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Abstract: Multilevel models are overwhelmingly applied to single health outcomes, but
when two or more health conditions are closely related, it is important that contextual
variation in their joint prevalence (e.g., variations over different geographic settings) is
considered. A multinomial multilevel logit regression approach for analysing joint prevalence
is proposed here that includes subject level risk factors (e.g., age, race, education) while also
taking account of geographic context. Data from a US population health survey (the 2007
Behavioral Risk Factor Surveillance System or BRFSS) are used to illustrate the method,
with a six category multinomial outcome defined by diabetic status and weight category
(obese, overweight, normal). The influence of geographic context is partly represented by
known geographic variables (e.g., county poverty), and partly by a model for latent area
influences. In particular, a shared latent variable (common factor) approach is proposed to
measure the impact of unobserved area influences on joint weight and diabetes status, with
the latent variable being spatially structured to reflect geographic clustering in risk.
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1. Introduction

Two of the major risk factors for cardiovascular disease are obesity and diabetes, and analysis of
geographic patterning in the variation and interrelation of these two major conditions is important for
ensuring that resources for prevention and care match need and are effectively targeted. The close link
between obesity and diabetes is well established [1,2], and increases in the prevalence of obesity and
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overweight are a major factor in the growth of diabetes [3,4]. In the US there is evidence of wide
geographic contrasts in the prevalence of both obesity and diabetes, and of clear differences in relative
risk between age and ethnic groups, and between socioeconomic groups [5,6].

It is important to establish whether geographic variations are simply the result of differences between
populations in their age, social and ethnic composition (compositional effects), or whether there are
distinct geographic effects that account for part of the variation. The distinct impacts of area on health,
and also those of interactions between area variables and individual level risk factors, are often denoted as
”contextual variation”. Thus, area-based measures of socioeconomic status may affect health outcomes
even after control for individual risks [7-10], while interactions between geography and individual risk
factors are exemplified by the study of Subramanian et al. [11], which considers ”geographic variation
in the individual relationship between race/ ethnicity and mortality”. In the present paper, contextual
variation is assessed by the significance (after allowing for major individual level risk factors) of both
known area variables, and latent area effects, on chances of diabetes and/or excess weight.

This paper develops a multilevel multinomial regression model for diabetes and weight category
as joint outcomes. The model framework allows for subject level risk factors, and contextual (area)
effects including known area influences (e.g., poverty, race composition, and population density), and
unmeasured area influences at two levels (county and state). The latter are modelled using a latent
variable approach that results in a summary index of latent contextual effects shared across multinomial
outcomes. Because of clustering in both diseases, the latent variables are assumed to be spatially
structured [12].

A case study application is based on the 2007 Behavioral Risk Factor Surveillance System (BRFSS)
survey, which is an annual random-digit-dialed telephone survey to determine the prevalence among
adults (ages 18 and over) of major illnesses and health risk behaviors. The results described in this paper
are based on 128,150 male respondents to the 2007 BRFSS, and living in the continental United States.
The main object is to demonstrate unique aspects of the methodology such as the use of a common
spatial factor with a multinomial health outcome, and within a multilevel analysis that also allows for the
impact of individual risk factors. The method transfers straightforwardly to other cross-sectional settings,
including (say) joint obesity-diabetes prevalence for females in 2007, and no distinct methodological
elements would be involved in considering females. Therefore the analysis is confined to males. Distinct
methods would certainly be involved if time were introduced as an extra feature (e.g., how has the joint
obesity-diabetes multilevel relationship evolved since 2000), but this is left for another study.

Obesity is defined as a body mass index over 30, based on self-reported height and weight, with
overweight defined as BMI between 25 and 29.9. To determine diabetes status, respondents were asked
“Have you ever been told by a doctor that you have diabetes?”, encompassing both types of diabetes.
Women with gestational diabetes were excluded. The BRFSS does include other questions on diabetes
such as age of onset, and whether or not taking insulin; answers to these questions have been combined
in some studies [13] to informally differentiate diabetes 1 (onset before age 30 combined with current
insulin use) from diabetes 2. However, for the majority (94%) of diabetic survey subjects who have onset
after age 30, obesity is an established risk factor for diabetes.
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2. Multinomial Regression Combining Individual and Geographic Risk Factors

A multinomial response is involved when there are three or more sub-categories of a single condition,
or may be obtained by combining sub-categories over two or more conditions. In the present BRFSS
case study, the response yi (i = 1, .., n) is based on combining sub-categories of two conditions: there
are J+1 = 6 categories defined by diabetic status and weight status, namely diabetic and obese (y = 1),
diabetic and overweight (y = 2), diabetic and normal weight (y = 3), non-diabetic and obese (y = 4),
non-diabetic and overweight (y = 5), and non-diabetic and normal weight (y = 6). So categories 1 to
5 all show some form of morbidity relative to the final non-morbid category who are normal weight and
not diabetic.

