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Abstract Multiple glycosyltransferases are essential for the proper modification of alpha-

dystroglycan, as mutations in the encoding genes cause congenital/limb-girdle muscular

dystrophies. Here we elucidate further the structure of an O-mannose-initiated glycan on alpha-

dystroglycan that is required to generate its extracellular matrix-binding polysaccharide. This

functional glycan contains a novel ribitol structure that links a phosphotrisaccharide to xylose. ISPD

is a CDP-ribitol (ribose) pyrophosphorylase that generates the reduced sugar nucleotide for the

insertion of ribitol in a phosphodiester linkage to the glycoprotein. TMEM5 is a UDP-xylosyl

transferase that elaborates the structure. We demonstrate in a zebrafish model as well as in a

human patient that defects in TMEM5 result in muscular dystrophy in combination with abnormal

brain development. Thus, we propose a novel structure—a ribitol in a phosphodiester linkage—for

Praissman et al. eLife 2016;5:e14473. DOI: 10.7554/eLife.14473 1 of 28

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.14473
https://creativecommons.org/
https://creativecommons.org/
http://elife.elifesciences.org/
http://elife.elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


the moiety on which TMEM5, B4GAT1, and LARGE act to generate the functional receptor for ECM

proteins having LG domains.

DOI: 10.7554/eLife.14473.001

Introduction
Twenty-five years ago it was proposed that alpha-dystroglycan (a-DG) played a major role in bridg-

ing the extracellular matrix to the muscle plasma membrane and actin cytoskeleton as a component

of the multi-protein dystrophin glycoprotein complex (Ervasti et al., 1990; Yoshida and Ozawa,

1990). Defects in the proper formation of this complex have been shown to be causal for various

forms of muscular dystrophy (Carmignac and Durbeej, 2012). However, to date, only 3 patients

have been found that have primary defects in the coding sequence of a-DG (Dong et al., 2015;

Geis et al., 2013; Hara et al., 2011). Over fifteen years ago, it was suggested that defects in the

glycosyltransferases needed for proper glycosylation of a-DG were causal for a subset of muscular

dystrophies, the so-called secondary dystroglycanopathies that can range in severity from mild Limb-

Girdle Muscular Dystrophy (LGMD) to severe Walker-Warburg syndrome (WWS) (Chiba et al., 1997;

Holt et al., 2000; Wells, 2013). In the early 2000’s, it became clear that the defects causal for dis-

ease involved enzymes that initiated and elaborated the extended O-mannose (O-Man) glycan struc-

tures covalently attached to Ser/Thr residues of a-DG (Beltrán-Valero de Bernabé et al., 2002;

Michele et al., 2002). Since then, steady progress has been made in elucidating the subset of mam-

malian O-Man structures that directly interact with extracellular matrix components and the candi-

date genes necessary for the functional glycosylation of a-DG (Praissman and Wells, 2014). These

include the identification of a subset of phosphorylated O-Man structures containing extended,

LARGE-dependent, repeating disaccharide polymers, structures that have been recently termed

matriglycan (Yoshida-Moriguchi and Campbell, 2015).

O-Mannosylation begins in the endoplasmic reticulum (recently reviewed in Dobson et al., 2013;

Endo, 2015). The addition of O-Man in an alpha linkage to serine and threonine residues of a select

set of mammalian glycoproteins is catalyzed by the POMT1/2 complex using dolichol-phosphoman-

nose as the donor (Beltrán-Valero de Bernabé et al., 2002). At this point, by mechanisms that have

yet to be fully elucidated, there is a divergence in elaboration (Figure 1). The vast majority of O-

Man sites are extended in the Golgi in a beta-1,2 linkage with N-acetylglucosamine (GlcNAc) by

POMGNT1 that can then be further branched by GlcNAc and/or elaborated by galactose, fucose,

and sialic acid to generate the M1 and M2 glycans (Praissman and Wells, 2014; Lee et al., 2012;

Yoshida et al., 2001). A small subset of O-Man modified sites, apparently exclusively on a-DG, are

extended in the endoplasmic reticulum by a GlcNAc in a beta-1,4 linkage by POMGNT2 to generate

the M3 glycans (Manzini et al., 2012; Yoshida-Moriguchi et al., 2013). This is further elaborated

into a trisaccharide by the action of a beta-1,3-N-acetylgalactosamine (GalNAc) transferase,

B3GALNT2 (Yoshida-Moriguchi et al., 2013). This trisaccharide is a substrate for POMK that phos-

phorylates the initiating O-Man residue at the 6-position (Yoshida-Moriguchi et al., 2013). After

unknown elaboration of the phosphotrisaccharide in a phosphodiester linkage, presumably by one

or more of the as-yet to be assigned CMD-causing gene products (ISPD, TMEM5, Fukutin, and

FKRP), B4GAT1 adds a glucuronic acid (GlcA) in a beta-1,4 linkage to an underlying beta-linked

xylose (Xyl) (Praissman et al., 2014; Willer et al., 2014). The addition of the xylose by an unspeci-

fied enzyme followed by the action of B4GAT1 serves as a primer for LARGE to synthesize the

repeating Xyl-GlcA disaccharide, matriglycan, that serves as the binding site for several extracellular

matrix proteins (Praissman et al., 2014; Willer et al., 2014).

Here we report a M3 glycan structure with a phosphodiester linked ribitol that TMEM5, B4GAT1,

and LARGE act on to generate the functional receptor for extracellular matrix (ECM) ligands charac-

terized by Laminin G domain-like (LG) protein domains. We demonstrate that ISPD is a CDP-ribitol

pyrophosphorylase employed for the synthesis of the required sugar (alcohol) nucleotide needed for

ribitol insertion into the M3 glycan. We establish TMEM5 as the candidate xylose transferase and

demonstrate the impact of its knockdown in a zebrafish model consistent with a CMD phenotype.

We also identify and characterize a novel TMEM5 mutation identified in a WWS family. Finally, we

present a model of the functional M3 glycan structure along with the more than a dozen assigned or

proposed enzymes required for its synthesis.
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Results

Ribitol-Xyl-GlcA is released from a-DG-340 following cleavage of the
phosphodiester linkage
A truncated, secreted version of a-DG with a COOH-terminal GFP and His tag (a–DG-340 that is

only 28 amino acids (313–340) derived from a-DG following endogenous furin cleavage) was overex-

pressed in HEK293F cells, which express low levels of LARGE, and purified from the media. This 28

amino acid sequence contains only one putative M3 glycan consensus site (TPT, 317–319). We previ-

ously demonstrated that the generation of peptides bearing the phosphotrisaccharide could be iso-

lated from a-DG constructs following cleavage of the phoshodiester linkage and that such treatment

resulted in loss of IIH6 (an antibody that binds functionally glycosylated a-DG) binding (Figure 2—
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Figure 1. The 3 subclasses of the O-Mannosylation pathway. Following addition of Man to serine/threonine residues on protein substrates by POMT1/2

there is a divergence in elaboration. Known enzymes are displayed in purple and unknown enzymes prior to this manuscript are displayed in red. (A)

POMGnT1 adds a beta-2 linked GlcNAc onto the underlying Man. Shown is just one potential extended M1 glycan structure. (B) Following the action of

POMGnT1, GnT-Vb can add a beta-6 linked GlcNAc onto a M1 glycan structure to convert it to a M2 glycan structure. Shown is just one potential

extended M2 glycan structure. (C) Instead of extension in a beta-2 linkage, M3 glycan structures get the core Man extended by POMGNT2 with a beta-

4 linked GlcNAc. This disaccharide is further elaborated to contain a phosphodiester linkage to an unknown moiety (shown as (X)) that becomes

modified with repeats of (Xyl-GlcA).

DOI: 10.7554/eLife.14473.002
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figure supplement 2) (Yoshida-Moriguchi et al., 2010). Thus, we decided to interrogate the

released glycan portion to further elucidate the functional glycan structure. Following aqueous HF

treatment, which selectively cleaves phosphodiesters, released glycans were isolated from a–DG-

340 and permethylated. Tandem mass spectrometry of the permethylated glycans revealed the pres-

ence of a linear pentitol-Xyl-GlcA (Figure 2) as well as further disaccharide extended structures (pen-

titol-(Xyl-GlcA)n, Figure 2—figure supplement 1).

ISPD is a CDP-ribitol (ribose) pyrophosphorylase
Given the identification of pentitol in the glycan structure, we investigated whether ISPD might be

able to generate CDP-ribitol. Our rationale for this was that mutations in ISPD are causal for CMD

(Roscioli et al., 2012; Willer et al., 2012), ISPD is a putative nucleotidyltransferase found in the

cytosol (Vuillaumier-Barrot et al., 2012), and homologs in bacterial systems are involved in the gen-

eration of identical, CDP-ribitol (Baur et al., 2009), or similar structures, 4-CDP-2-C-methyl-D-

erythritol (Richard et al., 2001). ISPD was expressed as a His fusion protein in HEK293F cells and
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Figure 2. Ribitol-Xyl-GlcA is released from a-DG upon cleavage of phosphodiester linkage. Following treatment of purified a-DG-340 with aqueous HF,

released glycans were captured, permethylated and analyzed by tandem mass spectrometry. On the left is a zoom view of the full MS scan

demonstrating the intact mass and to the right the fragmentation pattern leading to the identification of GlcA-Xyl-pentitol. Experiments were

performed in triplicate with identical findings each time.

DOI: 10.7554/eLife.14473.003

The following figure supplements are available for figure 2:

Figure supplement 1. Extended Ribitol-(Xyl-GlcA)n Structures are also observed.

DOI: 10.7554/eLife.14473.004

Figure supplement 2. Phosphodiester cleavage but not glycosidase treatment abolishes IIH6 reactivity on a-DG.

DOI: 10.7554/eLife.14473.005
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purified from whole cell extracts (Figure 3—figure supplement 1). The enzyme was capable of gen-

erating CDP-ribitol or CDP-ribose using CTP and ribitol-5-phosphate or ribose-5-phosphate, respec-

tively, but was not able to generate the sugar (alcohol) nucleotides with ribitol or ribose (Figure 3).

Thus, ISPD is a CDP-ribitol (ribose) pyrophosphorylase that generates the needed reduced sugar

(alcohol) nucleotide for integration of a ribitol into the functional O-Man glycan structure. During the

preparation of our manuscript, a study was published demonstrating that CDP-ribose, CDP-ribitol,

and CDP-ribulose could all be generated by mammalian ISPD consistent with our present findings

(Riemersma et al., 2015).

