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Abstract: Infection by respiratory syncytial virus (RSV) affects approximately 33 million 

infants annually worldwide and is a major cause of hospitalizations. Helper T lymphocytes 

(Th) play a central role in the immune response during such infections. However,  

Th lymphocytes that produce interleukin 17 (IL-17), known as Th17 lymphocytes, in 

addition to been protective can also cause pathology that accompany this type of infection. 

The protective effects of Th17 is associated with better prognosis in most infected 

individuals but heightened Th17 responses cause inflammation and pathology in others. 

Studies employing animal models have shown that activated Th17 lymphocytes recruit 

neutrophils and facilitate tertiary lymphoid structure development in infected lungs. 

However, IL-17 also inhibits the ability of CD8
+
 lymphocytes to clear viral particles and 

acts synergistically with the innate immune system to exacerbate inflammation. 

Furthermore, IL-17 enhances IL-13 production which, in turn, promotes the activation of 

Th2 lymphocytes and excessive mucus production. Studies of animal models have also 

shown that a lack of, or inadequate, responses by the Th1 subset of T lymphocytes 

enhances Th17-mediated responses and that this is detrimental during RSV co-infection in 

experimental asthma. The available evidence, therefore, indicates that Th17 can play 
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contradictory roles during RSV infections. The factors that determine the shift in the 

balance between beneficial and adverse Th17 mediated effects during RSV infection 

remains to be determined. 

 

Keywords: RSV; pneumovirus; mucus; interleukin 17; interleukin 23; interleukin 13; 

Th17 

 

1. Th17 lymphocytes and IL-17 and the immune system—basic biology 

 

Th17 lymphocytes play a central role in host defences against a range of extracellular pathogens 

including bacteria, viruses and fungi [1,2,3]. This subset of helper T lymphocytes differs from the 

other subsets, Th1, Th2 and regulatory T lymphocytes (T-reg lymphocytes) both in their requirements 

for differentiation and expansion factors and in their targets pathogens. In addition, excess Th17 

lymphocyte numbers have been associated with inflammatory autoimmune diseases [4,5,6]. In contrast 

to Th1 and Th2 lymphocytes which predominantly produce interferon gamma (IFNγ) and  

IL-4/IL-5/IL13, Th17 lymphocytes produce IL-17A, IL-17F, IL-21 and IL-22. IL-17A and IL-17F are 

members of IL-17 family of cytokines which includes six members; IL-17A-F. All members of this 

family are involved in inflammatory responses; however, only IL-17A, F and E (IL-25) are produced 

by haematopoietic cells. IL-17A and IL-17F show 50% homology and both bind IL-17 receptor  

(IL-17R) which is a complex of IL-17RA and IL-17RC. IL-17A binds with higher affinity to the  

IL-17RA/C and induces stronger intracellular signalling than IL-17F. Both IL-17A and F are active as 

dimers; homodimers and heterodimers [7]. The studies reviewed in this article are mainly about  

IL-17A and this cytokine will thereafter be referred to as IL-17.  

IL-17 acts on stromal cells to promote the production chemokines such as CXCL1, IL-8, CCL20 

(MIP-3) and IL-6 which then promote neutrophil recruitment to sites of infection (see Table 1) [8].  

IL-17 itself is a weak inducer of these cytokines/chemokines but acts by stabilizing mRNA transcripts 

induced by other cytokines [9]. IL-17 also down-regulates micro-RNA 23b (miR-23b), which 

negatively regulates inflammatory responses [10]. Furthermore, IL-17 induces mucus production in the 

respiratory tract and increases the expression of polymeric Ig receptors that facilitate the release of IgA 

and IgM antibodies into the respiratory tract [11]. Of the other cytokines produced by Th17 

lymphocytes, IL-21 promotes Th17 proliferation and antibody production by B lymphocytes [12]. 

Paradoxically, however, Il-21 also antagonizes some IL-17-mediated responses during RSV infection 

[13]. IL-22, in contrast, promotes mucosal homeostasis and induces the production of antibacterial 

peptides [14]. 