A multinomial regression is applied with the final (non-morbid) category as reference, so that

Pr(yi = j) = πij =
exp(φij)

1+
J∑

j=1
exp(φij)

j = 1, ..J (1.1)

Pr(yi = J + 1) = πi,J+1 = 1

1+
J∑

j=1
exp(φij)

. (1.2)

where the φij are J regression terms. Let dij = 1 if subject i is in the jth category. Then for equally
weighted subjects the likelihood L would take the form

L =
n∏
i=1

J+1∏
j=1

π
dij
ij , (2.1)

with log-likelihood

logL =
n∑
i=1

J+1∑
j=1

dij log(πij). (2.2)

However, with population survey data, such as the BRFSS [14], it is necessary also to incorporate
survey weights wi for respondents i to account for differential response between demographic groups
and regions. Then a weighted likelihood Lw is obtained as

Lw =
n∏
i=1

J+1∏
j=1

[π
dij
ij ]wi , (3.1)

with weighted log-likelihood

logLw =
n∑
i=1

J+1∑
j=1

widij log(πij). (3.2)

Three classes of predictors are used in the multinomial regression defined by (1.1)–(1.2), and with
weighted likelihood as in (3.1)–(3.2). As well as subject level risk variables R, the regression model
includes known geographic influencesGK , and latent geographic influences, GL, so the regression terms
have the generic form φij = φij(R,GK , GL).

Predictor effects are modelled either as fixed or random effects, in a form of general linear mixed
model, in particular one with a multinomial outcome [15]. Random effects are used to pool strength
(e.g., over areas or age groups) and to incorporate anticipated correlations in the age or spatial profiles
of prevalence for categories j = 1, ..., J (see Appendix 1). For example, while the levels of the
different combinations of diabetic and weight status are different (e.g., obesity without diabetes is much
more common than diabetes with normal weight), one would expect their age profiles to be similar
(i.e., correlated).



Int. J. Environ. Res. Public Health 2010, 7 336

3. Subject Level Predictors

There has been extensive research on variations in obesity and diabetes over demographic and
socioeconomic categories, such as age, socioeconomic status and race. A pronounced gradient in
diabetes prevalence by age is reported by CDC [16], though obesity may reduce slightly among the
very old. Paeratakul et al. [5] also report impacts of socioeconomic status (SES) on obesity and
its comorbidities. For example, obese subjects with lower education reported higher rates of diabetes
compared to those with higher education; these differentials were more marked than those between high
and low income individuals; see Table 3 in Paeratakul et al. [5]. Freudenberg & Ruglis [17] argues that
”although education is highly correlated with income and occupation, evidence suggests that education
exerts the strongest influence on health”, and Zhang et al. [18] and Maty et al. [19] also argue the benefit
of using education as a measure of SES risk. For the 2007 BRFSS data, Table 1 shows morbidity rates
due to obesity/overweight and/or diabetes by education level, namely percentages of subjects at each
education level located in the six diabetic-weight categories (including the reference category). Higher
levels of combined morbidity, namely suffering diabetes combined with obesity or overweight, occur
for the less well educated. For example, 5.6% of subjects with less than high school education (namely,
794 of 14,158 survey participants at this education level) are obese and diabetic, compared to 3.2% of
college graduates (namely, 1562 of 48186 survey participants at this education level).

Table 1. Percentage prevalence of obesity-diabetes status, by education.

Less than High school Some college College All
high school graduate graduate

Obese & Diabetic 5.6 4.4 4.7 3.2 4.2
Overweight & Diabetic 3.8 3.3 2.8 2.9 3.1

Normal weight & Diabetic 2.2 1.4 1.2 1.3 1.4
Obese non-diabetic 21.3 24.9 25.1 19.0 22.4

Overweight & non-diabetic 36.3 37.3 39.4 44.0 40.2
Normal weight & non-diabetic 30.8 28.6 26.9 29.6 28.8

Ethnic group variability in levels of obesity and diabetes are well established. Paeratakul et al. [5]
found the prevalence of overweight and obesity to be higher among black and Hispanic groups compared
to whites, and the prevalence of obesity comorbidities (including diabetes) was also found to be higher in
blacks than whites. For the 2007 BRFSS data, Table 2 shows morbidity rates due to obesity/overweight
and/or diabetes by race, namely percentages of subjects in the six diabetic-weight categories. Compared
to other races, black non-Hispanics are more likely to be located in the first two categories, and also
have the highest proportion who are both obese and non-diabetic. The other race category (penultimate
column in Table 2) has a relatively high proportion who are diabetic but of normal weight. As
Zhang et al. [18] mention, racial disparities in diabetes are not entirely explained by racial/ethnic
differences in the prevalence of common risk factors such as obesity: racial differences in diabetes
risk remain after controlling for body mass and socioeconomic status. Hence cross tabulation such as in
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Table 2 does not control for interrelations between risk factors (e.g., between race and education), and a
regression is required.

