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Abstract
Researchers have examined crowd behavior in the past
by employing a variety of methods including ethnographic
studies, computer vision techniques and manual annotation
based data analysis. However, because of the resources to
collect, process and analyze data, it remains difficult to ob-
tain large data sets for study. In an attempt to alleviate this
problem, researchers have recently used mobile sensing,
however this technique is currently only able to detect either
stationary or moving crowds with questionable accuracy. In
this work we present a system for detecting stationary inter-
actions inside crowds using the Received Signal Strength
Indicator of Bluetooth Smart (BLE) sensor, combined with
the Motion Activity of each device. By utilizing Apple’s iBea-
con™ implementation of Bluetooth Smart, we are able to
detect the proximity of users carrying a smartphone in their
pocket. We then use an algorithm based on graph theory
to predict interactions inside the crowd and verify our find-
ings using video footage as ground truth. Our approach is
particularly beneficial to the design and implementation of
crowd behavior analytics, design of influence strategies,
and algorithms for crowd reconfiguration.
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Introduction
Over the years, there have been many attempts to detect
social interactions automatically. Most of the initial works
are either based on manually annotated videos [8, 5] or use
computationally expensive computer vision techniques [16,
3] that rely on external CCTV camera surveillance. With the
rapid rise in the variety of available smartphones and their
wide range of embedded sensors, researchers have the op-
portunity to explore social interactions in an automated way
that depends entirely on the use of mobile sensing tech-
nology [12, 14]. While most early systems using mobile
sensing report very accurate results, they are currently only
able to detect one-to-one social interactions within crowds.
Furthermore, they all rely on pre-trained models that only
work with specific smartphone devices.

Unlike previous work in mobile crowd sensing, our ap-
proach is able to detect dynamic groups of variety of sizes
and is not device dependent. The definition of a social in-
teraction is inspired by the theory of conversation clusters
or Kendon’s F-formations where “two or more people coop-
erate together to maintain a space between them to which
they all have direct and exclusive access” [10]. In this pre-
liminary work, we refer to social interaction as stationary
groups of variety of sizes that are co-located inside the
space. Our approach combines Bluetooth data for esti-
mating the proximity between people and motion activity
classification, estimating the stationary vs. moving status of
each user by using the motion sensors of the device. Our
findings report an accuracy of 89 percent while detecting
interactions second-by-second using Bluetooth and Motion

Activity sensor data.

Related Work
Hung & Krose proposed a way to identify F-formations
based on the proximity and the body orientation of each
person [8]. They reported an accuracy of 92 percent. In a
similar research, Cristani et al. suggested a system that
also detects F-formations with 89 percent accuracy, using
information about people’s position and head orientation [5].
Both assume that the information of related proximity or po-
sition, as well as the body orientation is known, either using
manual annotations or computer vision techniques.

One of the first attempts to identify face-to-face interactions
in an automated way was the Sociometer [4], a wearable
device that could be placed on each person’s shoulder and
identify other people wearing the same device using in-
frared (IR) sensors. In addition, it is equipped with an ac-
celerometer sensor to capture motion as well as a micro-
phone to capture speech information. During the system
evaluation, Sociometer was able to identify social interac-
tion with an accuracy of 63.5 percent overall and 87.5 per-
cent for conversations that lasted for more than one minute.
Matic et al. [12] presented a solution based on using the
Received Signal Strength Indicator (RSSI) of the Wi-Fi sen-
sor as a way of measuring the distance between people
and the embedded magnetometer to detect the body ori-
entation of each participant. Finally, by placing an exter-
nal accelerometer device into each user’s chest they an-
alyzed the vibrations produced by the user’s vocal chords
and detected speech activity. A common drawback with the
Sociometer research is that it requires external hardware,
making it unrealistic in real-world scenarios.

More recently, Palaghias et al. [14] presented a real-time
system for recognizing social interactions in real-world sce-



narios. Using the RSSI of Bluetooth radios and a 2-layer
machine learning model, they classified the proximity be-
tween two devices into three interaction zones, based on
the Proxemics theory: a. Public, b. Social and c. Personal.
In addition, they used an improved version of the uDirect
research [6] that utilizes a combination of accelerometer
and magnetometer sensors to estimate the user’s facing
direction with respect to the earth’s coordinates. This work
reported results of 81.40 percent accuracy for detecting so-
cial interactions, with no previous knowledge of the device’s
orientation inside the user’s pocket. However, this work is
only able to detect one-to-one social interactions using a
specific device model (HTC One S) and not group interac-
tions of more than two people.

