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Validation of a phenomenological strain-gradient plasticity theory  7 

Strain-gradient plasticity theories have been developed to account for the size 8 

effect in small-scale plasticity in metals. However, they remain of limited use in 9 

engineering, for example in standards for nanoindentation, because of their 10 

phenomenological nature. In particular, a key parameter, the characteristic length, 11 

can only be determined by fitting to experiment. Here it is shown that the 12 

characteristic length in one such theory derives directly from known quantities 13 

through fundamental dislocation physics. This explains and validates the theory for 14 

use in engineering.  15 

Keywords: plasticity of metals; strengthening mechanisms; strained layers; 16 

dislocations; strain-gradient theory; critical thickness theory. 17 
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The increase in strength (the size effect) when dislocation-mediated plasticity is restricted 20 

to small volumes has been extensively documented experimentally over the past 60 years 21 

[see, e.g., 1–13]. It is an important effect in many technologies from metallurgy to 22 

semiconductors, yet it is not fully understood [12, 14]. In micromechanics, many loading 23 

conditions impose a plastic strain gradient, and so theories in which the strain gradient 24 

plays a central role have been developed [3–6, 15–19]. In contrast, in semiconductor 25 

technology, Matthews critical thickness theory has been largely accepted to explain and 26 

predict the effect in terms simply of the size – stronger when smaller [20–22].   The 27 

strain-gradient theories have not been comprehensively embraced [23], because of 28 

ambiguities about the underlying physics and about the parameters – in particular, the 29 

characteristic length – which enter into these theories. One consequence is that there are 30 

no satisfactory international standards for comparing nanoindentation data, in which the 31 
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size effect plays an important role, with macroscopic indentation data. Here it is shown 32 

that the Fleck-Hutchinson strain-gradient theory [4, 17–19, 23] follows mathematically 33 

and physically directly from critical thickness theory [20–22]. The strain-gradient theory 34 

fits experiment well, but with the characteristic length as a free fitting parameter. This 35 

phenomenological parameter is here derived from known physical quantities via critical 36 

thickness theory.  The derivation and the associated re-interpretation validate the strain-37 

gradient theory for use in practical engineering contexts, as an approximation that 38 

expresses a non-local property as a local property.     39 

 Increases in strength (the size effect) due to boundaries imposed on dislocation-40 

mediated plasticity on scales up to tens of microns have been presented for 41 

nanoindentation [3,5], thin wires in torsion [4, 9, 10], thin foils in bending [6, 8], and for a 42 

large variety of still smaller structures down to sub-micron sizes mostly created by 43 

focused ion-beam (FIB) milling [e.g. 7, 11, 13]. Microstructural constraints giving rise to 44 

the size effect include sub-grain boundaries [2] and grain boundaries (the Hall-Petch 45 

effect) [1, 12]. Pseudomorphic (strained-layer) heteroepitaxial crystal growth is another 46 

key example [20–22]. In many of these situations, plastic strain gradients are necessarily 47 

or optionally present, and there is widespread agreement that in such situations the size 48 

effect can be attributed to the strain gradient.  49 

 In formal continuum mechanics, to set up a strain-gradient plasticity theory 50 

(SGP), the stress is not only a function of plastic strain P, but also a function of its spatial 51 

gradient sPP d/d   where s is position and the characteristic length   is introduced 52 

to give a dimensionless quantity [16–19]. Where a physical interpretation is called for, 53 
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appeal is made to the geometrically-necessary dislocations (GNDs) [3] which in a 54 

crystalline material are necessarily associated with plastic strain gradients [15].  Values of 55 

  are found from fitting to experiment (see Fig.1).  The major problem for such strain-56 

gradient theories is to give a reasonable physical interpretation of the values of ℓ that 57 

result. There have been many proposals. See [24] for a recent discussion and a new 58 

proposal. 59 

 Evans and Hutchinson [23] gave an appraisal of SGP theories, for brevity 60 

confined to the Nix-Gao (NG) theory [3] and the Fleck-Hutchinson (FH) theory [4, 17, 61 

19]. These two theories illustrate adequately both the successes of SGP theories in 62 

general, and their difficulties. The successes lie in the good fits to experimental data that 63 

these theories give. The major difficulty is that, fitting to experimental datasets for soft 64 

metals, the NG theory gives characteristic lengths ℓNG ~ 25mm, and the FH theory gives 65 

ℓFH ~ 5m.  Neither is characteristic of any length scale experimentally observed in the 66 

specimens, whether structural or microstructural. For this reason, and because of the lack 67 

of any explicit connection between the theories and dislocation dynamics, Evans and 68 

Hutchinson noted that strain-gradient theories have not been comprehensively embraced 69 

