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Abstract 

Using astrometric observations spanning more than a century and including a large set of 

Cassini data, we determine Saturn’s tidal parameters through their current effects on the orbits 

of the eight main and four coorbital moons. We have used the latter to make the first 

determination of Saturn's Love number from observations, k2=0.390 ± 0.024, a value larger 

than the commonly used theoretical value of 0.341 (Gavrilov & Zharkov, 1977), but compatible 

with more recent models (Helled & Guillot, 2013) for which k2 ranges from 0.355 to 0.382.  

Depending on the assumed spin for Saturn’s interior, the new constraint can lead to a 

significant reduction in the number of potential models, offering great opportunities to probe 

the planet’s interior. In addition, significant tidal dissipation within Saturn is confirmed (Lainey 

et al., 2012) corresponding to a high present-day tidal ratio k2/Q=(1.59 ± 0.74) × 10-4 and 

implying fast orbital expansions of the moons. This high dissipation, with no obvious variations 

for tidal frequencies corresponding to those of Enceladus and Dione, may be explained by 

viscous friction in a solid core, implying a core viscosity typically ranging between 1014 and 

1016 Pa.s (Remus et al., 2012). However, a dissipation increase by one order of magnitude at 

Rhea’s frequency could suggest the existence of an additional, frequency-dependent, 

dissipation process, possibly from turbulent friction acting on tidal waves in the fluid envelope 

of Saturn (Ogilvie & Lin, 2004; Fuller et al. 2016).  

Key words: astrometry -orbital dynamics - tides – interior - Saturn-  

1 Introduction 

Tidal effects among planetary systems are the main driver in the orbital migration of natural 

satellites. They result from physical processes arising in the interior of celestial bodies, not 

observable necessarily from surface imaging. Hence, monitoring the moons’ motions offers a 

unique opportunity to probe the interior properties of a planet and its satellites. In common with 

the Martian and Jovian systems (Lainey et al., 2007, 2009), the orbital evolution of the 

Saturnian system due to tidal dissipation can be derived from astrometric observations of the 

satellites over an extended time period. In that respect, the presence of the Cassini spacecraft in 

orbit around Saturn since 2004 has provided unprecedented astrometric and radio-science data 

for this system with exquisite precision. These data open the door for estimating a potentially 
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large number of physical parameters simultaneously, such as the gravity field of the whole 

system and even separating the usually strongly correlated tidal parameters k2 and Q.  

The present work is based on two fully independent analyses (modelling, data, fitting 

procedure) performed at IMCCE and JPL, respectively. Methods are briefly described in 

Section 2. Section 3 provides a comparison between both analyses as well as a global solution 

for the tidal parameters k2 and Q of Saturn. Section 4 describes possible interior models of 

Saturn compatible with our observations. Section 5 discusses possible implications associated 

with the strong tidal dissipation we determined. 

 

2. Material and methods 

Both analyses stand on numerical computation of the moons’ orbital states at any time, as well 

as computation of the derivatives of these state vectors (see subsection 2.1) with respect to: i) 

their initial state for some reference epoch; ii) many physical parameters. Tidal effects between 

both the moons and the planet are introduced by means of the amplitude of the tidal bulge and 

its time lag associated to dissipation processes. The gravitational effect of the tidal bulge is 

classically described by the tidal Love number k2 and the tidal ratio k2/Q. The Love number k2 

is defined as the ratio between the gravitational potential induced by the tidally-induced mass 

redistribution and the tide-generating potential. As the interior does not respond perfectly to the 

tidal perturbations, because of internal friction applied on tides, there is a time lag between the 

tide-raising potential and the tidally-induced potential. The torque created by this lag is 

proportional to the so-called tidal ratio k2/Q. The amplitude and lag of the tide potential can 

also be described using a complex representation of the Love number, where the real part 

correspond to the part of the potential aligned with the tide-raising potential, while the 

imaginary part describes the dissipative part (see also section 4). The factor Q, often called the 

quality factor (Kaula 1964), or the specific dissipation function, Q-1, in its inverse form, is 

inversely proportional to the amount of energy dissipated by tidal friction in the deformed 

object. Coupled tidal effects such as tidal bulges raised on Saturn by one moon and acting on 

another are considered. Besides the eight main moons of Saturn, the coorbital moons Calypso, 

Telesto, Polydeuces, and Helene are integrated in both studies.  
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Although the two tidal parameters k2 and Q often appear independently in the equations of 

motion, the major dynamical effect by far is obtained when the tide raised by a moon on its 

primary acts back on this same moon. In this case, only the ratio k2/Q is present as a factor for 

the major term, therefore preventing an independent fit of k2 and Q. However, the small co-

orbital satellites raise negligible tides on Saturn and yet react to the tides raised on the planet by 

their parent satellites (see Figure in Appendix A1). This unique property allows us to make a fit 

for k2 that is almost independent of Q (see Appendix A1). In particular, we find that the 

modelling of such cross effects between the coorbital moons allows us to obtain a linear 

correlation between k2 and Q of only 0.03 (Section 3 and Appendix A4). Thanks to the 

inclusion of Telesto, Calypso, Helene and Polydeuces, we can estimate k2 essentially around 

the tidal frequencies of Tethys and Dione. 

2.1 IMCCE’s approach 

The IMCCE approach benefits from the NOE numerical code that was successfully applied to 

the Mars, Jupiter, and Uranus systems (Lainey et al., 2007, 2008, 2009). It is a gravitational N-

body code that incorporates highly sensitive modeling and can generate partial derivatives 

needed to fit initial positions, velocities, and other parameters (like the ratio k2/Q) to the 

observational data. The code includes (i) gravitational interaction up to degree two in the 

spherical harmonics expansion of the gravitational potential for the satellites and up to degree 6 

for Saturn (Jacobson et al. 2006); (ii) the perturbations of the Sun (including inner planets and 

the Moon by introducing their mass in the Solar one) and Jupiter using DE430 ephemerides; 

(iii) the Saturnian precession; (iv) the tidal effects introduced by means of the Love number k2 

and the quality factor Q. 

