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 2 

Abstract 

The combination of DNA barcoding and high-throughput (next-generation) 

sequencing (metabarcoding) provides many promises but also serious 

challenges. Generating a reliable comparable estimate of biodiversity remains a 

central challenge to the application of the technology. Many approaches have 

been used to turn millions of sequences into distinct taxonomic units. However, 

the extent to which these methods impact the outcome of simple ecological 

analyses is not well understood. Here we performed a simple analysis of dietary 

overlap by skinks and shrews on Ile Aux Aigrettes, Mauritius. We used a 

combination of filtering thresholds and clustering algorithms on a COI 

metabarcoding dataset and demonstrate that all bioinformatics parameters will 

have interacting effects on molecular operational taxonomic unit recovery rates. 

These effects generated estimates covering two orders of magnitude. However, 

the magnitude of the effect on a simple ecological analysis was not large and, 

despite the wide variation, the same ecological conclusion was drawn in most 

cases. We advise that a conservative clustering programme coupled with larger 

sequence divergences to define a cluster, the removal of singletons, rigorous 

length filtering and stringent match criteria for Molecular Identifier tags are 

preferable to avoid MOTU inflation and that the same parameters be used in all 

comparative analyses. 

 

Key-words: metabarcoding, DNA barcoding, eDNA, ecological simulations, 

MOTU 
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 3 

Introduction 

Molecular methods of species identification are becoming a pervasive technique 

from regulatory and legal applications to pure research objectives (e.g. Clare et 

al. 2014, Cristescu 2014). Metabarcoding is rapidly expanding in application to all 

areas of ecological research and biodiversity science (Pompanon et al. 2012; 

Bohmann et al. 2014; Clare 2014; Cristescu 2014, Adamozicz 2015). As these 

investigations probe new geographic and research areas encountering unknown 

taxa (Trontelj and Fišer 2009), one of the most difficult research aspects is how 

to provide a reliable comparable estimate of species counts and biodiversity 

assessments linking sequences to biological species. Turning millions of 

sequences into manageable and accurate datasets remains the central challenge 

to the application of high-throughput (next-generation) sequencing to ecological 

investigation.  

 

The metabarcoding method refers to the combination of traditional DNA 

barcoding (Hebert et al. 2003) and high-throughput sequencing technologies. 

Defining molecular operational taxonomic units (MOTU) is the most common 

approach to analyse metabarcoding sequences (Floyd et al. 2002). MOTU can 

be assigned taxonomy using reference databases of known sequences, left as 

unknowns for statistical analysis, or treated using some combination of these 

approaches. The advantage of using MOTU is that both known and unknown 

taxa can be included in analyses. Identifications of MOTU tend to be biased 

towards larger, more charismatic species that are better known and appear in 
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 4 

reference collections, but unknowns are equally important in most ecological 

investigations and should dominate in relatively unknown fauna (Trontelj and 

Fišer 2009). A number of analytical programmes are used to define MOTU (e.g. 

Caporaso et al. 2010; Jones et al. 2011; Ratnasingham & Hebert, 2013), and 

most rely on some sort of clustering or threshold approach. As a standard, 3% 

sequence divergence is often applied and may function well in simple 

communities (Brown et al. 2015), and is particularly popular in bacterial research 

where metabarcoding techniques have been used for some time and a default 

3% is generally accepted, though this represents a somewhat arbitrary choice 

(Yang et al. 2013). The problem is more difficult when dealing with more complex 

datasets of the more recent eukaryotic metabarcoding efforts, where the 

automatic adoption of workflows from the bacterial literature is ill advised. The 

problem with MOTU-based approaches is the same as all species concepts, that 

no rule or metric will apply universally to all genetic markers and all taxonomic 

groups (Brown et al. 2015). Thus, the MOTU approach is an attempt at a 

reasonable estimate of species richness and should either be tailored to each 

dataset uniquely or standardized across datasets for meta-analyses.  