The production of low-levels of IL-17 by resident Th17 lymphocytes is necessary for maintaining 

immunological homeostasis in the gut. This occurs under the influence of IL-1 and transforming 

growth factor beta (TGFβ) that are produced by gut epithelial cells [15]. During inflammation, IL-6 

and prostaglandin E2 (PGE2) are produced and these induce IL-23 receptor expression which is 

necessary for the differentiation of naive CD4
+
 T lymphocytes to Th17 lymphocytes [16,17].  

The differentiation of Th17 cells involves an intricate network of cytokines and transcription factors 
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predominant among which is the retinoic orphan receptor gamma t (RORt) and retinoic acid receptor 

alpha (RAR) [18]. Interestingly, recent studies have revealed that low level CD3/TCR engagement, 

as compared with high level receptor engagement, preferentially promotes human Th17 

differentiations and the effect is mediated through activating the NFAT-1 transcription factor [19,20]. 

Hypoxia also promotes Th17 differentiation through the hypoxia-inducible factor alpha (HIF-1α) 

transcription factor which binds to the promoter of RORt in naïve T lymphocytes [21,22].  

The production of IL-23, in contrast, is associated with the expansion of Th17 lymphocytes in 

pathogenic settings such as in autoimmune disease [23]. In this respect, IL-23 production by DCs 

during RSV infection has been suggested to be responsible for Th17 propagation and exacerbated 

inflammation associated with the infection [24,25].  

 

2. Th17 lymphocytes in the respiratory tract 

 

Th17 lymphocytes are present in the respiratory tract and there is evidence that they play a key role 

in responses to fungal infections. These cells, however, also contribute to inflammatory disorders that 

afflict the respiratory tract, such as asthma and chronic obstructive pulmonary disease (COPD). 

Increased production of the Th17-related cytokines, such as IL-17A, IL-22 and IL-23 in COPD 

patients reflects the involvement of Th17 lymphocytes in initiating and driving the disease process 

[26,27]. In addition, excess IL-17 production has been reported in animal models and human patients 

has been associated with neutrophil dominated asthma and with cortisone-resistant severe airway and 

hyper-reactivity (AHR) [28,29]. Although both IL-17A and IL-17F have been shown to play a role in 

asthma, studies of gene knockout mice have suggested that IL-17F may in fact ameliorate the disease 

process [30]. Th17 lymphocytes have also been implicated in effector mechanisms triggered in 

response to RSV and other types of respiratory viral infections [31,32]. 

3. IL-17 and Th17 lymphocytes in human RSV infection 

3.1. The immune response at the onset of RSV infection 

 

Worldwide, infants are affected by lower respiratory tract infections caused by RSV. Although 

many such infections have a mild course, in certain infants the infection leads to bronchiolitis needing 

hospitalization and respiratory support in an intensive care unit [31,34,35]. Inhaled RSV particles bind 

glucose amino glycans on respiratory epithelial cells through their glycoproteins, major attachment 

protein G and fusion protein F. The particles then fuse with the cells and initiate their propagation and 

spreading [36,37]. There is evidence that cells other than epithelial cells, including macrophages and 

dendritic cells (DCs), are also infected by the virus [38,39]. Infected epithelial cells initially respond 

either by releasing acute phase proteins or promoting their production, such as causing complement 

component C3 activation and the release of its pro-anaphylactic factor C3a [40]. The subsequent 

response to the infection is of innate immune-type resulting in the influx of neutrophils which become 

the dominant cells during the first four days of infection [41,42].  
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Figure 1. IL-17 mediated responses in the respiratory tract during RSV infections. RSV 

virus particles infect ciliated epithelial cells in the lower respiratory tract. C3a and other 

mediators of inflammation are then released from epithelial cells in response to the 

infection and this, in turn, induces IL-17 production (dark blue colour). During the early 

phase of the response to RSV infection, IL-17 is produced by CD11b
+
 innate immune cells. 

