landing / take-off of the following aircraft j. It is
determined by the aircraft size and the relative positions of the two aircraft. This
separation generally differs for arrivals and departures. Table 1 shows a standard
for the wake-vortex separation in case of arrivals and departures. The separations
adopted for arrivals are taken from (Bianco et al., 1997), while the departure wake-
vortex separations are in accordance with the current regulations at the Manchester
Airport 2 . It can be seen that the wake-vortex separation matrix in case of arrivals is
asymmetric. Generally speaking, a smaller aircraft following a larger aircraft will
require a longer separation time than the other way around. The asymmetric nature
of the separation rules implies that shifting aircraft positions in a sequence may
reduce delays and increase the runway throughput.

While an arrival sequence is solely constrained by the wake-vortex separation, a
departure sequence is additionally constrained by the aircraft speed separation and
the en-route separation. Indeed, departure flights have to follow a fixed departure
route called the Standard Instrument Departure (SID) route. To avoid airspace con-
gestion and to ensure a safe in-flight separation between departures, the departure
frequency along each SID and group of SIDs has to be restricted. This is accom-
plished by maintaining a minimal separation between aircraft, based on their SID
routes and speed categories. The en-route separation matrix for the four SID routes
at Manchester Airport is provided in Table 2. As for the minimal speed separation,
the gap is increased by one minute for each successive group when a faster aircraft
follows a slower aircraft (e.g., 1 minute if Group 4 follows Group 3; 2 minutes if
Group 3 follows Group 1, etc). When calculating the correct departure separation
between two adjacent take-offs i and j, the highest of the three separation values is
used.

At Manchester Airport, the minimal separation between departures complies with
the triangle inequality. This implies that safe separation between take-offs is guar-

2 Separation rules for departures at the Manchester Airport are available at
http://ivao.co.uk/atc/egcc/out
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Table 1
Minimal wake-vortex separation in seconds between two adjacent arrival aircraft i and j
Bianco et al. (1997), and minimal departure wake-vortex separation between two adjacent
departure aircraft i and j in accordance with the current regulations at the Manchester
Airport.

Weight of the later arrival aircraft j
1 2 3 4

1 96 200 181 228
Weight of the earlier 2 72 80 70 110
arrival aircraft i 3 72 100 70 130

4 72 80 70 90
Weight of the later departure aircraft j

1 2 3 4
1 60 120 120 120

Weight of the earlier 2 120 60 120 120
departure aircraft i 3 120 120 60 120

4 120 120 120 60

Table 2
Minimal en-route separation matrices in accordance with the current regulations at the
Manchester Airport (times in seconds)

SID of the later departure aircraft j
WEST EAST SAMBA LISTO

WEST 120 60 120 60
SID of the earlier EAST 60 120 60 60
departure aircraft j SAMBA 120 60 120 60

LISTO 60 60 60 120

anteed by only taking into account separations between adjacent flights. However,
this is not the case at all airports, e.g., at London Heathrow Airport (Atkin et al.,
2007). Furthermore, the departure separation function is asymmetric so rearranging
the flight orders in the departure sequence may reduce the total departure delay.

2.2.2 Landing/take-off time constraints

In most models for arrival scheduling (Beasley et al., 2000; Ernst et al., 1999),
an aircraft is not allowed to land ahead of its planned landing time PLT . Aside
from security risks, landing earlier than planned may require more fuel burn if the
aircraft has to accelerate beyond its optimal cruise speed, thus introducing extra
costs. The actual landing time ALT ( fi) of each aircraft fi in the arrival sequence
is thus constrained with ALT ( fi)≥ PLT ( fi), ensuring that a flight’s earliest ALT is
its PLT.

On the other hand, in departure scheduling, there is no equivalent benefit to de-
laying an aircraft beyond its earliest possible take-off time. Indeed, at busy times,
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aircraft usually take off in the earliest slot that can accommodate them, since it is
essential to maximize the runway throughput. Delayed departures can, however,
be used to avoid en route congestion. To this end, a departure flight is generally
assigned a 15 minute departure window, denoted by [ETO( fi),LTO( fi)], during
which the aircraft should take-off. More precisely, PTOT ( fi)− 5 = ETO( fi) and
PTOT ( fi)+10= LTO( fi), where PTOT ( fi) is the planned take-off time of fi. This
time window is imposed by a CTOT or Calculated Take-Off Time. The aircraft can-
not take-off before its start (i.e. ETO( fi) is a hard constraint). In the case that an
aircraft is unable to take-off within a given departure window, certain extensions
are allowed but should be avoided whenever possible (i.e. LTO( fi) is a severely pe-
nalized soft constraint). Integration of runway sequencing and ground movement is
crucial to ensure that an aircraft is only allocated a slot if it is likely to be able to
complete taxiing in time to meet it.

2.3 Ground movement

Airport ground movement is a combined routing and scheduling problem (Atkin
et al., 2010). Aircraft must be guided in a time-efficient manner along the taxiways,
meeting assigned times at the runway and respecting safety constraints on the prox-
imity of other aircraft. If the airport only has a few aircraft moving at once it would
be possible to assign routes using a shortest path algorithm such as Dijkstra’s al-
gorithm or A*. Where an airport is more busy, the interactions between moving
aircraft and changing obstacles such as runway crossings requires a more sophisti-
cated approach. In this work, we seek to find a sequence for which all aircraft can
be routed without conflicts in the shortest length of time.

The routing algorithm we adopt is a variant of the Quickest Path Problem with Time
Windows (QPPTW) algorithm (Ravizza et al., 2013a). This resembles Dijkstra’s
shortest path algorithm, and routes the aircraft sequentially. For convenience, a
summary of the algorithm is given in Appendix B.

We have made a number of small changes to the QPPTW algorithm presented in
(Ravizza et al., 2013a). Firstly, we use an undirected graph, to reflect the operations
at Manchester Airport. Secondly, an edge can have different weights depending on
predecessor edges and aircraft type. Thirdly, runway crossings are included by ex-
plicitly reserving the appropriate edges during take-offs and landings. The reserva-
tions are 60 seconds, starting with the landing time ALT ( fi) for arrivals, and ending
with the take-off time AT T ( fi) for departures. Finally, in (Ravizza et al., 2013a),
it was shown that an overall reduction in taxi time could be obtained by using a
simple swap-heuristic. If an aircraft is delayed over the shortest path possible, the
delay-causing aircraft is found, and the two aircraft are allocated routes in reverse
order. We have replaced this with a search heuristic, described in Section 3.4, that
can re-order and re-route multiple aircraft, with the aim of resolving conflicts in-
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volving more than two aircraft, which can easily occur in high-traffic conditions.

2.3.1 Feasibility of the sequencing solution in terms of routing

For a given aircraft fi, the unimpeded taxi time Tunimpedi is the time for the route
that would be allocated to the aircraft in the absence of any other aircraft.

The taxiing delay Di for an aircraft fi is the delay over the unimpeded taxi time for
its allocated route, i.e. Ti−Tunimpedi , where Ti is the total taxi time of fi. Longer
taxiing delay implies greater environmental and economic costs due to more fuel
burn. In case of departures, it may further cause a flight to miss its allocated take-
off slot. Indeed, aircraft are not ready to push-back before boarding is complete and
thus have a limited time to reach the runway before their allocated take-off slot.

We classify fi as infeasible if:

• Di > 5 minutes for departures
• Di > 10 minutes for arrivals

A sequencing slot allocated to fi is determined to be infeasible if the route Ri as-
signed to fi is classed infeasible according to the rules above, or if no Ri can be
found. This latter situation will occur if other traffic movements mean that no path
is available starting / ending on the runway at the allocated time. We assign a higher
feasibility threshold D for arrivals since it is more costly to delay aircraft landing
(i.e., to have aircraft flying in circles while waiting for authorisation to land) than
to tolerate longer taxiing time from runway to gate. Therefore, a higher feasibility
threshold provides a higher tolerance for longer taxiing times and thus more routing
flexibility.