Table 2. Percentage prevalence of obesity-diabetes status, by race.

White Black Hispanic Other All
non-Hispanic non-Hispanic

Obese & Diabetic 4.1 5.7 3.7 3.7 4.2
Overweight & Diabetic 3.0 4.1 2.8 2.9 3.1

Normal weight & Diabetic 1.3 1.6 1.3 2.1 1.4
Obese non-diabetic 22.1 27.1 25.2 14.7 22.4

Overweight & non-diabetic 41.0 35.3 41.5 37.1 40.2
Normal weight & non-diabetic 28.5 26.3 25.4 39.5 28.8

Subject level risks are here represented in the regression terms φij by:
(a) overall intercepts (αj),
(b) differential risks by ethnic group r, namely r = 1 for white non-Hispanic, r = 2 for black, r = 3

for Hispanic, and r = 4 for other races (mainly American Asians and native Americans); these are
modelled as fixed effects within each φij , with unknown parameters βjr, r = 2, 3, 4, and with βj1 = 0 as
reference under an identifying corner constraint;

(c) differential risks by education attainment e, namely e = 1 for less than high school; e = 2 for high
school graduate; e = 3 for some college or technical school; and e = 4 for college graduate; these are
also modelled as fixed effects, with unknowns γje, e = 2, .., 4, and γj1 = 0 as reference;

(d) differential risks by age group a = 1, .., A (with A = 12 for ages 18–24, 25–29, 30–34, ..,70–74,
and 75+), represented by unknowns ηja. These are modelled using a random effects approach that allows
correlation in the age profiles over the first J prevalence categories (see Appendix 1); an identifying

constraint is applied that ensures these effects sum to zero within outcomes, so that
A∑
a=1

ηja = 0.

4. Area Level Predictors

Health disparities not explained by population composition (i.e., by considering subject level risk
factors alone) may be linked to area effects. For example, Do et al. [20] seek to estimate the share of
racial health disparities that can be explained by differences in residential context. There are a wide
range of potential area level risk factors for obesity, diabetes and related conditions that have been
suggested or applied in the literature. These include area poverty and income levels [21], area racial
composition [22,23], climate [24], income inequality [25,26], social cohesion [27,28], type of place
(e.g., level of urbanicity) [29-31], and urban sprawl [32-34].

As to geographic effects in the BRFSS, these are defined by the lowest spatial scale identified by that
study, namely the county of residence. In fact this means that there are two potentially relevant spatial
divisions for the BRFSS data considered here, namely states and counties. There are 3,110 counties
across the mainland US, albeit varying considerably in population size. The choice of known area
predictors (GK) in the current study is defined partly by availability of a complete and contemporary
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profile of county level indicators; for example, some studies suggest potential effects of environmental
pollution on diabetes [35,36], but a comprehensive US wide index of environmental quality is not
available at county level.

Known county level predictors included in the regression in this paper are 2007 county poverty rate
x1c (as a proportion between 0 and 1), county population density x2c (logarithmically transformed),
and binary indicators (x3c, x4c, x5c) for counties with proportions in the top decile of county population
who are black, Hispanic and other nonwhite. Thus the 311 counties with proportions black exceeding
the 90th percentile (over all 3,110 continental counties) are coded x3c = 1, and other counties coded
zero, x3c = 0. All these variables have the advantage of being updateable between censuses, whereas a
number of more complex indices (urban sprawl, social cohesion, etc) rely on 2,000 census variables in
their construction. There are therefore five county predictors, each with outcome specific effects. These
are represented by fixed effect parameters (δj1, δj2, δj3, δj4, δj5), for categories j = 1, .., J, applying to
the five county level predictors {xjc, j = 1, .., 5; c = 1, .., 3110}.

To account for unmeasured (i.e., omitted) area effects (GL), a latent variable strategy is adopted.
Given considerable evidence of spatial clustering in high levels of diabetes and obesity, this feature
should be incorporated in the latent variable specification. One option is a separate random effect
for each area and each outcome, but this would involve heavy parameterisation. The object of the
method adopted here is a parsimonious summary of risks that tend to produce the well known clustering
of both high obesity/overweight and high diabetes in certain parts of the US (e.g., in the South East
and Appalachians).

Specifically, a spatially correlated county effect vc for counties c = 1, ..., 3110 is adopted with
loadings λj defining the impact of the shared county effect on weight-diabetes category j (see Appendix
1 for the form of the spatial dependence). A second set of spatially structured random effects us is defined
according to state s of residence (s = 1, .., 49 including District of Columbia), with loadings κj defining
the impact of that effect on category j. The latter model relatively broad scale and unmeasured effects
for states. Identifiability is obtained by setting the first category loadings to 1, namely λ1 = κ1 = 1, so
that the conditional variances of vc and us are unknowns.