Phosphodiester-linked ribitol is connected to the M3 Glycan
Having identified the ribitol directly attached to xylose, we sought to identify whether the ribitol was

the bridge between xylose and the phosphotrisaccharide on the polypeptide. We also wanted to

confirm the open ring structure enforced by the addition of ribitol, a reduced sugar. In such a linear

structure, mild periodate treatment would be expected to cleave vicinal diols and release matrigly-

can from the polypeptide. Thus, we performed mild periodate cleavage of the purified a-DG-340

protein and demonstrated a loss of reactivity with the IIH6 antibody that recognizes functional

LARGE-modified glycoprotein (Figure 4—figure supplement 2). Furthermore, following tryptic

cleavage, we examined the resulting a-DG peptides by tandem mass spectrometry (Figure 4—fig-

ure supplement 1). We were able to identify multiple glycopeptides where Thr317 (a known site for

M3 glycans) was modified to indicate a cleaved ribitol fragment on the phosphotrisaccharide. We

observed pairs of essentially identical glycopeptides that showed cleavage between C2 and C3 or

between C3 and C4 (Figure 4). We also observed peptides with an additional phosphate suggesting

that there can be 2 phosphates on the trisaccharide of which at least one is in a phosphodiester link-

age to ribitol (Figure 4). Thus, the ribitol appears most likely to be connected at C1 to the oxygen

of a phosphate group on the M3 glycopeptide and at the C5 to xylose (note that ribitol C1 and C5

are indistinguishable due to the nature of the reduced sugar and thus nomenclature for closed-ring

standard sugar nucleotides is being used to describe linkage).

TMEM5 is a xylose transferase
In our previous manuscripts describing B4GAT1 (Praissman et al., 2014; Willer et al., 2014), we

had provided evidence for an underlying xylose in the linker region of matriglycan between the

phosphotrisaccharide and the LARGE-dependent Xyl-GlcA repeat disaccharide. Among the unchar-

acterized genes harboring mutations in patients with CMD, TMEM5 shows sequence similarity to gly-

cosyltransferases (Vuillaumier-Barrot et al., 2012). TMEM5 was also among the genes uncovered in

a screen for loss of IIH6 binding and Lassa virus entry, readouts that are both dependent on func-

tional glycosylation of a-DG (Jae et al., 2013). Thus, we investigated this enzyme as a candidate

xylose transferase. We overexpressed and purified the truncated catalytic domain fused to GFP and

a His tag (Figure 5—figure supplement 1A). Using the UDP-Glo assay, we were able to show that

transmembrane deleted dTM-TMEM5 can hydrolyze UDP-Xyl, but not other UDP-sugars (Figure 5A)

demonstrating selective hydrolytic activity in the absence of acceptor glycans. Furthermore, we were

able to show that recombinant full length TMEM5 (Figure 5—figure supplement 1B) can be used to

label a-DG-Fc340 (Fc-tagged a-DG-340) with radiolabeled UDP-Xyl [Xyl-14C] expressed from

TMEM5-deficient patient cells compared to a-DG-Fc340 mutated at the M3 site (TPT, 317–319, con-

verted to APA) as a negative control (Figure 5B). Also, we were able to show that dTM-TMEM5 can

use UDP-Xyl to transfer Xyl to CDP-ribitol as the acceptor but not ribitol, ribitol-5-P, or CMP-Neu5Ac

suggesting the need for the ribitol to be in a phosphodiester linkage in order to be an acceptor

(Figure 5C). In summary, these results provide strong, but not direct, evidence that TMEM5 is the

xylosyl transferase enzyme for modification of ribitol that is in a phosphodiester linkage to the M3

glycan on a-DG.

TMEM5 knockdown in zebrafish recapitulates WWS phenotype
The highly conserved TMEM5 gene, which has formerly been implicated in CMD, encodes a type II

transmembrane protein with a predicted glycosyltransferase domain. To investigate the role of

TMEM5 in vertebrates, we knocked down the zebrafish (Danio rerio) orthologue using antisense

morpholino oligonucleotides (MO). The endogenous zebrafish tmem5 transcript was detected
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throughout early embryonic development (Figure 6—figure supplement 1). Injection of tmem5 MO

specifically inhibited the expression of green fluorescent protein-tagged TMEM5 in a dose-depen-

dent manner (Figure 6—figure supplement 1). Knockdown of tmem5 caused an increased percent-

age of embryos with mild to severe hydrocephalus (95% in total) and significantly reduced eye size,

reminiscent of pathological defects in WWS (Figure 6A). To test whether the brain and eye abnor-

malities were caused by MO off-target effects mediated through a p53-dependent cell death path-

way (Robu et al., 2007), we inhibited p53 activation by co-injection of p53 MO. 88% of embryos still

displayed hydrocephalus and significantly reduced eye size was still observed in embryos co-injected

with p53 and tmem5 MOs (Figure 6B), suggesting that the brain and eye abnormalities were not

caused by MO off-target effects. As knockdown of tmem5 also caused reduced motility and lesions
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Figure 3. ISPD synthesizes CDP-Ribitol from CTP and Ribitol-phosphate. (A) Purified recombinant ISPD (+ISPD) or buffer control (-ISPD) was incubated

with CTP and either ribitol-5-phosphate (Ribitol-5P) or ribitol (Ribitol) and the donor substrate (CTP, MW 481.98) and/or product (CDP-ribitol, MW

536.07) was detected by mass spectrometry. CDP-ribitol was only observed in the presence of ISPD, CTP, and Ribitol-5P. (B) Purified recombinant ISPD

(+ISPD) or buffer control (-ISPD) was incubated with CTP and either ribose-5-phosphate (Ribose-5P) or ribose (Ribose) and the donor substrate (CTP,

MW 481.98) and/or product (CDP-ribose, MW 534.05) detected by mass spectrometry. CDP-ribose was only observed in the presence of ISPD, CTP,

and Ribose-5P. Note that CDP-ribose has a molecular weight that is 2 daltons less than CDP-ribitol. Shown are representative images of an N = 3.

DOI: 10.7554/eLife.14473.006

The following figure supplement is available for figure 3:

Figure supplement 1. Coomassie stained SDS-PAGE gel of purified ISPD.

DOI: 10.7554/eLife.14473.007
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Ribitol

Cleavage
Mass ppm

Additional

Hex,HexNAc
Pyro-Glu Sodiated

Additional 

Phosphate

2-3 4205.953 7.3 2 , 3 N N N

2-3 4285.910 5.2 2 , 3 N N Y

2-3 4228.953 -1.0 2 , 3 N Y N

3-4 4258.963 8.7 2 , 3 N Y N

2-3 4350.968 1.7 3 , 3 Y N N

2-3 4367.992 2.3 3 , 3 N N N

3-4 4397.994 1.0 3 , 3 N N N

3-4 4477.961 1.3 3 , 3 N N Y

2-3 4392.004 5.9 2 , 4 Y N N

2-3 4409.032 6.1 2 , 4 N N N

2-3 4488.9952 5.3 2 , 4 N N Y

3-4 4439.011 -1.4 2 , 4 N N N

(Pyro) QIHAT*PT#PVT#AIGPPT#T#AIQEPPS#R (Na)

* = phosphotrisaccharide-ribitol fragment

# = potential sites of additional sugars

Figure 4. Mild periodate cleavage reveals that ribitol is connected to the M3 glycan. Following treatment of purified a-DG-340 under mild periodate

conditions, the protein was reduced, alkylated, and digested with trypsin. The resulting peptides were analyzed by tandem mass spectrometry. The a-

DG-340 tryptic peptide was detected with multiple glycoforms containing a phosphotrisaccharide glycopeptide. Specifically, at least 12 tryptic peptides

were identified at less than 9 ppm mass accuracy that contained the phosphotrisaccharide with a ribitol fragment at threonine 317 (the red T*) in two

separate analyses. These peptides differed in additional glycosylation by either hexose (Hex) or HexNAc sugars at additional hydroxyl amino acids

(indicated by #). We also observed that the N-terminal glutamine was cyclized to pyroglutamic acid on some peptides (Pyro) and that some

glycopeptides were sodiated (Na). Furthermore, we noticed the presence of a second phosphate on some phosphoglycopeptides. The 12 peptides

observed are grouped by having the same number of additional Hex and HexNAc glycans (2,3 or 3,3 or 2,4). For all 3 sets of glycopeptides we

observed glycopeptides that had ribitol fragments between C2 and C3 as well as C3 and C4 indicating that C2, C3, and C4 are not involved in linkages

to other moieties. We also observed for each set of glycopeptides the presence of an additional phosphate.

DOI: 10.7554/eLife.14473.008

The following figure supplements are available for figure 4:

Figure supplement 1. Tandem MS/MS spectra of glycopeptides.

DOI: 10.7554/eLife.14473.009

Figure supplement 2. Dot blot analysis reveals loss of IIH6 signal for a-DG treated with mild periodate.

DOI: 10.7554/eLife.14473.010
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Figure 5. TMEM5 is a UDP-Xyl transferase that modifies phosphodiester linked ribitol. (A) Various UDP-sugar nucleotides were incubated with (+) or

without (-) purified transmembrane deleted and tagged TMEM5 and then analyzed for hydrolysis using the UDP-Glo assay (N = 3). The formation of

UDP was only observed when dTM-TMEM5 was incubated with UDP-Xyl. (B) Recombinant purified full length TMEM5 and radiolabeled UDP-Xyl

[Xyl-14C] was incubated with either purified a-DG-Fc340 or mutant a-DGFc340 where the sites for M3 addition had been mutated to alanines (a-DG-

Fc340-T317A/T319A) and incorporation of radioactivity into the proteins were determined by scintillation chromatography (N = 3). a-DGFc340 that

contains the sites for M3 addition is the preferred substrate for addition of radiolabeled Xyl by TMEM5. (C) dTM-TMEM5 (2500, 1250, 625, or 312.5 nM)

and 50 mM UDP-Xyl donor substrate were incubated without or with 1 mM of the indicated acceptor molecules in 0.1 M MES pH 6.0 and 10 mM MgCl2
for 18 hr at 37˚C, and the release of UDP was detected by the UDP-Glo assay. RLU: Relative Luminescence Units. Data are represented as the mean of

three trials and error bars represent standard deviation.

DOI: 10.7554/eLife.14473.011

The following figure supplements are available for figure 5:

Figure 5 continued on next page
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in the myotome (data not shown), we assessed the sarcolemma integrity using Evans Blue dye (EBD),

which does not penetrate into intact muscle fibers. Muscle fibers were infiltrated by EBD before

undergoing degeneration (Figure 6C), suggesting a pathological mechanism in which knockdown of

tmem5 leads to compromised sarcolemma integrity. As defective glycosylation of a-DG is a patho-

logical hallmark of WWS, we tested whether knockdown of zebrafish tmem5 would affect the glyco-

sylation of a-DG. Compared to control embryos, knockdown of tmem5 caused a 44% reduction of

glycosylated a-dystroglycan (IIH6 epitope) on Western blots (Figure 6D). Together, these results

clearly illustrate a role for TMEM5 in functional glycosylation of a-DG and knockdown of this enzyme

generating a CMD phenotype in vertebrates.