The above defined constraint links the runway sequencing and routing problems
by enabling the proposed approach to focus optimization on sequencing slots that
result long taxi times in the corresponding routing solution. As it will be observed
in Section 4, this strategy shows dramatic improvement of taxiway routing for min-
imal sacrifice of the runway sequencing time.

3 Integrating runway sequencing and ground movement problems

We present a Receding Horizon Control based Iterated Local Search (RHC-ILS)
technique for tackling the runway sequencing problem (including both arrival and
departure sequencing) and the ground movement problem in a dynamic Air Traffic
Control (ATC) environment. ILS is a general stochastic approach that has shown
to be effective on a wide range of NP-hard problems. Its basic idea is to iterate
between intensification phase, to exploit in-depth the neighborhood of the current
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solution, and diversification phase to explore new search space regions. Given the
segregated two-runway mode, the proposed algorithm considers arrival and depar-
ture sequencing as two separate yet interrelated processes, where the arrival SA and
the departure SD sequences are being optimized in a token-ring way. More pre-
cisely, the optimization of the arrival sequence is followed by the optimization of
the departure sequence, always starting from the best solution found in the previ-
ous optimization phase, until a stopping condition is met. Let Sbest

A , Sbest
D and Rbest

be respectively the best found arrival sequence, the best found departure sequence
and the routing solution for sequences Sbest

A and Sbest
D . Each time a new neighbor-

ing sequence SA or SD is obtained, the algorithm updates Sbest
A or Sbest

D , in case an
improved solution is found in terms of the the following three criteria: (i) the to-
tal arrival and departure sequencing delay; (ii) number of feasible sequencing slots
that can be met by the taxiing aircraft in Rbest (see Section 2.3.1); and (iii) the to-
tal taxiing delay (see Section 2.3.1). To verify the latter two criteria, we apply a
heuristic that iteratively performs unrouting and rerouting of a flight selection from
the current sequences SA and SD, in search for an improved routing solution that
minimizes the total taxiing delay.

Given the dynamic nature of the ATC setting, conventional local search approaches
can hardly keep up with the need of real-time properties in practice. Predicted ar-
rival and departure flows are subject to constant changes. For instance, some flights
may be canceled or delayed due to technical problems or weather conditions, while
some flights may ask for unanticipated emergency landing. Therefore, optimization
of all the aircraft at once cannot necessarily ensure a valid solution. To cope with
this limitation of a conventional local search technique, the proposed ILS strategy
is based on the RHC framework that has been extensively used in the literature
for the runway sequencing problems. The basic idea behind the RHC optimization
strategy is to optimize the problem for the next N intervals in the near future, based
on currently available information. Since not all flights are taken into account in the
optimization process at a given time interval, RHC approach reduces the influence
of inaccurate information and ensures that computational effort is not waisted on
future flight plans which are likely to be revisited anyway.

The following sections provide a detailed description of the proposed approach for
the integrated runway sequencing and ground movement problem. The correspond-
ing pseudocodes are provided in Appendix A.

3.1 Receding horizon optimization scheme

The idea behind the Receding Horizon Control (RHC) technique is to approxi-
mate a single large planning problem as a sequence of smaller problems. More
precisely, given the set of arrival and departure flights F sorted in an increasing
order according to their PLTs/PTOTs (earliest flights first), at each planning instant
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ti, i = 0,1,2, ...,N (also called horizon), the flights from F are grouped into one of
the three categories: (i) inactive flights (aircraft that have already landed or taken
off); (ii) active flights (flights that are expected to land or take off within the next p
minutes, i.e., flights that are in the current horizon); (iii) forthcoming flights (flights
that are not in the current horizon but are expected to land or take off in the future).
In each horizon, the planning of both aircraft routing and runway sequencing is
only performed for the set of active flights that will arrive or depart in the near
future.

A simple diagram that shows the operation procedure is illustrated in Fig. 2. The
general RHC framework of the proposed algorithm is presented in Alg. 1 (see Ap-
pendix A). Let S′A and S′D be the sequences of inactive arrival and departure flights
respectively, and let SA and SD be the sequences of active arrivals and departures
respectively. The algorithm repeats the following steps for a given number of hori-
zons, until all aircraft are marked as inactive. At each horizon, SA and SD are first
updated with a set of landing and take-off flights that enter the horizon. These
newly considered flights are sequenced in a first-come first-served (FCFS) manner,
and then routed from gate to runway or from runway to gate based on the calcu-
lated landing/take-off times. The resulting sequencing solution may be infeasible
in terms of the corresponding routing solution, i.e., some departures may be unable
to reach the runway on time for their allocated take-off slots, while some arrivals
may take too long to taxi from runway to their gate. An iterated local search (ILS)
procedure is then called to optimize SA and SD in a token-ring way, always start-
ing from the best sequence found in the previous ILS run, the objective being to
improve the solution in terms of the sequencing delay, taxiing delay and routing
feasibility.

Finally, any aircraft, with a feasible sequencing slot, that has landed or taken off in
the current horizon is recorded in S′A or S′D and removed from the sequence of active
flights (see Section 2.3.1 for definition of infeasible sequencing slot). However, if
a flight that is supposed to be marked as inactive at the end of ti has an infeasible
sequencing slot, it is delayed by at least δ minutes beyond its predicted landing
or take-off time (δ is a fixed parameter) followed by further local optimization.
The value for δ is determined so as to achieve a good trade-off between take-
off/landing delay and the computing time. Indeed, the computing time requirements
per horizon greatly vary depending on the amount of traffic at a given horizon, and
hence depend on the difficulty of finding a feasible routing solution (with reduced
taxiing times) for the runway sequences at hand. Intuitively, as take-offs/landings
are postponed for longer periods (with the increase of δ ), the chances of achieving
feasibility in the following horizon increase.

In our implementation of the proposed approach, for the sake of simplicity of
the evaluation procedure, the number of active flights in the current horizon (i.e.,
the horizon size) is a fixed parameter W . After the optimization of each plan-
ning horizon, a flight with the earliest estimated landing or take-off time from

12



active

fothcominginactive

inactive

active

active

fothcoming

fothcoming

t0

t1

t2

Fig. 2. Flight entering and leaving planning horizon

SA ∪ SD is marked as inactive in case its sequencing slot is feasible (ties are bro-
ken at random). If |SA∪ SD| = W − 1, a flight with an earliest PLT or PTOT from
F \{SA∪SD∪S′A∪S′D} is marked as active in the following horizon (ties are bro-
ken arbitrarily). We use two stopping criteria for the token-ring local optimization
(while loop at line 16 of Alg. 1 in Appendix A): (i) the maximal number of iterations
max_iter, and (ii) the maximal run-time max_time. Indeed, the computing effort of
the proposed optimization procedure per iteration highly depends on the feasibility
of the current arrival and departure sequences in terms of the corresponding routing
solution.

The main algorithmic components are detailed in the following sections.

3.2 Optimization objective and evaluation functions of the integrated runway se-
quencing and ground movement problems

The objectives of the arrival and departure sequencing can take various forms and
will depend upon the airport. In the case of arrival sequencing, the most popular
metric adopted in the literature is the minimization of the total delay of aircraft,
computed as

CA(SA) =
n

∑
j=1

ALT ( f j)−PLT ( f j), (1)

where ALT is the actual landing time of an aircraft. Considering the runway sep-
aration constraint sep( fi−1, fi) between two consecutive arrivals and the earliest
landing time constraint (see Sections 2.2.1 and 2.2.2), ALT is computed as

ALT ( fi) =

{
PLT ( fi), if i = 1

max{PLT ( fi),ALT ( fi−1)+ sep( fi−i, fi)}, if i > 1

}
, (2)

where fi−1 precedes fi in the arrival sequence. The objective function from Eq. 1 is
also used as the evaluation function.
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For departure sequencing, the objective is to minimize the total difference between
the actual take-off time ATT and the planned take-off time PTOT. However, as it is
not always possible for an aircraft to meet its departure window at congested times,
the evaluation function presented in Eq. 3 penalizes each miss of a departure slot
with a high penalty Ph, while aircraft whose ATT is planned γ minutes before the
end of their departure window are penalized with a low penalty Pl (γ = 3 in our
experiments).