The dynamical equations are numerically integrated in a Saturncentric frame with inertial axes 

(conveniently the Earth mean equator J2000). The equation of motion for a satellite Pi can be 

expressed as (Lainey et al. 2007) 
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 and jr
!  are the position vectors of the satellite Pi and a body Pj (another satellite, the 

Sun, or Jupiter) with mass mj, subscript 0 denotes Saturn, 
lk

U ˆ  is the oblateness gravity field of 

body Pl at the position of body Pk, GR are corrections due to General Relativity (Newhall et al. 

1983) and T
klF ˆ

!
 the force received by Pl from the tides it raises on Pk . This force is equal to 

(Lainey et al. 2007) 
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where lkkl rrr !!! −= , dtrdv klkl /!! = , Ω
!

, R, and Δt being the instantaneous rotation vector, 

equatorial radius and time potential lag of Pk, respectively. The time lag Δt is defined by  

 

Δt = T arctan(1/Q)/2π (3) 

 

where T is the period of the main tidal excitation. For the tides raised on Enceladus, T is equal 

to 2π/n (n being Enceladus’ mean motion) as we only considered the tide raised by Saturn. For 

Saturn’s tidal dissipation, T is equal to 2π/2(Ω-ni) where Ω is the spin frequency of Saturn and 

ni is the mean motion of the tide raising Saturnian moon Pi.  Δt depends on the tidal frequency 

and on Q, therefore it is not a constant parameter.  

 

It is clear from the second term in the right hand side of Eqs.(2-3) that k2 and Q are completely 

correlated. To separate both parameters, we consider the action on any moon of the tides raised 

on Saturn by all other moons (see also appendix A1). Neglecting tidal dissipation in that case 

provides the extra terms 
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For an unspecified parameter cl of the model that shall be fitted (e.g. )( 0tr
!

, )(/ 0tdtrd! , Q…), a 

useful relation is (Lainey et al. 2012 and references therein) 
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where iF
!

 is the right hand side of Eq. (1) multiplied by mi. Partial derivatives of the solutions 

with respect to initial positions and velocities of the satellites and dynamical parameters are 

computed from simultaneous integration of Eq. (5) and Eq. (1).  

  

Here, fourteen moons of Saturn are considered all together, i.e. the eight main moons and six 

coorbital moons (Epimetheus, Janus, Calypso, Telesto, Helene, and Polydeuces). All the 

astrometric observations already considered in Lainey et al. (2012) and Desmars et al. (2009) 

are used, with the addition of a large set of ISS-Cassini data (Tajeddine et al., 2013, 2015; 

Cooper et al. 2014). We also include a new reduction of old photographic plates, obtained at 

USNO between the years 1974 and 1998. As part of the ESPaCE European project, the 

scanning and new astrometric reduction of these plates were performed recently at Royal 

Observatory of Belgium and IMCCE, respectively (Robert et al. 2011; to be submitted). We 

use a weighted least squares inversion procedure and minimize the squared differences between 

the observed and computed positions of the satellites in order to determine the parameters of 

the model. For each fit, the following parameters are released simultaneously and without 

constraints: the initial state vector and mass of each moon, the mass, the gravitational harmonic 

J2, the orientation and the precession of the pole of Saturn as well as its tidal parameters k2 and 

Q. Tidal dissipation within the moons is neglected, except in Enceladus for which strong tides 

are believed to take place. No da/dt term is released for Mimas. In particular, it appears that the 

large signal obtained in Lainey et al. (2012) can be removed after fitting the gravity field of the 

Saturn system. Indeed, due to its long period libration (about 70 years), the 2:1 Mimas-Tethys 

resonance strongly affects the dynamical evolution of Mimas’ orbit over the considered time 

span of observations. Due to exchange of angular momentum between the rings and Mimas, a 

quadratic effect on Mimas’ longitude may be strongly correlated with the libration amplitude. 

Since the libration is conditioned by the mass of Mimas and Tethys, Lainey et al. (2012) fixed 
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their value to former estimates that benefited from the first Cassini data (Jacobson 2006) to 

solve for da/dt. Unfortunately, even a small error on the mass of the two moons was sufficient 

to generate erroneous behaviour in the libration angle, strongly affecting the da/dt 

determination. In this work, and thanks to Cassini data, the mass of Saturn and all main moons 

are fitted accurately.  

2.2 JPL’s approach 

The second approach incorporates the tidal parameters into the ongoing determination of the 

satellite ephemerides and Saturnian system gravity parameters that support navigation for the 

Cassini Mission. Initial results from that work appear in Jacobson et al. (2006). For Cassini the 

satellite system is restricted to the eight major satellites, Phoebe, and the Lagrangians Helene, 

Telesto, and Calypso. The analysis procedure is to repeat all of the Cassini navigation 

reconstructions but with a common set of ephemerides and gravity parameters. We combine 

these new reconstructions with other non-Cassini data sets to obtain the updated ephemerides 

and revised gravity parameters. The non-Cassini data include radiometric tracking of the 

Pioneer and Voyager spacecraft, imaging from Voyager, Earth-based and HST astrometry, 

satellite mutual events (eclipses and occultations), and Saturn ring occultations. We process the 

data via a weighted least-squares fit that adjusts our models of the orbits of the satellites and the 

four spacecraft (Pioneer, Voyager 1, Voyager 2, Cassini). Peters (1981) and Moyer (2000) 

describe the orbital models for the satellites and spacecraft, respectively. The set of gravity 

related parameters adjusted in the fit contains the GMs of the Saturnian system and the 

satellites (Helene, Telesto, and Calypso are assumed massless), the gravitational harmonics of 

Saturn, Enceladus, Dione, Rhea, and Titan, Saturn's polar moment of inertia, the orientation of 

Saturn's pole, and the tidal parameters k2 and Q. 