Identification of a new TMEM5 missense mutation in a family with
WWS
Previously, it was reported that mutations in TMEM5 can cause WWS, a congenital form of muscular

dystrophy with severe brain involvement (Vuillaumier-Barrot et al., 2012; Jae et al., 2013). To

investigate if one of the unidentified consanguineous WWS families was affected by a mutation in

TMEM5 we performed linkage analysis and whole exome sequencing (WES) in three siblings (Fig-

ure 7—figure supplement 1A). Genomic DNAs from the three siblings were genotyped and the call

rates for the genotyping were 99.7%, 96.0% and 91.9% for 02243-d (P1), 02243-a (p2) and 02243-b,

respectively. Using ~69K SNPs that overlapped between the two platforms, homozygosity-by-

descent (HBD) analysis was performed. All three samples had multiple long (>10 cM) stretches of

homozygous genotypes, confirming that they were descendants of a consanguineous marriage. Four

regions that were homozygous in the two affected siblings, but heterozygous or homozygous for the

other alleles in the unaffected sibling, were identified (Figure 7—figure supplement 1B). All 6,647

coding exons from these four intervals were subject to targeted sequencing in all three samples.

The genomic library was sequenced and variant filter strategies were applied and retained for var-

iants on chromosome 12 and chromosome X. A homozygous, non-reference c.997G>A (p.G333R)

sequence variant was found in the TMEM5 gene (Chr. 12) of the two affected siblings (P1 and P2),

while the unaffected sibling was homozygous for the wild type sequence (c.997G, p.G333) (Fig-

ure 7—figure supplement 1A). The variant was predicted to be damaging by PolyPhen-2

(Adzhubei et al., 2013) and SIFT (Sim et al., 2012). Sanger sequencing confirmed this new deleteri-

ous variant in exon 6 of TMEM5 (Figure 7—figure supplement 1C). The highly conserved affected

amino acid p.G333 is located in a functional domain that is predicted to have glycosyltransferase

activity (Figure 7—figure supplement 1D,E).

The new p.G333R TMEM5 mutation was identified in a consanguineous family of Pakistani

descent. Two out of three pregnancies resulted in fetuses with WWS (P1 and P2), while the third

child is normal (Figure 7—figure supplement 1A). Both WWS fetuses had classical brain develop-

mental abnormalities detected by prenatal ultrasound (see Figure 7—figure supplement 2A). The

first pregnancy (P1) went to term with the child passing away at 4 months of age. The second preg-

nancy was terminated at 18 weeks (P2); a quadriceps skeletal muscle sample utilized in our studies

was obtained after termination. Severe dystrophic features were noted in cryosections of the muscle,

and immunofluorescence studies showed an abnormal pattern of dystrophin-glycoprotein complex

expression characteristic of a severe dystroglycanopathy (Figure 7—figure supplement 2B).

Although patients with TMEM5 mutations have been reported before (Vuillaumier-Barrot et al.,

2012; Jae et al., 2013) the a-DG glycosylation status in these patients has not been investigated.

Immunofluorescence and western blot analysis of skeletal muscle from the 18 week fetus (P2)

showed an a-DG glycosylation defect similar to previously described glycosylation-deficient WWS

patients (Willer et al., 2012) with complete loss of both functional glycosylation and laminin binding

(Figure 7—figure supplement 2B,C). The loss of receptor function and shift of a-DG core protein to

lower molecular weight was confirmed in skeletal muscle (P1, Figure 7—figure supplement 2C), as

Figure 5 continued

Figure supplement 1. Analysis of purified TMEM5 constructs.

DOI: 10.7554/eLife.14473.012

Figure supplement 2. Specificity of TMEM5 for CDP-ribitol as an acceptor.

DOI: 10.7554/eLife.14473.013
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Figure 6. Knockdown of zebrafish tmem5 recapitulates characteristic defects in WWS. (A) Compared with uninjected control and p53 MO injected

embryos, embryos injected with tmem5 MO alone or together with p53 MO developed mild to severe hydrocephalus (asterisk) from 32 hr post

fertilization (h.p.f.) (95% and 88%, respectively). Each bar represents a combination of two independent blindly-scored experiments. n = 114–150

embryos. Scale bar, 100 mm. (B) One-way ANOVA analysis revealed that tmem5 MO injected embryos have significantly reduced eye size (bracket in

panel a) at 48 -h.p.f. Inhibition of MO off-target effects by co-injection of p53 MO does not rescue the reduced eye size. n = 15 embryos in each group.

Error bars, s.d. **p< 0.01. NS, not significant. (C) Knockdown of tmem5 compromised the sarcolemma integrity as indicated by EBD infiltrated muscle

fibers (arrows) at 48 h.p.f. Muscle fibers undergoing degeneration pull away from chevron-shaped myosepta. Scale bar, 50 mm. (D) Compared with

uninjected control, western blotting with IIH6 antibody showed a 44% reduction in glycosylated a-dystroglycan in tmem5 MO-injected embryos at 48 h.

p.f. Equal loading was demonstrated by Ponceau S and unknown glycoproteins (~35 kDa) detected by IIH6 in all lanes.

DOI: 10.7554/eLife.14473.014

The following figure supplement is available for figure 6:

Figure supplement 1. Zebrafish tmem5 temporal gene expression and MO specificity.

DOI: 10.7554/eLife.14473.015
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Figure 7. A missense mutation of TMEM5 in a WWS family leads to a loss of functional a-DG. (A) Analysis of a-DG glycosylation status in TMEM5-

deficient WWS patient (P1) dermal fibroblasts. WGA-enriched cell lysates from control and TMEM5 P1 fibroblasts were subjected to biochemical

analysis. a-DG glycosylation status as assessed by western blotting using antibodies against the glycosylated form of a-DG (IIH6), core a-DG (G6317),

and by laminin overlay assay (N = 3). An antibody against b-DG (AP83) was used to assess loading. Apparent molecular masses are indicated. (B) On-

Cell western-based complementation assay (N = 3) of TMEM5-WWS patient (P1) fibroblasts after adenoviral gene transfer with wildtype TMEM5

expression construct. Rescue of a-DG functional glycosylation was monitored with a-DG glyco (IIH6) antibodies. (C) On-Cell western-based

complementation assay (N = 3) of P1 fibroblasts after nucleofection with a wild-type or mutant (p.G333R) human TMEM5 expression construct. Rescue

of a-dystroglycan functional glycosylation was detected with antibody to glycosylated a-dystroglycan (glyco a-DG, IIH6). (D) Subcellular localization of

HA-tagged wildtype and WWS mutant TMEM5 protein, as assessed by immunofluorescence. HEK293T cells stably expressing HA-tagged proteins were

stained with anti-HA (red), anti-Giantin (Golgi marker, green) and 4�,6-diamidino-2-phenylindole (DAPI, nuclei, blue). Individual stainings for HA and

Giantin are shown in greyscale and a merged image is shown in color. Scale bars indicate 10 mm.

DOI: 10.7554/eLife.14473.016

The following figure supplements are available for figure 7:

Figure supplement 1. Identification and validation of TMEM5 as the disease gene in a WWS family.

Figure 7 continued on next page
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well as in cultured skin fibroblast samples (P2, Figure 7A). To demonstrate the pathogenicity of the

identified TMEM5 mutations, we conducted complementation assays on skin fibroblasts derived

from the first child (P1). In the patient cells, expression of wildtype TMEM5 fully restored functional

glycosylation while the p.G333R mutant protein did not (Figure 7B). Functional rescue of patient

cells supports the interpretation that TMEM5 p.G333R has pathogenic relevance and causes WWS.

Furthermore, we determined whether the identified TMEM5 p.G333R variant affects expression and

localization of the mutant protein. HA-tagged wildtype and p.G333R TMEM5 constructs were trans-

fected into in HEK293 cells. Immunofluorescence and co-localization with a Golgi marker Giantin

confirmed that both proteins are expressed and localize to the Golgi apparatus without significant

ER mislocaliztion (Figure 7D). This result shows that the loss of TMEM5 function in the WWS patients

Figure 7 continued

DOI: 10.7554/eLife.14473.017

Figure supplement 2. Clinical presentation and a-DG glycosylation defect in TMEM5-WWS patient P2.

DOI: 10.7554/eLife.14473.018
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is not caused by a cellular processing defect, but rather directly affects the catalytic domain and

abrogates the proposed xylose glycosyltransferase activity.

Model of the proposed a-DG functional glycan structure and enzymes
that contribute to its synthesis
Collectively our data supports a model of a functional glycan structure on a-DG where the phos-

phorylated trisaccharide, which we previously identified (Yoshida-Moriguchi et al., 2010), is

extended by a ribitol (by an unknown enzyme(s) but presumably Fukutin and/or FKRP) in a phospho-

diester linkage followed by the addition of a priming Xyl (added by TMEM5) and GlcA (added by

B4GAT1) before extension with the repeating disaccharide matriglycan by LARGE (Figure 8A).

Mutations in all of the enzymes in this pathway have been demonstrated to generate secondary dys-

troglycanopathies in patients (Wells, 2013; Yoshida-Moriguchi and Campbell, 2015;

Dobson et al., 2013; Endo, 2015; Stalnaker et al., 2011). Further, ISPD, similar to the DPM1/2/3

enzyme complex that generates dolichol-phosphomannose (Figure 8B) for initial mannosylation,

generates CDP-ribitol (Figure 8C) for ribosylation of the phosphotrisaccharide. Both of these pro-

cesses are involved in the generation of donors for the enzymes involved in functional glycosylation

of a-DG and as such CMD resulting from these enzymes should then be referred to as tertiary dys-

troglycanopathies (Vuillaumier-Barrot et al., 2012; Lefeber et al., 2009).

Discussion
Initiation and further extension of O-Man glycans on a-DG is required for proper recognition by

ECM proteins (Yoshida-Moriguchi and Campbell, 2015; Dobson et al., 2013; Endo, 2015;

Endo and Manya, 2006). Failure of proper glycan elaboration is causal for a significant subset of

congenital muscular dystrophies (CMD) referred to as dystroglycanopathies that range from severe

Walker-Warburg syndrome (WWS) to the much milder Limb-Girdle muscular dystrophy (LGMD) pre-

sumably resulting from the severity of the mutation on enzyme expression, stability, localization,

and/or activity (Wells, 2013; Stalnaker et al., 2011; Muntoni et al., 2011). We and others have

worked for the last two decades on elucidating the functional O-Man glycan structures that are

essential for effective interactions with extracellular matrix proteins and defective in CMD (reviewed

recently in Praissman and Wells, 2014). Here, we have further elucidated the functional glycan

structure and attempted to assign the enzymes responsible for each step in the biosynthetic

pathway.

This work extended our previous studies demonstrating a phosphodiester linkage bridging from

the phosphotrisaccharide to the extended LARGE-dependent Xyl-GlcA repeat on a-DG (Yoshida-

Moriguchi et al., 2010). We previously identified the M3 phosphotrisaccharide glycan structure fol-

lowing aqueous HF treatment and assigned its sites of modification on the a-DG polypeptide (Yosh-

ida-Moriguchi et al., 2010). In the present study we examined the structure of the glycan released

from polypeptide upon HF cleavage of the phosphodiester linkage (Figure 8). To simplify the analy-

sis, the length of the LARGE-dependent repeat was reduced by overexpression of a small IIH6-reac-

tive fragment of a-DG (28 amino acids) containing only one M3 site (TPT, 317–319) as a fusion

protein in HEK293F cells, which express low levels of LARGE. Following HF release, we were able to

identify pentitol-Xyl-GlcA by tandem mass spectrometry, as well as further extended versions

(Figure 2).