 

Conservative approaches to MOTU definition attempt to reduce the number of 

MOTU in datasets by increasing the divergence threshold by which MOTU will be 

defined, eliminating rare and/or artifactual sequences, or removing rare MOTU 

themselves. (NOTE: We use “increased divergence threshold” to refer to a larger 

absolute value, e.g. 5% of sequence divergence, to define a MOTU cluster 
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 5 

compared to “decreased threshold”, e.g. 2%, which generates more MOTU and 

is thus less conservative.) Rare MOTU are MOTU found infrequently within the 

dataset, usually only once (see a discussion in Salinas-Ramos et al. 2015). A 

conservative approach may be advisable, as many MOTU programmes appear 

to overestimate species diversity. For example, using a mock community of 61 

zooplankton species, Flynn et al. (2015) tested the effect on MOTU recovery rate 

of using a variety of programmes and metrics. They found that estimates ranged 

over orders of magnitude (22-22191) and were particularly influenced by the 

retention of rare sequences (singletons). This is particularly true when 

metabarcoding targets are length and copy-number variable regions like 

ribosomal genes that have different evolutionary properties affecting clustering 

behaviours and cannot undergo much length filtering. While insertions and 

deletions are thought to be rarer than substitutions in most high-throughput 

sequencing profiles (though it is platform dependent), their distribution appears to 

be non-random with reports of insertions more likely than deletions and 

concentrations of errors around specific sequence locations (Schirmer et al. 

2015). This length variation through sequencing error may artificially increase 

MOTU estimates depending on how gaps are treated in alignments and 

clustering methods, and indeed some clustering approaches have opted to 

ignore any position with a gap or indeterminate base (Jones et al. 2011).  

 

While this may be less of a problem for coding regions like fragments of COI 

used in DNA barcoding where rigorous length filtering can be applied, 
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 6 

sequencing errors of any kind will have greater impact when divergence 

thresholds are less conservative. For example, Razgour et al. (2011) estimated a 

12% overestimate of lepidopteran diversity in a dietary analysis. A few base pair 

errors may have marginal effects when the threshold is set at 4% divergence but 

will increase in their impact if the threshold leads to smaller sequence 

divergences being meaningful for generating new MOTU (e.g. 2%). Alternatively, 

a threshold of 6% or 4% will not be influenced strongly by random error but may 

lump different taxa together in the same MOTU and generate more conservative 

MOTU estimates. There is thus a trade off between estimates from larger 

clustering thresholds that risk lumping taxa, and from smaller thresholds that risk 

artificially increasing MOTU numbers from errors. Many additional informatics 

steps will similarly alter MOTU detection. The allowance of gaps or substitutions 

in the recognition of Molecular Identifier (MID) tags and the retention of rare 

sequences (e.g. singletons) will both increase the MOTU number as they may 

preferentially include more sequences of lower quality. The consequence of 

overestimation of MOTU number has impacts on both data interpretation (Clare 

2014) and downstream applications such as conservation management 

(Cristescu 2014). While some of these are obvious, such as the ranking of areas 

by biodiversity for managements practice, others are less predictable. 

 

One simple ecological analysis is the measurement of species overlap between 

any two samples. This may be the diet of two predators or the diversity of species 

occupying two geographic areas. It provides a measure of shared similarity 

Page 6 of 33
G

en
om

e 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
Q

U
E

E
N

 M
A

R
Y

 U
N

IV
 O

F 
L

O
N

D
O

N
 o

n 
06

/2
2/

16
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



 7 

between samples and can be modeled in simple ecological packages. One 

method commonly used is Pianka’s (1973) measure of niche overlap, which can 

be modeled in many ways including with the program EcoSim (version 7; 

http://grayentsminger.com/ecosim.htm). In this program null models are used to 

test whether the extent of overlap is greater than expected by chance by 

comparing observed and simulated matrices of randomized MOTU composition 

using the equation:  

 

 

 

where Pij is the proportion that resource i is of the total resources used by 

species j; Pik is the proportion that resource i is of the total resources used by 

species k; and n is the total number of resource states (total number of MOTU). 

