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ABSTRACT

Real music signals are highly variable, yet they have strong

statistical structure. Prior information about the underlying

physical mechanisms by which sounds are generated and

rules by which complex sound structure is constructed (notes,

chords, a complete musical score), can be naturally unified

using Bayesian modelling techniques. Typically algorithms

for Automatic Music Transcription independently carry out

individual tasks such as multiple-F0 detection and beat track-

ing. The challenge remains to perform joint estimation of all

parameters. We present a Bayesian approach for modelling

music audio and content analysis. The proposed method-

ology based on Gaussian processes seeks joint estimation of

multiple music concepts by incorporating into the kernel prior

information about non-stationary behaviour, dynamics, and

rich spectral content present in the modelled music signal.

We illustrate the benefits of this approach via two tasks: pitch

estimation and inferring missing segments in a polyphonic

audio recording.

Index Terms— Gaussian processes, kernel design, music

signals, content analysis, audio restoration.

1. INTRODUCTION

In music information research, the aim of audio content anal-

ysis is to estimate musical concepts which are present but hid-

den in the audio data [1]. With this purpose, different signal

processing techniques are applied to music signals for extract-

ing useful information and descriptors related to the musical

concepts. Here, musical concepts refers to parameters related

to written music, such as pitch, melody, chords, onset, beat,

tempo and rhythm. Then, perhaps the most general applica-

tion is one which involves the prediction of several musical di-

mensions, that of recovering the score of a music track given

only the audio signal [2]. This is known as automatic music

transcription (AMT) [3].

AMT refers to extraction of a human readable and inter-

pretable description from a recording of a music performance.

We refer to polyphonic AMT in cases where more than a

single musical pitch plays at a given time instant. The gen-

eral task of interest is to infer automatically a musical nota-
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tion, such as the traditional western music notation, listing the

pitch values of notes, corresponding timestamps and other ex-

pressive information in a given audio signal of a performance

[4]. Transcribing polyphonic music is a nontrivial task, es-

pecially in its more unconstrained form when the task is per-

formed on an arbitrary acoustical input, and music transcrip-

tion remains a very challenging problem [5].

Real music signals are highly variable, but nevertheless

they have strong statistical structure. Prior information about

the underlying structures, such as knowledge of the physical

mechanisms by which sounds are generated, and knowledge

about the rules by which complex sound structure is compiled

(notes, chords, a complete musical score), can be naturally

unified using Bayesian hierarchical modelling techniques.

This allows the formulation of highly structured probabilis-

tic models [4]. On the other hand, typically, algorithms for

AMT are developed independently to carry out individual

tasks such as multiple-F0 detection, beat tracking and instru-

ment recognition. The challenge remains to combine these

algorithms, to perform joint estimation of all parameters [3].

We present the design, implementation, and results of exper-

iments of an alternative Bayesian approach for audio content

analysis on monophonic, and polyphonic music signals with

the possibility of being used for AMT. We use Gaussian pro-

cess (GP) models for jointly uncovering music concepts from

audio, by introducing a direct connection between the mu-

sic concepts and the model hyper-parameters. The proposed

methodology allows to incorporate in the model prior infor-

mation about physical or mechanistic behaviour, nonstationa-

rity, time dynamics (local periodicity, and non constant ampli-

tude envelope), spectral harmonic content, and musical struc-

ture, latent in the modelled music signal. Specifically in the

context of music informatics, we present kernels that embody

a probabilistic model of music notes as time-limited harmonic

signals with onsets and offsets. The presented approach can

describe polyphonic signals, by encouraging partial or com-

plete overlapping between the latent processes that represent

each sound event or music note. A comparison with related

work is provided in section 3.4. We illustrate the benefits of

this approach via two tasks: pitch estimation in monophonic

music and inferring missing segments in a polyphonic audio

recording.
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2. GP REGRESSION FOR MUSIC SIGNALS

GP-based machine learning is a powerful Bayesian paradigm

for nonparametric nonlinear regression and classification

[6]. GPs can be defined as distributions over functions

such that any finite number of function evaluations f =
[f(t1), · · · , f(tN )], have a jointly normal distribution [7].