Our approach utilizes the latest specification of Bluetooth,
branded as Bluetooth Smart, that provides increased sam-
pling rate, low power consumption compared to Bluetooth
Classic radio, and reports more accurate results when used
with different types of device models.

Proximity Detection
There have been several ways of estimating the distance
between devices using wireless sensors such as Time of
Arrival, Time Difference of Arrival, Angle of Arrival and
using the Received Signal Strength Indicator (RSSI). At
this moment, the only method that is applicable in today’s
smartphones is using the RSSI of either the Bluetooth or
the Wi-Fi sensor.

In the past, researchers have used the RSSI of Bluetooth
[11, 7, 14], Wi-Fi [13] or even a combination of them [2] by
measuring the RSSI of every wireless sensor available in
range and comparing it with a Measured Power constant
(also known as txPower) that indicates the signal strength
(in dBm) at a known distance (usually 1m). In 2010, the

Bluetooth Special Interest Group (SIG) released an up-
dated version of the Bluetooth standard (v4.0) with a Low
Energy feature (BLE) that was branded as Bluetooth Smart.
Bluetooth Smart is low cost for consumers, has low latency
in communications (6 ms) and is power efficient. Moreover,
it supports an advertising mode were the device periodically
broadcasts specially formatted advertising packets to all
devices in range with a sample rate of approximately 3Hz.
This packet can contain a unique ID for each device, as
well as the measured power constant that was mentioned
above. The advantage of using this technology for prox-
imity estimation is that each device can broadcast its own
measured power constant, making the proximity estimation
more accurate. In addition, devices do not need to be con-
nected in order to measure the RSSI, having a minimum
impact on the device’s battery life.

Apple developed a closed-source protocol based on Blue-
tooth Smart, branded as iBeacon™ and supported it as of
iOS 7 in June 2013. As of publication, that corresponds to
more than 95 percent of all iOS devices available1. Android
recently presented their own open-source protocol based
on Bluetooth Smart, titled Eddystone™. Even though scan-
ning for other Eddystone™ beacons is supported in devices
with Android Jelly Bean (v4.3) or greater, broadcasting is
only fully supported since Android Lollipop (v5.1) and only
in the most recent devices (e.g. Nexus 6, Android One).

In this paper, we evaluate the iBeacon™ protocol as a way
of proximity estimation between iOS devices. We first con-
ducted a short experiment using an iPhone 5S and an
iPhone 6S. Using SensingKit iBeacon™ Proximity sensor
in Scan & Broadcast configuration we collected proximity
data (RSSI and Accuracy2) for five minutes in 12 distances

1As reported by Apple App Store on March 7, 2016
2Apple’s proximity estimation.



from 0.00m to 3.00m, every 0.25m. It is important to men-
tion that each device was both broadcasting and receiving
an iBeacon™ signal, thus we ended up with 300 measure-
ments for each device per distance. The experiment took
place in the Performance Lab of Queen Mary University of
London, an empty room approximately 9x8 meters long that
is mainly used for a variety of performance research and
recording applications. Figure 1 shows the RSSI patterns
over distance, as measured by the two iPhone devices.
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Figure 1: Box plot of Bluetooth Smart RSSI versus distance using
two iPhone devices.

The figure demonstrates that the pattern of the RSSI signal
is device hardware dependent (iPhone 5S vs. iPhone 6S)
and proves the requirement of a measured power constant
as a reference point for a pre-known distance as explained
above. It also shows the instability and fluctuation of the
RSSI signal, mainly because of environmental factors (e.g.
reflections, obstacles, background noise) as reported by
other similar works [13, 11]. We repeated the same ex-
periment at the Mobile Antenna EMC Screened Anechoic
Chamber of Queen Mary University of London, a 6x5x3
meters chamber designed to completely absorb reflections
of electromagnetic waves. We used two metallic tripods

to hold the two devices. Because of their reflecting mate-
rial they both contributed to the multi-path components.
Although the pattern of the received RSSI in both environ-
ments is similar, the actual captured value in the chamber is
lower by approximately 5-7 dBm which highlights the reduc-
tion in reflections and multi-path components. In addition,
the similarity in the patterns could be contributed to the re-
ceiver’s own automatic gain control.