CD(SD) =
m

∑
j=1


Ph(AT T ( f j)−PTOT ( f j)), if (AT T ( f j)−PTOT ( f j))> 10
Pl(AT T ( f j)−PTOT ( f j)), else if (10− γ)< (AT T ( f j)−PTOT ( f j))≤ 10

AT T ( f j)−PTOT ( f j), otherwise

 . (3)

Considering the runway separation constraint between departures as well as the
earliest take-off time constraint, ATT is determined as

AT T ( fi) =

{
ETO( fi), if i = 1

max{ETO( fi),AT T ( fi−1)+ sep( fi−1, fi)}, if i > 1

}
(4)

Let FA(t) be the set of active arrivals and let FD(t) be the set of active departures
at the current planning instant t. The objective of the integrated runway sequencing
and ground movement problem is to find an arrival sequence SA of FA(t) and a
departure sequence SD of FD(t) that minimizes:

C(SA,SD) =CA(SA)+CD(SD), (5)

while ensuring that the number of infeasible sequencing slots and the total taxiing
delay for the corresponding routing solution R, is kept to a minimum.

Given the computational complexity of the IRH algorithm and the QPPTW routing
procedure detailed in the following sections, the evaluation of each neighboring
flight sequence (see Section 3.3) is solely based on the evaluation function eval1(S)
that corresponds to CA(S) when the arrival sequence S = SA is being optimized and
to CD(S) otherwise:

eval1(S) =
{

CA(S), if S is an arrival sequence
CD(S), otherwise

}
. (6)

As explained in the following section, we use two additional evaluation functions
eval2(R) and eval3(R) to decide whether to update the best found sequencing and
routing solutions, where R is the routing solution given S.

The second evaluation function eval2(R) determines the number of aircraft with an
infeasible sequencing slot, while assigning higher penalty to those flights that were
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delayed by at least δ minutes in the previous horizons because of infeasibility (i.e.,
long taxi times):

eval2(R) = ∑
f∈SA∪SD

{
(d( f )+1)2, if f has an infeasible sequencing slot

0, otherwise

}
, (7)

where d( f ) is the number of times the flight f was delayed by at least δ min-
utes until the current horizon. The function assigns a quadratic cost in terms of
the number of times a flight has been delayed, thus favoring slot feasibility of ar-
rivals/departures that have been deemed infeasible in the previous horizons.

Given the current routing solution R, the third evaluation function eval3(R) returns
the total taxiing delay of all flights in SA∪SD:

eval3(R) = ∑
fi∈SA∪SD

Di, (8)

where Di is the taxiing delay of fi (see Section 2.3.1).

3.3 Neighborhood for runway sequencing, its exploitation and exploration

Given a sequence S of active arrival or departure flights, the ILS heuristic is based
on the insert move m( f ′, f ′′) which consists of removing an aircraft f ′ from its
current position in S and inserting it after another flight f ′′ in S. This gives a total of
n−1 possible positions (i.e., solutions) where n is the sequence length. An example
of the insert move is provided in Fig. 3.

The framework of the proposed ILS procedure is presented in Alg. 2 (See Appendix
A). The algorithm iterates between a simple best-improvement local search to ex-
ploit the above defined neighborhood, and a tabu-based perturbation to direct the
search away from local optima. Each iteration of the best-improvement local search
phase consists of selecting and performing the best insert move that maximizes the
runway throughput, i.e., minimizes the evaluation function eval1(S) defined in Eq.
6 (see Section 3.2). This intensification phase ends as soon as a local optimum is
attained.

The diversification phase is a standard tabu search procedure (Glover, 1989, 1990)
where each iteration consists of performing the best insert move, under constraint
that the given move is not prohibited by the tabu list. Move prohibition is deter-
mined in the following way. Let f be the flight prior to flight f ′ in the current se-
quence S. If f ′ is resequenced after another flight f ′′, the reverse move m( f , f ′) is
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1 2 3 4 5 6 7 8

f3 f4 f1 f5 f6 f8 f7 f2

1 2 3 4 5 6 7 8

f3 f4 f8 f5 f6 f7 f2

pos:

pos:

f1

insertion at front

Fig. 3. Insertion of flight f8 after f1.

prohibited for at least tabu( f , f ′) iterations. The value of tabu( f , f ′) is determined
with the following relation:

tabu( f , f ′) = iter+σ , (9)

where σ is the tabu tenure parameter, and iter is the iteration number when flight
f ′ was resequenced after a different flight. The tabu status of a move is neglected
only if the move leads to a new solution better than the best solution found so far
in terms of the evaluation function eval1(S).

Note that the best-improvement local search of the given ILS algorithm is equiv-
alent to the tabu-based perturbation mechanism when move restrictions are lifted.
Therefore, both phases call the TransformSequence procedure, given in Alg. 3 (see
Appendix A), for move selection and application. The procedure updates the cor-
responding best found sequence Sbest and the routing solution Rbest if (i) the trans-
formed sequence S′ is at least as good as Sbest in terms of the total sequencing delay
(see evaluation function eval1 in Eq. 6, Section 3.2); and (ii) the resulting rout-
ing solution R′ is at least as good as Rbest in terms of infeasible sequencing slots
(see evaluation function eval2 in Eq. 7, Section 3.2). We further use a third criterion,
which is the minimization of total taxiing delay (see evaluation function eval3 in Eq.
8, Section 3.2), in case that eval1(S′) = eval1(Sbest) and eval2(R′) = eval2(Rbest).
The latter two conditions are verified by means of the IRH procedure described in
Section 3.4.

3.4 Iterative routing heuristic

Let S′ be an active arrival (departure) sequence obtained after performing an insert
move to sequence S in the TransformSequence procedure, and let Rbest be the rout-
ing solution for the best found arrival and departure sequences. The purpose of the
proposed iterative routing heuristic (IRH) is to determine the corresponding routing
solution R′ for S′ that increases the number of feasible sequencing slots (minimizes
eval2(R′)), while reducing the total taxiing delay (minimizing eval3(R′)). The qual-
ity of R′, both in terms of eval2(R′) and eval3(R′), depends upon the routing order
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of aircraft in R′. Therefore, the basic idea behind IRH is to iteratively improve the
quality of R′ by unrouting a subset UR of active aircraft from R′ and routing them
again in a partially randomized order. The routing procedure is an adaptation of the
QPPTW algorithm (Ravizza et al., 2013a) detailed in Appendix B.2.

The IRH procedure is shown in Alg. 4 (see Appendix A). IRH does not determine
R′ for S′ from scratch. In fact, the initial solution for R′ constitutes a modified so-
lution Rbest obtained by unrouting and rerouting (in no specific order) those flights
from Rbest whose actual landing ALT (take-off AT T ) times differ in S′ and in the
corresponding best found sequence Sbest .

Let Rtmp be the temporary (working) routing solution initialized to R′, and let IS be
the set of active aircraft with infeasible sequencing slots given Rtmp, each iteration
of IRH performs the following steps. First, IRH randomly selects an aircraft r from
IS. It then determines a set UR of active aircraft for rerouting in Rtmp, consisting of
those aircraft whose actual (landing or take-off) time (dented as AT ) is γ minutes
away from AT (r). In the following step, IRH establishes the order of rerouting in
Rtmp the flights from UR. The procedure gives routing priority to those flights with
infeasible sequencing slots, i.e., to aircraft f whose taxiing time from the gate to
runway (or from the runway to gate) exceeds a maximum time limit. Among this
selection of active aircraft with infeasible sequencing slots, it further prioritizes
routing arrivals before departures, since an aircraft that is landing has the right of
way over an airplane taking off. The rest of aircraft in UR are assigned a higher
and random rerouting order. Finally, IRH updates the best found routing solution
R′ with Rtmp if Rtmp constitutes an improvement over R′ in terms of taxiing delay
minimization (evaluation function eval3, see Eq. 8), and resets Rtmp to R′ if other-
wise. The IRH procedure stops if the sequencing slots of all the active aircraft are
deemed to be feasible, or if the number of IRH iterations without improvement to
R′ reaches a fixed threshold φ .