We were somewhat surprised to find pentitol (a reduced sugar polyol) attached to the xylose.

Assuming that this reduced sugar was likely transferred as an activated sugar nucleotide, we

attempted to identify a mammalian CDP-ribitol pyrophosphorylase. ISPD was a reasonable candi-

date since, as a putative cytosolic nucleotidyltransferase (Vuillaumier-Barrot et al., 2012), it is

mutated in a subset of CMD and LGMD patients (Willer et al., 2012; Cirak et al., 2013), and bacte-

rial homologs participate in the synthesis of CDP activated alcohols (Baur et al., 2009;

Richard et al., 2001). Purified recombinant enzyme was able to synthesize CDP-ribitol from ribitol-

phosphate and CTP demonstrating that it is indeed a CDP-ribitol pyrophosphorylase (Figure 3). Dur-

ing the preparation of our manuscript, a study was published demonstrating that CDP-ribose, CDP-

ribitol, and CDP-ribulose could all be generated by mammalian ISPD consistent with our present

results (Riemersma et al., 2015). These findings also lend themselves to considering the source of

ribitol-P in mammals that likely is generated from ribose-5-phosphate, from the pentose phosphate
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pathway, by the action of aldose reductase (Perl et al., 2011). Alternatively, given that ISPD can act

on ribitol-phosphate and ribose-phosphate, it is possible that the reduction occurs after the forma-

tion of the sugar nucleotide CDP-ribose to form CDP-ribitol. Further investigation of kinetic con-

stants and cellular abundances need to be pursued to determine the order of events. Furthermore,

no CDP-ribitol transporter into the secretory pathway has been identified yet. Given the facts that

mutations in SLC35A1, a proposed CMP-sialic acid transporter, have been implicated in decreased

functional glycosylation of a-DG that is independent from sialic acid (Jae et al., 2013;

Riemersma et al., 2015) and that sugar nucleotide transporters often have higher selectivity for the

nucleotide than the sugar, it is inviting to speculate that SLC35A1 is a CDP-ribitol transporter though

this remains to be formally tested.

Given that ISPD could generate CDP-ribose and CDP-ribitol we wanted to confirm that it was ribi-

tol and not ribose that was transferred into the functional O-Man glycan on a-DG. Further, we

wanted complementary experimental evidence that would be consistent with the phosphodiester

cleavage study that the ribitol was connected directly to the phosphotrisaccharide of a-DG. Both

reduced and non-reduced glycans are susceptible to cleavage by mild periodate treatment between

vicinal diols (Collins et al., 1997). If ribitol was indeed inserted between the phosphotrisaccharide

and the priming xylose, one would expect loss of IIH6 reactivity from the a-DG-340 fusion protein as

we observed (Figure 4—figure supplement 2). Furthermore, mass spectrometry analysis of the

resulting peptides revealed cleavage between carbons 2–3 and between 3–4 of the ribitol (Figure 4).

We also observed phosphotrisaccharide glycopeptides with an additional phosphate moiety sug-

gesting that the M3 trisaccharide can have 2 phosphates connected directly to it (one is at the 6-

position of Man and the other we could not resolve). These data are highly suggestive that an M3

phosphate oxygen is connected to the C1 carbon while the xylose is connected to the C5 carbon of

the ribitol (note that given the structure of ribitol, C1 and C5 are equivalent and thus we have cho-

sen to use a numbering system that is most consistent with other sugar nucleotides) (Figure 8).

Based on our proposed structure, we also predicted a xylose transferase to further elongate the

structure and serve as a substrate for B4GAT1 extension with GlcA as a primer for LARGE addition

of matriglycan. Given that mutations in TMEM5 have recently been described as being causal for

CMD and that the putative enzyme shows sequence homology to glycosyltransferases (Vuillaumier-

Barrot et al., 2012; Jae et al., 2013), we explored the possibility that TMEM5 was a xylose transfer-

ase (Figure 5). We were able to confirm that recombinant TMEM5 was able to hydrolyze UDP-Xyl

but not other UDP-sugars. We also observed that while ribitol and ribitol-5-P were not acceptors in

vitro that CDP-ribitol was an acceptor for TMEM5 catalyzed transfer of Xyl from UDP-Xyl likely due

to mimicking the phosphodiester linkage of the ribitol in the glycopeptide structure. Further, recom-

binant TMEM5 was able to transfer radiolabeled Xyl from UDP-Xyl to a-DG-Fc340 expressed in a

CMD patient cell line with a homozygous mutation in TMEM5 but was not able to effectively transfer

to a-DG-340 when the putative M3 sites (TPT, 317–319, converted to APA) were eliminated. This

data taken together strongly suggests that TMEM5 adds Xyl to ribitol when the ribitol is in a phos-

phodiester linkage. Given the scarcity of studies on TMEM5, we further characterized the functional

relevance of TMEM5 in a zebrafish knockdown model and observed a severe CMD phenotype (Fig-

ure 6). Further, we identified a novel p.G333R TMEM5 mutation in a consanguineous family with 2

children affected by WWS. We demonstrated that wildtype TMEM5 but not the p.G333R TMEM5

mutant construct could complement the mutation in the patient cell line with regards to functional

a-DG (Figure 7B,C). Subcellular localization studies showed normal expression and localization of

the mutant protein, suggesting that the p.G333R missense mutation in the predicted catalytic site

likely interferes with enzymatic activity (Figure 7D). Thus, we propose that TMEM5 modifies the ribi-

tol in a phosodiester linkage with a xylose and B4GAT1 then extends the structure with a GlcA to

serve as a primer for LARGE extension with the repeating Xyl-GlcA disaccharide, matriglycan.

In summary, it appears that synthesis of the functional glycan on a-DG requires nearly a dozen

enzymes, many of which presumably are exclusively used on a select set of sites on a-DG (Figure 8).

While we have further elucidated a functional glycan structure required for interaction with extracel-

lular matrix proteins, several questions remain. For instance, while we have postulated that FKRP

and/or Fukutin are involved in the transfer of ribitol using CDP-ribitol as the donor, we have not for-

mally tested this activity due primarily to technical difficulties with expressing these two proteins.

Also, while we have confirmed that TMEM5 is a xylose transferase that can add to a ribitol that is in

a phosphodiester linkage, we have not experimentally validated its transfer to a ribitol-
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phosphotrisaccharide modified peptide for the same reasons as above. Furthermore, the generation

of the functional glycan in quantities necessary to assign anomeric configurations and confirm link-

ages in the structure is still required. During the revision of this manuscript, a manuscript was pub-

lished that addresses many of our outstanding questions (Kanagawa et al., 2016). In particular,

Toda and colleagues were able to establish that Fukutin acts to add a ribitol-P in a phosphodiester

linkage to the GalNAc of the phosphotrisaccharide that is then extended with an additional ribitol-P

by FKRP before elaboration with Xyl by an unknown enzyme (shown here to be TMEM5)

(Kanagawa et al., 2016). All of our data presented here is completely consistent with the structure

proposed by Toda and colleagues.

In future studies, we would like to determine if there are other sites of functional glycosylation

beyond the 317/319 and 379/381 sites on a-DG that we have previously identified (Yoshida-

Moriguchi et al., 2013; Yoshida-Moriguchi et al., 2010). It is also puzzling that while many sites on

a-DG and even on other proteins, such as cadherins (Vester-Christensen et al., 2013), are O-Man

modified, only a select few sites on a-DG appear to become modified with M3 glycans containing

matriglycan for interaction with ECM proteins. The evolution of such a complex biosynthetic pathway

for a few sites on a single protein is an enigma. Understanding this exclusivity as well as the role of

M1 and M2 glycans in biology is a major future challenge. In closing, we have defined the role of

additional enzymes in the O-Mannosylation pathway and further elucidated a functional glycan struc-

ture on a-DG for binding to ECM proteins that is lacking in many secondary and tertiary

dystroglycanopathies.

Materials and methods

Materials
Chemical reagents were primarily purchased from Sigma-Aldrich (St. Louis, MO) at reagent grade or

better. Microcon centrifugal filters were purchased from EMD Millipore (Billerica, MA) as were

IIH6C4 antibody stocks. Liquid chromatography and mass spectrometry systems were purchased

from Thermo Scientific (Waltham, MA). Glycosidases were purchased from ProZyme (Hayward, CA).

Spin columns were purchased from Nest group (Southborough, MA). Software was from Thermo Sci-

entific, Protein Metrics (San Carlos, CA) and EuroCarbDB (Damerell et al., 2015).

a-DG-340 preparation and purification
A truncated form of recombinant a-DG (residues 1–340 of human DAG1, Uniprot Q14118) was

expressed by transient transfection of suspension culture HEK293F cells as a soluble secreted fusion

protein (lacking amino acids 1–312 following furin cleavage in the secretory pathway). The fusion

protein coding region was designed, codon optimized, and chemically synthesized by Life Technolo-

gies (Thermo Fisher Scientific, Waltham, MA) and subcloned into a mammalian expression vector

(Barb et al., 2012) that provided a COOH-terminal fusion of the 7 amino acid recognition sequence

of the tobacco etch virus (TEV) protease (Tözsér et al., 2005), the ’superfolder’ GFP coding region

(Pédelacq et al., 2006), an AviTag recognition site for in vitro biotinylation (Beckett et al., 1999),

followed by an 8xHis tag (construct designated a-DG340-pGEc2). The vector employs a CMV-based

promoter and enhancer sequences to drive recombinant protein expression and the NH2-terminal

signal sequence of a-dystroglycan to target entry into the secretory pathway and secretion from the

cell. Recombinant expression of the a-DG340 fusion protein in HEK293F cells (Freestyle 293-F cells,

ThermoFisher Scientific, verified by RNA-Seq and tested routinely for mycoplasma contamination by

PCR, not on the commonly misidentified cell line registry) and purification of the protein from the

conditioned medium by Ni2+-NTA chromatography was carried out as previously described

(Meng et al., 2013). Briefly, cells were pelleted by centrifugation at 1000 x g for 10 min, 5 days

post-transfection, and the cell culture medium containing GFP-a-DG340- was subjected to Ni-NTA

chromatography. GFP-hTMEM5 was eluted with 300 mM imidazole. Fractions containing GFP-a-

DG340 were pooled, buffer exchanged into phosphate-buffered saline (PBS, pH 7.2) and concen-

trated to 1 mg/mL using an Amicon Ultra-15 Centrifugal Filter Unit equipped with a 30,000 NMWL

membrane (EMD Millipore).
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a-DG post-phospho moiety release and purification
Purified a-DG-340 (~100 mg) that only contains AA 313–340 of a-DG was buffer exchanged into

Milli-Q water using an EMD Millipore 10 kDa NMWL Microcon centrifugal filter according to manu-

facturer’s instructions (20 min centrifugation, 13,500 x g, 25˚C, final ratio 1:250). Final imidazole con-

centration and protein concentration were assessed by NanoDrop ND-1000 spectroscopy (A230 and

A280). The purified protein preparation was dried down in a SpeedVac and treated with cold aque-

ous 48% hydrofluoric acid (Sigma) on ice at 4˚C overnight to cleave phosphodiester bonds. HF was

removed by drying with N2 gas on ice. Residual trace HF was removed by resuspending with 100 ml

Milli-Q H2O several times and SpeedVac drying (Yoshida-Moriguchi et al., 2010). Released glycans

were separated from protein by C18 reverse-phase desalting using Nest Group Macrospin columns

with 0.1% formic acid (flow-through and washes containing released glycans).