A GP is completely specified by its mean function µ(t) =
E[f(t)] (in this work it is assumed to be µ(t) = 0), and its

kernel or covariance function

k(t, t′) = E [(f(t)− µ(t))(f(t′)− µ(t′))] , (1)

where k(t, t′) has hyper-parameters θ. We write the GP as

f(t) ∼ GP(µ(t), k(t, t′)). The regression problem concerns

the prediction of a continuous quantity [7], here a function

f(t), given a data set D = {(ti, yi)}
N

i=1
, where the audio

samples yi are assumed as noisy measurements of f(t) at typ-

ically regularly-spaced time instants ti (though GP regression

framework allows for irregular sampling or missing data), i.e.

yi = f(ti)+ǫi, where ǫi ∼ N (0, σ2

noise). In GP regression for

mono channel audio signals, instead of estimating parameters

η of fixed-form functions f(t,η) : R 7→ R where the time

input variable t ∈ R, we model the whole function f(t) as

a GP. That is, instead of putting a prior over the function pa-

rameters η, we introduce a prior over the function f(t) itself

[8, 9].

The underlying idea in GP regression is that the kernel in-

troduces dependencies between function f(t) values at dif-

ferent inputs. Thus, the function values at the observed points

give information also of the unobserved points [6]. The struc-

ture of the kernel (1) captures high-level properties of the un-

known function f(t), which in turn determines how the model

generalizes or extrapolates to new test time instants [10]. In

this way, prior knowledge about proprieties of music signals

can be introduced by choosing a proper kernel that reflects

those characteristics. In section 2.2 we study in more detail

the design of kernels.

2.1. Model definition

Under a non-parametric Bayesian regression approach using

GPs we are interested in calculating the posterior distribution

over a stochastic function evaluated at test points t∗, that is,

the joint distribution of the vector f observed only via noisy

measurements y, then

p(f|y) =
p(y|f)× p(f|θ)

p(y)
, (2)

where p(y|f) corresponds to the likelihood, p(f|θ) to the prior,

θ are the model hyper-parameters (prior parameters), p(y) is

the evidence or marginal-likelihood, and p(f|y) is the pos-

terior or conditional predictive distribution. Assuming that

conditioned on f(ti) the signal observations yi are i.i.d. (in-

dependent and identically distributed), the joint probability

distribution of all the observations y follows a Gaussian dis-

tribution corresponding to p(y|f, σ2

noise) = N (y|f, σ2

noiseIN ),
where fi = f(ti) and IN is an identity matrix of size N . The

prior p(f|θ) is obtained using the definition of GPs introduced

at the beginning of this section. Given a finite set of corrupted

observations y, then the finite set of GP function evaluation

values f follows a normal marginal distribution p(f|θ) con-

ditioned on the hyper-parameters θ, whose mean is zero and

whose covariance is defined by a Gram matrix Kf , this is

p(f|θ) = N (f|0,Kf ), where the covariance matrix is calcu-

lated using (1), i.e. [Kf ]i,j = k(ti, tj) [11]. The marginal-

likelihood (or evidence) p(y) mentioned before in (2) is the

integral of the likelihood times the prior [7]

p(y) =

∫

p(y|f)p(f|θ)df. (3)

Since the likelihood p(y|f) and the prior p(f|θ) are multivari-

ate Gaussian distributions, we can directly calculate the inte-

gral in (3). Using the properties of the normal distribution

[11] for marginal and conditional normal distributions, we

obtain p(y) = N (y|0,Ky), where the values in the matrix

Ky = Kf + σ2

noiseI depend on the hyper-parameters θ (we

have included σ2

noise in the hyper-parameters vector). The rea-

son it is called the marginal likelihood, rather than just likeli-

hood, is because we have marginalized out the latent Gaussian

vector f [12]. The computation of the posterior distribution of

the GP conditioned on the set of measurements y and esti-

mation of the parameters θ of the covariance function of the

process correspond to learning in this non-parametric model

[6]. Using the properties of Gaussian distribution [11, 7], the

posterior has the form p(f|y) = N (y|µpos,Kpos), where the

posterior mean is µpos = KfK−1

y f, and the posterior covari-

ance matrix is Kpos = Kf − K⊤

f KyKf .