3. Results 

Since tidal effects within Saturn and Enceladus have almost opposite orbital consequences, 

Lainey et al. (2012) could not solve for the Enceladus tidal ratio k2
E/QE. Here, we face a similar 

strong correlation and follow their approach by considering two extreme scenarios for 

Enceladus’ tidal state. In a first inversion, we neglect dissipation in Enceladus and obtain for 

Saturn k2, k2
(I)=0.371 ± 0.003, k2

(J)=0.381 ± 0.011 (formal error bar, 1σ) where the indices I and 
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J refer to the IMCCE and JPL solutions, respectively. The Saturn tidal ratio that we obtain is 

k2/Q(I)=(1.32 ± 0.25) × 10-4, k2/Q(J)=(1.04 ± 0.19) × 10-4). In a second inversion, we assume 

Enceladus to be in a state of tidal equilibrium (Meyer & Wisdom, 2007), obtaining k2
(I)=0.372 

± 0.003, k2
(J)=0.402 ± 0.011 and k2/Q(I)=(2.07 ± 0.26) × 10-4, k2/Q(J)=(1.22 ±0.23) × 10-4. If both 

studies are generally in good agreement within the uncertainty of the measurements (see also 

Table 1 and 2), the last k2/Q(I) value stands at 3σ of the JPL estimation. This possibly reflects 

the difference in the data sets, since JPL introduced radio-science data, while IMCCE 

introduced scanning data. Nevertheless, both estimates suggest strong tidal dissipation, at least 

about five times larger than previous theoretical estimates (Sinclair, 1983). Merging IMCCE’s 

and JPL’s results into one value by overlapping the extreme 1σ values, we get k2=0.391 ± 

0.023 and k2/Q=(1.59 ± 0.74) × 10-4. These last error bars are not formal 1σ values anymore, 

but the likely interval of expected physical values.  

Last, to assess a possibly large variation in Saturn’s Q as function of tidal frequency, we 

followed Lainey et al. (2012) and released as free parameters four different Saturnian tidal 

ratios k2/Q associated with the Enceladus’, Tethys’, Dione’s, and Rhea’s tides (see Tables 1-2). 

It turns out that no significant change for the k2 estimation arises with an overall result of 

k2=0.390 ± 0.024. Moreover, global solutions for k2/Q ratios are equal to (20.70 +/- 19.91) x 

10-5, (15.84 +/- 12.26) x 10-5, (16.02 +/- 12.72) x 10-5, (123.94 +/- 17.27) x 10-5 at Enceladus’, 

Tethys’, Dione’s and Rhea’s tidal frequency, respectively. Increasing the number of 

frequencies to be tested may be problematic. If the tidal bulges raised by Titan on Saturn are 

much larger than those raised by the other moons, their feedback on Titan’s orbit is 

significantly smaller. This can easily be checked from analytical expression of orbital 

expansion of moons raising tides on their primary (Kaula 1964). As a consequence, we did not 

release Saturn’s k2/Q at Titan’s tidal frequency. Moreover, since Mimas and Tethys are locked 

in a mean motion resonance, they share their orbital energy and angular momentum. Hence, the 

action of tides raised on Saturn by Mimas and Tethys is distributed among the resonant pair. In 

the limit of our current measurements, this prevented solving simultaneously for Saturn’s k2/Q 

at Mimas and Tethys frequencies. Hence, Saturn’s k2/Q was kept fixed at its former constant 

estimation (see above) for Mimas as well as for all other moons, with the exception of 

Enceladus, Tethys, Dione and Rhea. We provide in Figure 1 a plot showing all global k2/Q 

ratios associated with constant and non-constant assumptions.  
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 k2 k2/Q (S2) k2/Q (S3) k2/Q (S4) k2/Q (S5) 

IMCCE 0.372 +/- 

0.003 

(7.4 +/- 3.1) x 

10-5 

(10.9 +/- 6.1) 

x 10-5 

(16.1 +/- 3.8) 

x 10-5 

(122.3 +/- 

15.0) x 10-5 

JPL 0.377 +/- 

0.011 

(5.5 +/- 4.7) x 

10-5 

(6.0 +/- 2.4) x 

10-5 

(21.5 +/- 7.3) 

x 10-5 

(125.8 +/- 

14.9) x 10-5 

 
Table 1: Fitting k2 and variable Saturnian Q at Enceladus (S2), Tethys (S3), Dione (S4) and 
Rhea (S5) frequencies. 
 
 
 
 k2 k2/Q (S2) k2/Q (S3) k2/Q (S4) k2/Q (S5) 

IMCCE 0.372 +/- 

0.003 

(18.1 +/- 3.1) 

x 10-5 

(11.9 +/- 6.1) 

x 10-5 

(15.0 +/- 3.8) 

x 10-5 

(121.6 +/- 

15.0) x 10-5 

JPL 0.394 +/- 

0.011 

(27.1 +/- 13.5) 

x 10-5 

(21.5 +/- 6.6) 

x 10-5 

(5.4 +/- 2.1) x 

10-5 

(127.9 +/- 

13.3) x 10-5 

 
Table 2: Fitting k2 and variable Saturnian Q at Enceladus (S2), Tethys (S3), Dione (S4) and 

Rhea (S5) frequencies assuming Enceladus’ tidal equilibrium. 
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Figure 1: Variation of the Saturnian tidal ratio k2/Q as a function of tidal frequency 2(Ω-n), 

where Ω and n denote its rotation rate and the moon’s mean motion, respectively. Four 

frequencies are presented associated with Enceladus’, Tethys’, Dione’s and Rhea’s tides. 

IMCCE and JPL solutions are in red and green, respectively. They are shown slightly shifted 

from each other along the X-axis for better visibility. Orange lines refer to the global 

estimation k2/Q = (15.9 +/- 7.4) x 10-5. 