 

Here we are interested in whether trade-offs between MOTU conservatism and 

artificially increased MOTU estimates have an impact on the outcome of simple 

ecological analyses and whether choices in data processing alone can lead to 

alternative interpretations of a simple ecological model. In this investigation we 

take a real dataset, an analysis of dietary niche overlap by predatory skinks and 

shrews (Brown et al. 2014), and measure the effect of increasing and decreasing 

MOTU estimates by using different sequence clustering programmes and 
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parameters (Figure 1). The resulting data are compared using the Pianka’s 

measure of niche overlap as reported in the original paper. We test the 

hypothesis that changing MOTU definition parameters has a predictable impact 

on the outcomes of ecological analyses, and we measure the magnitude of the 

effect of changing MOTU definition parameters on the outcome. We further make 

recommendations on what biases such decisions may impose on the outcomes 

of these analytical methods.  

 

Methods 

 

Sample data 

The data used were taken from an analysis of dietary overlap by skinks and 

shrews on Ile Aux Aigrettes, Mauritius (Brown et al. 2014). In this system 

endemic Telfair’s skinks (Leiolopisma telfairii) are thought to be under threat from 

invasive Asian Musk Shrews (Suncus murinus). At some periods of the year they 

are thought to be mutually predatory on each other’s young, but most of the time 

they are thought to compete for the same insect resources. The primary goal of 

their analysis was to determine which prey they might share and to what extent 

their diet overlapped. The sequences were produced by targeting a small 

fragment from the cytochrome c oxidase subunit 1 “DNA barcode” using mini-

barcode primers (LCO-1490/Uni-MiniBar-R). All sequencing was performed on a 

Roche 454 GS-FLX (Roche Applied Sciences) using the emPCR Lib-L method at 

the Genepool Edinburgh. Their main conclusion was that the two predators 
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 9 

overlap strongly in their use of common prey MOTU but only marginally when all 

prey MOTU were considered.  

 

Bioinformatics analysis 

Raw sequencing data was processed with custom scripts (appendix) that use a 

combination of software and various thresholds for comparison. Pooled 

pyrosequencing data were first de-multiplexed using fastx_barcode_splitter.pl 

from the FASTX-toolkit (hannonlab.cshl.edu/fastx_toolkit) based on the forward 

and reverse MID indices of each sample. Four different thresholds (0, 1, 2, and 3) 

were used for both the number of mismatches allowed in the MIDs (--

mismatches) and the number of non-overlapping bases (--partial), which is 

similar to allowing indels/gaps. For each resulting sample file, primer adapter and 

MID removal was performed using fastx_clipper in which sequences without 

primers were discarded (-c). Reads were then dereplicated using -

derep_fulllength in USEARCH v8.0.1517 (Edgar 2010) and concatenated into a 

master file for clustering. Additional files were created with the absence of 

singletons (uniquely occurring sequences within a sample). For each master file, 

sequences were treated using two different length-filtering criteria. First, reads 

were only kept if they were between 122bp and 132bp in length. Second, reads 

were only kept if they were between 126bp and 128bp in length. Clustering of 

reads into MOTU was performed using two different approaches, UPARSE 

(Edgar 2013) and SWARM (Mahé et al. 2014). For UPARSE, clustering was 

performed using five different sequence divergence thresholds (1%, 2%, 3%, 4%, 
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 10

5%), following the UPARSE manual (see appendix for specific commands). For 

SWARM the number of differences between the sequences was explored across 

six thresholds (from 1 to 6). A total of 176 MOTU files were produced from these 

combinations (Table 1). The SWARM threshold was interpreted as an 

approximate sequence divergence threshold so that it could be analysed 

alongside UPARSE data (e.g. 5/122 – 5/132bp = 4.10 - 3.79% divergence). For 

comparative purposes, the MOTU results from the category with 5bp differences 

was merged with the 4bp group during ecological simulations as the majority of 

the sequences are 127bp long, and therefore the majority will be ≈4% divergence 

threshold and this merging generates a better matched between methods.  