Subsequently, the production of IL-17 is predominantly by CD4
+
 Th17 lymphocytes. The 

production of IL-17 initiates a number of effects in the respiratory tract. Thus, IL-17 

induces mild inflammation and exacerbates inflammatory responses triggered by other 

signals and cytokines. In this scenario, single stranded RNA in RSV particles bind to TLR3 

and synergize with IL-17 to induce IL-6 (orange colour) and IL-8 (blue colour) by 

fibroblasts (Fc). The binding of double stranded RNA to TLR7, however, is inhibitory to 

IL-17-mediated responses and, instead, promotes Th1-mediated responses. IL-17  

co-operates with IL-1 and TNFα to induce the release of chemokines that mediate 

neutrophil recruitment. Furthermore, IL-17 induces mucus production from epithelial cells. 

IL-17 also binds receptors on CD8
+
 T lymphocytes and inhibits their ability to reduce viral 

load. Cytokines produced by Th1 and Th2 lymphocytes, IFN and IL-13, in contrast, 

inhibit IL-17 production [25,33]. 

 



Viruses 2013, 5                            

 

 

781 

3.2. The adaptive immune response to RSV infection 

 

RSV infection activates T lymphocytes in lung draining lymph nodes with the help of DCs that 

migrate from sites of infection. This results in the induction and differentiation of T lymphocytes into 

viral-specific Th1 and Th2 lymphocytes in detectable numbers in the lung 6-8 days post RSV infection 

[43,46]. CD8
+
 T lymphocytes emerge after the initial inflammatory response that follows RSV 

infection to clear viral particles [42]. Th1 lymphocytes are also induced and these produce  

pro-inflammatory cytokines, such as IFN and TNFα and the combination of the two cellular responses 

efficiently clears RSV infections in most individuals [44]. However, humans and mice deficient in the 

transcription factor STAT1, which is activated following IFN binding to its receptor, are prone to 

severe RSV infections [45,46]. In addition to cytotoxic and Th1 lymphocytes, the immune response 

also includes Th2 lymphocytes which cause key symptomatic features of RSV infections, such as 

excessive mucus production and wheezing that normally accompany asthma [47]. Measurement of 

cytokines in the bronchoalveolar lavage (BAL) of infected infants (1.5-6 months of age) has identified 

similar levels of Th1- and Th2-type cytokines [48,49]. In animal models of RSV infection, the lack of 

Th1 effects resulting from IFNγ receptor deletion leads to a dominant Th2 response and worse 

pathology suggesting that Th1 responses ameliorate Th2-mediated effects during RSV infection in 

humans [50]. A recent study analysing the cytokine profile in the plasma of RSV infected infants (6 

months or younger), however, revealed that infants with a moderate response to the virus had higher 

plasma levels of IL-17 than infants with a severe response to RSV. In this study IFNγ and TNF levels 

were shown to be lower in RSV infected infants than in control infants [51]. Furthermore, IL-17 levels 

were higher in BAL from paediatric patients (13 months and below) with non-ventilated RSV disease 

at admission and at discharge compared with BAL from more severe, ventilated cases. IFN was 

undetectable in this study but IL-6 levels were 30 times higher in the ventilated cases [31]. A further 

study which examined tracheal aspirates reported increased IL-6 and IL-17 levels in severely ill 

ventilated infants compared with healthy infants (age not specified in this study) [32]. It is currently 

unknown what the function of IL-17 is in the respiratory tract and why higher levels are associated 

with better outcome in some but not all infected infants. One clue could be that the immune system of 

the newly born is immature with an impaired Th1 response [52]. DCs derived from infants’ umbilical 

cord blood have, for example, been shown to produce low levels of IL-12 [53]. Furthermore, DCs from 

cord blood of newly born, but not DCs from the blood of adults, when infected with RSV induced  

IL-17 production when co-cultured with T lymphocytes [39]. DCs from infected infants were shown to 

produce TGFβ, a cytokine known to promote Th17 lymphocyte differentiation [39]. Furthermore,  

co-culturing adult T lymphocytes with supernatants from human bronchial epithelial cells  

chronically-infected with the RSV A2 long strain promoted the differentiation of naïve T lymphocytes 

to Th2 and Th17 lymphocytes but not to Th1 lymphocytes [54]. These studies of T lymphocyte 

responses during RSV infection indicate that besides Th1 and Th2 responses, Th17 responses also 

occur. These studies, therefore, suggest that the Th17 response is beneficial in some cases of RSV 

infection. Th17 responses have, however, also been linked with pathology in the respiratory tract 

during severe neutrophil dominated asthma. More research is, therefore, needed to unravel the 

complex consequences of IL-17 production and when this is beneficial, when not and why.  
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4. The role of Th17 lymphocytes in the patho-physiology of RSV infection: some insights from in 

vitro and animal model studies.  