4 Experimental results

This section provides two experimental comparisons to evaluate the effectivness
and robustness of the proposed algorithm for the combined runway sequencing and
ground movement problems. The purpose of the first comparison is to evaluate the
performance of the proposed RHC-ILS procedure for runway sequencing (see Sec-
tion 3.3), with respect to the recent state-of-art algorithms for runway sequencing in
segregated mode on a single runway airport. For this comparison, we only consider
the arrival sequencing & scheduling problem as in the reference works (Hu and
Chen, 2005; Hu and Paolo, 2008; Zhan et al., 2010). The aim of the second com-
parison is to evaluate and analyze the quality of runway sequencing and ground
movement solutions obtained with our approach (denoted as RS-GM-sim), with re-
spect to sequentially optimized flight sequencing and ground movement solutions
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Table 3
Setting of parameters. rnd is a function that returns a random value from a given range.

Param. Description RS-GM-
sim

RS-GM-
seq

AS

W Number of aircraft in the current horizon 40 40 20
Ph High penalty coeff. for missing a departure slot 20 20 –
Pl Low penalty coeff. for missing a departure slot 5 5 –
max_iter Max. number of token-ring optimization iter. per horizon 5 20 –
max_time Max. time limit for token-ring optimization per horizon – – –
max_ILS_iter Max. number of ILS iterations 4 5 800
σ Tabu tenure for tabu-based pertubation rnd(4, 14) rnd(4, 14) rnd(4, 14)
δ Delay coefficient 5 min – –
φ Max. number of consecutive IRH iter. without improvement 20 30 –
γ Unrouting coefficient of IRH 10 min 10 min –
α Taxiing delay feasibility threshold for arrivals 10 min 10 min –
β Taxiing delay feasibility threshold for departures 5 min 5 min –

obtained with a slight modification of our approach (denoted as RS-GM-seq).

4.1 Experimental protocol

Our code is programmed in Java (version 1.8). Experiments were run on a Dual
Intel Xeon X5650 with 2.66GHz and 8GB RAM. The setting of parameters used
in our experiments is given in Table 3. Column ‘RS-GM-sim’ shows the parame-
ter settings of the proposed approach detailed in Section 3. Column ‘RS-GM-seq’
indicates the parameter settings of a slight variation of our algorithm which sequen-
tially optimizes runway sequencing and ground movement problems, i.e., only the
sequencing delay is considered during the optimization of the sequencing solutions.
More precisely, at each planning horizon, the execution of IRH to obtain a routing
solution starts after the optimization of the runway sequences with the proposed
ILS procedure, and no action is taken in case of infeasible sequencing slots. Fi-
nally, column ‘AS’ provides the setting of parameters of our RHC-ILS approach,
applied solely to the arrival sequencing and scheduling problem.

4.2 Comparison of procedures for arrival sequencing and scheduling

To evaluate the performance of our method detailed in Section 3, we first provide
computational results of its runway sequence optimization procedure RHC-ILS.
Since the proposed approach is designed for segregated sequencing airport operat-
ing mode, we provide comparisons with the following heuristics that are considered
to be among the most effective for this variant of runway sequencing:

• RHC-GA (Hu and Chen, 2005): A genetic algorithm (GA), within the receding
horizon control (RHC) framework, for solving the dynamic arrival sequencing;
• RHC-BRGA (Hu and Paolo, 2008): A genetic algorithm for arrival sequencing,

based on a binary representation of arriving queues, combined with RHC;
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Table 4
Comparison between RHC-ILS, RHC-GA Hu and Chen (2005), RHC-ACS Zhan et al.
(2010) and the first-come first-served method on an instance with 30 aircraft taken from Hu
and Chen (2005)

Data FCFS RHC-GA RHC-ACS RHC-ILS
SA Cat. PLT SA Cat. ALT Delay SA Cat. ALT Delay SA Cat. ALT Delay SA Cat. ALT Delay
1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
2 1 79 2 1 96 17 2 1 96 17 2 1 96 17 2 1 96 17
3 1 144 3 1 192 48 3 1 192 48 3 1 192 48 3 1 192 48
4 2 204 4 2 392 188 5 1 288 24 5 1 288 24 5 1 288 24
5 1 264 5 1 464 200 6 1 384 64 6 1 384 64 6 1 384 64
6 1 320 6 1 560 240 4 2 584 380 4 2 584 380 4 2 584 380
7 2 528 7 2 760 232 7 2 664 136 7 2 664 136 7 2 664 136
8 1 635 8 1 832 197 9 2 744 14 9 2 744 14 9 2 744 14
9 2 730 9 2 1032 302 10 2 824 58 10 2 824 58 10 2 824 58
10 2 766 10 2 1112 346 8 1 896 261 8 1 896 261 8 1 896 261
11 1 790 11 1 1184 394 11 1 992 202 11 1 992 202 11 1 992 202
12 1 920 12 1 1280 360 12 1 1088 168 12 1 1088 168 12 1 1088 168
13 3 1046 13 3 1461 415 15 2 1288 152 13 3 1269 223 13 3 1269 223
14 4 1106 14 4 1591 485 16 2 1368 202 17 2 1369 136 16 2 1369 203
15 2 1136 15 2 1671 535 17 2 1448 215 15 2 1449 313 15 2 1449 313
16 2 1166 16 2 1751 585 13 3 1518 472 16 2 1529 363 17 2 1529 296
17 2 1233 17 2 1831 598 14 4 1648 542 14 4 1639 533 14 4 1639 533
18 1 1642 18 1 1903 261 18 1 1720 78 18 1 1711 69 18 1 1711 69
19 1 1715 19 1 1999 284 19 1 1816 101 19 1 1807 92 19 1 1807 92
20 3 1770 20 3 2180 410 20 3 1997 227 20 3 1988 218 20 3 1988 218
21 1 2074 21 1 2252 178 21 1 2074 0 21 1 2074 0 21 1 2074 0
22 1 2168 22 1 2348 180 22 1 2170 2 22 1 2170 2 22 1 2170 2
23 4 2259 23 4 2576 317 23 4 2398 139 23 4 2398 139 23 4 2398 139
24 2 2427 24 2 2656 229 24 2 2478 51 24 2 2478 51 24 2 2478 51
25 1 2481 25 1 2728 247 25 1 2550 69 25 1 2550 69 25 1 2550 69
26 2 2679 26 2 2928 249 26 2 2750 71 26 2 2750 71 26 2 2750 71
27 3 2883 27 3 2998 115 27 3 2883 0 27 3 2883 0 27 3 2883 0
28 2 2982 28 2 3098 116 28 2 2983 1 28 2 2983 1 28 2 2983 1
29 1 3046 29 1 3170 124 29 1 3055 9 29 1 3055 9 29 1 3055 9
30 1 3091 30 1 3266 175 30 1 3151 60 30 1 3151 60 30 1 3151 60
Tot. 8027 3763 3721 3721

Table 5
Comparison between our RHC-ILS sequencing procedure and RHC-ACS Zhan et al.
(2010) on the instance with 30 aircraft taken from Hu and Chen (2005)

Algorithm Worst Best Mean Std. Dev (Mean-Best)/Best CPU Time (ms) Best Ratio
RHC-ILS 3721 3721 3721 0.0% 0.00 24.02 100%
RHC-ACS 4075 3721 3730.3 53.6 0.25% 222.18 97%

• RHC-ACS (Zhan et al., 2010): An ant colony system (ACS) algorithm for arrival
sequencing based on RHC.