 

Ecological Simulations  

We performed ecological simulations using Pianka’s niche overlap with 1000 

bootstrap replications in EcoSim (as described above) on all datasets where the 

MOTU count was less than 800 (large values become computationally 

impractical for simulations). We analysed two cases, one where all data are 

retained (All-MOTU analysis) and one where rare MOTU found only once in the 

entire dataset are removed (Common-MOTU analysis). This approach was used 

in the original paper (Brown et al. 2014) to remove MOTU that may be the result 

of sequencing error or may represent rare prey not contributing substantially to 

the diet of either predator. See Figure 1 for an outline of study design.  

 

Statistical Analysis  
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 11

All analyses were performed in R version 3.2.1 (R Development Core Team 

2015). Common-MOTU and all-MOTU datasets were analysed separately. 

Initially, data were visualised and linear regressions performed to determine the 

relationship between mean niche overlap and MOTU number. In both the all-

MOTU analysis and common-MOTU analysis, MOTU number was log-

transformed, so that the data conformed to the assumptions of the model and 

improved the fit of the model residuals.  

 

A linear model was fitted to examine the effects of different bioinformatics 

parameters on mean niche overlap in the all-MOTU dataset. Clustering 

programme, sequence divergence threshold, bp length filtration, and the 

presence or absence of singleton sequences (and their two-way interactions) 

were all added to the initial model as explanatory factors. The model was 

simplified using deletion tests based on partial F tests until a minimal adequate 

model was achieved (Crawley 2007). Explanatory variables with a p value of 

<0.05 were retained in the minimal adequate model. Model validation plots were 

examined for deviations from the assumptions of a linear model. 

 

Results  

 

Number of MOTU and niche overlap 

The original paper analysing the diet overlap of skinks and shrews (Brown et al. 

2014) used jMOTU (Jones et al. 2011) to describe the MOTU richness. Although 
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jMOTU is too computationally intensive for many of the larger datasets now 

produced, it offers a conservative approach by disregarding gaps that can be 

legitimate taxonomic characters particularly in ribosomal or intron data (Jones et 

al. 2011). The original authors (Brown et al. 2014) determined the presence of an 

apparent “barcode gap” (Meyer and Paulay 2005, Ratnasingham and Hebert 

2013) using 4bp differences to define separate MOTU. They reported significant 

diet overlap using Pianka’s simulation (Ojk = 0.55, p = 0.0012) when all MOTU 

were considered, and when rare MOTU were excluded this value increased 

dramatically to Ojk = 0.80 (p = 0.002).  

 

In our analysis, 176 MOTU estimates were generated by manipulating 

combinations of sequence filtering and clustering parameters including (1) MID 

match criteria, (2) length filtration, (3) retention or removal of rare (singleton) 

sequences, (4) clustering programme, and (5) clustering threshold (Figure1, 

Table 1). MOTU content varied from 54 to 6238. Eight of the 10 highest 

estimates (all ≥ 2855) were generated from UPARSE, while 9 of the smallest 10 

values (all ≤ 75) were generated from SWARM. A total of 136 combinations of 

clustering parameters generated files with <800 MOTU and were thus considered 

in our analysis for ecological simulations. Values substantially above this are 

inefficient to analyse given the computational requirements for randomized 

matrices in the available programme and thus we report neither overlap nor 

statistical testing for these. In many cases these are likely not biologically 

reasonable in any case e.g. ≈16 of these represent clustering with divergences 
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equivalent to <1% (Table1). Of the analysed outcomes, mean diet overlap was 

estimated as 0.526-0.623, with 58% of simulations suggesting overlap was 

statistically significant. No cases suggested overlap was significantly less than 

expected by chance (resource partitioning).  