2.2. Kernel design

Some of the broad properties of audio signals are non-

stationarity, rich spectral content, dynamics (locally periodic,

non constant amplitude envelope), mechanistic patterns, and

music structure. Therefore we seek covariance functions

that can describe or reflect these properties. One power-

ful technique for constructing new kernels is to build them

out of simpler kernels as building blocks [13, 11]. We use

some properties showed in [11] for building non-stationary

covariance functions. To construct non-stationary kernels

we combine basic stationary covariance functions. We use

change-windows in order to be able to model notes or sound

events which are not continuously active but have a begin-

ning and an ending in the music signal. As in [10] we define

a change-window by multiplying two sigmoid functions. The

parameters of the change-windows are directly related with

the location, onset and offset of the sound events. In the

present work we will use manually-specified onset/offset lo-

cations. We assume the complete process f(t) is a linear



combination of M random process, representing each one a

note or sound event. In this way

f(t) =

M
∑

m=1

φm(t)fm(t), (4)

where each GP [f1, f2, · · · , fM ] is independent with respect

to each other. It is important to highlight that M is directly

related with the number of notes or sound events in the sig-

nal. On the other hand, φm(t) are the respectively change-

windows that allow a specific GP fm(t) to appear or van-

ish in certain parts of the input space (time). In this sense

the proposed approach can handle polyphonic signals, by en-

couraging partial or complete overlapping between change-

windows. It can be shown the general expression for the co-

variance function kf (t, t
′) is given by

kf (t, t
′) =

M
∑

m=1

φm(t)km(t, t′)φm(t′). (5)

We see that the overall process has a kernel consisting of a lin-

ear combination of the corresponding covariance functions of

every subprocess. We assume each GP fm(t) in (4) is station-

ary. A random process is stationary (wide sense stationary

WSS) if its mean is constant, and its kernel is a covariance

function of τ = t − t′, then we can write k(t, t′) = k(τ)
[14, 7]. It can be shown that the spectral density or power

spectrum S(s) of a WSS process corresponds to the Fourier

transform (FT) of the covariance function, that is

S(s) =

∫

∞

−∞

k(τ)e−jsτ dτ, (6)

thus

k(τ) =
1

2π

∫ ∞

−∞

S(s)ejsτds. (7)

This is known as the Wiener-Khintchine theorem [7, 14].

Thus, we can do frequency-domain analysis for several co-

variance functions and decide which kernel is more appropri-

ate for modelling the spectral content of music signals. The

FT of the exponentiated quadratic covariance function

kEQ(τ) = σ2 exp

(

−
τ2

2l2

)

, (8)

as well as the FT of the exponentiated cosine kernel

kEC(τ) = σ2 exp [z cos(ωτ)] , (9)

are shown in Fig 1(b)-1(e). Covariance function (8) is prob-

ably the most widely-used kernel within the kernel machines

field, because the GP with a exponentiated-quadratic covari-

ance function is very smooth [7]. In order to allow periodic

kernels to describe functions where the amplitude envelope
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Fig. 1. Frequency analysis of kernels (8), (9), (10) depicted in

(a), (d), (g) respectively. (b), (e), (h) are their corresponding

FT. (c), (f), (i) show sampled functions.

changes in time, we introduce a modification of expression

(9). To do so, we multiply this kernel with (8). The resulting

covariance function, called exponentiated-cosine-quadratic

corresponds to

kECQ(τ) = σ2 exp

[

z cos(ωτ) −
τ2

2l2

]

. (10)

Fig. 1(h) depicts the FT of (10). We see that its spectral den-

sity keeps similar to the one obtained for (9) (see Fig. 1(e)).

But the realizations sampled from a GP with this covariance

function (Fig. 1(i)) show a smooth variation in the amplitude

envelope, and also maintain the properties described by the

previous kernel (9), i.e. a periodic structure with natural fre-

quency and harmonics. This covariance function (10) seems

to be more appropriate for modelling music signals in com-

parison with the two kernels presented previously ((8)-(9)).

The hyper-parameter ω in (9)-(10) is directly related with the

natural frequency or F0 of the modelled random processes.