Glycan permethylation
Permethylation was carried out as described (Kumagai et al., 2013). The dichloromethane and

aqueous fractions were each analyzed separately.

Full MS and total ion monitoring of permethylated glycans
Permethylated glycans were resuspended in ~30 ml of 50% MeOH with 1 mM NaOH and loaded into

a Hamilton syringe for direct infusion at 0.5 ml/min into an Orbitrap XL (Thermo Scientific). Orbitrap

full MS scans and total ion monitoring (TIM) data were acquired for the organic fraction and sepa-

rately for the aqueous fraction from the permethylation procedure. Full MS scans were acquired for

30 s in m/z range 300–2000 and separately in m/z range 600–2000 with AGC target 2e5, spray volt-

age 2 kV in positive mode. The TIM method consisted of ion trap scans in positive mode from 400–

2000 with parent mass step 2.0, CID activation, isolation width 2.2, 38 normalized collision energy

and ITMS MSn AGC target 1e4. Data were analyzed and annotated using a combination of Chem-

Draw Professional 15.0 with additional structure information from pubchem.ncbi.nlm.nih.gov and

Glycoworkbench 2.1 (Damerell et al., 2015).

Mild periodate treatment
Mild periodate treatment was carried out according to protocols published previously (Collins et al.,

1997). Purified a-DG-340 (~200 mg) was buffer exchanged into PBS pH 7.2 using an EMD Millipore

10 kDa NMWL Microcon centrifugal filter as above. An aliquot was removed for mock treatment

(omission of periodate only). NaIO4 in Milli-Q H2O was added to achieve a final concentration of

2 mM and the sample was incubated in the dark at 4˚C for 90 min. Ethylene glycol was added to a

final concentration of 10 mM to both samples (for consumption of excess periodate in the periodate

treated sample) and incubated for 5 min at room temperature. NaBH4 (5 M in 2.5% NaOH) was then

added to both samples to a final concentration of 250 mM (pH>13) and the samples were incubated

at room temperature for 1 hr. Samples were neutralized with 10% acetic acid and then concentrated

and buffer exchanged into 40 mM NH4HCO3 using EMD Millipore 10 kDa NMWL Microcon centrifu-

gal filters (final ratio 1:100). Flow-through was saved for glycan analysis. Aliquots of buffer

exchanged protein were saved for dot blot analysis.

Glycosidase treatment
Buffer exchanged protein samples as well as C18 purified tryptic peptides were treated with the Gly-

coPro Enzymatic Deglycosylation Kit along with the prO-LINK Extender from Prozyme (http://pro-

zyme.com/products/gk80115) in 100 mM MES pH 6.5. Sialidase A, O-Glycanase, b (Ervasti et al.,

1990; Yoshida and Ozawa, 1990; Carmignac and Durbeej, 2012; Dong et al., 2015) Galactosidase

and b-N-acetylglucosamindase were applied simultaneously and incubated for six hours at 37˚C.

Trypsin digestion
Prior to glycosidase treatment, samples for MS analysis were digested according to standard proto-

cols (Fakhouri et al., 2006; Stalnaker et al., 2010).
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Dot blots
a-DG-340 and processed samples were analyzed by dot blot on PVDF membranes. IIH6C4 antibody

(Millipore) was used as primary. Dot blots were carried out with serial dilutions and secondary con-

trols alone (not shown).

Glycopeptide LC-MSn and data analysis
Glycopeptides were analyzed on Orbitrap Fusion and Orbitrap Fusion Lumos instruments with liquid

chromatography carried out using an Acclaim PepMap RSLC C18 2 mm particle 15cm column on an

Ultimate 3000 (Thermo/Dionex). Buffer A was 0.1% formic acid, buffer B was 80% acetonitrile and

0.1% formic acid. The column was heated to 45˚C, equilibrated for 5 min, and a linear gradient from

5%B to 45%B was run over the course of 120 min with a 300 ml/min flow rate. The column was

cleaned after each run by ramping to 99%B for 10 min and then returning to 5%B to re-equilibrate.

Spray was via a stainless steel emitter with spray voltage set to 2200 V, ion transfer tube tempera-

ture 280˚C. MS methods consisted of full MS scans in the Orbitrap, generally from 500–1700 m/z

with quadrupole isolation. Peptide MIPs, charge state selection allowing for states 2–7, dynamic

exclusion for 30 s after 2 selections with tolerance of 15 ppm on each side, and precursor priority of

MostIntense were used. All MS2 and MS3 scans were analyzed in the ion trap. One branch consisted

of CID scans with pseudo-loss triggered CID and HCD for phosphate, hexose and hexnac combina-

tions with either no charge loss or a charge loss of +1. A second branch consisted of an HCD node

leading to product ion triggered ETD given the observation of at least 3 oxonium ions generated by

either hexose or hexnac with at least 20% relative intensity. ETD nodes were typically set for reaction

times of 100–200 ms, ETD reagent targets of 2e5 or 4e5 and supplemental activation (primarily

EThcD) depending on m/z. Higher m/z ions were subjected to to 40%–45% supplemental activation

to disrupt low charge density clusters. Data was analyzed with Preview and Byonic versions 2.6 and

2.7 as well as by manual interpretation using Thermo Xcalibur.

Expression and purification of human ISPD
The DNA coding sequence for human ISPD (Residues 43–451, Uniprot A4D126) was generated by

gene synthesis (Life Technologies, ThermoFisher Scientific) with sequences appended to the NH2-

terminus comprised of a Kozak sequence followed by an initiating methionine, an 8�His-tag and a

TEV-protease cleavage site and the ISPD synthetic gene followed by a termination codon at the end

of the ISPD coding region. The resulting sequence was subcloned into the pGEc2 vector as

described for the a-DG340-pGEc2 construct except the presence of the termination codon pre-

cluded the inclusion of the vector encoded COOH-terminal fusion sequences. Suspension culture

HEK293 cells (FreeStyle 293-F cells, ThermoFisher Scientific) were transiently transfected with the

ISPD-pGEc2 plasmid as described for the a-DG340-pGEc2 construct. Cells were harvested by centri-

fugation at 1000 x g for 10 min, 5 days post-transfection. The cell pellet was resuspended in lysis

buffer [25 mM HEPES-NaOH pH 7.2, 400 mM NaCl, 20 mM imidazole, 0.3% Triton X-100, and 1�

Protease Inhibitor Cocktail Set V, EDTA-Free (Calbiochem)] on ice, lysed by probe sonication for 3

cycles (15 s on, 15 s off at 40% intensity), and the cell lysate was centrifuged at 18,000 x g at 4˚C for

30 min. The supernatant was subjected to Ni-NTA chromatography, and His8-hISPD was eluted

using 300 mM imidazole. Fractions containing His8-hISPD were pooled, buffer exchanged into Tris-

buffered saline (TBS, pH 8.0) and concentrated to 0.3 mg/mL using an Amicon Ultra-15 Centrifugal

Filter Unit equipped with a 30,000 NMWL (nominal molecular weight limit) membrane (EMD

Millipore).

Expression and purification of human dTM-TMEM5
The DNA coding sequence for human transmembrane deleted dTM-TMEM5 (residues 33–443, Uni-

prot Q9Y2B1) was generated by gene synthesis (Life Technologies, ThermoFisher Scientific) and

subcloned into a mammalian expression vector (pGEn2) containing an amino-terminal signal

sequence, 8�His-tag, AviTag, and ’superfolder’ GFP followed by a TEV-protease cleavage site

(Meng et al., 2013). Suspension culture HEK293 cells (FreeStyle 293-F cells, Invitrogen) were tran-

siently transfected with the TMEM5-pGEn2 plasmid to generate a soluble secreted GFP-dTM-

hTMEM5 and the protein was harvested, purified, and concentrated as described for a-DG340.

Praissman et al. eLife 2016;5:e14473. DOI: 10.7554/eLife.14473 17 of 28

Research article Biochemistry Human biology and medicine

http://dx.doi.org/10.7554/eLife.14473


TMEM5 sugar-nucleotide specificity assay
Ultra Pure UDP-Glc, UDP-GlcNAc, UDP-Gal, UDP-GalNAc, and UDP-GlcA, were purchased from

Promega. Ultra Pure UDP-Xyl was prepared by incubating 10 mmol UDP-Xylose (Carbosource, Uni-

versity of Georgia) with 3 units of Calf Intestinal Alkaline Phosphatase (CIAP, Promega) in 1� CIAP

Buffer (50 mM Tris-HCl pH 9.3, 1 mM MgCl2, 0.1 mM ZnCl2 and 1 mM spermidine) at 37˚C for 16 hr.

CIAP was used to degrade any contaminating nucleotide diphosphates that may contribute to back-

ground levels in the downstream UDP-Glo Glycosyltransferase Assay (Promega). Reactions were

allowed to incubate for 16 hr and were stopped by removal of CIAP by filter centrifugation through

a Microcon-10 kDa Centrifugal Filter Unit with Ultracel-10 membrane (EMD Millipore).

Specificity of GFP-hTMEM5 sugar-nucleotide hydrolysis was performed by incubation of

3 mM GFP-hTMEM5 with 50 mM of UDP-sugar (Ultra Pure UDP-Glc, UDP-GlcNAc, UDP-Gal, UDP-

GalNAc, UDP-GlcA, or UDP-Xyl) in the absence of an acceptor substrate in a 20 mL reaction contain-

ing 0.1 M MES pH 6.0 and 10 mM MgCl2 at 37˚C for 18 hr. Detection of free UDP after hydrolysis of

the sugar-nucleotide was performed using the UDP-Glo Glycosyltransferase Assay Kit (Promega)

which detects released UDP by converting UDP to ATP and then light in a luciferase reaction, which

can be measured by a luminometer. Luminescence detected is directly proportional to UDP concen-

tration, as determined by a UDP standard curve from 0 to 25 mM. Essentially, each sugar-nucleotide

hydrolysis reaction was combined in a ratio of 1:1 (5 mL:5 mL) with the UDP-Glo Detection Reagent

from the assay kit in separate wells of a white, flat bottom 384-well assay plate (Corning) and

allowed to incubate at room temperature for 1 hr. Luminescence was measured in triplicate using a

Promega GloMax-Multi+ Microplate Luminometer.