 

All-MOTU and Common-MOTU analysis 

When all MOTU were considered (rare MOTU retained) we found a significant 

negative relationship between mean niche overlap and log MOTU number 

(Figure 2, F1,134 = 26.7, p < 0.0001). Three interactions and one first-order main 

effect determined mean niche overlap in the linear model. The interaction 

between clustering programme and the presence or absence of singletons in the 

dataset was a highly significant determinant of mean niche overlap (Figure 3, 

F1,128 = 19.2, p <0.0001), with the SWARM programme interacting with the 

presence of singletons to produce a lower mean niche overlap than the other 

treatments. Clustering threshold interacted with the presence or absence of 

singletons (Figure 4, F1,128 = 44.4, p <0.0001). Clustering programme and 

clustering threshold level had a significant interaction (Figure 5, F1,128 = 53.4, p 

<0.0001).  Finally, 126-128bp read length filtration produced a significantly higher 

mean niche overlap than 122-132bp (Figure 6, F1,128 = 61.1, p < 0.0001). When 

only common MOTU were retained (rare MOTU removed), there was a 

significant positive relationship between logged common MOTU number and 

mean niche overlap (Figure 2, F1,170 = 37.9, p <0.0001). 
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Discussion 

Defining molecular operational taxonomic units (MOTU) from the millions of 

sequences generated in each next-generation sequencing run remains one of the 

central challenges of metabarcoding. Here we tested the hypothesis that altering 

the parameters of MOTU clustering impacts the number of MOTU recovered and 

has predictable impacts on ecological analyses. Our analysis of two predator 

diets from a single dataset generated 176 variations of MOTU definition spanning 

two orders of magnitude. This demonstrates that wide variation in taxonomic 

richness estimates can be created. We found that these estimates had a small 

but unpredictable impact on the measurement of ecological niche overlap. When 

all MOTU were included in the analysis, niche overlap dropped as MOTU counts 

increased. When we considered only common MOTU, there was a positive 

relationship between MOTU number and niche overlap. All parameters tested 

altered MOTU counts and thus had measureable effects on estimates of niche 

overlap, but also interacted with each other to complicate the analysis. Despite 

these measurable effects, the actual values of niche overlap did not vary greatly, 

and in the majority of cases the same ecological conclusion, that the two prey 

species overlap in their use of resources, would have been made regardless of 

the parameters used. We suggest that while MOTU parameters that are less 

conservative lead to lower estimates of niche overlap, general ecological 

conclusions are robust to most parameter choices. 

 

The influence of MOTU number on ecological analyses 
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The combination of different parameters generated MOTU estimates that varied 

across two orders of magnitude. While this is considerable, it is not as dramatic 

as the variation reported by Flynn et al. (2015) on ribosomal genes. In our case, 

the use of a coding gene region without length variation may buffer the effect 

somewhat as length filtering can be quite stringent. When all MOTU were used, 

more conservative MOTU estimates increased the estimate of niche overlap. 

This is not unexpected since these phenomena are normally sensitive to rare 

events (Clare 2014), and conservative clustering approaches tend to homogenize 

samples by lumping taxa. While this negative relationship does exist, the actual 

values do not vary greatly. Mean overlap estimates were almost all below 0.6 

(most between 0.56 and 0.6). In the common-MOTU analysis all measures were 

above 0.6, and there was a weak positive relationship between MOTU count and 

niche overlap. This relationship is unexpected but still would not have altered the 

conclusions of the original paper that the two predators overlapped strongly in 

their use of common prey items but not as strongly when all MOTU were 

considered (Brown et al. 2014). 

 

Specific parameter choices 

Factors that lead to the retention of more data contribute to larger MOTU counts 

and should reduce measures of mean niche overlap. In our case this was largely 

true though the filtering and clustering parameters interacted in some unexpected 

ways. The retention of singleton sequences, broader sequence length filtering, 

and more permissive MID match criteria all contributed to increased MOTU 
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counts. However, interactions between factors made it difficult to tease apart 

which parameters have a larger effect on MOTU counts. For any clustering 

threshold (Figure 4) the inclusion of singletons led to a drop in mean niche 

overlap. The exclusion of rare sequences is a common analytical step, the 

assumption being that many of these will constitute sequencing error (Kunin et al. 

