1 Validation of a phenomenological strain-gradient plasticity theory

2 D.J. Dunstan

- 3 School of Physics and Astronomy, Queen Mary University of London,
- 4 Address: London, E1 4NS, England
- 5 E-mail: d.dunstan@qmul.ac.uk
- 6

7 Validation of a phenomenological strain-gradient plasticity theory

8	Strain-gradient plasticity theories have been developed to account for the size							
9	effect in small-scale plasticity in metals. However, they remain of limited use in							
10	engineering, for example in standards for nanoindentation, because of their							
11	phenomenological nature. In particular, a key parameter, the characteristic length,							
12	can only be determined by fitting to experiment. Here it is shown that the							
13	characteristic length in one such theory derives directly from known quantities							
14	through fundamental dislocation physics. This explains and validates the theory for							
15	use in engineering.							
16	Keywords: plasticity of metals; strengthening mechanisms; strained layers;							
17	dislocations; strain-gradient theory; critical thickness theory.							
18								
19								
20	The increase in strength (the size effect) when dislocation-mediated plasticity is restricted							
21	to small volumes has been extensively documented experimentally over the past 60 years							
22	[see, e.g., 1–13]. It is an important effect in many technologies from metallurgy to							
23	semiconductors, yet it is not fully understood [12, 14]. In micromechanics, many loading							
24	conditions impose a plastic strain gradient, and so theories in which the strain gradient							
25	plays a central role have been developed [3-6, 15-19]. In contrast, in semiconductor							
26	technology, Matthews critical thickness theory has been largely accepted to explain and							
27	predict the effect in terms simply of the size – stronger when smaller [20–22]. The							
28	strain-gradient theories have not been comprehensively embraced [23], because of							
29	ambiguities about the underlying physics and about the parameters – in particular, the							
30	characteristic length – which enter into these theories. One consequence is that there are							
31	no satisfactory international standards for comparing nanoindentation data, in which the							

32	size effect plays an important role, with macroscopic indentation data. Here it is shown					
33	that the Fleck-Hutchinson strain-gradient theory [4, 17–19, 23] follows mathematically					
34	and physically directly from critical thickness theory [20-22]. The strain-gradient theory					
35	fits experiment well, but with the characteristic length as a free fitting parameter. This					
36	phenomenological parameter is here derived from known physical quantities via critical					
37	thickness theory. The derivation and the associated re-interpretation validate the strain-					
38	gradient theory for use in practical engineering contexts, as an approximation that					
39	expresses a non-local property as a local property.					
40	Increases in strength (the size effect) due to boundaries imposed on dislocation-					
41	mediated plasticity on scales up to tens of microns have been presented for					
42	nanoindentation [3,5], thin wires in torsion [4, 9, 10], thin foils in bending [6, 8], and for a					
43	large variety of still smaller structures down to sub-micron sizes mostly created by					
44	focused ion-beam (FIB) milling [e.g. 7, 11, 13]. Microstructural constraints giving rise to					
45	the size effect include sub-grain boundaries [2] and grain boundaries (the Hall-Petch					
46	effect) [1, 12]. Pseudomorphic (strained-layer) heteroepitaxial crystal growth is another					
47	key example [20–22]. In many of these situations, plastic strain gradients are necessarily					
48	or optionally present, and there is widespread agreement that in such situations the size					
49	effect can be attributed to the strain gradient.					

50 In formal continuum mechanics, to set up a strain-gradient plasticity theory 51 (SGP), the stress is not only a function of plastic strain ε_P , but also a function of its spatial 52 gradient $\ell \varepsilon'_P = \ell d\varepsilon_P / ds$ where *s* is position and the characteristic length ℓ is introduced 53 to give a dimensionless quantity [16–19]. Where a physical interpretation is called for,

appeal is made to the geometrically-necessary dislocations (GNDs) [3] which in a crystalline material are necessarily associated with plastic strain gradients [15]. Values of ℓ are found from fitting to experiment (see Fig.1). The major problem for such straingradient theories is to give a reasonable physical interpretation of the values of ℓ that result. There have been many proposals. See [24] for a recent discussion and a new proposal.