3. RESULTS AND DISCUSSION

Experiments were done over real audio. We evaluated differ-

ent kernel configurations on a pitch estimation task, and on

a missing data imputation task. All experiments assume we

previously know the number of change-windows and its lo-

cations. In the pitch estimation task all the parameters of the

covariance function are known, except those related with the

fundamental frequency of each sound event, i.e. the value of
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(b) Signal used for filling missing-data gaps.

Fig. 2. (a) analysed audio (blue line), change-windows

(dashed lines). (b) observed data (blue line), missing-data

gaps (red line), change-windows (dashed lines).

ωm in (9) and (10) when using these kernels in the general

model (4). Thus, we focus on optimizing only these model

hyperparameters from the data. In the missing data imputa-

tion task the score of the modelled piece of music audio is

used for tuning manually the model hyperparameters.

3.1. Data

In this study we used two short audio excerpts, in order to ex-

plore the method, so that we can efficiently fit models and

search in the hyperparameter space. The excerpt used for

pitch estimation experiments corresponds to 0.7 seconds of

the song Black Chicken 37 by Buena Vista Social Club. This

segment of audio contains three notes of a bass melody (Fig.

2(a)). In the missing data imputation task we used polyphonic

audio corresponding to 1.14 seconds of Chopin’s Nocturne

Op. 15 No. 1, where more than one note occur at the same

time. The segments of signal in red in Fig. 2(b) represent

gaps of missing data. We reduced the sample frequency of

both audio excerpts from 44.1KHz to 8KHz. To infer hyper-

parameters we consider an empirical Bayes approach, which

allow us to use continuous optimization methods. We maxi-

mize the marginal likelihood. This moves us up one level of

the Bayesian hierarchy, and reduces the chances of overfitting

[12]. Given an expression for the log marginal likelihood and

its partial derivatives, we can estimate the kernel parameters

using any standard gradient-based optimizer [12]. A gradient

descent method was used for optimization.

3.2. Pitch estimation

For the pitch estimation task we tested two different models

with kernels (9), and (10) respectively. We performed hy-

perparameters learning using all the observed signal shown in

Fig. 2(a). This is because in this experiment rather than evalu-

ating the prediction of the trained models, we were interested
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(a) Observations (dots), and posterior mean (continuous line) using

(9).
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(b) Observations (dots), and posterior mean (continuous line) using

(10).

Fig. 3. Posterior mean for the pitch estimation experiments.

(a) using kEQ(τ), and (b) using kEQC(τ).

in the accuracy of pitch estimation. Covariance function (8)

does not have any parameter we can link to the fundamen-

tal frequency of each sound event, that is why we omitted

it here. We compared the GPs models results with the al-

gorithm pYIN, a fundamental frequency estimator [15]. The

trained model using kEC(τ) was able to estimate the pitch for

each sound event with a RMS error of 0.6282 semitones. On

the other hand, the amplitude-envelope evolution of the sig-

nal is beyond the scope of the structure that this kernel can

model (See Fig. 3(a)). This is because this covariance func-

tion can only describe constant amplitude-envelope, periodic

signals, with a fundamental frequency and several harmon-

ics (Fig. 1(f)). Results using (10) are shown in Fig. 3(b).

We observe that although the posterior mean of the predictive

distribution does not exactly fit the data, the model is able to

learn the pitch of each of the three sound events with a smaller

RMS error of 0.1075 in comparison with the 0.1688 RMS er-

ror obtained with pYIN. Variations in the amplitude envelope

can also be described using (10).

3.3. Filling gaps of missing data in audio

We compared three different models predicting missing-data

gaps. We studied kernels (8), (9), and (10). In Fig. 2(b)

first gap (red segment) contains the transient (onset and at-

tack [16]) of a sound event, whereas the second gap is located

in a more stable segment of the data (smooth decay). Fig.