We further compare our results with those obtained with the simple first-come first-
served (FCFS) method. It is perhaps worth mentioning a recent dynamic program-
ming algorithm (Maere and Atkin, 2015) for optimal runway sequencing at an ex-
tremely low computational cost. Since this algorithm was only considered for single
runway operations in mixed mode, it is not used in the comparison.

For this comparison, we use two test cases with 30 and 20 aircraft taken from (Hu
and Chen, 2005) and (Hu and Paolo, 2008) respectively. Tables 4 and 6 present
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Table 6
Comparison between RHC-ILS, BRGA Hu and Paolo (2008), RHC-ACS Zhan et al. (2010)
and the first-come first-served method on an instance with 20 aircraft taken from Hu and
Paolo (2008)

Data FCFS BRGA RHC-ACS RHC-ILS
SA Cat. PLT SA Cat. ALT Delay SA Cat. ALT Delay SA Cat. ALT Delay SA Cat. ALT Delay
1 1 1935 9 4 35 0 9 4 35 0 9 4 35 0 9 4 35 0
2 3 400 5 3 142 0 5 3 142 0 5 3 142 0 5 3 142 0
3 4 879 10 1 307 0 10 1 307 0 10 1 307 0 10 1 307 0
4 1 328 4 1 403 75 4 1 403 75 4 1 403 75 4 1 403 75
5 3 142 12 2 603 241 19 1 499 5 19 1 499 5 19 1 499 5
6 2 1980 2 3 673 273 17 1 595 30 17 1 595 30 17 1 595 30
7 2 915 19 1 745 251 12 2 795 433 18 3 776 111 2 3 776 376
8 2 1814 17 1 841 276 18 3 865 200 2 3 846 446 18 3 846 181
9 4 35 18 3 1022 357 2 3 935 535 7 2 946 31 12 2 946 584
10 1 307 3 4 1152 273 7 2 1035 120 12 2 1026 664 7 2 1026 111
11 3 1414 7 2 1232 317 3 4 1145 266 3 4 1136 257 15 4 1136 183
12 2 362 15 4 1342 389 15 4 1235 282 15 4 1226 273 3 4 1226 347
13 4 1279 14 1 1414 434 13 4 1325 46 13 4 1316 37 13 4 1316 37
14 1 980 13 4 1642 363 20 2 1408 0 20 2 1408 0 20 2 1408 0
15 4 953 20 2 1722 314 11 3 1478 64 11 3 1478 64 11 3 1478 64
16 3 1726 11 3 1792 378 14 1 1550 570 14 1 1550 570 14 1 1550 570
17 1 565 16 3 1862 136 16 3 1731 5 16 3 1731 5 16 3 1731 5
18 3 665 8 2 1962 148 8 2 1831 17 8 2 1831 17 8 2 1831 17
19 1 494 1 1 2034 99 6 2 1980 0 6 2 1980 0 6 2 1980 0
20 2 1408 6 2 2234 254 1 1 2052 117 1 1 2052 117 1 1 2052 117
Tot. 4578 2765 2702 2702

Table 7
Comparison between our RHC-ILS sequencing procedure and RHC-ACS Zhan et al.
(2010) on the instance with 20 aircraft taken from Hu and Paolo (2008)

Algorithm Worst Best Mean Std. Dev (Mean-Best)/Best CPU Time (ms) Best Ratio
RHC-ILS 3165 2702 2850.16 215.98 5.4% 182.5 68%
RHC-ACS 3266 2702 2823.38 160.55 4.49% 160.62 45%

the arrival sequences obtained after one run of the reference algorithms. The PLTs
and weight categories are taken from the corresponding papers, while the last row in
each table gives the total arrival delay. We observe that the simple FCFS yields poor
performance in both cases. Our RHC-ILS ensures arrival sequences of the same
quality as RHC-ACS for the two instances, while slightly outperforming RHC-GA
and RHC-BRGA. More detailed comparisons between RHC-ILS and RHC-ACS
are thus provided in Tables 5 and 7 for the two test cases. The reported results are
based on 100 independent runs. The figures for RHC-ACS are taken from (Zhan
et al., 2010). For the first test case, we observe that RHC-ILS is able to find the best
known solution in every trial (i.e., Best Ratio = 100%) with very short computing
time (CPU time = 24.02ms on average), while RHC-ACS finds the best known
solution in 97% of the cases with an average computing time of 222.18ms. On
the other hand, the results in Table 7 show that RHC-ACS is somewhat better than
RHC-ILS on the second instance. Indeed, the average percentage deviation from the
best-known solution is 4.49% (vs 5.4% for RHC-ILS), while the average computing
times are comparable.
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In all, the results show that our RHC-ILS is highly competitive with the current
state-of-art sequencing algorithms, both in terms of solution quality and computing
time.

4.3 Comparison between simultaneous and sequential runway sequencing & ground
movement optimization

This section evaluates the benefit of coupled optimization of runway sequencing
& ground movement with our RS-GM-sim approach with respect to RS-GM-seq,
using the Manchester Airport as a test case. The results are based on 30 executions
of both approaches, using the parameter settings given in Table 3. The benchmark
set is detailed in the next section, followed by analyses of the comparative results.

4.3.1 Benchmark set

We perform experiments and comparisons on a set of 36 instances, based on data
covering six days of operations (29 August to 3 September 2011) at Manchester
Airport. Six instances DayX_1.0 (1 ≤ X ≤ 6) represent original data provided by
the airport, while the rest were generated by increasing or decreasing the num-
ber of flights to a multiple of the original. For example, instances DayX_0.8 have
20% of the flights removed from the original data, while instances DayX_1.4 have
40% extra flights added. To increase/decrease the instance size, fights were cho-
sen at random and either deleted, or copied by duplicating the runways used and
flight times. Duplicated flight times have a two minute offset added in order not
to take the runway at exactly the same time. Fig. 4 shows the number of flights
per minute for instances Day3_1.0 and Day3_1.4. We observe from these two plots
that the maximum number of flights occurring at the same minute is 10 and 16 for
Day3_1.0 and Day3_1.4 respectively. The weight classes, speed classes and SIDs
for all instances are generated at random. The instances are freely available under
DOI 10.5281/zenodo.21027.

The taxiway layout is taken from OpenStreetMap 3 . OSM data has some imperfec-
tions, but is surprisingly accurate and can easily be edited to resolve any detected
issues. Since OSM did not have stand coordinate data of Manchester Airport, this
was added using coordinates taken from NATS AIS 4 . The OSM data was pro-
cessed into a usable format using the TaxiGen tool 5 (Brownlee et al., 2014). More
recently, stand coordinate data has been added to OSM, allowing the redistributable
layouts 6 to be made available.

3 OpenStreetMap is available at: www.openstreetmap.org
4 NATS AIS: http://www.nats-uk.ead-it.com
5 TaxiGen tool is available at https://github.com/gm-tools/gm-tools
6 http://www.asap.cs.nott.ac.uk/external/atr/benchmarks/index.shtml\
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Fig. 4. Distribution of flights per minute

4.3.2 Test results

Table 8 shows the runway sequencing and routing results for RS-GM-seq and RS-
GM-sim in terms of solution feasibility, sequencing delay and taxiing delay. We
can make the following observations. In case of arrival delays, column ‘Arr. delay’
indicates that the average delay per flight is practically equal for both RS-GM-sim
and RS-GM-seq sequences, except for Day1_1.2 where this delay is around 50
seconds longer for RS-GM-sim. Even though the optimal solutions for the coupled
problems are not known given the computational hardness, we may assume, based
on the comparison performed in the previous section, that the runway sequencing
solutions obtained with RS-GM-seq are of high quality.