LetCi and Si denote the county and state of residence for respondents i = 1, .., nwhere n = 128, 150,
and let {ai, ri, ei} denote the age, race and education status of individual respondents. Then the
regression terms φij (i = 1, ..n; j = 1, .., J) defining the multinomial logit regression are represented in
full form as:

φij = αj + βj,ri + γj,ei + ηj,ai + δj1x1,Ci
+ δj2x2,Ci

+ δj3x3,Ci
+ δj4x4,Ci

+ δj5x5,Ci

+λjvCi
+ κjuSi

. (4)

Thus the model provides estimates both of the impacts of individual level risk factors and of area effects.
Let Sc ∈ (1, ..., 49) denote the state that county c is located in. Then the composite county latent effect
for joint prevalence category j is defined by the sum

tjc = λjvc + κjuSc , (5.1)

and will incorporate both localized county effects, but also distinctive state level influences. In particular,
the total county effect for obesity and diabetes combined is

t1c = vc + uSc . (5.2)
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5. Modelling Strategy and Distinct Geographic Effects

A major question of interest in multilevel modelling of health data is the presence (or otherwise) of
distinct area effects, both effects of known area indicators (such as county poverty or population density)
and effects of latent unmeasured area characteristics [20,37]. The presence of geographic contrasts
is apparent from Table 3, which contains age standardized prevalence rates (as percents) for the six
conditions by state; the nine census divisions of the states are also listed. For example, the highest
rates of obesity & diabetes combined exceed 5.5% (e.g., in Tennessee, Mississippi, and Illinois) while
the lowest rates are under 3%, for example, in Colorado and Montana (see Figure 1). Such variation
may be due largely to differences in population composition, or there may be substantial area effects,
and the role of such area effects is assessed here by using an incremental modelling strategy. Distinct
area effects (sometimes called contextual effects), due either to known area covariates or latent area
effects, are those remaining after the influence on prevalence of individual level attributes has been
controlled for.

Table 3. Percentage prevalence of obesity-diabetes status, by race.

State Census Obese & Overweight Normal weight Obese Overweight Normal weight
Division Diabetic & Diabetic & Diabetic non-diabetic non-diabetic non-diabetic

Alabama E South Central 5.7 2.8 1.3 23.6 39.6 27.0
Arizona Mountain 4.2 3.6 1.9 25.9 37.8 26.6

Arkansas W South Central 4.6 2.8 0.9 24.7 41.2 25.8
California Pacific 3.6 2.8 2.0 20.5 39.8 31.2
Colorado Mountain 2.3 2.8 1.0 18.0 42.3 33.7

Connecticut New England 3.5 3.3 1.2 20.8 43.6 27.7
Delaware South Atlantic 4.2 3.5 0.9 26.9 39.5 25.0

District of Columbia South Atlantic 3.3 2.9 1.3 16.1 35.0 41.5
Florida South Atlantic 4.0 3.2 1.5 21.6 41.4 28.3
Georgia South Atlantic 5.1 3.2 1.7 20.8 39.8 29.3
Idaho Mountain 3.6 2.9 1.0 21.1 43.5 27.8

Illinois E North Central 6.0 4.2 1.2 20.4 40.0 28.2
Indiana E North Central 4.7 2.8 1.5 20.7 42.2 28.2

Iowa W North Central 4.2 2.4 1.3 25.1 38.4 28.5
Kansas W North Central 4.4 2.8 0.9 24.7 39.9 27.3

Kentucky E South Central 4.6 4.6 1.0 24.3 46.9 18.7
Louisiana W South Central 5.7 3.4 1.0 26.1 35.9 27.8

Maine New England 4.1 3.0 0.8 23.1 41.0 27.9
Maryland South Atlantic 4.7 3.2 1.2 20.9 40.6 29.3

Massachusetts New England 3.4 2.8 1.2 20.1 42.1 30.4
Michigan E North Central 5.0 3.6 1.3 24.5 38.4 27.2
Minnesota W North Central 3.6 2.1 0.7 24.4 40.5 28.7

Thus a baseline model estimates county level prevalence rates from a reduced version of the full
model (4), including only subject level age and latent county and state effects. The resulting estimates
of county prevalences of the different weight-diabetes categories are adjusted for age [38], but not for
population differences in race and education composition, or for the effect of measured county level
factors. Thus the baseline model (model 1) involves the regression terms

φij = αj + ηj,ai + λjvCi
+ κjuSi

, j = 1, .., J (6)
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Figure 1. Percent of adults both diabetic & obese, BRFSS 2007.

which account for the differing age composition of survey subjects in different areas. Defining

ωcj = exp(αj + λjvc + κjuSc), j = 1, .., J (7)

ωc,J+1 = 1,

age standardised proportions in counties c = 1, .., 3110, for the J + 1 = 6 weight-diabetes categories are
then estimated as

pcj = ωcj/
J+1∑
j=1

ωcj. (8)