 

To better understand the role that Th17 lymphocytes play in the patho-physiology of RSV infection 

animal models and in vitro systems have been studied. Different strains of RSV were used to 

immunize mice and assess the immune response to RSV infection. In addition, cell lines were used to 

assess the direct effect viral particles have on immune cells. RSV strains “A2” and “A2 long” were 

used to immunize mice to define the nature of the response including immune cell infiltration during 

RSV infection. The RSV strain “line 19”, by contrast, was used to study cellular and molecular 

mechanisms involved in excessive mucus secretion and IL-13 production. Studies using the three 

strains of RSV revealed that infection induces IL-17 production in mice. However, no studies have 

been carried out to compare and contrast the responses initiated by the three strains in the same 

experiment. 

 

4.1. Infection with RSV induces IL-17 production which promotes neutrophil influx during the early 

response. 

 

Immunization of wild-type mice with RSV strain A2 resulted in complement activation by infected 

epithelial cells leading to the production of C3a which induced tachykinin and Substance P release. 

These mediators bound to their receptors on T lymphocytes, neutrophils and monocytes and lead to  

IL-17A production by CD11b
+
 myeloid cells during the early phase of the response [55]. In addition, 

RSV RNA particles trigger innate immune system-mediated inflammatory responses by binding to 

TLRs. Studies on the interaction between viral particles and cell lines in vitro revealed that IL-17 acted 

synergistically with RSV RNA particles to induce IL-6 and IL-8 production by fibroblasts. Thus, RSV 

strain A2 RNA induced an innate immune-like response by binding to TLR3 and this response was 

enhanced by IL-17 [56]. Furthermore, IL-17 produced during the infection increased the influx of 

neutrophils. The influx of neutrophils was also observed following infection with the RSV strain A 

line 19. In this setting neutrophils were recruited by IL-8 which was induced by IL-17 [32] (Figure 1). 

The impact of RSV infection on the cooperation between the innate system and IL-17/IL-17 

producing cells is, however, complex. Thus, in addition to binding TLR3, single stranded RSV RNA 

particles bind TLR7 on DCs, plasmacytoid DCs, B lymphocytes and macrophages and induce IL-12 

production, which promotes Th1-mediated responses (Figure 1). This can impact the balance between 

Th1 and Th17 responses and the patho-physiological response in vivo. For example, infection of TLR7 

deficient mice with RSV Strain A line 19 resulted in increased numbers of Th17 lymphocytes due to 

an increase in IL-23 production by DCs. This response caused more pathology through the consequent 

increase in IL-13 and mucus production in TLR7 deficient mice compared with wild-type mice [24]. 

Furthermore, the inflammatory response to the mouse homologue of RSV, pneumo virus of mice 

(PVM), was diminished when TLR7 was missing [57]. This is somewhat analogous to the situation in 

newly born infants in whom effector Th17 lymphocytes are recruited when the activation of Th1 

responses is inadequate.  
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4.2. Activation of Th17 and Th2 cells in response to RSV infection  

 

An efficient immune response to RSV infection is dependent on antigen recognition and 

presentation by DCs in local lymph nodes. Viral antigen presentation by DCs results in the activation 

and migration of CD4
+
 and CD8

+
 lymphocytes to the lung. The process of DC migration is dependent 

on the chemokine CCR7. Kallal and colleagues noted that CCR7 deficient mice had impaired lymph 

node formation and, instead, responded by activating T lymphocytes in local ectopic lymphoid 

structures in response to infection with RSV Strain A, line 19. The T lymphocyte response to RSV 

infection in these structures was dominated by Th17 lymphocytes. These Th17 lymphocytes promoted 

pathology by inducing the production of IL-13 and IL-21 which induced excessive mucus production 

[58]. A similar response was observed in the absence of IFNγ signaling in STAT1-deficient mice. 