Preparation of CDP-ribitol and CDP-ribose
Ribitol (adonitol), D-ribose, ribose-5-phosphate, and cytidine 5’triphosphate (CTP) were purchased

from Sigma-Aldrich. Ribitol-5-phosphate was prepared essentially as previously described

(Baddiley et al., 1956). Confirmation of ribitol-5-phosphate was performed by 1D NMR, in addition

to observing the complete disappearance of ribose-5-phosphate anomeric signals after reduction by

sodium borohydride. Quantification of ribitol-5-phosphate was performed by peak integration of the

1H signals in the 1D 1H NMR spectrum compared to the internal standard 2,2-dimethyl-2-silapen-

tane-5-sulfonate (DSS) at 0.00 ppm (data not shown).

TMEM5 glycosyltransferase assay
GFP-dTM-hTMEM5 (from 0 to 2500 nM) was incubated with 1 mM acceptor substrate and 50 mM

UDP-Xyl donor substrate at 37˚C in a reaction containing 0.1 M MES pH 6.0 and 10 mM MgCl2 for

18 hr. Detection of free UDP after hydrolysis of the sugar-nucleotide was performed using the UDP-

Glo Glycosyltransferase Assay (Promega) as described above. CMP-Neu5Ac was purchased from

Sigma-Aldrich.

Measuring pyrophosphorylase activity
To prepare cytidine diphosphate ribitol (CDP-ribitol) and cytidine diphosphate ribose (CDP-ribose),

2 mM His8-hISPD was incubated at 37˚C with either 1 mM ribitol-5-phosphate or 1 mM ribose-5-

phoshate as the acceptor substrate in a reaction containing 50 mM Tris-HCl pH 7.4, 1 mM MgCl2,

1 mM DTT, and 1 mM CTP. Reactions were allowed to incubate for 16–18 hr and were stopped by

removal of His8-hISPD by filter centrifugation through a Microcon-10kDa Centrifugal Filter Unit with

Ultracel-10 membrane (EMD Millipore). Reaction products were confirmed using a linear ion trap-

Fourier transform mass spectrometer (LTQ-Orbitrap Discovery, Thermo-Fisher, San Jose, CA). Reac-

tion products were mixed with an equal volume of 80% acetonitrile and 0.1% formic acid and ana-

lyzed by direct infusion in negative ion mode using a nanospray ion source with a fused-silica emitter

(360 � 75 � 30 mm, SilicaTip, New Objective) at 1.5 kV capillary voltage, 200˚C capillary tempera-

ture, and a syringe flow rate of 1 mL/min. All products were confirmed by MS/MS ion trap mass spec-

trometry (ITMS) acquired at 45% collision-induced dissociation (CID) and 2 m/z isolation width.

DGFc4 glycosidase and IIH6 assays
5mg aliquots of DGFc4 previously purified from the media of HEK293H cells co-transfected with

LARGE (Yoshida-Moriguchi et al., 2010) was incubated overnight with each of the following
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glycosidases: chondroitinase A,B,C, sialidase A, heparinase I, heparinase II, and b-N-acetylhexosami-

nidase. Additionally, 5 mg of DGFc4 was treated with HF as reported previously (Yoshida-

Moriguchi et al., 2010). All samples were later separated by SDS-PAGE, transferred, and immuno-

blotted with IIH6 for assessment of functionally active a-DG.

Cell cultures
Cells were maintained at 37˚C and 5% CO2 in Dulbecco’s modified Eagle’s medium (DMEM) plus

fetal bovine serum (FBS: 10% in the case of HEK293T cells, 20% in the case of fibroblasts from

patient skin) and 2 mM glutamine, 0.5% penicillin-streptomycin (Invitrogen, Carlsbad, CA). Myco-

plasma free conditions were verified by PCR and cell lines used are not on the registry of commonly

misidentified cells.

Cloning of C-terminal HA-tagged TMEM5 wildtype and TMEM5 p.
G333R mutant constructs
The human TMEM5 coding sequence was PCR amplified and a C-terminal HA epitope-tag was intro-

duced with PCR adapters using the following primer sequences:

hTMEM5-HA wildtype (1.3 kb), pTW292: forward (5’-agactcgagaccATGcggctgacgcggaagcg-3’,

where the XhoI adapter is bolded and the start ATG codon is shown in capital letters) and reverse

(5’- cttgcggccgcCTAAGCGTAGTCTGGGACGTCGTATGGGTAgctagccccacttttattattcattaaaaatg-3’;

the NotI adapter is bold and the HA-tag is shown in capital letters). The hTMEM5-HA PCR fragment

(TMEM5, NM_014254) was subloned in pIRES-hygromycin.

hTMEM5-HA mutant (c.997 G>A, p.G333R) (1.3 kb), pTW293: To generate the human TMEM5-

HA p.G333R mutant expression construct, we introduced the missense mutation in the wildtype tem-

plate pTW292 using a QuikChange site-directed mutagenesis kit (Agilent Technologies, Santa Clara,

CA) with overlapping primers that included the respective mutation: forward 5’-gtgcccggtcAgag-

taaacacagaatg-3’ and reverse: 5’-gtgtttactcTgaccgggcacaatgtg -3’. The introduced mutation is

highlighted (capital bold letter). The sequence of the insert DNA was confirmed by Sanger

sequencing.

Adenovirus generation and gene transfer
E1-deficient recombinant adenoviruses (Ad5CMV-a-DG-Fc340, Ad5CMV-a-DG-Fc340 mut (TPT,

317–319 to APA) and Ad5CMV-LARGE/RSVeGFP) were generated by the University of Iowa Gene

Transfer Vector Core and have been described previously (Barresi et al., 2004). The constructs used

to generate the E1-deficient recombinant adenoviruses Ad5CMV-a-DG-Fc340 and Ad5CMV-a-DG-

Fc340 mut (TPT, 317–319 to APA) were made from pcDNA3-a-DG-Fc340 and pcDNA3-a-DG-Fc340

mut (TPT, 317–319 to APA) (Hara et al., 2011). pcDNA3-a-DG-Fc340 vectors were digested with

KpnI/XbaI, and the resulting fragments were ligated into a KpnI/XbaI-digested pacAd5-CMV-NpA

vector. To generate Ad5CMV-TMEM5-Myc/RSVeGFP we cloned a 1.3 kb XhoI/SpeI hTMEM5-Myc

fragment corresponding to human TMEM5 (TMEM5, NM_014254) from pTW170 into the XhoI/SpeI

polylinker region of pAd5CMVK-NpA (pTW174). Cultured cells were infected with viral vectors for

12 hr, at an MOI of 200. We examined cultures 3–5 d after treatment.

We also used nucleofection as a non-viral method for gene transfer into cells. Nucleofection of

fibroblasts was performed using the Human Dermal Fibroblast Nucleofector Kit, according to an

optimized protocol provided by the manufacturer (Amaxa Biosystems, Germany).

Glycoprotein enrichment and biochemical analysis
Zebrafish embryos (48 h.p.f.) were deyolked, followed by microsome preparation and western blot

analysis as previously described (Roscioli et al., 2012; Link et al., 2006). Relative signal intensity of

western blot was quantified using ImageJ software.

WGA-enriched glycoproteins from frozen samples and cultured cells were processed as previ-

ously described (Michele et al., 2002). Immunoblotting was carried out on polyvinylidene difluoride

(PVDF) membranes as previously described (Michele et al., 2002). Blots were developed with IR-

conjugated secondary antibodies (Pierce Biotechnology, Rockford, IL) and scanned with an Odyssey

infrared imaging system (LI-COR Bioscience, Lincoln, NE).
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The monoclonal antibodies to the fully glycosylated form of a-DG (IIH6) (Ervasti and Campbell,

1991), and also the polyclonal antibodies rabbit b-dystroglycan (AP83) (Duclos et al., 1998) were

characterized previously. G6317 (core-a-DG) from rabbit antiserum was raised against a keyhole lim-

pet hemocyanin (KLH)-conjugated synthetic peptide of human dystroglycan (Willer et al., 2012).

Mouse monoclonal anti-c-Myc (clone 4A6) antibodies were purchased from Millipore (Billerica, MA).

Laminin overlay assays
Laminin overlay assays were performed on PVDF membranes using standard protocols

(Michele et al., 2002).

Immunofluorescence microscopy
HEK293T cells were transfected with TMEM5-HA constructs using FuGENE 6 (Roche Applied Sci-

ence, Penzberg, Germany). After 48 hr cells were fixed with 4% paraformaldehyde in PBS and per-

meabilized with 0.2% Triton X-100 in PBS for 10 min on ice. After blocking with 3% BSA in PBS, the

slides were incubated with monoclonal anti-HA antibody (Clone 16B12, COVANCE, Emeryville, CA)

rabbi-polyclonal anti-Giantin (ab24586, Abcam, Cambridge, MA) for 18 hr at 4˚C. The cells were

incubated with an appropriate secondary antibody conjugated to AlexaFluor488 or AlexaFluor555

fluorophore after washing with PBS. 4’,6’-Diamidino-2-phenylindole dihydrochloride (DAPI, Sigma,

St Louis, MO) was used for nuclear staining. Cryosections (10 mm thick) of the fetal skeletal muscle

sample were processed for immunofluorescence as described (Duclos et al., 1998). Mouse mono-

clonal antibodies included anti-alpha-dystroglycan (IIH6 and VIA4-1; Millipore, Billerica, MA), anti-

beta-dystroglycan (7D11; DSHB), anti-laminin a2 (anti-merosin, 5H2; Millipore, Billerica, MA), and

anti-spectrin (NCL-SPEC1; Leica, Buffalo Grove, IL). A rabbit polyclonal anti-dystrophin C-terminus

antibody was from Abcam (ab15278) and a goat polyclonal anti-alpha-dystroglycan core antibody

(Gt20) (Michele et al., 2002) were used. Secondary antibodies were conjugated with AlexaFluor488.

Nuclei were stained with DAPI by using ProLong Gold mounting medium (Molecular Probes/Ther-

moFisher, Waltham, MA). Images were obtained using a Zeiss Zeiss LSM710 confocal microscopy

(Carl Zeiss, Thornwood, NY).

On-Cell complementation and western blot assay
The On-Cell complementation assay was performed as described previously (Willer et al., 2012). In

brief, 2 � 105 cells were seeded into a 48-well dish. The next day the cells were co-infected with 200

MOI of Ad5RSV-DAG1 (Barresi et al., 2004) and Ad5CMV-TMEM5-Myc/RSVeGFP in growth

medium. Three days later, the cells were washed in TBS and fixed with 4% paraformaldehyde in TBS

for 10 min. After blocking with 3% dry milk in TBS + 0.1% Tween (TBS-T), the cells were incubated

with primary antibody (glyco a-DG, IIH6) in blocking buffer overnight. To develop the On-Cell West-

ern blots we conjugated goat anti-mouse IgM (Millipore, Billerica, MA) with IR800CW dye (LI-COR

Bioscience, Lincoln, NE), subjected the sample to gel filtration, and isolated the labeled antibody

fraction. After staining with IR800CW secondary antibody in blocking buffer, we washed the cells in

TBS and scanned the 48-well plate using an Odyssey infrared imaging system (LI-COR Bioscience,

Lincoln, NE). For cell normalization, DRAQ5 cell DNA dye (Biostatus Limited, United Kingdom) was

added to the secondary antibody solution.