A second model (model 2) adds the effect of measured area predictors, namely county poverty, race
composition and population density to the baseline model. Thus in model 2

φij = αj + ηj,ai + δj1x1,Ci
+ δj2x2,Ci

+ δj3x3,Ci
+ δj4x4,Ci

+ δj5x5,Ci
+ λjvCi

+ κjuSi
. (9)

Age standardised prevalence rates by county and category under model 2 are estimated via

pcj = ωcj/
J+1∑
j=1

ωcj, where now

ωcj = exp(αj + δj1x1,Ci
+ δj2x2,Ci

+ δj3x3,Ci
+ δj4x4,Ci

+ δj5x5,Ci
+ λjvc + κjuSc). (10)

These models are compared to the full model (model 3) including all subject level predictors (age, race,
education) and both types of area effect (known and latent), namely

φij = αj + βj,ri + γj,ei + ηj,ai + δj1x1,Ci
+ δj2x2,Ci

+ δj3x3,Ci
+ δj4x4,Ci

+δj5x5,Ci
+ λjvCi

+ κjuSi
. (11)

Of particular interest are changes in the level of variance of the latent area effects as county predictors
and individual risk variables are added to the model. Also of interest are changes in the impact (and
statistical significance) of known area predictors when individual level risk variables are added. For
example, are there distinct county poverty effects on prevalence after individual level race and education
level are allowed for?
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6. Case Study Application

Fitting of the regression models and assessment of their goodness of fit follows a Bayesian approach.
A Bayesian strategy is advantageous for estimating models with several sets of random effects, including
random effects which are spatially clustered, especially when the responses (as here) are not continuous
variables but discrete, namely a multinomial category. Under the Bayesian approach, prior densities are
specified on all parameters in the model, and final (or posterior) estimates of parameters are based on the
combination of the data likelihood and the prior densities.

Estimation uses iterative Monte Carlo Markov Chain (MCMC) sampling methods [39], as provided
in the WINBUGS program [40]. Goodness of fit is assessed by a measure of fit that penalizes model
complexity, known as the Deviance Information Criterion or DIC [41]. The DIC is obtained as the
average deviance, using the definition (3.2), plus a measure of complexity. Lower values of the DIC
indicate better fitting models. Posterior summaries of parameters are based on the 2nd half of runs of
10,000 iterations, using two chains starting from dispersed starting values. Convergence was achieved
in all models using Brooks-Gelman-Rubin criteria [42].

Figure 2. County latent effects.

Figure 2 maps the composite latent county effects t1c = vc + uSc from the baseline model 1 (these
are posterior means from the MCMC sample). For example, c = 1 for Autauga County in Alabama, and
Alabama is the first state alphabetically among the 49 states in the analysis, so Sc = S1 = 1. The effects
t1c summarise varying risks for the jointly obese-diabetic condition between counties before controlling
for factors such as county poverty and race composition. They show higher risks in the East South
Central states (Kentucky, Tennessee, Alabama, Mississippi), and in some East North Central states (e.g.,
Illinois, Ohio) [43]. Model 1 also provides age profiles for the five diagnostic groups, plotted in Figure 3
as log-odds coefficients relative to the reference category. An increasing prevalence with age is confined
to the categories obese & diabetic, overweight & diabetic, and normal weight & diabetic.
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Figure 3. Age profiles of the different diagnostic groups.

One useful feature of this initial analysis is that the county effects can be profiled against known
county and state level characteristics. For example, Figure 4 shows the profile of the average t1c

according to county poverty decile (defined by grouping counties into ten categories according to their
ranked poverty rates).

Figure 4. Total latent area effect, model 1, by county poverty decile.
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Table 4 compares the fit from the baseline model against the other two models, and also presents the
variances of the latent spatial effects. These need to account for differential loadings {λj, κj} of the
area effects by category (see Table 5), and for the distribution of subjects between categories, and are
obtained marginally as var(λjvCi

+ κjuSi
). It can be seen that adding known area predictors in Model 2

results in improved fit (a reduced DIC), and also in a (relatively slight) reduction in the variance of the
latent spatial effects.

Table 4. Model fit summary.

Average Effective Parameters DIC Variance Spatial
Deviance (Complexity) Effects

Model 1 260644 802 261446 0.329
Model 2 260581 821 261402 0.290
Model 3 256924 846 257769 0.279

Table 6 contains the δjk coefficients from model 2 (j = 1, .., J ; k = 1, .., 5). It can be seen that the
county poverty rate has a strong influence in raising chances of being both obese and diabetic (the first
category). It is also an important positive influence on area relativities in the joint normal weight-diabetic
category, and on obesity without diabetes. As Table 3 shows, the latter condition applies to around 22%
of the US male population and occurs across relatively evenly the age spectrum. Table 6 also shows (via
the coefficients δj2) higher rates of morbidity in lower density areas, typically non-metropolitan areas,
for four of the five categories. This is consistent with findings that lower density areas, with greater
sprawl and lower ”walkability”, have higher rates of obesity and overweight [44]. The exception to this
effect is diabetes combined with normal weight, which is higher in more densely populated areas. As to
effects of county ethnic structure, high concentrations of blacks or Hispanics remain a positive influence
on the three morbidity categories involving diabetes, even after controlling for county poverty.