Thus, infection of STAT1-deficient mice with RSV strain A2 resulted in elevated IL-13 and IL-17 

levels, production of excess mucus and airway inflammation. Just as was the case in TLR7
-/-

 mice, 

elevated IL-17 levels in STAT1-deficient mice were due to increased production of IL-23 [25]. In 

addition, to the inflammatory effects mediated by excess IL-17, it suppressed the ability of CD8
+
 to kill 

cells infected with RSV [59]. This latter study revealed that Th17-derived IL-17 bound to IL-17RA on 

CD8
+
 T lymphocytes and impaired their ability to reduce viral load and reduce the number of infected 

cells in the lung. The role of excess IL-17 in promoting pathology is further supported by the ability of 

neutralizing anti-IL-17 antibodies to reduce mucus and IL-13 production and increase viral clearance 

[36] (Table 1 and Figure 1). In vitro studies revealed that IL-17 enhanced mucus production by directly 

upregulating transcription of the mucus gene MUC5B in human tracheal and bronchial epithelial cell 

lines [60,61]. This upregulation of the MUC5B gene was shown to be dependent on ERK signalling 

and the activation NF-κB [60,61] 

A number of studies in which mice were infected with RSV particles have shown that the mice 

simultaneously produced IL-17 and IL-13 suggesting that the Th17 response is concomitant with the 

Th2 response [25,32,54,58]. The molecular mechanisms that underpin the co-production of IL-13 and 

IL-17 were further explored in STAT1-deficient mice. Newcomb et al. observed that IL-13 produced 

during infection of mice with RSV Strain A2 was capable, perhaps paradoxically, of suppressing IL-17 

production [73]. Using double STAT1- and IL-13-deficient mice for immunization experiments, these 

investigators observed higher levels of IL-17 production than in mice deficient in STAT1 alone. 

Increased IL-17 production in STAT1/IL-13-deficient mice was explained by the fact that IL-10 

production, which is induced by IL-13, reduces IL-17 production by Th17 lymphocytes. In addition, 

Th17 lymphocytes have been reported to express IL-13 receptor alpha (IL-13Rα, also known as  

IL-13RA) suggesting that these cells could be directly modulated by IL-13 [62]. As IL-17 has been 

shown to increase mucus production through enhancing IL-13 production, these findings may suggest 

that IL-13 can also negatively regulate Th17 lymphocytes through a negative feedback 

mechanism [33].  

 

4.3. IL-17 causes RSV-mediated exacerbation of asthma 

 

IL-13 and mucus production are not only associated with IL-17 production but a feature of  

virally-exacerbated asthma. In addition, a number of studies have indicated that IL-17 is involved in 
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severe asthma [28,29]. Therefore, the involvement of IL-17 has been explored in animal models of 

RSV infection concomitant with experimental asthma. For example, infection of mice with RSV Strain 

A2 subsequent to immunization with ovalbumin (OVA) induced experimental asthma and increased 

the production of mucus-associated proteins, Muc5ac and Gob-5 [63]. Mice injected with OVA, or 

with RSV alone, also upregulated the expression of genes encoding the mucus-associated proteins but 

gene expression persisted for longer periods in the OVA and RSV-immunized mice compared with 

those immunized with either OVA or RSV alone. Importantly, the increase in mucus production was 

associated with increased levels of IL-17 in the lungs [63]. Another study in which investigators used 

cockroach allergen (CRA) with RSV Strain A line 19 to induce asthma in mice provided further 

evidence for Th17 lymphocytes involvement in experimental asthma. Thus, stimulated T lymphocytes 

from lymph nodes of RSV/CRA-immunized mice produced IL-17 while mice immunized with CRA 

alone did not. Furthermore, administration of anti-IL17 antibody intraperitoneally suppressed the 

expression of Muc5ac and Gob5 in the lung, and IL-13 production in lymph nodes but increased the 

number of CD8
+
 lymphocytes [32]. These observations are further evidence for a role for IL-17 in viral 

exacerbation of asthma. 

Table 1. Responses and products released by the cells present in the respiratory tract when 

stimulated with IL-17. 