As for the departure delays, in cases of increased traffic (especially at peak hours,
i.e., instances DayX_1.1 to DayX_1.4), the average delay per aircraft for an RS-
GM-sim sequence may be from 0.5 minutes up to 4 minutes longer than for an
RS-GM-seq sequence. In few cases (with a 20%-40% traffic increase), we further
observe a significant standard deviation of delays for RS-GM-sim departure se-
quences with up to 225 seconds. Such results are as expected given the increased
traffic at taxiways and the runway crossing. However, during regular days (in-
stances DayX_1.0), or days with reduced traffic (instances DayX_0.8 and DayX_0.9),
the overhead departure delay for an RS-GM-sim sequence is generally negligible.

To further support these observations, we provide overlapping histograms in Fig.
5 to compare average arrival delays (left subfigures) and departure delays (right

#groundmovementDataSetsMAN
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(d) Day3_1.3 - Departure delays

Fig. 5. Histograms comparing average arrival and departure sequencing delays per aircraft
for solutions obtained with RS-GM-sim and RS-GM-seq. Delays are expressed in seconds.

subfigures) for RS-GM-sim and RS-GM-seq sequences, on instances Day3_1.0 and
Day3_1.3. We also show the average number of missed CTOTs for RS-GM-sim
and RS-GM-seq departures in Table 9. The plots confirm that the difference in the
arrival delays, as well as the difference in the departure delays in case of Day3_1.0

24



Table 9
Average number of missed CTOTs for RS-RM-sim and RS-GM-seq departure sequences.
Column ‘#Depart.’ indicates the total number of departures.

Instance #Depart. RS-GM-sim RS-GM-seq Instance #Depart. RS-RM-sim RS-GM-seq
Day1_0.8 236 0.0 0.0 Day4_0.8 240 0.0 0.0
Day1_0.9 265 0.0 0.0 Day4_0.9 270 0.0 0.0
Day1_1.0 295 2.0 2.0 Day4_1.0 300 0.0 0.0
Day1_1.1 324 6.2 6.1 Day4_1.1 330 46.5 3.1
Day1_1.2 354 28.1 7.3 Day4_1.2 360 14.3 21.2
Day1_1.3 383 40.3 30.2 Day4_1.3 389 33.1 26.2
Day2_0.8 240 0.0 0.0 Day5_0.8 258 0.0 0.0
Day2_0.9 270 3.0 2.9 Day5_0.9 290 0.0 0.0
Day2_1.0 300 39.1 11.6 Day5_1.0 323 6.1 4.0
Day2_1.1 330 47.5 19.1 Day5_1.1 355 28.2 4.1
Day2_1.2 360 97.9 67.8 Day5_1.2 387 46.5 22.3
Day3_0.8 232 0.0 0.0 Day6_0.8 216 0.0 0.0
Day3_0.9 261 0.0 0.0 Day6_0.9 243 0.0 0.0
Day3_1.0 291 1.9 1.9 Day6_1.0 270 0.0 0.0
Day3_1.1 320 18.0 3.0 Day6_1.1 297 0.0 0.0
Day3_1.2 349 78.2 27.8 Day6_1.2 324 2.0 2.0
Day3_1.3 378 80.5 62.0 Day6_1.3 351 14.1 4.4
Day3_1.4 407 165.1 104.6 Day6_1.4 378 24.1 6.5

is negligible. For Day3_1.0 (a regular operations day), all departures are able to
meet their allocated CTOT (with the exception of 1-2 flights). As the airport traffic
increases, the number of departures that are unable to take-off at their allocated
time windows increases, both in case of RS-GM-sim and RS-GM-seq, while this
number is significantly higher for sequences obtained with RS-GM-sim.

As expected, the runway sequencing solutions obtained with RS-GM-seq include a
significant number of arrivals and departures with infeasible sequencing slots (see
columns ‘#Infeas. arr.’ and ‘#Infeas. dep.’), especially in case of increased traffic.
On the other hand, the proposed algorithm always manages to find a feasible ar-
rival/departure slot for all aircraft. The increase of runway sequence infeasibility
for RS-GM-seq is directly linked to the average increase in taxiing delay (see col-
umn ‘Taxi delay’), stemming from a higher degree of traffic congestion at taxiways
and runway crossing. Overlapping histograms showing taxiing delays for RS-GM-
seq and RS-GM-sim on Day3_1.0 and Day3_1.1 are given in Fig. 6. For RS-GM-
sim, the taxiing delay never exceeds 5 minutes and is under a minute in most cases.
On the other hand, the taxiing delay could go up to 25 minutes for RS-GM-seq
on instance Day3_1.0, and further increases for Day3_1.1. The shorter delays with
RS-GM-sim are partly because a departure that cannot meet its CTOT window is
delayed while still on gate/stand.

As for the computing time requirements per horizon, it greatly varies depending
on the amount of traffic at a given horizon, and hence on the difficulty of find-
ing a feasible routing solution for the runway sequences at hand. Plots in Fig. 7
compare average computing times per horizon for RS-GM-sim and RS-GM-seq on
instances Day3_1.0, Day3_1.1, Day3_1.2 and Day3_1.3. As expected, we observe
that the computing time per horizon for RS-GM-seq is generally considerably less
than in case of RS-GM-sim, due to only one call of the iterated routing heuristic
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Fig. 6. Histograms comparing average taxiing delays per aircraft for solutions obtained
with RS-GM-sim and RS-GM-seq. Delays are expressed in seconds.

(at the end of the runway sequence optimization phase). The computing time per
horizon for RS-GM-seq on these four instances varies from less than a second up
to 374.5 seconds, and from less than a second up to 439.5 seconds for RS-GM-
sim. In case of a regular day of operations at the Manchester airport (considering
instances Day1_1.0 to Day6_1.0), the maximum computing time per horizon for
RS-GM-sim is 97 seconds. For an increase of 10% in the amount of traffic (in-
stances Day1_1.1 to Day6_1.1), the maximum computing time per horizon with
RS-GM-sim increases to 290 seconds. Because the replanning occurs every 40 sec-
onds (Clare and Richards, 2011), this is not fast enough for real-time operation.
However, the difference in the case of regular operation days at Manchester Air-
port is small enough to suggest that, with increased computing power, real-time
operation might be practical.

To conclude, for regular days of operations at the Manchester Airport, the feasibil-
ity constraint, imposed on runway sequencing by taxiway routing, does not have
a significant impact on arrival and departure delays. In all the cases, the RS-GM-
sim sequences are feasible in terms of the corresponding routing solution, while
the number of departures that are unable to meet their allocated CTOT window is
kept to a minimum. Since the computing time per replanning horizon varies from
less than a second up to 97 seconds for a regular day of operations, the proposed
method could perhaps be considered for practical use on a high speed processor.
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Fig. 7. A comparison on average computing times per horizon for solutions obtained with
RS-GM-sim and RS-GM-seq. Times are given in seconds.

5 Conclusion

As discussed in previous research, the ground movement problem forms the link
between arrival and departure sequencing processes, especially when runway cross-
ing is necessary for taxiing aircraft. Furthermore, an optimal departure sequence is
of no use if aircraft cannot reach the runway at allocated take-off times. In this
paper, we have presented a novel heuristic for simultaneous optimization of the
runway sequencing and the ground movement problems, which takes into account
the interactions between arrival and departure aircraft on the airport surface. The
minimization of the sequencing delay and the minimization of the taxiing delay
are considered as the primary and secondary objectives respectively. By the end of
execution, the algorithm ensures a feasible runway sequencing solution in terms
of taxiway routing, i.e., all sequencing slots can be met by the taxiing aircraft. To
improve computational scalability, the approach is based on the Receding Horizon
framework which considers only a “window” of aircraft from the entire problem,
with aircraft entering and leaving the problem at each horizon.