[23]. 70 

 Here, the FH characteristic length is derived from critical thickness theory.  This 71 

reveals a previously unsuspected link between the two theories. In particular, it provides 72 

the explicit connection between the FH theory and the physics of dislocation dynamics 73 

that was previously lacking. It thereby validates the use of the FH theory for prediction in 74 

engineering applications (with due attention to the approximations revealed in it).  75 
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It is not necessary to use a full derivation of strain-gradient theory. We take Evans 76 

and Hutchinson [23] as a starting-point.  They define an effective stress  which is a 77 

function of the yield stress and the plastic strain,  = Y  f (P).   For the FH theory, they 78 

state as a premise that the plastic work per unit volume may be written as  79 

  
PE

PPYP dfU
0

)(  (1) 80 

The upper integral limit EP brings in the effect of the strain gradient P  by the definition  81 

 PFHPPE    (2) 82 

This is a specific form of the generalized effective plastic strain Ep [19].  Consider an 83 

object of size h, average plastic strain P  and average plastic strain gradient hc PP /  84 

with c ~ 1, and with perfect plasticity, f (P) = 1. From equation (1), the average flow 85 

stress is  86 

 









h

c FH
Y


1  (3)  87 

This is equation (11) of Ref.23. Note that the strengthening is independent of P. The 88 

strain gradient increases the yield strength but not the rate of strain-hardening. Using FH  89 

= 5 m and adding a work-hardening term, Evans and Hutchinson [23] obtain excellent 90 

fits to the data of Ehrler et al. [8] for nickel foils.  91 

 We apply equation (3) to simple and very well understood examples of the size 92 

effect. These are the plastic relaxation of non-lattice-matched epitaxial strained-layer 93 
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structures grown above their critical thicknesses. Growth is in the z direction to a 94 

thickness h above the substrate at z = 0. At typical growth temperatures of 600C for 95 

GaAs-based structures (more than half the melting-point) the intrinsic yield strength is 96 

very low. The ability to support elastic strains of 0.01 and more at thicknesses of tens of 97 

nm comes from the size effect. In good-quality growth, there is little or no evidence of 98 

work-hardening and the material may be taken to be perfectly plastic. Matthews critical 99 

thickness theory [20–22] gives the critical thickness hC at which misfit dislocations 100 

(GNDs) may form at z = 0 to relieve the elastic strain in a simple layer with misfit strain 101 

0. The result, for our purposes here, is best expressed by the geometrical version of 102 

Matthew’s theory [25, 26], as hC ~ b/0 where b is the relevant (in-plane) component of 103 

the Burgers vector of the misfit dislocations (the GNDs). This version agrees well with 104 

experiment. Moreover, it omits unnecessary detail which is specific to single-crystal 105 

cubic semiconductors and also it omits the ill-defined parameters, the inner and outer cut-106 

off radii, that appear in the calculation of the dislocation self-energy. The elastic strain E 107 

= 0 for h < hC and the plastic relaxation at greater thicknesses gives E ~ b/h for h > hC.  108 

The condition for plastic relaxation may be written in terms of the strain-thickness 109 

product as Eh ~ b. The theory is readily generalised to more complicated structures 110 

(graded layers with 0 = gz, multilayers and superlattices) by considering the strain-111 

thickness integral of E(z)dz over the thickness and introducing plastic relaxation during 112 

growth as necessary to limit the integral to the value b [27]. Any intrinsic or bulk strength 113 

simply adds to this size-effect strength. In all cases the size effect is due to the energy 114 

required to create the length of GND needed to accommodate the misfit.  115 
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 For significant plastic deformation (stress relaxation) when the initial dislocation 116 

density is low, dislocation multiplication must take place – sources must operate.  117 

Beanland showed that this requires a much greater thickness, hR ~ 5 hC for simple layers 118 

[28, 29]. In this case, the energy required to create the GNDs is small compared with the 119 

energy dissipated in source operation. Then the strain-thickness product or integral during 120 

plastic deformation is ~5b for h > hR.  Experimentally, these predictions of the theory 121 

have been confirmed extensively in simple layers, graded layers and in more complicated 122 

structures [30–32].  The theory also predicts the spatial distribution of GNDs and of P
 123 

[32], confirmed by discrete dislocation dynamics simulation [33]. 124 

 We calculate the average plastic strain, the average plastic strain gradient, the 125 

average stress, and the constant c for three standard epitaxial structures (Table I). For the 126 

simple constant-composition strained layer with misfit strain 0 grown above its 127 

relaxation critical thickness the plastic strain P(z) throughout the thickness of the layer is 128 

constant and so this is also the average, PP  . The average stress is   = ME where M 129 

is the relevant elastic modulus. The plastic strain gradient is ideally infinite at the 130 

substrate – layer interface and zero elsewhere, but the average comes just from the 131 

change of plastic strain, from 0 at the substrate at z = 0 to P at the top at z = h. The 132 

constant c = 1 in this case by definition.  Then the average stress (Table I), with a bulk 133 

yield stress Y added, may be set equal to the average stress predicted by the FH theory in 134 

equation (3) giving,  135 
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where Y is the yield strain.  137 