Figure 5. Rate of obesity & diabetes jointly, US Counties, Model 2.
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Table 5. Loadings on shared latent effects, by model.

Model Level Category Mean 2.5% 97.5%
1 County Obese & Diabetic 1

Overweight & Diabetic 0.72 0.58 0.87
Normal weight & Diabetic 0.49 0.32 0.67

Obese non-diabetic 1.42 1.32 1.54
Overweight non-diabetic 0.88 0.81 0.96

State Obese & Diabetic 1
Overweight & Diabetic 0.88 0.62 1.20

Normal weight & Diabetic 0.44 0.08 0.84
Obese non-diabetic 0.16 0.03 0.31

Overweight non-diabetic 0.05 0.00 0.13
2 County Obese & Diabetic 1.00

Overweight & Diabetic 1.07 0.97 1.18
Normal weight & Diabetic 1.53 1.35 1.69

Obese non-diabetic 2.56 2.50 2.65
Overweight non-diabetic 1.75 1.67 1.85

State Obese & Diabetic 1
Overweight & Diabetic 1.08 0.96 1.29

Normal weight & Diabetic 0.14 -0.02 0.30
Obese non-diabetic 0.86 0.80 0.93

Overweight non-diabetic 0.42 0.37 0.48
3 County Obese & Diabetic 1

Overweight & Diabetic 1.25 1.02 1.52
Normal weight & Diabetic 1.27 0.95 1.55

Obese non-diabetic 2.44 2.16 2.83
Overweight non-diabetic 1.65 1.44 1.91

State Obese & Diabetic 1
Overweight & Diabetic 1.09 0.68 1.74

Normal weight & Diabetic 0.45 0.12 0.64
Obese non-diabetic 0.48 0.32 0.69

Overweight non-diabetic 0.30 0.14 0.48

Figure 5 maps county level variations in proportions jointly obese & diabetic from model 2, namely

pc1 = ωc1/
6∑
j=1

ωcj, (12)

where the ωcj are as in (10). The role of county poverty in defining levels of the joint obese-diabetic
category under model 2 results in isolated high prevalence clusters in West North Central states such as
North Dakota, Montana and Nebraska. These may, for example, be low income rural areas or counties
with concentrations of native Americans [45]. Figure 6 maps variations in the prevalence of obesity
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Table 6. Effects of county predictors by diabetes-weight category, model 2.

Category Predictor Posterior Mean Standard Devn MC Error 2.5% 97.5%
Obese & Diabetic Poverty Rate 1.10 0.08 0.01 0.93 1.21

Popn Density -0.11 0.01 0.00 -0.12 -0.10
Top decile Black 0.31 0.05 0.01 0.21 0.41

Top decile Hispanic 0.17 0.06 0.01 0.93 0.31
Top decile Other Ethnicity -0.12 0.06 0.01 -0.23 -0.02

Overweight & Diabetic Poverty Rate -0.10 0.09 0.02 -0.27 0.09
Popn Density -0.04 0.01 0.00 -0.06 -0.03

Top decile Black 0.02 0.09 0.02 -0.23 0.16
Top decile Hispanic 0.30 0.05 0.01 0.19 0.40

Top decile Other Ethnicity -0.16 0.05 0.01 -0.24 -0.06
Normal weight & Diabetic Poverty Rate 0.46 0.12 0.02 0.23 0.71

Popn Density 0.04 0.01 0.00 0.01 0.06
Top decile Black 0.19 0.08 0.02 0.01 0.33

Top decile Hispanic 0.37 0.07 0.01 0.27 0.49
Top decile Other Ethnicity -0.14 0.05 0.01 -0.25 -0.04

Obese non-diabetic Poverty Rate 0.16 0.14 0.02 0.01 0.41
Popn Density -0.06 0.01 0.00 -0.08 -0.05

Top decile Black 0.02 0.02 0.00 -0.03 0.08
Top decile Hispanic 0.09 0.03 0.01 0.04 0.18

Top decile Other Ethnicity -0.15 0.05 0.01 -0.23 -0.05
Overweight non-diabetic Poverty Rate -0.42 0.10 0.02 -0.64 -0.24

Popn Density -0.01 0.01 0.00 -0.02 0.00
Top decile Black -0.08 0.03 0.01 -0.16 -0.03

Top decile Hispanic 0.01 0.02 0.00 -0.04 0.06
Top decile Other Ethnicity -0.08 0.02 0.00 -0.12 -0.03

without diabetes, namely

pc4 = ωc4/
6∑
j=1

ωcj. (13)

The geographic pattern of this condition broadly resembles that of the rarer joint obese-diabetic
condition; the state level correlation between these two sets of prevalence rates is 0.50.