4(a)-4(b) depict the prediction using (8). These figures corre-

spond to zoom in small sections of the signal where the gaps

occur (Fig. 2(b)). We see that the model using this kernel

overfits the data, i.e. the posterior mean (blue line) fits all the

observed data (black dots) with high confidence (grey shaded

area), but the confidence decreases and the prediction is quite

poor in the input space zones where the data is not available

(red dots). Also, we see that the model using (8) does not ex-

pect any periodic behaviour in the gaps. The RMS error for



Table 1. Filling gaps prediction RMS error.

kernel RMS transient gap RMS decay gap

kEQ(τ) 0.2265 0.3172
kEC(τ) 0.2143 0.0964
kEQC(τ) 0.0912 0.0355

both gaps is presented in Table 1.

Fig. 4(c)-4(d) show the prediction using covariance func-

tion (9). In the transient gap (Fig. 4(c)) the posterior mean

(blue line) does not follows the data, this is because tran-

sients are short intervals during which the signal evolves in

a nonstationary, nontrivial and unpredictable way [16]. oppo-

site to this, the model using kernel (9) can only describe the

behaviour of constant amplitude-envelope periodic stochastic

functions. In the second gap (Fig. 4(d)) the posterior mean

describes properly the periodic behaviour of the data, but it

does not follow the amplitude-envelope of the observations.

This is because this covariance function is able to describe

periodic functions that have several harmonic components.

The drawback of this kernel is that it assumes constant the

amplitude of the periodic stochastic functions that describes.

These different performance on the prediction is reflected on

the RMS error obtained for each gap (Table 1).

Results using (10) are presented in Fig. 4(e)-4(f). We see

that in Fig. 4(f) the posterior mean describes properly the pe-

riodic behaviour and amplitude envelope smooth evolution of

the modelled signal. We observe that prediction on the decay

gap using (10) is closer to the actual data (red dots) than the

results obtained with (9) as well as (8). This is reflected in the

smallest RMS error in table 1. This is because (10) allows to

describe periodic functions that have several harmonic com-

ponents and time-varying amplitude envelope. On the other

hand, the prediction performance reduces for the transient gap

(Fig. 4(e)). In order to model the onset, attack and decay of

a sound event, covariance function (10) could be modified for

modelling nonstationary amplitude envelope evolution.

3.4. Related work

In [17] GPs are used for time-frequency analysis as proba-

bilistic inference. Natural signals are assumed to be formed

by the superposition of distinct time-frequency components,

with the analytic goal being to infer these components by ap-

plying Bayes’ rule [17]. GPs have also been used for au-

dio source separation [18, 20]. In [18] the mixture signal is

modelled as a linear combination of independent convolved

versions of latent GPs or sources. The model splits the mix-

ture signal in frames also considered independent, by using

weight-functions. Thus each source is modelled as a series

of concatenated locally stationary frames, each one with its

corresponding covariance function. With this assumption the

resulting signal is supposed to be non-stationary [18]. On the

other hand, despite the approach we present also assumes the

latent GPs fm in (4) as non-correlated, the observed signal

is not framed into independent segments. Instead of using

weight-functions that act over the observed data, we intro-

duce change-windows φm influencing each latent GP ending

up with latent processes representing specific sound events

that happen at certain segments of time. Therefore the pro-

posed model keeps the correlation between the observations

throughout all the signal. That is what allows to make pre-

diction in gaps of missing data (section 3.3). GPs have been

used also for estimating spectral envelope and fundamental

frequency of a speech signal [19]. Finally, GPs for music

genre classification and emotion estimation were investigated

in [21].

4. CONCLUSIONS

We discussed a GP regression framework for modelling music

audio. We compared different models in pitch estimation as

well as in prediction of missing data. We showed which ker-

nels were more appropriate for describing properties of music

signals, specifically: nonstationarity, dynamics, and spectral

harmonic content. The advantage of this approach is that by

designing a proper kernel we can introduce prior knowledge

and beliefs about the properties of music signals, and use all

that prior information to improve prediction. Computational

complexity is an important limitation of GPs, therefore the

presented work could be extended using efficient represen-

tations to model larger audio signals. Kernels as [22] could

be studied for modelling harmonic content, and Latent Force

models [23] for describing mechanistic characteristics.
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Fig. 4. Zoom in a portion of missing-data gaps. In each figure the continuous blue line represent the posterior mean, grey

shaded areas correspond to the posterior variance, red dots are missing data, whereas black dots are observed data.
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