In linearly-graded layers, with the misfit increasing as gz, the strain-thickness 138 

integral without plastic relaxation is ½gh2, and the critical thickness hR is given by setting 139 

this equal to 5b. When growth continues above hR, the lower material relaxes completely. 140 

A top layer of thickness hR has a uniform P and stress increasing linearly with the slope 141 

Mg. We consider first a thin structure with growth to a thickness h = hR +  ( small) 142 

giving constant plastic strain throughout the grade, except for the thin layer of thickness 143 

h at the bottom (Table I) which we ignore. Again c = 1. The stress increases linearly so 144 

the average stress is half the surface stress (Table I). Again adding a bulk yield stress Y 145 

and equating the average stress with the average stress of equation (3) we have 146 
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 (5) 147 

Graded-layer growth to a much greater thickness h >> hR gives complete plastic 148 

relaxation to E = 0, P = gz throughout the layer except for a thin region at the top of 149 

thickness hR where P is constant and the elastic strain E rises from 0 to ghR [27, 32]. 150 

Neglecting the thin region at the top, the average plastic strain is ½ gh, while the average 151 

plastic strain gradient is just g, so that here c = 2. The stress is zero except in the thin 152 
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region at the top where it rises from zero to MghR, so the stress-thickness integral is 153 

constant at ½MghR  and the average stress is obtaining by multiplying by hR /h. Again 154 

adding a bulk strength Y and equating the average stress with the average stress of 155 

equation (3) we have, 156 
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 (6) 157 

All three examples, equations (4-6), give similar results, varying only because of 158 

the factor c, so we conclude that  159 

 
Y

FH
c

b




5
  (7)    160 

The problem of a linearly-graded layer maps perfectly onto half of the problem of a beam 161 

in bending, from the neutral plane to either free surface [33]. Taking typical numerical 162 

values for pure nickel and other soft metals, M ~ 100 GPa, b ~ 0.25 nm and yield 163 

strengths about 20 MPa, gives μm 125.3FH   from equation (6). This is in good 164 

agreement with the results from empirical fits (Fig.1).  165 

 Evans and Hutchinson [23] give values (but not error bars) of FH  obtained by 166 

fitting the FH theory to data from different authors for indentation of iridium, silver, 167 

copper and a superalloy, and to data for bending nickel foils. They note the inverse 168 

correlation between the values of FH  and the yield strain Y of the material (figure 1), as 169 

in equations (4-7).  Their tentative interpretation is that FH .represents the distance 170 
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moved by dislocations between e.g. cell walls or precipitates, which will be reduced as 171 

1Y
 in stronger materials. However, this interpretation overlooks the physical origin of 172 

the size effect. Moreover, equation (7) predicts the absolute magnitudes of FH  very well 173 

(figure 1).  174 

 The presence of c, the ratio of the peak value of P to its average value, in the 175 

denominator of equation (7) is interesting. Gradient theory fits DDD simulation results 176 

better if the characteristic length is allowed to be a variable and to decrease with strain 177 

[24]. The graded layers, equations (5, 6) show that c varies from 1 at low strain to 2 at 178 

high strain, with a concomitant reduction of a factor of 2 in the characteristic length of 179 

equation (7).  180 

 The phenomenological FH and similar strain-gradient theories express the 181 

outcomes of the size effect accurately, but using a fitting parameter, the characteristic 182 

length, which is not a true characteristic of the material. Evans and Hutchinson [23] 183 

attribute equation (3) to the summation of the energy dissipation caused by the movement 184 

of statistically-stored dislocations (SSDs) and that due to the movement of GNDs, the 185 

second term.  186 

Our interpretation of equation (3) is different. From figure 1 and equation (7), the 187 

characteristic length is the Matthews critical thickness hC or the relaxation critical 188 

thickness hR calculated using the elastic yield strain or flow stress of the material. 189 

Equivalently, it is the thickness h at which the size effect doubles the strength of the 190 

material.  Note that the Y in the denominator of equation (7) permits rewriting equation 191 

(3) as  192 
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so that the inverse dependence of FH  on Y is cancelled by the prefactor Y. This is a 194 

very clear indication that the size effect is independent of the phenomena determining the 195 

yield strength, such as dislocation and defect densities. The first term does indeed 196 

represent whatever dissipative mechanism is responsible for the strength of bulk material 197 

without a size effect, such as the movements of SSDs. The second term, however, in the 198 

case that source operation is not required (E ~ b/h), represents the energy stored (not 199 

dissipated) by the creation of GND length – the Matthews model [20–22]. In the case that 200 

source operation is required (E ~ 5b/h), and this is generally the case for significant 201 

plastic deformation, the second term represents mostly the energy dissipated by source 202 

operation under the ~5 greater stress required to operate sources within a restricted size 203 

compared with the stress required merely to create extra GND length [29, 31].  In this 204 

interpretation, it is clear that neither the presence of GNDs nor the presence of a plastic 205 

strain gradient are directly responsible for the increased strength when they are present. 206 