TMEM5 [Xyl-14C] radioactive sugar donor in vitro assay
To generate a-DG-Fc340 and a-DG-Fc340-mut (TPT, 317–319 to APA) acceptor proteins, we

infected control and glycosylation-deficient TMEM5-WWS patient skin fibroblasts with Ad5-CMV a-

DG-Fc340 adenoviral vectors at an MOI of 400. At 4 days post-infection the secreted proteins were

isolated from the culture medium using Protein A-agarose beads (Santa Cruz, Dallas, TX). a-DG-

Fc340 bound Protein A-agarose beads were washed three times with TBS and Protein A slurry pre-

bound with ~25 mg a-DG-Fc340 was added to the in vitro TMEM5 assay. Enzyme reactions (25 ml)

were carried out at 37˚C for 6 hr, with 0.1 mCi UDP-Xyl [Xyl-14C] (final conc. 15.8 mM), in 0.1 M

MOPS buffer (pH 6.5) supplemented with 10 mM MnCl2, 10 mM MgCl2, 0.2% BSA and 1 mg purified

TMEM5 protein (Origene, Rockville, MD). The reaction was terminated by adding 25 ml of 0.1 M

EDTA. After four washes with TBS the Protein A-agarose-bound a-DG-Fc340 samples were analyzed
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by scintillation counting. [14C] labeled sugar nucleotides were purchased from ARC (American Radio-

labeled Chemicals, St. Louis, MO).

Antisense morpholino oligonucleotides (MO)
An antisense tmem5 MO targeting the translation start site was designed and ordered from Gene

Tools (Philomath, OR). The sequence of tmem5 MO is: 5’-CCGGCGAAAAAATCT(CAT)GTTGGAT-3’

(start codon in brackets with the 5’-UTR sequence underlined). Sequences of p53 and dag1 MOs

have been described (Robu et al., 2007; Parsons et al., 2002). MOs were injected into zebrafish

embryos by the 2-cell stage with concentration specified in the figures.

Molecular cloning of zebrafish tmem5 and mRNA synthesis
Full length tmem5 coding sequence was amplified from IMAGE cDNA clone (7450642) using PCR

primers to obtain a PCR product including 7 bases before start codon, yet excluding the stop codon.

The PCR product was subsequently cloned into pCS2+_EGFP expression vector using Gateway clo-

nase system (Invitrogen, Carlsbad, CA). Sense tmem5-egfp mRNA containing full tmem5 MO bind-

ing site was synthesized using mMESSAGE mMACHINE SP6 kit (Ambion, Austin, TX).

Reverse transcription, cDNA synthesis and PCR
Wildtype or MO-injected Zebrafish embryos were collected at specific stages and homogenized to

extract total RNA using TRIzol (Invitrogen, Carlsbad, CA). First-strand cDNA was synthesized using

SuperScript III (Invitrogen, Carlsbad, CA) with either oligo dT or random primers.

Statistical analysis in zebrafish
Eye width measurements were plotted as mean ± s.d. and statistical significance was determined

using one-way ANOVA, followed by Tukey HSD test. A p value smaller than 0.01 was considered sta-

tistically significant.

Evans blue dye (EBD) injection
0.1% EBD (Sigma) was injected into the blood circulation of zebrafish embryos at least 1 hr before

analysis. The sarcolemma integrity was then assessed using confocal and differential interference

contrast (DIC) microscopy at 48 h.p.f.

Human subjects and samples
All tissues and patient cells were obtained and tested according to the guidelines set out by the

Human Subjects Institutional Review Board of the University of Iowa; informed consent was obtained

from all subjects or their legal guardians.

Genotyping and IBD/HBD analysis
High molecular weight genomic DNA samples from three cases were genotyped on Illumina Omni-1

Quad BeadChip at the Southern California Genotyping Consortium (SCGC, http://scgc.genetics.

ucla.edu/) or Affymetrix Human Mapping 250K NSP at the UCLA Genome Sequencing Center

(http://gsc.ucla.edu/). Homozygosity-by-descent (HBD) analysis was performed using a custom Math-

ematica script available at Wolfram Research; B. Merriman, http://genome.ucla.edu/~hlee/script_

public/HBD_IBD/HBD_IBD_Script.nb and the interval file used is available as Source code. The HBD

analysis simply searches for long stretches of homozygous calls within each individual (Lee et al.,

2008). A conservative error rate of 1% was used to allow the algorithm to tolerate possible genotyp-

ing errors. Intervals over 10 cM with stretches of homozygous genotypes are indications that the

individual is a descendent of a consanguineous marriage. To evaluate the sharing between the sib-

lings, SNP positions where the genotypes were not only homozygous in each individual but also the

same allele were noted as shared.

Capture array design and targeted sequencing
Regions over 3 cM that were homozygous in each sample were identified and pairwise comparisons

were performed to find subset of the regions where the two affected individuals, TR and 02243-a,

were homozygous with the same allele and the unaffected individual, 02243-b, was heterozygous or
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homozygous with an alternate allele. All coding exon regions within those regions were retrieved

using six different exon/gene prediction models (RefSeq (refGene), UCSC (knownGene), Vertebrate

Genome Annotation genes (vegaGene), Ensembl genes (ensGene), consensus coding sequence

(ccdsGene), and Mammalian Gene Collection genes (mgcGene). In total, 6647 coding exons plus the

regions extending 10 bp on each side of each exon across 4 intervals were subject to capture probe

design using Agilent eArray (www.agilent.com). Agilent custom CGH array platform was chosen,

requiring the probes to have the melting temperature (Tm) around 80˚C (default) with probe trim-

ming allowed. Repeat regions were excluded for probe design by turning on the ‘Avoid Standard

Repeat Masked Regions’ option.

Genomic DNA was extracted from skin fibroblasts using Qiagen (Hilden, Germany) DNeasy Blood

& Tissue Kit was run on Qubit Fluorometer (Invitrogen) and Bioanalyzer (Agilent) for quality check.

For each sample, 3 mg of high molecular weight genomic DNA was used as starting material, the

sequencing library was prepared following Agilent SureSelect SureSelect Target Enrichment System

for Illumina Paired-End Sequencing Library Protocol (version 2.0.1). Instead of using the commercial

adapter, 3 different custom made bar-coded adapters were used; TR: Forward: ACA CTC TTT CCC

TAC ACG ACG CTC TTC CGA TCT TGA GT

Reverse: /5Phos/CTC AAG ATC GGA AGA GCG GTT CAG CAG GAA TGC CGA G

02243-a: Forward: ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT CAT CT

Reverse: /5Phos/GAT GAG ATC GGA AGA GCG GTT CAG CAG GAA TGC CGA G

02243-b: Forward: ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT AAT AT

Reverse: /5Phos/TAT TAG ATC GGA AGA GCG GTT CAG CAG GAA TGC CGA G. After amplifi-

cation, samples were pooled at equal molar concentration, captured on one array following an in-

house protocol (Lee et al., 2009) and sequenced on approximately 3/11th lane of Illumina

HiSeq2000 as 50bp paired-end reads, following the manufacturer’s protocol. The base-calling was

performed by the real time analysis (RTA) software provided by Illumina.

Sequence read alignment
The sequence reads were first de-barcoded using Novobarcode from Novocraft Short Read Align-

ment Package (http://www.novocraft.com/ index.html) and aligned to the Human reference genome,

human_g1k_v37.fasta using Novoalign. The reference genome downloaded from the GATK (The

Genome Analysis Toolkit) resource bundle (http://www.broadinstitute.org/gsa/wiki/index.php/Main_

Page) in November, 2010 was indexed using novoindex (–k 14 –s 3). The output format was set to

SAM and default options for alignment were applied except for the adaptor stripping option (-a)

and base quality calibration option (-k). Using SAMtools (http://samtools.sourceforge.net/) version

0.1.15, the SAM file of each sample was converted to BAM file and sorted, and potential PCR dupli-

cates were removed (rmdup) using Picard (http://picard.sourceforge.net/). Local realignment was

performed using GATK ‘IndelRealigner’ tool per sample. First, the ‘RealignerTargetCreator’ tool was

used to determine the locations that are potentially in need of realignment. The post-rmdup bam

file and the known SNP positions (Single Nucleotide Polymorphisms) in dbSNP132 were included as

inputs and ‘–mismatchFraction 0.10’ and ‘–realignReadsWithBadMates’ options were used. Using

the intervals created, reads were realigned and the mates were fixed using Picard’s ‘FixMateInforma-

tion’ tool. Base qualities were recalibrated using GATK ‘TableRecalibration’ tool by analyzing the

covariates for the reported base quality score of a base (QualityScoreCovariate), the combination of

a base and the previous base (DinucCovariate) and the machine cycle for a base (CycleCovariate).

Variant calling
Variants were called using GATK ‘Unified Genotyper’ tool simultaneously for all 8 samples. Small

indels were called with the ‘-glm DINDEL’ option. The dbSNP132 file downloaded from the GATK

resource bundle was used so that the known SNP positions are annotated in the output VCF (variant

call format) file. Variants with phred-scale Qscore of 50.0 or greater were reported as ‘PASS’-ed calls

and those with Qscore of 10.0 or greater and less than 50.0 were reported as ‘Low Qual’ calls. Var-

iants with Qscore less than 10.0 were not reported. Only the variants found within the protein cod-

ing regions of the captured exons were reported by using the –L option. The interval file used is

available as Source code. Using GATK ‘VariantFiltrationWalker’ tool, both the SNPs and INDELs

were hard-filtered to filter out low quality variants. The following parameters were used as
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suggested by GATK as standard filtration: 1) clusterWindowSize 10; 2) MAPQ0 (mapping quality of

zero) >40; 3) QD (Quality-by-depth) < 5.0; 4) SB (Strand Bias) > -0.10.

Variant annotation
The ‘PASS’-ed variants that are not found at dbSNP132 positions were annotated using SeattleSe-

qAnnotation version 6.16 (http://snp.gs.washington.edu/SeattleSeqAnnotation131/), separately for

SNPs and INDELs. Both NCBI full genes and CCDS 2010 gene models were used for the annotation.

For variants with multiple annotations, if the ‘functionGVS’ (Genome Variation Server class of func-

tion) was different while the ‘genelist’ value was same, the one with protein level change was

retained. Variants present in the 1000 Genomes database (March 2010 release) or dbSNP131 as well

as those resulting in coding-synonymous changes or found outside the coding region were removed

from further analysis.