To evaluate the potential of the proposed approach, we use the Manchester Airport
as a test case. The airport has two runways, operated in segregated mode during
busy periods, and a runway crossing. We compare our results with sequentially
optimized runway sequencing and routing solutions, on a set of 36 instances with
varying degrees of traffic density. Compared to sequentially optimized solutions,
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the results obtained with our approach indicate a significant decrease in the taxiway
routing delay, with generally no loss in performance in terms of the sequencing
delay for a regular day of operations. The approach could perhaps be considered
for use in practice on a high speed computer, since the maximum computing time
per horizon is around 95 seconds. Another benefit of a simultaneous optimization
approach is the possibility of holding aircraft at the stands for longer, without the
engines running. This significantly reduces the fuel burn, as well as bottlenecks and
traffic congestion during peak hours that are often the cause of flight delays due of
limited amount of airport surface space available.
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A Algorithm pseudo-code

Detailed pseudo-code of the proposed algorithms including: the receding horizon
scheme based on iterated local search optimization (RHC-ILS), and the proposed
ILS and IRH algorithms.

28



Algorithm 1 RHC-ILS
Require: F : set of arrivals and departures ordered according to PLTs/PTOTs;
1:

Ensure: S′A and S′D: arrival and departure sequences;
2: R: routing solution for sequences S′A and S′D.

3: SA← SD← /0 /*Arrival and departure sequences of active flights*/
4: R← /0 /*Routing solution*/
5: S′A← S′D←{} /*Sequences of inactive arrival and departure aircraft*/

/*At each planning horizon*/
6: for all ti, i = 1, . . . ,N do

/*Get the set A of active arrivals and departures from SA and SD at horizon ti*/
7: A← getActiveAircra f t(F \ (SA∪SD), ti)
8: for all a ∈ A do

/*Add a at the end of the arrival or the departure sequence*/
9: if (type(a) = arrival) then

10: SA← SA∪{a}
11: else
12: SD← SD∪{a}
13: end if
14: end for
15: R← Route(A,R) /*Route the set of active aircraft at the current horizon*/

/*Perform token-ring local optimization of the arrival and the departure sequences*/
16: while (stopping condition not met) do
17: SA← ILS(SA,R)
18: SD← ILS(SD,R)
19: end while

/*Get the set I of inactive arrivals and departures from SA and SD at end of ti*/
20: I← getInactiveAircra f t(SA∪SD, ti)

/*For all i ∈ I, add i at the end of the sequence of inactive arrivals/departures if the
sequencing slot of i is feasible. Otherwise, delay the landing/departure of i by δ min.*/

21: for all i ∈ I do
22: if (isSequencingSlotFeasible(i)=true) and (type(i) = arrival) then
23: S′A← S′A∪{i}
24: SA← SA \{i}
25: else if (isSequencingSlotFeasible(i)=true) and (type(i) = departure) then
26: S′D← S′D∪{i}
27: SD← SD \{i}
28: else if (isSequencingSlotFeasible(i)=false) and (type(i) = arrival) then
29: PLT (i)← PLT (i)+δ ;
30: else
31: PTOT (i)← PTOT (i)+δ ;
32: end if
33: end for
34: end for

/*At this point |S′A∪S′D|= |F |*/
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Algorithm 2 ILS(S,Rbest)
Require: S: initial arrival or departure sequence;
1: maxiter (parameter): number of iterations of the sequence optimization procedure;
2: r1 and r2 (parameters): Range for the number of tabu-based moves.

Ensure: Sbest : Optimized arrival or departure sequence.
3: Sbest ← S

/*Apply descent-based local search*/
4: for i:=1 to max_ILS_iter do
5: while (Local optimum not reached) do
6: S← Trans f ormSequence(S,Sbest ,Rbest , true)
7: end while

/*Apply tabu-based perturbation*/
8: n← RandomNumberInRange(r1,r2)
9: for j:=1 to n do

10: S← Trans f ormSequence(S,Sbest ,Rbest , f alse)
11: end for
12: end for
13: return Sbest
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Algorithm 3 TransformSequence(S, Sbest , Rbest , prohib_li f ted)
Require: S: initial arrival or departure sequence;
1: Sbest : best found arrival or departure sequence;
2: prohib_li f ted: boolean variable indicating whether move prohibitions are lifted;
3: Rbest : routing solution for the best found arrival Sbest

A and departure Sbest
D sequence

4:
Ensure: S′: neighboring (transformed) solution of S;
5: Sbest : Updated best arrival or departure sequence.

6: m← null /*Selected move to be applied to S*/
7: e← ∞ /*Evaluation function value for solution S

⊕
m*/

/*Determine move m to be applied to S*/
8: for all flight pairs ( f ′, f ′′) in S, f ′ 6= f ′′ visited in random order do
9: if ((e > eval1(S

⊕
( f ′, f ′′))) and (prohib_li f ted = true or is_tabu( f ′, f ′′) = f alse))

then
/*Record best move and corresponding evaluation function value*/

10: e← eval1(S
⊕
( f ′, f ′′))

11: m← ( f ′, f ′′)
12: end if
13: end for
14: S′← S

⊕
m /*Apply selected move to S to obtain a transformed sequence S′*/

15: tabu(reverse(m))← iter+ γ /*Prohibit reverse move for γ iterations*/

/*Update best found sequence in case of improvement*/
16: if ((eval1(S′)≤ eval1(Sbest) and eval2(Rbest) 6= 0) or ((eval1(S′)< eval1(Sbest)) then
17: R′← IRH(S′,Sbest) /*See Alg. 4*/
18: if (eval2(R′)< eval2(Rbest)) or
19: ((eval2(R′) = eval2(Rbest) and (eval1(S′)< eval1(Sbest)) or
20: (eval2(R′) = eval2(Rbest) and eval3(R′)< eval3(Rbest)) then
21: Sbest ← S′

22: Rbest ← R′

23: end if
24: end if
25: iter← iter+1
26: return S′
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Algorithm 4 IRH(S′,Sbest)

Require: S′: transformed (neighboring) arrival or departure sequence;
1: Sbest : best found arrival or departure sequence;
2: Rbest (global variable): routing solution for the best found arr. and depart. seq.;
3: φ (parameter): maximal number of consecutive iterations without improvement;
4: γ (parameter): minimal time difference (in seconds).

Ensure: R′: routing solution for the current sequencing solution S′;
5:

/*Get initial set UR of flights for unrouting and routing; AT is the actual landing or
take-off time (depending on the sequence type) */

6: UR←{S′(i)|AT (S′(i)) 6= AT (Sbest(i))}
7: R′←Unroute(UR,Rbest)
8: R′← Route(UR,R′)
9: IS← FlightsWithIn f easibleSequencingSlots(R′) /* IS is a subset of active aircraft at

the current planning instant*/
10: e← eval3(R′) /*Total taxi delay corresponding to the best found routing solution R′

for S′*/
11: Rtmp← R′

12: impr← 0 /*Initialize the number of consecutive iterations without feasibility improve-
ment */

13: while (eval2(R′) 6= 0 and impr < φ ) do
14: r← SelectFlightAtRandom(IS)
15: UR←{ f |abs(AT (r)−AT ( f ))< γ}
16: UR← Order(UR)
17: Rtmp←Unroute(UR,Rtmp)
18: Rtmp← Route(UR,Rtmp)
19: IS← FlightsWithIn f easibleSequencingSlots(Rtmp)
20: if (eval3(Rtmp)< e) then
21: impr← 0
22: R′← Rtmp

23: e← eval3(Rtmp)
24: else
25: impr← impr+1
26: Rtmp← R′

27: end if
28: end while
29: return R′
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Fig. B.1. Part of the undirected graph representing Manchester Airport

B Ground movement algorithm

B.1 Representation and definitions

The routing algorithm we adopt is a variant of the Quickest Path Problem with Time
Windows (QPPTW) algorithm (Ravizza et al., 2013a). This resembles Dijkstra’s
shortest path algorithm, and routes the aircraft sequentially. Prior to describing the
algorithm, some definitions are necessary.