We evaluated different methods of estimating distance us-
ing the Bluetooth Smart RSSI and the measured power as
recorded by the iBeacon™ Proximity sensor (-57 for iPhone
5S and -56 for iPhone 6S). We tested the Path Loss Model
(PLM) [13], based on the theory of signal loss as it propa-
gates through space:

P (d) = P (d0)− 10× n× log10(d)−X (1)

where P (d0) is the measured power (in dBm) at 1 meter
distance, n the path loss exponent, d the distance in which
the the RSSI is estimated and X a component that de-
scribes the path loss by possible obstacles between the
transmitter and the receiver. We chose n = 1.5 and X = 0
as the environment was indoors and no obstacles between
the two devices existed [12]. The same model can easily be
transformed in order to estimate the distance (d) from the
RSSI (P (d)), as shown in the following formula:

d = 10
P (d0)−P (d)−X

10×n (2)

We also tested a model given by Radius Networks [15], a



company that produces beacon technology solutions com-
patible with both iBeacon™ and Eddystone™:

r =
P (d)

P (d0)
(3)

d =

{
r10, if r < 1.0

0.89976× r7.7095 + 0.111, otherwise
(4)

According to Radius Networks, “The three constants in the
formula (0.89976, 7.7095 and 0.111) are a best fit curve
based on a number of measured signal strengths at various
known distances from a Nexus 4”.

Finally, we compared the two methods with iBeacon’s dis-
tance estimation (reported as Accuracy by Apple). As iBea-
con™ technology is closed-source, the details of this method
are unknown. We observed a delay of 20 seconds each
time we change the distance, indicating that Apple’s method
uses a buffer for estimating the distance, making it less re-
sponsive and not suitable for the aim of this work.

Figure 2 shows the accuracy of the distance estimated
by the three methods described above. Since two RSSI
measurements exist, one reported by each device, we ap-
plied each model twice and used the average of the two
distances. The results indicate a low accuracy in all three
models, especially at the distance of 3 meters that the over-
all error is more than 1.5 meters. Apple and PLM models
reported the worst results, with a Root Mean Squared Error
(RMSE) of 0.78 and 0.95 accordingly. The Radius model
showed slightly better results with a RMSE of 0.68 overall.
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Figure 2: Evaluation of Apple’s iBeacon™, PLM and Radius
distance estimation models.

Motion Activity Detection
Modern mobile devices are equipped with motion co-processors
that analyze data from the embedded accelerometer, gyro-
scope and magnetometer sensors and classify the user’s
motion activity into Stationary, Walking, Running, Driving
and Cycling. We tested all motion co-processors available
in iPhone devices today (M7 to M9 models). When an ac-
tivity changed from stationary to walking, we observed a
delay of 3-5 seconds until this was reported. As responsive
motion activity recognition is a key feature for identifying
stationary interactions, we analyzed the motion sensor data
from the device.

We chose the linear acceleration sensor that measures
the coordinate acceleration of the device by removing the
gravity from the raw accelerometer data. We averaged the
data on every 1 second and empirically classified a device
as Stationary if the magnitude of the acceleration is less
than 0.15 g and as In Motion otherwise.



Table 1: Participant demographic information.

Gender Height Weight Device iOS
P1 Male 1.80m 74kg iPhone 6S 9.1
P2 Male 1.88m 63kg iPhone 6 8.3
P3 Male 1.85m 72kg iPhone 6 9.1
P4 Female 1.72m 97kg iPhone 6 9.1
P5 Female 1.64m 59kg iPhone 5S 9.1
P6 Male 1.90m 95kg iPhone 5S 9.0.2

Detecting Group Formations
This study aims to automatically detect group formations
taking place in social events with the use of Mobile Sensing
technology. In contrast to all other related work discussed
in Sec. Related Work, our approach is capable of detecting
group formations with more than two people involved.

This section starts with a detailed description of the exper-
iment, including the participants and the materials used, a
description of the space that the experiment took place and
the procedure followed.

Participants
The experiment involved the recruitment of six participants,
all research students from Queen Mary University of Lon-
don that had no previous experience with the current study.
Table 1 shows the demographic information of the recruited
participants as well as the iPhone device and iOS version
they used in the experiment.