 
 
4. Modeling Saturn’s interior 

To model the tidal response of Saturn’s interior and to compare it to the k2 and k2/Q values 

inferred in the present study, we consider a wide range of interior models consistent with the 

gravitational coefficients measured using the Cassini spacecraft (Helled & Guillot 2013). In 

total, 302 interior models, corresponding to various core size and composition, helium phase 

separation and enrichment in heavy elements in the external envelope, have been tested. Each 

interior model is characterized by radial profiles of density, ρ, and bulk modulus, K. 
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In giant planets, two main mechanisms are invoked for tidal dissipation: the viscous dissipation 

associated to viscoelastic deformation of a solid core (as initially proposed by Dermott (1979) 

and further explored here) and the fluid friction applied on tidal waves propagating in the deep 

gaseous envelope (see e.g. Ogilvie & Lin 2004 and the discussion hereafter). As demonstrated 

in Guenel, Mathis & Remus (2014), these two mechanisms may have comparable strengths and 

superpose. 

Here, the tidal response of Saturn’s interior is first computed from all the considered density 

profiles assuming that the core is solid and viscoelastic, with radius Rcore (varying typically 

between 7000 and 16000 km) overlaid by a thick non-dissipative fluid envelope (to explore the 

own effect of the core), similar to the approach of Remus et al. (2012, 2015). The envelope is 

only taken into account for the hydrostatic effects it applies on the core. The complex Love 

number kc
2 (including both the response aligned with tide-raising potential and the dissipative 

part in quadrature) is computed by integrating the 5 radial functions, yi, describing the 

displacements, stresses, and gravitational potential from the planet center to the surface, 

following the formalism initially introduced by Alterman et al. (1959). The viscoelastic 

deformation in the solid viscoelastic core is computed using the compressible elastic 

formulation of Takeuchi & Saito (1972), adapted to viscoelastic media (see Tobie et al., 2005 

for more details). For the fluid envelope, the static formulation of Saito (1974) is used. In this 

formalism, the fluid friction is not modelled. However, it allows us to take into account the 

gravitational effects of the fluid envelope on the solid core deformation, which has a strong 

impact in the case of very thick fluid envelope like in the case of Saturn as demonstrated by 

Dermott (1979) and Remus et al. (2012, 2015). The system of differential equations (6 in the 

core and 2 in the envelope) is solved by integrating from the center to the surface three 

independent solutions using a fifth order Runge-Kutta method with adaptive stepsize control, 

and by applying the appropriate condition at the solid core/fluid envelope interface and at the 

surface (see Takeuchi & Saito 1972 and Tobie et al. 2005 for more details). The complex Love 

number k2
c is determined from the complex 5th radial function at the planet surface, y5

c(Rs), and 

the global dissipation function by the ratio between the imaginary part and the modulus of k2
c: 

k2=|k2
c|=|y5

c(Rs)-1|;  Q-1=-Im(k2
c)/|k2

c|. 
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For the solid core, a compressible Maxwell rheology, characterized by the bulk modulus K, the 

shear modulus µ, and the viscosity η, is assumed. As the mechanical properties of such a core 

are totally unknown, a wide range of parameter values is considered. As we will show 

hereafter, the Q factor of Saturn can be explained only for a limited range of viscoelastic 

parameters, thus providing useful constraints on Saturn’s core structure and rheology. The 

shear modulus is determined from the bulk modulus assuming a constant µ/K ratio varying 

between 0.001 and 1, and the viscosity is assumed constant over a range varying between 1012 

and 1018 Pa.s. For comparison, the µ/K ratio in the inner core of the Earth is about 0.12 

(Dziewonski and Anderson 1981), and its viscosity is estimated typically between 1014 and 1020 

Pa.s (Karato 2008). Obviously, Saturn’s core is different from Earth’s metallic inner core due 

to difference in pressure and composition. However, this comparison gives us an estimate of 

the typical parameter values we might expect in Saturn. 

In order to test the validity of our numerical code, we compared our numerical solutions with 

the analytical solutions derived by Remus et al. (2012) for a viscoelastic core and a fluid 

envelope with constant density. As illustrated on Figure A-2, we reproduce almost perfectly the 

analytical value of the tidal Love number. For the dissipation function, the agreement is also 

very good, the difference between the analytical and numerical solutions never exceed a few 

per cent. To further test our code, we also compared with the solution provided by Kramm et al. 

(2011) for a density distribution of a n=1 polytrope: we obtained k2=0.5239, while the value 

reported by Kramm et al. (2011) is 0.5198, which corresponds to a difference of less than 0.8%. 
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Figure 2: Mass of the core and k2 Love number for interior models of Saturn from Helled & 

Guillot (2013). Filled circles indicate models assuming a low density core (modelled using the 

equation of state of pure ice) while empty circles indicate models assuming a high density core 

(modelled using the EOS of rocks). Models in blue assume a “slow” deep rotation of 10h39m 

while models in red assume a “fast” deep rotation of 10h32m, more in line with the recent 

determination of Helled et al. (2015). The grey area indicates where values of k2 are 

incompatible with our astrometric determination.  

 

Our calculations confirm that the real part of the tidal Love number (k2) of the planet is almost 

entirely determined by the density profile; therefore it is a very close to the fluid Love number. 

For the 302 tested interiors models, corresponding to various core size and composition of the 

core and fluid envelope, we obtained values of k2 ranging between 0.355 and 0.381. The lowest 

values are obtained obtained for fast deep rotation (10h32’) and high-density core (modelled 

with the EOS of pure rock), while the highest values correspond to slow deep rotation (10h39’) 

and low-density core (modelled with the EOS of pure ice). All tested models are consistent 
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with the equatorial radius and the gravitational coefficients (J2, J4 and J6) determined by 

Cassini, within error bars. Although we did not test all possible models, based on these results, 

we can reasonably conclude that a k2 value as high as 0.39 is incompatible with the observed 

gravitational coefficient. For slow rotation cases, all models with a low density ice-rich core 

have a k2 value above 0.366, the lower limit inferred from astrometric measurements, while 

only about half of the models with a high density core exceeds this value. For fast rotation 

cases, only four tested models exceed this limit: all of them have a low-density core and a 

helium separation occurring at 1 Mbar, in line with recent determinations of hydrogen-helium 

phase separation (Morales et al., 2009). Even if we can notice some tendencies as a function of 

core size (Fig. 2), the k2 value is controlled by several other internal parameters (core 

composition, helium separation, enrichment in heavy elements in the external envelope), which 

precludes any simple interpretation of the measured k2 value in term of internal structure. Tests 

performed for a wide range of mechanical parameters for the core show that they have only 

very minor effects on the k2 value. Varying the µ/K ratio from 0.001 to 1 results in only 0.2% 

of variations on the amplitude of k2. Nevertheless, it strongly affects the the imaginary part of 

k2, and hence the quality factor, Q.  