As might be expected, combining individual and county level predictors in model 3 produces the
lowest DIC and a reduced spatial variance, though over 80% in the baseline spatial variance remains
unexplained. Table 7 summarises the effects of individual level risk factors under model 3, in terms
of relativities between education and race groups for each of the five morbidity categories. These are
represented by the education parameters γje (e = 2, .., 4), and race parameters βjr (r = 2, 4); the
reference coefficient for education is γj1 = 0 for less than high school, and the reference coefficient for
education is βj1 = 0 for white non-Hispanics.

A notable feature from the education parameters is the lower morbidity among college graduates.
Generally, morbidity is greater for subjects with lower education attainment, except for the
overweight-non diabetic category.

The race parameters in Table 7 show that black and Hispanic males have higher morbidity than
white non-Hispanic males for all conditions. By contrast, other ethnicity (primarily Asian Americans
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Figure 6. Rate of obesity without diabetes, US counties, model 2.

Table 7. Effects of county predictors by diabetes-weight category, model 2.

Education Coefficients Posterior Mean Standard Devn MC Error 2.5% 97.5%
Obese & Diabetic High School Graduate -0.09 0.05 0.01 -0.18 0.01

Some College 0.02 0.05 0.01 -0.07 0.13
College Graduate -0.66 0.05 0.01 -0.74 -0.56

Overweight & Diabetic High School Graduate 0.13 0.05 0.01 0.03 0.23
Some College 0.02 0.05 0.01 -0.08 0.12

College Graduate -0.25 0.05 0.01 -0.34 -0.14
Normal weight & Diabetic High School Graduate -0.12 0.08 0.01 -0.30 0.04

Some College -0.34 0.09 0.01 -0.53 -0.18
College Graduate -0.50 0.07 0.01 -0.64 -0.38

Obese non-diabetic High School Graduate 0.26 0.03 0.00 0.20 0.32
Some College 0.37 0.03 0.00 0.30 0.43

College Graduate -0.16 0.03 0.00 -0.23 -0.10
Overweight non-diabetic High School Graduate 0.15 0.02 0.00 0.11 0.19

Some College 0.29 0.02 0.00 0.24 0.34
College Graduate 0.15 0.02 0.00 0.10 0.19

Race Coefficients Posterior Mean Standard Devn MC Error 2.5% 97.5%
Obese & Diabetic Black 0.60 0.06 0.01 0.48 0.73

Hispanic 0.74 0.06 0.01 0.62 0.85
Other -0.12 0.05 0.01 -0.21 -0.01

Overweight & Diabetic Black 0.81 0.08 0.01 0.63 0.95
Hispanic 0.87 0.06 0.01 0.76 1.01

Other -0.01 0.06 0.01 -0.13 0.10
Normal weight & Diabetic Black 0.56 0.11 0.01 0.35 0.79

Hispanic 0.67 0.11 0.01 0.46 0.88
Other 0.34 0.09 0.01 0.18 0.50

Obese non-diabetic Black 0.39 0.03 0.00 0.33 0.44
Hispanic 0.48 0.03 0.00 0.43 0.54

Other -0.63 0.03 0.00 -0.70 -0.57
Overweight non-diabetic Black 0.08 0.03 0.00 0.03 0.14

Hispanic 0.41 0.02 0.00 0.36 0.46
Other -0.31 0.03 0.00 -0.36 -0.26
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and native Americans) enhances only the rate of diabetes without obesity. This is consistent with the
original survey data (see Table 2) which shows that other ethnic groups have the highest proportion of
all race groups in the non-morbid (normal weight, non-diabetic) category. The high rate of diabetes
without excess weight among asian Americans has been shown by other studies [43,46]. Although other
studies [47] show high obesity among native Americans, the results in Table 7 suggest this may to
a considerable extent be explained by socioeconomic status (as measured by education) and by area
effects.

Table 8. Effects of county predictors by diabetes-weight category, model 3.