Materials
As a sensor data collection tool, we used the open-source
CrowdSense App. CrowdSense is an iOS application based
on the continuous sensing library Sensing Kit [9], an open-
source library for iOS and Android platforms. It provides
access to all sensors supported by SensingKit, when these
are available in the device. The application collects sensor

data and saves them into the device’s memory in CSV for-
mat. It can be run in all iOS devices with iOS 8 or greater
and is available for free in Apple’s App Store.

As shown in Table 1, the experiment used one iPhone 6S,
three iPhone 6 and two iPhone 5S devices, equipped with
CrowdSense App and configured to collect Accelerome-
ter as well as iBeacon™ Proximity data in Scan & Broad-
cast mode. We decided to avoid iBeacon™ re-calibration
and chose the default measured power value in iBeacon™
Broadcast, as defined by the manufacturer. The reason is
that we wanted to make sure that this experiment can easily
be replicated in large scale with unknown type of devices.
We set the iBeacon™ identifier (Minor value in iBeacon™
protocol) with a unique ID per device. A short audio sample
of 10 seconds was also recorded and used to synchronize
the sensor data between the six devices.

Two full-HD video cameras were used to record the exper-
iment from two different angles. This video recording was
used as the ground truth for evaluating the accuracy of our
detection of the interactions happening inside the room.

Procedure
The experiment took place at the Performance Lab of Queen
Mary University of London. The Performance Lab is a large
space (approximately 9x8 meters), suitable for live perfor-
mance experiments. A DMX lighting rig is also installed in
the ceiling of the space, useful for installing Lights, Cam-
eras or other related equipment. We installed the two HD
video cameras in the lighting rig.

All six participants were informed that the experiment ex-
plores the ways people interact in social events and re-
ceived a short demonstration of CrowdSense application.
They signed the required consent forms and completed
a short questionnaire with demographic questions (Gen-



Table 2: Scenes with group formations tested during the
experiment.

Name Groups Description
S1 3 A group of three people walk in and form a

stationary F-formation.
S2 3, 3 Another group of three people walk in and

form another stationary F-formation.
S3 2, 4 One participant leaves group A and joins

group B.
S4 3, 3 Another participant leaves group B and joins

group A.
S5 5, 1 Two participants leave group A and joins

group B. The remaining person walks on the
opposite direction.

S6 6 All participants join group B.
S7 2, 4 Two people from group B leave and form a

separate formation (group A).
S8 4, 1, 1 Group A is now split and one of the partici-

pant walks close to group B twice, but do not
join their formation.

S9 5, 1 The same participant now joins group B.
S10 Group split and participants leave the room.

der, Weight, Height, iPhone model, iOS version). During
the experiment, one of the researchers was giving instruc-
tion based on a predefined script about the social groups
that they should create (e.g. “P1 should now leave group A
and join group B.” ). No instruction regarding the exact lo-
cation or the proximity between each group was ever given.
In order to facilitate the interaction of each participant and
make it as real as possible, we asked them to introduce
themselves and briefly describe their research area to each
other. In total, they interacted for approximately 5 minutes
and formed nine group combinations. Table 2 shows a de-
scription of the tested scenarios and different group combi-
nations that they formed during the experiment.

All data collection and analysis was made with informed
consent and approved by the Queen Mary University of
London research ethics committee (Reference: QMREC1543a).

Results and Discussion
Before starting the data analysis, we synchronized the sen-
sor data (iBeacon™ Proximity and Linear Acceleration) us-
ing the audio sample described previously, having an ac-
curacy of ±50ms. We also filtered the proximity data by re-
moving values reported as Unknown with -1 as RSSI. This
usually occurs at the beginning of the iBeacon™ ranging
process due to insufficient measurements to determine the
state of the other device [1]. We also applied Radius prox-
imity model for estimating the proximity between devices
and classified the motion activity using the Linear Accelera-
tion sensor data.