 

As shown on Figure 3 a-b, the global Q factor depends on the assumed shear modulus (hence 

the µ/K ratio) and the viscosity in the core as well as on its size. The minimal values Qmin  

shown on Fig. 3a were obtained by systematically exploring the core viscosity for values 

comprised between 1012 and 1017 Pa.s. This shows that for µ/K~0.1-0.5, Q<3000 can be 

obtained for core size comprised between 8,000 and 17,000 km, with values as low as 200-300 

for the largest core size (corresponding to ice-rich core). Fig. 3b shows the range of viscosity 

values for which Q remains below 3000. For models with ice core, Q<3000 for viscosity values 

ranging between about 2.1013 and 2.1016 Pa.s. For small core radii (< 11,000 km) corresponding 

to a rock core, Q values lower than 3000 can also be found, but for a more restricted range of 

viscosity values, between typically 1015 and 1016 Pa.s. For a very low µ/K ratio (0.01), Q< 3000 

can be obtained for large ice-rich cores and viscosity values of the order of 5.1013-5.1014 Pa.s. 

These possible ranges of viscosity are compatible with those derived previously in Remus et al. 

(2012, 2015) where simplified two-layer planetary models were used. 
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As illustrated in Figure 4, the computed k2/Q values vary only very weakly with tidal 

frequency, when compared to the frequency dependence expected for dissipation due to 

dissipation of tidal waves in the fluid envelope (e.g. Ogilvie & Lin, 2004). We obtained a weak 

frequency dependence with logarithmic rate of change with frequency ranging between -1 and 

+1, depending on the shear modulus and viscosity of the core. The slope, negative or positive, 

is determined by the Maxwell time, which is defined as the ratio between the viscosity and the 

shear modulus: τ=η/µ, relative to the forcing period. As in our models, the shear modulus vary 

as a function of radius in the core, the local Maxwell time vary as a function of radius. As an 

example, for µ /K=0.1 and a viscosity value of 1015-1016 Pa.s, the Maxwell time typically varies 

between 0.9-9 hours at the center of the core to 0.2-2 hours at the core surface, while the tidal 

period varies between 6 and 8 hours. As a consequence, for η=1015Pa.s, the slope is negative, 

while it is positive for η=1016 Pa.s. In both cases, the weak frequency dependence is comptabile 

with the tendencies inferred from astrometric observations for Enceladus, Tethys and Dione 

frequencies. Remarkably, for this viscosity range, we can reproduce the typical value of the 

observed k2/Q. 

 

Even though Q values as low as 200 can be obtained for large cores and appropriate 

viscoelastic parameters, it is not possible to explain with viscoelastic dissipation, Q values of 

the order of a few thousands at Enceladus’ tidal frequency and of a few hundred at Rhea’s tidal 

frequency. Additional dissipation processes in the deep gaseous envelope are thus required to 

explain the high dissipation inferred from observation at Rhea’s tidal frequency. The best 

candidate is turbulent friction applied to tidal inertial waves (their restoring force is the Coriolis 

acceleration) in the deep, rapidly rotating, oblate convective envelope of Saturn that dissipates 

their kinetic energy (Ogilvie & Lin, 2004; Braviner & Ogilvie, 2015). This fluid dissipation is 

resonant and its amplitude can therefore vary by several orders of magnitude as a function of 

the tidal frequency (Ogilvie & Lin, 2004; Auclair-Desrotour, Mathis & Le Poncin-Lafitte, 

2015), particularly in the case of weak effective turbulent viscosity expected in the case of 

rapidly rotating planets (Mathis et al. 2016). Hence, it can explain the increase by one order of 

magnitude of the dissipation over the small frequency range arising between Dione and Rhea. 
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Fuller et al. (2016) also proposed an alternative scenario by studying gravito-inertial waves 

(their restoring forces are the Coriolis acceleration and the Archimedean buoyancy force) that 

propagate and are trapped in resonance in a potential stably-stratified layer surrounding the 

core (Fuller et al. 2014).  

 

 
 

Figure 3: a) minimum value of the quality factor, Qmin, as a function of core radius for three 

different values of µ/K (0.01, 0.1, 0.5); (b) Range of viscosity values, ηmax(Δ) -ηmin (∇), for 

which Q<3000 for the three µ/K ratios displayed in (a). The dashed line indicates the 

transition between high density (rock-dominated) core and low density (ice-dominated) core. 

For this computation, the tidal frequency was fixed at 2.6 x10-4 rad.s-1 
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Figure 4: k2/Q values as a function of tidal frequency, ω, for two core viscosity values (1015 (a) 

and 1016 (b) Pa.s) for six different values of core radius. The µ/K ratio was fixed to 0.1 for 

these calculations. 