2010). It has been shown using mock community analyses that most are 

sequencing artefacts, and the inclusion of these requires that the divergence 

threshold for MOTU clustering be increased (Brown et al. 2015) to maintain good 

correspondence between MOTU and taxonomic designations (e.g. from 2% to 

4%). In some cases authors have found that rare taxa are often only represented 

within the singletons (Zhan et al. 2013), but they cause massive MOTU inflation 

at the same time (Flynn et al. 2015). Therefore, the trade-off between keeping 

bad data and excluding good data is likely balanced towards the latter but will 

dependent on how important the possibility of rare taxa is to the analysis (Flynn 

et al. 2015).  

 

Interestingly we did not observe a consistent effect of clustering thresholds in 

both the SWARM and UPARSE programmes (Figure 5). This is counterintuitive 

since thresholds closer to 1% should generate larger MOTU counts, reducing 

mean overlap. A reasonable biological explanation is that the most common prey 

items shared between predators were disproportionately split into numerous 

MOTU, artificially amplifying niche overlap. Alternatively, some of the largest files 

could not be analysed because of computational demands. Large matrices 
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become computationally difficult in our simulation software thus we excluded any 

files that generated >800 MOTU for practical reasons. Because of this, the effect 

here may be due to the exclusion of the largest files, somewhat correcting MOTU 

counts. The high niche overlap among the UPARSE MOTU at 4% and 5% 

divergence may partly be technical; clustering with a threshold bigger than 3% 

divergence with UPARSE is not recommended and involves a slightly different 

computational procedure compared to lower thresholds (e.g. 1-2%) (appendix, 

http://www.drive5.com/usearch/manual/uparse_otu_radius.html). Clustering 

thresholds have been shown to impact measures of community composition. 

Yang et al. (2013) demonstrated that altering the clustering threshold from 4% to 

1% divergence shifted the relative proportion of MOTU assigned to different 

taxonomic levels in a complex community. It may be prudent to use less 

conservative clustering thresholds only when rare sequences are excluded. This 

conservative tactic of reducing MOTU numbers by using thresholds that are 

based around increased sequence divergence has been used in some dietary 

studies where DNA degradation and over interpretation of biological effects are 

both likely and some data reduction is required (e.g. Salinas-Ramos et al. 2015) 

but should be balanced against the risk of lumping taxa. We also found that more 

conservative length filtering increased mean overlap (Figure 6). Because this 

region of COI is not length variable, relaxed filtering will always mean the 

inclusion of more sequences with errors resulting in the inclusion of spurious 

MOTU generated from sequences of more divergent length. When including data 

with known length variation it is important to consider whether gaps lead to the 
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site being ignored (Jones et al. 2011) or may be treated as single mutations or 

multiple mutations based on gap length.  

 

UPARSE vs. SWARM 

The two clustering programmes UPARSE and SWARM behaved somewhat 

differently. Most of the largest files were generated from UPARSE and the 

smallest from SWARM. This may create an anomalous interaction (Figure 3), 

because some files with singletons included were too large to be practically 

analysed (see above). Therefore, despite the apparent outcome that UPARSE 

generated files with larger mean overlap (Figure 3), this could be an effect of 

having removed all the larger files. SWARM appears to be more conservative, 

generating smaller MOTU counts. However, it is important to note that a direct 

comparison between the two programmes is complicated by the different 

approaches employed, in which UPARSE uses a greedy clustering algorithm and 

SWARM uses an agglomerative single-linkage-clustering algorithm. Whereas 

UPARSE assigns reads to MOTU “centroid sequences” based on a global 

percent divergence threshold, SWARM uses a combined clustering approach of 

first delineating MOTU based on a sequence difference threshold, followed by 

MOTU refinement based on the read abundance and structure of the clusters. 

The initial iterative clustering by SWARM is meant to group similar sequences 

together in a progressive manner without using a global threshold applied to a 

centroid sequence, and in this way appears to achieve a more conservative 

number of MOTU with fewer singletons. 