Inspired by the work of [8], our concept for detecting Social
Interactions is based on Graph Theory. Each moment (in
seconds) is represented as a undirected weighed graph
G = (V,E,w), with a set of vertices V and weighed
edges E(w). Each vertex corresponds to a participant,
and each weighted vertex correspond to the distance as es-
timated by the iBeacon™ Proximity sensors, as discussed
in Sec. Proximity Detection. We use an array of weighed
adjacency matrices to represent the estimated distance of
each participant for each second (Figure 3a). Since this
work only focuses on stationary interactions, when a partic-
ipant is classified as non-stationary (based on the method
discussed in Sec. Motion Activity Detection), he is equally
classified as non-interacting. We convert the weighed adja-
cency matrices into binary adjacency matrices (Figure 3b)
based on Algorithm 1. The algorithm is based on two vari-
ables: A range (from - to) of estimated distance that two
participants should have, and x that represents the time (in



seconds) that this distance should be maintained. When
these conditions are met, an edge between the two nodes
is created and represented by 1 in the matrix. An interac-
tion is identified when a connected component exists in the
graph, as shown in Figure 3c (Participants 3, 4, 5 and 6).

Algorithm 1 Vertice creation of binary adjacency matrix

if activity is not stationary then
w ← 0

else
if from ≤ distance ≤ to and time ≥ x then
w ← 1

else
w ← 0

end if
end if

We evaluated the performance of the algorithm by using
the video recording as ground truth. We asked an external
researcher to annotate the group formations using ELAN
multimedia annotator software [17]. The exact instructions,
based on Kendon’s F-formation [10] explained before, were:
“An interaction begins at the moment two or more people
are stationary and cooperate together to maintain a space
between them to which they all have direct and exclusive
access.”.

We evaluated the algorithm with different values for time
and distance variables and discovered that it performs best
with an estimated distance between 0 and 5 meters for at
least 3 seconds (Figure 4). The maximum accuracy that we
achieved is 89 percent with precision 0.81 percent. Table 3
summarizes the results of our experiment using a confusion
matrix.

Even though the method depends on using anonymous

Table 3: Confusion Matrix for evaluation of the group formation
detection algorithm with time = 3 and distance = (0, 5).

Actual /
Predicted

Positive Negative Total

Positive 1052 248 1139
Negative 87 1598 1846

Total 1155 1830 2985
precision = 0.809, accuracy = 0.888

IDs when broadcasting iBeacon™ data and no other per-
sonal information is broadcast, there is always the danger
that this anonymity can be compromised by tracking the
openly available ID of a user. This is the reason that in iOS
devices, a device is only allowed to broadcast as an iBea-
con™ while the app is actively running in the foreground. A
solution to this can be the use of the latest Eddystone-EID
frame type, released in April 2016 by Google, that encrypts
the broadcast data so that only authorized people or appli-
cations can access it.

Conclusions and Future Work
In this work, we introduced a system that automatically
detects formations of groups with a variety of sizes inside
crowds. The detection depends entirely on the embedded
sensors of smartphone devices. By utilizing the Bluetooth
Smart and motion sensors of each device, we were able to
estimate the distance between people as well as to classify
the user’s activity between stationary and in-motion. In ad-
dition, by using an algorithm that is based on graph theory
models, we were able to predict group formations inside a
small group of seven people, reaching an accuracy of 89
percent.

To continue this work we will explore the use of the gyro-
scope sensor as a way of estimating the orientation of each
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Figure 3: Overview of the method used for detecting group formations.

Figure 4: Performance of the group formation detection algorithm
at 35 different spatial-temporal scales. Warmer colors in the plot
represent higher accuracy.

user related to the environment and the effect it will have
when including this feature in our group formation detection
method. We also plan to improve the proximity estimation
using trained regression models. One of the limitation of
our approach is that we do not make use of the orienta-
tion of each user, hence identifying an interaction based on
proximity and motion activity. This approach will have an
impact when applying the algorithm in crowded places were
people are standing close to each-other. The less accurate
distance estimation based on RSSI is another challenge
of this research. As previously mentioned, the only option
available in today’s smartphone devices is based on the
RSSI. If other technologies ever become available such as
the ones mentioned in Sec. Related Work, the accuracy of
this method will greatly benefit. In future works with larger
crowds we are planning to improve this aspect.

We plan to repeat the experiment in a real-world social
event, evaluate its accuracy and finally present analytics



about the ways in which people are interacting. We believe
that this work will lead to more complex techniques capa-
ble of detecting actual social interactions in variety of crowd
sizes.
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