 

5. Discussion 

In 1977, Gavrilov and Zharkov (1977) computed the value of Saturn’s Love numbers and 

obtained for the lowest degree quadripolar coefficient k2=0.341. Even though this value is often 

used as the reference, it stands on physical assumptions and internal structure models that have 

since been improved (Guillot 1999, 2005; Hubbard et al., 2009; Kramm et al., 2011; 

Nettelmann et al., 2013; Helled & Guillot, 2013). Although all the models we considered 

following the approach of Helled and Guillot (2013) reproduced the gravitational coefficients 

J2, J4 and J6 with error bars, they lead to significant variations in k2. J2 and k2 are both sensitive 

to the density profile, but in a different manner. For slowly rotating bodies, J2 and fluid Love 

number kf
2 (which is very close to the tidal Love number in the case of Saturn) can be related 

through the classical relationship J2=qkf
2/3 with q the rotational parameter: q=ω2a3/GM, with ω 

the rotation frequency, a the equatorial radius, M the mass of the planet and G the gravitational 

constant. For Saturn, the rotational ratio q ranges between 0.1544 and 0.1584 for rotation 

periods between 10h32’ and 10h39’. Such a high q ratio, the fluid Love number predicted from 

the simple J2 relationship is about 0.31, which is about 13-18% less than the fluid Love number 

computed from the density profile. This is due to the strong flattening of the planet and the 

a)  η=1015 Pa.s b)  η=1016 Pa.s
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gravitational signatures of the flattened internal interfaces. As already anticipated from the 

pioneer work of Gavrilov and Zharkov (1977) and further explored by Kramm et al. (2011), the 

Love number k2 is very sensitive to the degree of mass concentration toward the center of the 

planet, but differently from J2. It evaluates the amplitude of the hydrostatic adjustment of the 

planet’s structure to the tidal perturbations while J2 gives the strength of the hydrostatic 

response to the centrifugal acceleration. Determinations of the tidal Love numbers (k2, k3) and 

of the gravitational coefficients thus provide complementary information to constrain the 

density structure of Saturn. From the variety of internal models we explored in the present 

study, we notice that a large fraction of models compatible with the Jn coefficients are 

compatible with the inferred k2 because the uncertainties are still large.  However, any further 

improvement in the estimation of k2 and the spin rate will allow to restrict the number of 

acceptable models and provide crucial constraints on Saturn’s interior. 

Our estimation of Saturn’s Q confirms the values previously derived by Lainey et al. (2012), 

which is one order of magnitude smaller than the value derived from the usually expected long 

term evolution of the moons over the age of the Solar system (Sinclair, 1983). We recall that 

earlier studies constrained Saturn’s Q using the current positions of the innermost main moons. 

Considering the moons’ motions back in time, the averaged exchange of angular momentum 

between the planet and the moons associated with tidal dissipation must have been limited in 

order to prevent the moons from crossing their Roche limit 4.5 Byr ago (Goldreich & Soter 

1966). Such a Q value was then re-evaluated by Gavrilov & Zharkov (1977) using a more 

realistic k2 for Saturn and by Sinclair (1983) considering in detail the Mimas-Tethys 2:1 mean 

motion resonance. The low Q or high dissipation rate obtained in this work, implying rapid 

orbital expansion, suggests that either the dissipation has significantly changed over time, or 

that the moons formed later after the formation of the Solar system (Charnoz et al. 2011; Ćuk 

2014). Since tidal dissipation may arise both in the planet’s fluid envelope and its presumably 

solid core (Guenel et al. , 2014), we can look in more detail at the frequency dependency of the 

tidal ratio k2/Q shown in Figure 1. Despite large error bars, the tidal ratios associated with 

Enceladus, Tethys and Dione do not depart from their former constant estimates. On the other 

hand, we obtain a strong increase of dissipation at Rhea’s frequency. Such a dissipation 

corresponds to an orbital shift in the longitude of about 75 km (see Appendix A3). The fact that 

the strong orbital shift at Rhea is observed using both the IMCCE and JPL models, makes 
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systematic errors unlikely. As Rhea has no orbital resonance with any other moon, and no 

significant dynamical interaction with the rings, its strong orbital shift is more likely the 

consequence of strong tides. 

The rather constant dissipation inferred at tidal frequencies associated with Enceladus, Tethys 

and Dione suggests dissipation processes dominated by anelastic tidal friction in a solid core 

(Remus et al., 2012, 2015). This is confirmed by the calculations performed here using more 

realistic density profiles. We further show that a Q factor lower than 3000 required a core 

viscosity lower than 1016 Pa.s. For large low-density ice-rich cores, Q values as low as 200-

300, compatible with the k2/Q estimate obtained at Rhea’s frequency, can be obtained. 

However, due to the weak frequency dependence of dissipation in a viscoelastic core, a Q value 

of 1500-2500 at Enceladus, Tethys and Dione’s frequency cannot be match simultaneously 

with a value as low as 300 at Rhea’s. This suggests either that additional dissipation processes 

exist in Saturn at Rhea’s frequency to reduce the apparent Q value, or that a value as low as 300 

is representative of Saturn’s dissipation that the orbital consequences of such a strong 

dissipation in Saturn is partially compensated by strong dissipation in the moons. The best 

candidate for additional processes in Saturn to explain the reduced Q at Rhea’s is friction 

applied to tidal inertial (or gravito-inertial) waves in the deep, rapidly rotating, gaseous 

envelope of Saturn that dissipates their kinetic energy (Ogilvie & Lin, 2004; Fuller et al., 

2016). It can explain the increase by one order of magnitude of the dissipation over the small 

frequency range arising between Dione and Rhea. 

 

6. Conclusion 

Using a large set of astrometric observations including ground-based observations and 

thousands of Cassini-ISS data, we provide the first observationally-derived estimate of the 

Love number of Saturn, k2. This determination could be done thanks to the presence of the 

Lagrangian moons of Tethys and Dione in the dynamical modelling. Moreover, we confirm the 

strong tidal dissipation found by Lainey et al. (2012), but associated with an intense frequency-

dependent peak of tidal dissipation for Rhea’s tidal frequency. Modelling the likely interior of 

Saturn, it appears two different tidal mechanisms may arise simultaneously within the planet. 
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The first one is tidal friction within the dense core, while significant tidal dissipation may also 

occur inside the outer fluid envelope at Rhea’s tidal frequency.  

 

 

Appendix 

 

A1 - The tidal effects on coorbital satellites 

 

The effects of tidal bulges on one moon’s motion are generally far below detection, unless 

those tides are raised by the same moon. Indeed, such a configuration produces a secular effect 

on the orbit that may be detectable after a sufficient amount of time. On the other hand, tidal 

bulges associated with another moon will introduce essentially quasi-periodic perturbations, 

with much lower associated signal on the orbits. There exists an exception, however, if one 

considers the special case of Lagrangian moons. Indeed, in such a case the tidal bulges are 

oriented on average with a constant angle close to 60° (see figure below).  