Page 18 of 33
G

en
om

e 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
Q

U
E

E
N

 M
A

R
Y

 U
N

IV
 O

F 
L

O
N

D
O

N
 o

n 
06

/2
2/

16
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



 19

 

Interpreting ecological analyses 

The remaining consideration is how ecological analyses should be interpreted. In 

this case, increasing conservatism in our estimates of MOTU will have a 

predictable impact, biasing our analyses towards the detection of resource 

sharing. This may be beneficial in some cases. It has been argued that 

metabarcoding approaches are actually too sensitive in predator-prey systems 

(Clare 2014). Many predators will not be able to discriminate between prey at the 

species level, and thus they cannot make adaptive decisions and will consume 

many food items based on encounter frequency (see a discussion in Clare 

(2014)). In this way, we have a tendency to over interpret the data towards 

resource partitioning and specific predator choices that may not be a biological 

reality. If more conservative analyses can counter this by decreasing that 

likelihood, it may help improve our interpretation of data. Critically here, the 

interpretation of the system does not change regardless of the parameters 

selected in almost every case. This raises the question of whether the niche 

overlap simulation tests are sensitive to resource partitioning for metabarcoding 

data. Comparisons with the same parameters will be more reliable, but the actual 

value of the overlap reached should be treated with caution. Further analyses 

should consider the conditions under which significant partitioning would be 

recovered using these data types. 
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Ideally we need to construct and test parameter choices on mock communities 

based around the taxa of interest or, failing that, general communities that 

contain similar taxonomic diversity. Currently mock communities are not a 

common control in these analyses, and we know of few robust analysis of such a 

community. Failing this we must rely on established parameters and a degree of 

common sense about the research priorities. In the example of the skinks and 

shrews, a 4bp threshold was originally used which approximates a 3% 

divergence (Brown et al. 2014). With highly mixed arthropod communities such 

as those anticipated for the diet in this case, no threshold is “correct” and thus 

“consistent” is probably the best choice. The authors’ attempt to find the barcode 

gap is a reasonable metric but in highly diverse communities this is difficult. 

There is some argument about what an appropriate threshold for consistency 

would be. Some have advocated 2-3% for insects, which approximates some of 

the observations of real communities reported in the literature (e.g. Hajibabaei et 

al. 2006), though this may actually end up overinflating taxonomic estimates in 

some next-generation sequencing approaches. Sequencing error is common in 

these datasets, and while removing rare haplotypes will substantially reduce 

error, many authors have chosen to use a threshold in the range of 4-6% so that 

any retained error is caught in the “fuzz” in the outside of MOTU clusters. This 

risks lumping, but reduces the risk of MOTU inflation. In the area of bacterial 

metagenomics and metabarcode approaches a standard 3% has been used by 

default. The biological reality of this threshold has been minimally tested, 

especially considering the diverse uncultured bacterial world, but this approach 
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does achieve consistency across studies, making them comparable. Ultimately 

the choice of threshold will need to be determined by a combination of the taxa, 

the question being asked, and the level of conservatism desired by the 

researcher.   

 

We suggest that in the wider context of data analysis the statistical effect of 

parameter choice is not likely to have a strong impact on the actual ecological 

conclusions if the error is equal among samples and treatments, particularly if the 

parameters used are the best estimates that can be made given the 

circumstances. More crucially we argue that comparisons between datasets 

generated using different methods are likely meaningless whether it is the 

analysis of ecological models or the ranking of areas by biodiversity for 

management decisions. This extends to comparisons of data generated across 

sequencing platforms with different sequencing depths and error rates and to the 

parameters used to define MOTU. While the latter may be under the control of a 

researcher in meta-analyses, the former are set and may constantly be shifting 

as platforms and chemistry change. Caution is warranted. Any factor which 

influences the rate at which new MOTU are recovered will cause biased 

conclusions, and it is thus necessary to always use the same analytical pipeline 

for comparative analyses.  