60 Evans and Hutchinson [23] gave an appraisal of SGP theories, for brevity 61 confined to the Nix-Gao (NG) theory [3] and the Fleck-Hutchinson (FH) theory [4, 17, 62 19]. These two theories illustrate adequately both the successes of SGP theories in 63 general, and their difficulties. The successes lie in the good fits to experimental data that 64 these theories give. The major difficulty is that, fitting to experimental datasets for soft 65 metals, the NG theory gives characteristic lengths $\ell_{NG} \sim 25$ mm, and the FH theory gives 66 $\ell_{\rm FH} \sim 5 \mu m$. Neither is characteristic of any length scale experimentally observed in the specimens, whether structural or microstructural. For this reason, and because of the lack 67 of any explicit connection between the theories and dislocation dynamics, Evans and 68 69 Hutchinson noted that strain-gradient theories have not been comprehensively embraced 70 [23].

Here, the FH characteristic length is derived from critical thickness theory. This reveals a previously unsuspected link between the two theories. In particular, it provides the explicit connection between the FH theory and the physics of dislocation dynamics that was previously lacking. It thereby validates the use of the FH theory for prediction in engineering applications (with due attention to the approximations revealed in it).

It is not necessary to use a full derivation of strain-gradient theory. We take Evans and Hutchinson [23] as a starting-point. They define an effective stress σ which is a function of the yield stress and the plastic strain, $\sigma = \sigma_Y f(\varepsilon_P)$. For the FH theory, they state as a premise that the plastic work per unit volume may be written as

80
$$U_P = \sigma_Y \int_0^{E_P} f(\varepsilon_P) d\varepsilon_P$$
(1)

81 The upper integral limit E_P brings in the effect of the strain gradient ε'_P by the definition

$$E_P = \varepsilon_P + \ell_{FH} \varepsilon'_P \tag{2}$$

This is a specific form of the generalized effective plastic strain E_p [19]. Consider an object of size *h*, average plastic strain $\overline{\varepsilon}_p$ and average plastic strain gradient $\overline{\varepsilon}'_p = c\overline{\varepsilon}_p / h$ with $c \sim 1$, and with perfect plasticity, $f(\varepsilon_P) = 1$. From equation (1), the average flow stress is

87
$$\overline{\sigma} = \sigma_Y \left(1 + \frac{c\ell_{FH}}{h} \right)$$
(3)

This is equation (11) of Ref.23. Note that the strengthening is independent of ε_P . The strain gradient increases the yield strength but not the rate of strain-hardening. Using ℓ_{FH} $= 5 \ \mu m$ and adding a work-hardening term, Evans and Hutchinson [23] obtain excellent fits to the data of Ehrler *et al.* [8] for nickel foils.

We apply equation (3) to simple and very well understood examples of the size
effect. These are the plastic relaxation of non-lattice-matched epitaxial strained-layer

94	structures grown above their critical thicknesses. Growth is in the z direction to a
95	thickness <i>h</i> above the substrate at $z = 0$. At typical growth temperatures of 600°C for
96	GaAs-based structures (more than half the melting-point) the intrinsic yield strength is
97	very low. The ability to support elastic strains of 0.01 and more at thicknesses of tens of
98	nm comes from the size effect. In good-quality growth, there is little or no evidence of
99	work-hardening and the material may be taken to be perfectly plastic. Matthews critical
100	thickness theory [20–22] gives the critical thickness h_C at which misfit dislocations
101	(GNDs) may form at $z = 0$ to relieve the elastic strain in a simple layer with misfit strain
102	ϵ_0 . The result, for our purposes here, is best expressed by the geometrical version of
103	Matthew's theory [25, 26], as $h_C \sim b/\varepsilon_0$ where <i>b</i> is the relevant (in-plane) component of
104	the Burgers vector of the misfit dislocations (the GNDs). This version agrees well with
105	experiment. Moreover, it omits unnecessary detail which is specific to single-crystal
106	cubic semiconductors and also it omits the ill-defined parameters, the inner and outer cut-
107	off radii, that appear in the calculation of the dislocation self-energy. The elastic strain ε_E
108	$= \varepsilon_0$ for $h < h_C$ and the plastic relaxation at greater thicknesses gives $\varepsilon_E \sim b/h$ for $h > h_C$.
109	The condition for plastic relaxation may be written in terms of the strain-thickness
110	product as $\varepsilon_E h \sim b$. The theory is readily generalised to more complicated structures
111	(graded layers with $\varepsilon_0 = g_z$, multilayers and superlattices) by considering the strain-
112	thickness integral of $\varepsilon_E(z)dz$ over the thickness and introducing plastic relaxation during
113	growth as necessary to limit the integral to the value b [27]. Any intrinsic or bulk strength
114	simply adds to this size-effect strength. In all cases the size effect is due to the energy
115	required to create the length of GND needed to accommodate the misfit.