 
 

As a consequence, tidal effects arising on one moon and acting on a Lagrangian moon will 

provide a significant secular signature on the orbital longitude that is hopefully detectable. To 

quantify how large this effect can be, we rely here on numerical simulation. A simple look at 

the differences on the positions of the coorbital moons after adding/removing the cross tidal 

effects over about 10 years (roughly the time span of Cassini data) will be meaningless. Indeed, 

one needs to take into account the fitting procedure of the initial conditions to the observations. 
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In particular, the difference in modelling may be partly masked by a slight change of the initial 

conditions. As a consequence, the true incompressible part of the cross tidal effects in the 

dynamics will be revealed only after having fitted one simulation onto the other. We provide 

below prefit and postfit residuals associated with these cross-tidal effects, for 14 moons of 

Saturn. The postfit simulations are obtained after having fitted all initial state vectors, masses, 

Saturn’s J2, polar orientation and precession, Saturn’s tidal Q. 

 

 
 

Figure A1.1: Prefit residuals associated with cross-tidal effects. 

 

 

 
 

Figure A1.2: Postfit residuals associated with cross-tidal effects. 

 

We can see that the largest effects indeed appear on the coorbital moons, with the highest 

effects on the Lagrangian satellites of Tethys and Dione. When not considering these cross-

tidal effects, the astrometric residuals of these former moons can easily reach a few tens of 
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kilometers, much above the typical 5 km residuals we obtained in the present work (see 

Appendix A4 and Figure A4.1). 

 

 

A2 – Validation of Love number computation 

 
Figure 2: Comparison between numerical (black crosses) and analytical (orange squares) 

solutions of tidal Love number, k2 (left) and dissipation factor, Q (right) as a function of core 

radius, Rcore, computed for a solid viscoelastic core and a fluid envelope with constant density, 

assuming a core viscosity of 1015 Pa.s and a shear modulus of 1000 GPa.  

 

 

 

A3 - Rhea’s orbital acceleration under strong Saturnian tides 

 

To estimate the impact of the large k2/Q value obtained at Rhea’s tidal frequency, we perform 

prefit and postfit simulations (fitting the state vectors of all moons) over a century. Assuming 

k2/Q=122.28 x 10-5 (see IMCCE solution in Table 1), the postfit residuals below show that 

Rhea’s longitude is affected by a signal of a bit more than 75 km. This corresponds to about 

12.5 mas (0.0125 arc second) at opposition, which represents roughly 10% of the global 

astrometric residuals from the ground (Lainey et al. 2012), and a huge signal when comparing 

with Cassini data. 
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Figure A3.1: Left: residuals in distance (km); right: residuals in the orbital longitude (rad) 

 

 

A4 – Astrometric residuals and linear correlations 

 

To illustrate the various simulations that we performed, we provide astrometric residuals of the 

IMCCE solution that considered a constant k2/Q ratio and no tidal dissipation scenario within 

Enceladus. To save space, we do not provide here statistics of ground-based and HST data, 

since they are pretty similar to the ones published in Lainey et al. (2012). We provide below the 

plots of the O-Cs, only. Full statistics are available on request.  

 

Figure A4.1 shows the astrometric residuals of the Lagrangian satellites of Tethys and Dione. 

Tables A4.1-4.3 provide the astrometric residuals of all observations for the 14 moons 

considered. Table A4.4 provides the correlations between all our fitted parameters and the tidal 

parameters k2 and Q. 
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Figure A4.1: Astrometric residuals of the four Lagrangian satellites from ISS-Cassini. Telesto 

and Calypso are the two coorbital moons of Tethys. They move around the Lagrangian stable 

points L4 and L5. Helene and Polydeuces are in equivalent orbital configurations but along the 

orbit of Dione. The associated ISS-NAC astrometric data are fitted in sample and line 

coordinates (pixel). Residuals are here converted to kilometres. 
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Satellite       µs                                σs                       µl                       σl           Ns       Nl 

Epimetheus -0.0094               4.3180               0.1805               4.5340      350    350 

Janus 0.0096               0.9780               0.5378               1.1566      322    322 

Mimas 0.4190               0.2813              -0.0460               0.6600         20     20 

Enceladus -0.0014               0.3547              -0.1116               0.2783      108   108 

Tethys -0.1232               0.5284               0.0814               0.2600         25     25 

Dione -0.0278               0.4808               0.0748               0.4730         84     84 

Rhea -0.2925               0.4644              -0.0035               0.2055         58     58 

Titan 0.0000               0.0000               0.0000               0.0000           0       0 

Hyperion 0.0000               0.0000               0.0000               0.0000           0       0 

Iapetus 0.0000               0.0000               0.0000               0.0000           0       0 

Calypso -0.0348               0.2508              -0.1742               0.2546      230    230 

Telesto -0.0190               0.2220              -0.0366               0.2960      279    279 

Helene -0.0164               0.2731              -0.0456               0.2492      262    262 

Polydeuces -0.0554               0.2508              -0.0584               0.2422      139    139 

 
  
Table A4.1 (one single moon per image): Statistics of the ISS-NAC astrometric residuals 
computed from IMCCE model (no tidal dissipation within Enceladus scenario) in pixel. µ and σ 
denote respectively the mean and standard deviation of the residuals computed on sample and 
line. Ns and Nl are the number of observations considered for the respective coordinate. 
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Satellite µs σs µl σl Ns Nl 