Sanger sequencing
Genomic DNA was extracted from dermal fibroblast cell lines using a Qiagen (Hilden, Germany)

DNeasy Blood & Tissue Kit. The coding regions (6 exons) and exon-intron boundaries of TMEM5

were amplified using PCR (Primers sequences and PCR conditions are shown below). Primer sets for

PCR were designed using the web-based design tool ExonPrimer. After PCR amplification the puri-

fied products were evaluated by Sanger sequencing using standard protocols.

hTMEM5 patient sequencing primers

gDNA PCR amplification

primer ID primer name sequence length

7630 TMEM5g.E1F CTCCTCCAGTGTCGAAGGTG 20

7642 TMEM5g.E2R3 TGCTCTGCTAAAGACCAACAGTGG 24

7628 TMEM5g.E3F TGATTTGGAGCTGTTGCTTG 20

7627 TMEM5g.E3R TGTAAGATGTGGAGTATGAACTTTTC 26

7626 TMEM5g.E4F CCACATACCTTTGTTCAGGC 20

7625 TMEM5g.E4R CCTGGTTCAGAAATTCAGGTG 21

7624 TMEM5g.E5F GGAGTTTTCCAAAGTATTCATGG 23

7623 TMEM5g.E5R ATCTTCTGGGGAAAGATTGG 20

7622 TMEM5g.E6F AAGAAATCTGTTTGGGCCAG 20

7621 TMEM5g.E6R TGCAATACATATGTCATCACTAGGC 25

PCR sequencing

primer ID primer name sequence length

7641 TMEM5g.E1F2 ATGAGCCGCGACTGGAGG 18

7639 TMEM5g.E2F2 TTTTGTTTTCATTGTGTATTACCAG 25

8333 hTMEM5_E3F2 TGTTGCTTGATAGCACTGCCTG 22

8334 hTMEM5_E4F2 TGATGAATTTCTGATACCACATACC 25

8335 hTMEM5_E5F2 TAAGAGATTGGGTTATGGGG 20

8336 hTMEM5_E6F2 CCAGGATTTTGGATATCTCTTATG 24

Patient sequencing: hTMEM5

PCR amplify gDNA fragments

primer exons PCR fragment size in bp sequencing primer

7630/7642 exon1-2 1682 7641 exon1

7639 exon2

7628/7627 exon3 547 8333 exon3

7626/7625 exon4 433 8334 exon4

7624/7623 exon5 453 8335 exon5

7622/7621 exon6 833 8336 exon6
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PCR-Program

Temp. Duration

1) Denaturation 95 3 min

2) Cycles 95 30 s

3) Cycles (35x) 53 30 s

4) Cycles 72 1 min 30 s

5) Elongation 72 10 min
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Beltrán-Valero de Bernabé D, Currier S, Steinbrecher A, Celli J, van Beusekom E, van der Zwaag B, Kayserili H,
Merlini L, Chitayat D, Dobyns WB, Cormand B, Lehesjoki AE, Cruces J, Voit T, Walsh CA, van Bokhoven H,
Brunner HG. 2002. Mutations in the o-mannosyltransferase gene POMT1 give rise to the severe neuronal
migration disorder walker-warburg syndrome. American Journal of Human Genetics 71:1033–1043. doi: 10.
1086/342975

Carmignac V, Durbeej M. 2012. Cell-matrix interactions in muscle disease. The Journal of Pathology 226:200–
218. doi: 10.1002/path.3020

Chiba A, Matsumura K, Yamada H, Inazu T, Shimizu T, Kusunoki S, Kanazawa I, Kobata A, Endo T. 1997.
Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve alpha-dystroglycan. The role of a
novel O-mannosyl-type oligosaccharide in the binding of alpha-dystroglycan with laminin. The Journal of
Biological Chemistry 272:2156–2162.

Praissman et al. eLife 2016;5:e14473. DOI: 10.7554/eLife.14473 25 of 28

Research article Biochemistry Human biology and medicine

http://orcid.org/0000-0002-9481-8318
http://orcid.org/0000-0002-0435-7694
http://orcid.org/0000-0003-2066-5889
http://orcid.org/0000-0003-4956-5363
http://dx.doi.org/10.7554/eLife.14473.020
http://dx.doi.org/10.1002/0471142905.hg0720s76
http://dx.doi.org/10.1042/bj0640599
http://dx.doi.org/10.1021/bi300319q
http://dx.doi.org/10.1021/bi300319q
http://dx.doi.org/10.1038/nm1059
http://dx.doi.org/10.1038/nm1059
http://dx.doi.org/10.1128/JB.01120-08
http://dx.doi.org/10.1128/JB.01120-08
http://dx.doi.org/10.1110/ps.8.4.921
http://dx.doi.org/10.1086/342975
http://dx.doi.org/10.1086/342975
http://dx.doi.org/10.1002/path.3020
http://dx.doi.org/10.7554/eLife.14473


Cirak S, Foley AR, Herrmann R, Willer T, Yau S, Stevens E, Torelli S, Brodd L, Kamynina A, Vondracek P, Roper H,
Longman C, Korinthenberg R, Marrosu G, Nürnberg P, Michele DE, Plagnol V, Hurles M, Moore SA, Sewry CA,
et al. 2013. ISPD gene mutations are a common cause of congenital and limb-girdle muscular dystrophies.
Brain 136:269–281. doi: 10.1093/brain/aws312

Collins BE, Yang LJ, Mukhopadhyay G, Filbin MT, Kiso M, Hasegawa A, Schnaar RL. 1997. Sialic acid specificity of
myelin-associated glycoprotein binding. The Journal of Biological Chemistry 272:1248–1255. doi: 10.1074/jbc.
272.2.1248

Damerell D, Ceroni A, Maass K, Ranzinger R, Dell A, Haslam SM. 2015. Annotation of glycomics MS and MS/MS
spectra using the glycoworkbench software tool. Methods in Molecular Biology 1273:3–15. doi: 10.1007/978-1-
4939-2343-4_1

Dobson CM, Hempel SJ, Stalnaker SH, Stuart R, Wells L. 2013. O-mannosylation and human disease. Cellular and
Molecular Life Sciences 70:2849–2857. doi: 10.1007/s00018-012-1193-0

Dong M, Noguchi S, Endo Y, Hayashi YK, Yoshida S, Nonaka I, Nishino I. 2015. DAG1 mutations associated with
asymptomatic hyperckemia and hypoglycosylation of a-dystroglycan. Neurology 84:273–279. doi: 10.1212/
WNL.0000000000001162

Duclos F, Straub V, Moore SA, Venzke DP, Hrstka RF, Crosbie RH, Durbeej M, Lebakken CS, Ettinger AJ, van der
Meulen J, Holt KH, Lim LE, Sanes JR, Davidson BL, Faulkner JA, Williamson R, Campbell KP. 1998. Progressive
muscular dystrophy in alpha-sarcoglycan-deficient mice. The Journal of Cell Biology 142:1461–1471. doi: 10.
1083/jcb.142.6.1461

Endo T, Manya H. 2006. O-mannosylation in mammalian cells. Methods in Molecular Biology 347:43–56. doi: 10.
1385/1-59745-167-3:43

Endo T. 2015. Glycobiology of a-dystroglycan and muscular dystrophy. Journal of Biochemistry 157:1–12. doi:
10.1093/jb/mvu066

Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP. 1990. Deficiency of a glycoprotein component of
the dystrophin complex in dystrophic muscle. Nature 345:315–319. doi: 10.1038/345315a0

Ervasti JM, Campbell KP. 1991. Membrane organization of the dystrophin-glycoprotein complex. Cell 66:1121–
1131. doi: 10.1016/0092-8674(91)90035-W

Fakhouri M, Elalayli M, Sherling D, Hall JD, Miller E, Sun X, Wells L, LeMosy EK. 2006. Minor proteins and
enzymes of the drosophila eggshell matrix. Developmental Biology 293:127–141. doi: 10.1016/j.ydbio.2006.01.
028
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Pédelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS. 2006. Engineering and characterization of a
superfolder green fluorescent protein. Nature Biotechnology 24:79–88. doi: 10.1038/nbt1172

Richard SB, Bowman ME, Kwiatkowski W, Kang I, Chow C, Lillo AM, Cane DE, Noel JP. 2001. Structure of 4-
diphosphocytidyl-2-c- methylerythritol synthetase involved in mevalonate- independent isoprenoid
biosynthesis. Nature Structural Biology 8:641–648. doi: 10.1038/89691

Riemersma M, Froese DS, van Tol W, Engelke UF, Kopec J, van Scherpenzeel M, Ashikov A, Krojer T, von Delft
F, Tessari M, Buczkowska A, Swiezewska E, Jae LT, Brummelkamp TR, Manya H, Endo T, van Bokhoven H, Yue
WW, Lefeber DJ. 2015. Human ISPD is a cytidyltransferase required for dystroglycan o-mannosylation.
Chemistry & Biology 22:1643–1652. doi: 10.1016/j.chembiol.2015.10.014
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Campbell KP. 2014. The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated a-
dystroglycan functional glycosylation. eLife 3:e03941. doi: 10.7554/eLife.03941

Yoshida M, Ozawa E. 1990. Glycoprotein complex anchoring dystrophin to sarcolemma. Journal of Biochemistry
108:748–752.

Yoshida A, Kobayashi K, Manya H, Taniguchi K, Kano H, Mizuno M, Inazu T, Mitsuhashi H, Takahashi S, Takeuchi
M, Herrmann R, Straub V, Talim B, Voit T, Topaloglu H, Toda T, Endo T. 2001. Muscular dystrophy and
neuronal migration disorder caused by mutations in a glycosyltransferase, pomgnt1. Developmental Cell 1:
717–724. doi: 10.1016/S1534-5807(01)00070-3

Yoshida-Moriguchi T, Yu L, Stalnaker SH, Davis S, Kunz S, Madson M, Oldstone MBA, Schachter H, Wells L,
Campbell KP. 2010. O-mannosyl phosphorylation of alpha-dystroglycan is required for laminin binding. Science
327:88–92. doi: 10.1126/science.1180512

Yoshida-Moriguchi T, Willer T, Anderson ME, Venzke D, Whyte T, Muntoni F, Lee H, Nelson SF, Yu L, Campbell
KP. 2013. SGK196 is a glycosylation-specific o-mannose kinase required for dystroglycan function. Science 341:
896–899. doi: 10.1126/science.1239951

Yoshida-Moriguchi T, Campbell KP. 2015. Matriglycan: A novel polysaccharide that links dystroglycan to the
basement membrane. Glycobiology 25:702–713. doi: 10.1093/glycob/cwv021

Praissman et al. eLife 2016;5:e14473. DOI: 10.7554/eLife.14473 28 of 28

Research article Biochemistry Human biology and medicine

http://dx.doi.org/10.1038/ng.2252
http://dx.doi.org/10.7554/eLife.03941
http://dx.doi.org/10.1016/S1534-5807(01)00070-3
http://dx.doi.org/10.1126/science.1180512
http://dx.doi.org/10.1126/science.1239951
http://dx.doi.org/10.1093/glycob/cwv021
http://dx.doi.org/10.7554/eLife.14473