Cell type Response in vitro/in vivo Reference 

CD8+ lymphocyte Reduced RSV clearance in vivo [32] 

Epithelial cells 

IL-6, IL-8, PGE2 in vitro  [64] 

MUC5B, MUC5AC in vitro [60, 61] 

CCL20  in vitro  [65] 

beta defensin 2 in vitro  [66] 

IL-19 ** in vitro  [67] 

Endothelial cells IL-6, IL-8, PGE2   

Lung microvascular  

endothelial cells 

CXCL1 (GROα), CXCL5, 

and IL-8 * 
in vitro  

[68] 

 

Fibroblasts   IL-6, IL-8, PGE2  in vitro  [64] [69]* 

Smooth muscle 

AHR (OVA induced 

asthma) 
in vivo  

[70] 

Contraction in vitro 

* IL-17 potentiates the response by IL-1 beta and TNFα. 

** IL-17 potentiates the response by IL-13. 

 

5. Summary 

 

Th17 lymphocytes are important contributors to both protective immune responses and the 

pathology associated with RSV infection. The involvement of Th17 cells in the patho-physiology that 

accompanies RSV infections is of great topical interest. Measurements of IL-17 levels in plasma and 

BAL fluids from RSV-infected infants have indicated that the cytokine can be beneficial. These studies 
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have also suggested that Th17 responses during RSV infections are independent of Th1 and Th2 

responses and that they are, in some infants, supersede an immature/inadequate Th1 immune response 

in the newly born [39]. Studies of IL-17 in animal models and in vitro culture systems have revealed 

that the lack of INF-mediatedresponse enhances Th17 response. Such a response is driven by IL-23 

which is produced in preference to IL-12 [24,25]. In vitro systems and animal models have showed 

that IL-17 per se, or together with RSV RNA particles, can induce inflammatory cytokine and 

chemokine responses that promote the influx of neutrophils to sites of infection [32]. As have been 

shown in other models of inflammation, IL-17 can also orchestrate the development of tertiary 

lymphoid tissues in the lung [58,71],[72]. These structures are termed inducible bronchus-associated 

lymphoid tissues and are similar to structures found in RA patients with pulmonary complications (an 

autoimmune disease associated with IL-17)[73]. In addition to enhancing the inflammatory response 

that accompanies RSV infections, IL-17 has also been shown to suppress the ability of CD8+ 

lymphocytes to kill virally-infected cells and reduce the viral load [32]. Furthermore, both in vitro and 

animal model studies have confirmed that IL-17 enhances mucus production by acting directly on 

epithelial cells. This mucus production was also shown to be accompanied by IL-13 production which 

acts synergistically with IL-17 to enhance mucus production. However, high levels of IL-13 were also 

reported to inhibit IL-17 production. The induction of IL-17 production by RSV infection exacerbates 

asthma through enhancing mucus production. It is intriguing that IL-17F was not upregulated 

concomitant with IL-17A in one model of RSV infection [32]. Further studies to determine if IL-17F 

has a distinct role in RSV infection are warranted. The involvement of other Th17 cytokines, such as 

IL-21 and IL-22 in RSV patho-physiology also remains to be determined. 

Taken together, studies of infected individuals and animal models have revealed that IL-17 can have 

both beneficial and pathogenic effects during RSV infection. In animal models, just as in cases of 

patients with asthma, IL-17 induces pathology by enhancing neutrophil influx, mucus and IL-13 

production. However, the beneficial effects of IL-17 continue to be debated. It is intriguing to note that 

although Th17 lymphocytes have evolved together with the rest of the adaptive immune system, the 

emergence of the IL-17 family of cytokines predates chordates [74]. Th17 lymphocytes differentiate in 

response to inflammatory cytokines, preferably with low level of TCR engagement and their expansion 

is favoured by low oxygen levels [21,22]. The cells might, therefore, emerge as a weak alternative to 

the more efficient antiviral response mediated by a missing, or immature/inadequate Th1 lymphocyte 

response. Under such circumstances, Th17 lymphocytes may provide a response that straddles 

adaptive and innate immune responses resulting in mucus release, neutrophil influx and augmentation 

of local tertiary lymphoid structures.  
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