The airport layout is represented as an undirected graph G = (V,E) (Figure B.1).
Edges E represent taxiways and the vertices V represent stands, junctions and in-
termediate points. Each edge e ∈ E has a set of weights We: these are the times
to traverse the edge depending on previous edge in the route, the airport operating
mode and the aircraft type (i.e., arrival or departure). Each e may only contain one
aircraft at any one time, and aircraft must maintain a separation of 60 meters at all
times.

To ensure conflict-free routing, every e has a set of time windows F (e), represent-
ing the times that the edge can be used as part of a new route. The F (e) exclude
times when e or an edge which conflicts with e are used by previously routed air-
craft. After a route is allocated for each aircraft, the F (e) are updated, ensuring
that routes allocated later avoid it. In our implementation, a history of the F (e) for
all e is retained to allow time windows to be reinstated if aircraft routes are removed
for re-routing.
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B.2 The QPPTW algorithm

We now summarise the QPPTW algorithm for convenience: further details can be
found in (Ravizza et al., 2013a). Runway times are assumed to be fixed. The algo-
rithm constructs the route for all aircraft working out from the vertex representing
entry to, or exit from, the runway. Given a taxi request Ti = (qi, pi, timei) for air-
craft fi, QPPTW finds the conflict-free route R for fi from vertex qi to pi over G,
with the minimal taxi time Ti, that respects the time-windows in E. QPPTW itera-
tively applies labels to each vertex vL, specifying the earliest time that the aircraft
could reach vL. These are stored in a Fibonacci heap and updated as the algorithm
explores the G and the set of time-windows on each edge. Each iteration, the label
L representing the shortest-time path from the runway is removed from the heap,
and the labels on vertices neighbouring vL are updated. During this process, the
time-windows on each outgoing edge from vL are checked, so that new labels are
only created if there is a suitable time-period during which the aircraft can transit
along the edge. In working out from the runway to construct the route, departures
are routed backwards. This means that any additional wait time is absorbed at the
start of the aircraft movement, thus allowing the engines to start as late as possible,
reducing fuel consumption and emissions.

It has been shown (Stenzel, 2008) that the variants of this algorithm will solve the
problem in polynomial time in the number of time-windows: O(|F |3 log |F |).

B.3 Taxi time estimation

QPPTW depends on having accurate estimates of the time we that aircraft take to
traverse edges. This is influenced by many factors (Ravizza et al., 2013b; Idris et al.,
2002; Rappaport et al., 2009; Balakrishna et al., 2010).

Following the comparisons of models in (Stefan et al., 2014), as with (Ravizza
et al., 2013a), we use the Mamdani fuzzy rule-based system of (Chen et al., 2011),
with factors identified in (Ravizza et al., 2013b). A taxi time model is constructed
using historical aircraft movements, considering the factors of: airport operating
mode; whether an aircraft is departing or arriving; total distance covered; total turn-
ing angle; whether a push-back manoeuvre was performed; and number of other
moving aircraft of various types. To predict times for QPPTW, factors related to
other moving aircraft are zeroed, allowing the model to estimate unimpeded taxi-
times.

The flight movement data used to train the model represents real aircraft move-
ments taken from freely-available data on the website FlightRadar24 (FR24), us-
ing the tools available at https://github.com/gm-tools/gm-tools/wiki and
described in (Brownlee et al., 2014). ADS/B from FR24 data was also used for
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Fig. B.2. Plot of taxi time estimates for validation data.

gathering airborne flight tracks (Petersen et al., 2013; Turner et al., 2013). The co-
ordinate points have a resolution of 10−4 degrees, approximately 10m at the latitude
of Manchester, and are timestamped in intervals of 5-10s.

For this work, all available tracks during 5-12 November 2013 for aircraft with an
altitude of zero within 5km of the airport’s center were collected, comprising 1767
flights (over the same period, according to the public flight times on the web, there
were 3211 flights). 1413 aircraft ground movements remained after processing,
showing taxi routes with timings along them. This data was divided at random
into training and test sets of 971 and 442 aircraft movements. After training, the
model was found to fit the validation data with R2 = 0.68, with 81% of movements
accurate to within 3 minutes and 94% accurate to within 5 minutes. A plot showing
the time estimates for the validation data is given in Figure B.2.
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Modelling and Simulation in Air Traffic Management, Transportation Analysis,
pages 139–167. Springer Berlin Heidelberg, 1997.

C. Bosson, M. Xue, and S. Zelinski. Optimizing integrated arrival, departure and
surface operations under uncertainty. In 10th USA/Europe ATM R&D Seminar
(ATM2015), Lisbon, Portugal, 2015.

A. Brownlee, J. Atkin, J. Woodward, U. Benlic, and E. Burke. Airport ground
movement: Real world data sets and approaches to handling uncertainty. In Proc.
of the Practice and Theory of Automated Timetabling, York, UK, 2014.

J. Chen, S. Ravizza, J. Atkin, and P. Stewart. On the utilisation of fuzzy rule-based
systems for taxi time estimations at airports. In 11th Workshop on Algorith-
mic Approaches for Transportation Modelling, Optimization, and Systems, pages
134–145. 2011.

Civil Aviation Authority. Aviation trends - quarter 3 2013, 2013. URL
http://www.caa.co.uk/docs/80/AviationTrends_Q3_2013.pdf. Re-
trieved 5/2/2015.

Civil Aviation Authority. Size of reporting airports february 2013 - jan-
uary 2014, 2014. URL http://www.caa.co.uk/docs/80/airport_data/

201401/Table_01_Size_of_UK_Airports.pdf. Retrieved 5/2/2015.
G. Clare and A. Richards. Optimization of taxiway routing and runway scheduling.

IEEE Transactions on Intelligent Transportation Systems, 12(4):1000–1013, Dec
2011.

36



R. Dear. The Dynamic Scheduling of Aircraft in the Near Terminal Area. PhD
thesis, Flight Transportation Laboratory, Cambridge, 1976.

R. Deau, J. Gotteland, and N. Durand. Runways sequences and ground traffic
optimisation. In International Conference on Research in Air Transportation,
ICRAT 2008, Jun 2008.

A. Ernst, M. Krishnamoorthy, and R. Storer. Heuristic and exact algorithms for
scheduling aircraft landings. Networks, 34(3):229–241, 1999.

EUROCONTROL. Challenges of growth 2013 - task 4: European air traffic
in 2035, 2013. URL http://www.eurocontrol.int/sites/default/

files/article/content/documents/official-documents/reports/

201306-challenges-of-growth-2013-task-4.pdf. Retrieved 21/7/2015.
F. Glover. Tabu search - part i. ORSA Journal on Computing, 1(3):190–260, 1989.
F. Glover. Tabu search - part ii. ORSA Journal on Computing, 2(1):4–32, 1990.
X. Hu and W. Chen. Genetic algorithm based on receding horizon control for arrival

sequencing and scheduling. Engineering Applications of Artificial Intelligence,
18(5):633 – 642, 2005.

X. Hu and E. D. Paolo. Binary-representation-based genetic algorithm for aircraft
arrival sequencing and scheduling. Intelligent Transportation Systems, IEEE
Transactions on, 9(2):301–310, June 2008.

H. Idris, J. Clarke, R. Bhuva, and L. Kang. Queuing model for taxi-out time esti-
mation. Air Traffic Control Quarterly, 10(1):1–22, January 2002.

Y. Jung, T. Hoang, J. Montoya, G. Gupta, W. Malik, L. Tobias, and H. Wang. Per-
formance evaluation of a surface traffic management tool for dallas/fort worth in-
ternational airport, 2011. Ninth USA/Europe Air Traffic Management Research
and Development Seminar (ATM2011).

H. Lee and H. Balakrishnan. A comparison of two optimization approaches for
airport taxiway and runway scheduling. In Digital Avionics Systems Conference
(DASC), 2012 IEEE/AIAA 31st, pages 1–28, Oct 2012.

G. D. Maere and J. Atkin. Pruning rules for optimal runway sequencing with airline
preferences. In 7th International Conference on Applied Operational Research,
pages 76–82, 2015.
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