Category Predictor Posterior Mean Standard Devn MC Error 2.5% 97.5%
Obese & Diabetic Poverty Rate 2.07 0.15 0.02 1.80 2.39

Popn Density -0.11 0.01 0.00 -0.13 -0.09
Top decile Black 0.07 0.06 0.01 -0.06 0.18

Top decile Hispanic -0.13 0.06 0.01 -0.24 -0.02
Top decile Other Ethnicity -0.08 0.05 0.01 -0.17 0.01

Overweight & Diabetic Poverty Rate 0.58 0.26 0.03 0.10 1.06
Popn Density -0.07 0.01 0.00 -0.09 -0.04

Top decile Black -0.28 0.08 0.01 -0.41 -0.12
Top decile Hispanic 0.03 0.06 0.01 -0.07 0.15

Top decile Other Ethnicity -0.12 0.06 0.01 -0.25 -0.03
Normal weight & Diabetic Poverty Rate 0.07 0.33 0.04 -0.64 0.62

Popn Density 0.01 0.01 0.00 -0.02 0.04
Top decile Black -0.04 0.11 0.01 -0.26 0.14

Top decile Hispanic 0.12 0.07 0.01 -0.03 0.24
Top decile Other Ethnicity -0.15 0.06 0.01 -0.30 -0.05

Obese non-diabetic Poverty Rate 1.06 0.13 0.02 0.79 1.28
Popn Density -0.08 0.02 0.00 -0.12 -0.06

Top decile Black -0.09 0.06 0.01 -0.19 0.04
Top decile Hispanic -0.25 0.10 0.01 -0.42 -0.08

Top decile Other Ethnicity -0.17 0.04 0.00 -0.25 -0.09
Overweight non-diabetic Poverty Rate 0.15 0.17 0.02 -0.12 0.52

Popn Density -0.04 0.01 0.00 -0.06 -0.02
Top decile Black -0.08 0.04 0.00 -0.15 0.00

Top decile Hispanic -0.20 0.06 0.01 -0.31 -0.09
Top decile Other Ethnicity -0.09 0.03 0.00 -0.15 -0.04

Table 8 contains the δjk coefficients relating to county level predictors under model 3. The effects
of county poverty rate remain pronounced, and are in fact enhanced for the joint obese-diabetic and
obese-non-diabetic categories. The significantly higher prevalence of all conditions (except diabetic
normal weight) in lower density counties is also still evident. Thus the effects of known area predictors
have been largely maintained after allowing for subject level race and education, established as major
individual level risk factors for the two conditions [48]. The reduction (relatively slight) in the variance
of latent area effects (see Table 4) under model 3 may then be mainly attributable to control for
population composition.
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7. Conclusion

This paper has considered an approach to modelling prevalence variations in diseases or conditions
considered jointly, taking account of both area effects and characteristics of survey subjects. The
influence of area is represented partly by known variables (e.g., county poverty), and partly by spatially
clustered latent area influences. The application has focussed on the joint prevalence of diabetes and
weight status, so providing a geographic perspective on weight-related diabetes prevalence. However,
the approach is generic and potentially extends to more than two conditions.

Geographic variability in chronic conditions whether considered singly or jointly will partly
reflect variations in the socio-demographic characteristics of area populations, sometimes termed
‘compositional’ effects [49]. However, a number of studies find evidence for prevalence variations
between different areas even after controlling for population composition, illustrating what are
sometimes termed ‘contextual’ effects [50]. The present study adds to this evidence by showing enduring
geographic contrasts in prevalence of different joint obesity-diabetes categories after taking account of
individual level age, race and education status.

In the present paper contextual effects have been represented by shared latent effects over the joint
obesity-diabetes categories. These are spatially structured random effects for counties and states, and
the consistently positive loadings in Table 5 demonstrate that a shared univariate effect is appropriate.
Elaborations to the model presented above are possible, such as ethnic group differentiation in age or
education gradients, or additional subject level predictors, though those included (age, race, education)
are established as the major dimensions of variation for diabetes and obesity [5,48]. One might also
assume spatially varying impacts of the known area predictors, such as the county poverty rate [51].
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Appendix 1: Structured Age and Area Effects

Age and area effects follow autoregressive random effect schemes. To pool strength across the age
profiles of different outcomes, a low order multivariate random walk prior [52] may be adopted for the
J dimensional vector ηa = (η1a, .., ηJa), a = 1, .., A. For example, first and second order random walk
priors have conditional forms
ηa ∼ NJ(ηa−1,Ω

−1
η ),

ηa ∼ NJ(2ηa−1 − ηa−2,Ω−1η ),

where the J × J matrix Ω−1η represents covariation between age mortality profiles over different
weight-diabetes status categories. Here a first order random walk is used, and the precision matrix Ωη is
assigned a Wishart prior with identity scale matrix and J degrees of freedom, namely Ωη ∼ Wish(I, J).

The county and state effects follow conditional autogressive (CAR) priors [53], with pooling of
strength over neighbouring areas. Suppose the locality Lc of county c (the counties adjacent to it)
contains dc counties. For vc conditional on all remaining effects v[c] = (v1, ..vc−1, vc+1, ..vn), one has
vc|v[c] v N(Vc,

δ
dc

)

where δ is a conditional variance parameter, and Vc is the average of the vh (h 6= c) in locality Lc, namely
Vc =

∑
h∈Lc

vh/dc.

The state level prior pools strength over neighbouring states in the same way.
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