The increased strength arises from the energy required to create the GNDs or to operate 207 

sources.  208 

 In this context, it is interesting to observe that the Matthews theory (E ~ b/h) for 209 

simple strained layers requires the presence of a substrate, for otherwise misfit 210 

dislocations have nowhere to exist.  But given the need for dislocation multiplication, the 211 

need to operate sources, the relationship E  ~ 5b/h is independent of the presence or 212 

absence of a substrate, since two free surfaces with a separation h constrain the curvatures 213 
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of dislocations in a source (to more than ~h–1) in much the same way as one free surface 214 

and a strained-layer – substrate interface or neutral plane does, or indeed the two 215 

interfaces of a capped layer.  Consequently, equation (7) applies as well to a stand-alone 216 

thin foil, wire or micropillar under uniaxial tension or compression as it does to an 217 

epitaxial layer on a substrate, or to a foil under bending or a wire under torsion, as long as 218 

due attention is paid to the appropriate value of h in each case. 219 

In the applications of equations (1–3)  the primary unknown is the plastic strain 220 

distribution. It can be obtained within the strain-gradient theory by analytic means for 221 

very simple cases such as the beam in bending [23], or by numerical methods [19]. 222 

However, these methods rely upon the approximation that the stress-strain relationship 223 

implied by equations (1–3) is local. This is an approximation that is severely in error for 224 

the simple strained layer, since only the material at the substrate – layer interface 225 

experiences a plastic strain gradient, yet the full thickness of the layer is capable of 226 

sustaining the stress ME >> Y. Source operation and significant plastic deformation do 227 

not depend upon conditions at a point, but upon conditions over an extended region 228 

(source size) around the point, as recognised in nonlocal plasticity theories. Nevertheless, 229 

the approximation can be good – this is best seen in the beam-bending or graded layer 230 

problems. That is why, as observed by Liu et al. [10], the experimental data cannot test 231 

between critical thickness theory and strain-gradient theory, for both will fit well.  232 

It is worth commenting on the possible application of this analysis to other 233 

gradient theories. Whenever the gradient term is multiplied by the yield or flow stress, as 234 

in equation (3), and then the characteristic length turns out to vary as the inverse of the 235 

yield or flow stress (or plastic strain), the separation we have done in equation (8) is 236 
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possible. This gives a gradient coefficient unrelated to yield or flow stress and then 237 

interpretations in terms of dislocation or defect spacing become inappropriate. From the 238 

review by Zhang and K. Aifantis [34], this seems to be the case for most gradient theories 239 

including those based on, or equivalent to, the Aifantis theories [24, 35].  240 

In conclusion, it is demonstrated that the characteristic length in the FH strain-241 

gradient theory can be obtained from known material and structural parameters, 242 

YFH cb  /5 , c ~ 1.  The derivation shows that this SGP corresponds physically to 243 

critical thickness theory. It explains why SGP theories are capable of fitting experimental 244 

data. It validates the use of this theory to obtain approximate constitutive laws for use in 245 

finite-element calculations. It offers the prospect of understanding in general, on a secure 246 

physical basis, why strong metals are strong, and how to include size effects in rigorous 247 

engineering modelling and simulation.   248 
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Table I.  Parameters in the critical thickness calculations for strained layers with Y = 0. Symbols are defined in the text. 299 

Structure (z) HR h E(z)   P(z) P  P  c 

Simple layer 0 5b/0 > hR 5b/h 5Mb/h 0 - E P P/h 1 

Thin grade gz gb /10  hR +  z<: 0 

else: g(z–)   

~½MghR z<: gz  

else: g 

~ g ~ g/h ~1 

Thick grade gz gb /10  >> hR z<(h–hR): 0 

else: g(z–h+hR)   ~½Mg
h

hR

2

 
z<(h–hR): gz 

else: g(h–hR) 

~½gh ~g ~2 

 300 
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Figure Caption  301 

Figure 1. Characteristic lengths FH  are plotted against the tensile yield strains Y. The 302 

length scales were found by fitting the FH theory to indentation data from the literature 303 

for Ir, Ag, Cu and superalloy and to foil-bending data for Ni. After figure 13 of reference 304 

23. The solid line is the prediction of equation (7), for a typical value of b = 0.25 nm and 305 

with c = 2.  306 
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