Epimetheus 0.0203 0.2778 0.0449 0.2912 28 28   

Janus -0.0203 0.2778 -0.0449 0.2912 28 28   

Mimas 0.0255 0.1784 -0.0064 0.2745 134 134   

Enceladus -0.0307 0.1784 0.0084 0.1248 327 327   

Tethys 0.0211 0.1088 0.0186 0.1359 424 424   

Dione -0.0204 0.1061 0.0054 0.1070 592 592   

Rhea 0.0175 0.1370 -0.0234 0.1208 556 556   

Titan 0.0000 0.0000 0.0000 0.0000 0 0   

Hyperion 0.0000 0.0000 0.0000 0.0000 0 0   

Iapetus 0.0000 0.0000 0.0000 0.0000 0 0   

Calypso 0.1470 0.0000 -0.5137 0.0000 1 1   

Telesto -0.0997 0.0702 0.2454 0.1691 3 3   

Helene -0.1308 0.0508 0.2090 0.0096 2 2   

Polydeuces 0.1379 0.0731 -0.2135 0.1657 3 3   

 
 
 
 
Table A4.2 (multiple moon per image): Statistics of the ISS-NAC astrometric residuals 
computed from IMCCE model (no tidal dissipation within Enceladus scenario) in pixel. µ and σ 
denote respectively the mean and standard deviation of the residuals computed on sample and 
line. Ns and Nl are the number of observations considered for the respective coordinate.  
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Satellite µRA                 σRA µDEC σDEC NRA NDEC 

Mimas             -1.1001             3.9151         -1.1401  2.8370      826     826 

Enceladus             -0.1979  2.8234  0.2713  2.6588      732      732 

 Tethys              0.0532  4.5654  -0.0123  3.5007      924      924 

 Dione             -0.2068  4.1726  -0.5264  3.4948      948     949 

 Rhea             -0.3170  3.3581  -0.1138  2.4739     1021    1021 

 Titan              0.0000  0.0000  0.0000  0.0000        0      0 

 Hyperion             -0.1292  15.4526  -5.9373  12.7287       92      90 

 Iapetus              1.4754  5.1951  -1.1544  5.4322     1534    1534 

 
Table A4.3 (one moon per image): Statistics of the ISS-NAC astrometric residuals computed 
from IMCCE model (no tidal dissipation within Enceladus scenario) in km. µ and σ denote 
respectively the mean and standard deviation of the residuals computed on RA and DEC. NRA 
and NDEC are the number of observations considered for the respective coordinate.  
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 k2 Q 

a1 0.006 0.023 

l1 0.002 -0.014 

k1 -0.000 -0.001 

h1 0.002 0.002 

q1 -0.000 -0.002 

p1 0.000 0.003 

a2 0.008 0.025 

l2 -0.004 -0.029 

k2 -0.001 0.002 

h2 -0.002 0.001 

q2 0.000 -0.001 

p2 -0.000 0.002 

a3 0.009 0.025 

l3 -0.013 0.232 

k3 -0.013 0.017 

h3 -0.003 0.002 

q3 0.017 -0.024 

p3 0.002 0.070 

a4 0.009 0.027 

l4 -0.012 0.182 

k4 0.017 0.084 

h4 -0.026 -0.026 

q4 0.004 -0.000 

p4 -0.006 0.127 

a5 0.009 0.024 

l5 0.009 -0.223 

k5 0.000 0.020 
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h5 -0.003 -0.074 

q5 -0.027 0.012 

p5 0.011 0.069 

a6 0.009 0.026 

l6 0.002 -0.509 

k6 0.011 -0.005 

h6 -0.010 0.082 

q6 0.005 -0.012 

p6 -0.007 0.154 

a7 0.009 0.023 

l7 -0.003 -0.216 

k7 -0.006 -0.029 

h7 -0.003 -0.008 

q7 -0.006 0.203 

p7 -0.007 0.036 

a8 0.010 0.019 

l8 -0.002 -0.005 

k8 -0.002 -0.003 

h8 0.003 0.025 

q8 0.006 0.059 

p8 0.002 -0.013 

a9 0.007 0.016 

l9 -0.001 -0.005 

k9 -0.001 0.001 

h9 0.002 0.014 

q9 -0.003 -0.000 

p9 0.000 -0.018 

a10 0.008 0.008 
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l10 -0.004 -0.007 

k10 -0.008 -0.005 

h10 -0.007 -0.007 

q10 0.000 0.005 

p10 -0.002 -0.022 

a11 0.010 0.025 

l11 -0.024 -0.114 

k11 0.034 0.003 

h11 -0.012 -0.002 

q11 -0.028 0.029 

p11 0.018 0.051 

a12 0.008 0.025 

l12 0.142 -0.216 

k12 -0.002 -0.011 

h12 -0.012 -0.006 

q12 0.025 -0.018 

p12 0.011 0.026 

a13 0.005 0.025 

l13 -0.028 -0.254 

k13 0.010 0.033 

h13 -0.002 0.026 

q13 -0.000 -0.031 

p13 0.001 0.062 

a14 0.010 0.029 

l14 -0.073 -0.254 

k14 0.020 -0.055 

h14 0.007 -0.052 

q14 0.004 -0.021 
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p14 -0.005 0.054 

M 0.009 0.026 

m1 -0.004 0.003 

m2 -0.004 0.003 

m3 -0.001 -0.378 

m4 0.038 -0.064 

m5 0.118 -0.019 

m6 0.120 0.029 

m7 0.011 -0.062 

m8 0.000 0.004 

m9 0.000 -0.003 

m10 -0.005 -0.011 

a0 0.003 -0.591 

d0 -0.010 0.138 

c20 -0.005 0.014 

da/dt 0.017 0.186 

dd/dt 0.012 -0.129 

k2 1.000 -0.030 

Q -0.030 1.000 

 
Table A4.4: Correlation between all our fitted parameters and the tidal parameters k2 and Q. 
Here a is the semi-major axis, l is the mean longitude, e is the eccentricity, Ω is the longitude of 
the node, ω is the argument of the periapsis, k=e cos(Ω+ω), h=e sin(Ω+ω), q=sin(i/2) cos(Ω) 
and p=sin(i/2) sin(Ω). Numbers 1,2,3…14 refer to Epimetheus, Janus, the eight main moons 
(Mimas,…Iapetus), Calypso, Telesto, Helene, Polydeuces, respectively. Full table is available 
on request. 
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