 

Conclusions 
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We demonstrate that all parameters in the bioinformatics analysis of COI 

metabarcoding data will have interacting effects on MOTU recovery rates and 

that modifying only a few of these can generate estimates that cover two orders 

of magnitude from the same input data. However, the magnitude of the effect on 

a simple ecological analysis is not as large and, despite the wide variation in 

MOTU estimates, the same ecological conclusions would be drawn in most 

cases. While the accuracy of MOTU counts may be inadequate, the repeatability 

of analyses is high. To make more conservative MOTU estimates we suggest the 

use of a more conservative clustering programme coupled with larger sequence 

divergence, the removal of singletons, rigorous length filtering, and more 

stringent MID match criteria. However when the detection of rare variants or taxa 

is important less conservative choices are desirable. 
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Table 1. Number of MOTU using a combination of different programmes 

(UPARSE and SWARM) with various clustering divergence thresholds, MID 

mismatches, length filtering criteria, and singleton removal. Darker backgrounds 

represent higher MOTU numbers. 

length 122-132bp 126-128bp 

singletons absence presence absence presence 

clustering UPARSE SWARM UPARSE SWARM UPARSE SWARM UPARSE SWARM 

C
lu

st
e

ri
n

g
 d

iv
e

rg
e

n
ce

 t
h

re
sh

o
ld

 &
 n

u
m

b
e

r 
o

f 
M

ID
 m

is
m

a
tc

h
e

s 
a

ll
o

w
e

d
 (

m
m

) 

1 

0 mm 185 189 4826 2349 121 148 2723 1133 

1 mm 189 196 4988 2429 127 158 2820 1182 

2 mm 216 227 6145 2962 145 184 3429 1399 

3 mm 216 227 6238 3018 141 178 3456 1404 

2 

0 mm 185 125 2224 984 121 94 1036 465 

1 mm 189 133 2276 1023 127 101 1082 486 

2 mm 216 146 2855 1213 145 115 1298 546 

3 mm 216 146 2872 1267 141 112 1325 570 

3 

0 mm 185 111 1280 510 121 84 611 271 

1 mm 189 115 1340 541 127 88 637 293 

2 mm 216 125 1626 634 145 99 765 321 

3 mm 216 125 1656 663 141 96 768 331 

4 

0 mm 139 100 963 320 84 74 442 184 

1 mm 138 100 970 349 88 75 449 197 

2 mm 162 110 1184 391 103 85 518 216 

3 mm 166 111 1204 409 101 83 523 226 

5 

0 mm 124 89 748 236 78 64 335 139 

1 mm 124 90 738 253 75 66 345 150 

2 mm 134 100 896 283 93 76 391 162 

3 mm 143 99 921 288 93 73 410 164 

6 

0 mm   79   189   54   117 

1 mm   80   202   57   124 

2 mm   90   224   68   135 

3 mm   90   234   67   141 
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Figure 1: A diagram demonstrating the variables and analytical steps used in the 
study design.  

Figure 2: Regression between log MOTU and mean niche overlap for both all-
MOTU analysis (rare MOTU are retained in the dataset, represented by filled 
circles, y = -0.0131 x + 0.641, p <0.0001) and common-MOTU analysis (rare 
MOTU are removed from the dataset, open circles, y = 0.0129 x + 0.651, p 
<0.0001). 

Figure 3: Interaction between clustering programme (SWARM and 
UPARSE) and the presence or absence of singletons in the dataset on 

mean niche overlap; bars are 95% confidence intervals.  

Figure 4: Significant interaction between clustering divergence 

threshold (1-5%) and the presence or absence of singletons on mean 
niche overlap; bars are 95% confidence intervals. Note: singletons at 

clustering threshold = 1 generated files too large for analysis and are 
thus excluded. 

Figure 5: Significant interaction between clustering divergence 
threshold (1-5%) and clustering programme (SWARM or UPARSE) on 

mean niche overlap; bars are 95% confidence intervals. 

Figure 6: Significant effect of read length filtering on mean niche 

overlap; bars are 95% confidence intervals. 
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