116	For significant plastic deformation (stress relaxation) when the initial dislocation
117	density is low, dislocation multiplication must take place – sources must operate.
118	Beanland showed that this requires a much greater thickness, $h_R \sim 5 h_C$ for simple layers
119	[28, 29]. In this case, the energy required to create the GNDs is small compared with the
120	energy dissipated in source operation. Then the strain-thickness product or integral during
121	plastic deformation is ~5 <i>b</i> for $h > h_R$. Experimentally, these predictions of the theory
122	have been confirmed extensively in simple layers, graded layers and in more complicated
123	structures [30–32]. The theory also predicts the spatial distribution of GNDs and of ε_P
124	[32], confirmed by discrete dislocation dynamics simulation [33].
125	We calculate the average plastic strain, the average plastic strain gradient, the
126	average stress, and the constant c for three standard epitaxial structures (Table I). For the
127	simple constant-composition strained layer with misfit strain ε_0 grown above its
128	relaxation critical thickness the plastic strain $\varepsilon_P(z)$ throughout the thickness of the layer is
129	constant and so this is also the average, $\overline{\varepsilon}_P = \varepsilon_P$. The average stress is $\overline{\sigma} = M \varepsilon_E$ where M
130	is the relevant elastic modulus. The plastic strain gradient is ideally infinite at the
131	substrate – layer interface and zero elsewhere, but the average comes just from the
132	change of plastic strain, from 0 at the substrate at $z = 0$ to ε_P at the top at $z = h$. The
133	constant $c = 1$ in this case by definition. Then the average stress (Table I), with a bulk
134	yield stress σ_{Y} added, may be set equal to the average stress predicted by the FH theory in
135	equation (3) giving,

136

$$\overline{\sigma} = \sigma_{Y} \left(1 + \frac{c\ell_{FH}}{h} \right) = M \varepsilon_{E} = \sigma_{Y} + \frac{5Mb}{h}$$

$$\ell_{FH} = \frac{5Mb}{\sigma_{Y}} = \frac{5b}{\varepsilon_{Y}}$$
(4)

137 where ε_Y is the yield strain.

138 In linearly-graded layers, with the misfit increasing as gz, the strain-thickness integral without plastic relaxation is $\frac{1}{2g}h^2$, and the critical thickness h_R is given by setting 139 140 this equal to 5b. When growth continues above h_R , the lower material relaxes completely. 141 A top layer of thickness h_R has a uniform ε_P and stress increasing linearly with the slope Mg. We consider first a thin structure with growth to a thickness $h = h_R + \delta$ (δ small) 142 143 giving constant plastic strain throughout the grade, except for the thin layer of thickness 144 δh at the bottom (Table I) which we ignore. Again c = 1. The stress increases linearly so 145 the average stress is half the surface stress (Table I). Again adding a bulk yield stress σ_Y 146 and equating the average stress with the average stress of equation (3) we have

147

$$\overline{\sigma} = \sigma_{Y} \left(1 + \frac{c\ell_{FH}}{h_{R}} \right) = \sigma_{Y} + \frac{1}{2}Mgh_{R}$$

$$\ell_{FH} = \frac{\frac{1}{2}Mgh_{R}^{2}}{\sigma_{Y}} = \frac{5b}{\varepsilon_{Y}}$$
(5)

148 Graded-layer growth to a much greater thickness $h \gg h_R$ gives complete plastic 149 relaxation to $\varepsilon_E = 0$, $\varepsilon_P = gz$ throughout the layer except for a thin region at the top of 150 thickness h_R where ε_P is constant and the elastic strain ε_E rises from 0 to gh_R [27, 32]. 151 Neglecting the thin region at the top, the average plastic strain is $\frac{1}{2}gh$, while the average 152 plastic strain gradient is just g, so that here c = 2. The stress is zero except in the thin region at the top where it rises from zero to Mgh_R , so the stress-thickness integral is constant at $\frac{1}{2}Mgh_R$ and the average stress is obtaining by multiplying by h_R/h . Again adding a bulk strength σ_Y and equating the average stress with the average stress of equation (3) we have,

157

$$\overline{\sigma} = \sigma_{Y} \left(1 + \frac{c\ell_{FH}}{h} \right) = \sigma_{Y} + \frac{\frac{1}{2}Mgh_{C}^{2}}{h}$$

$$\ell_{FH} = \frac{\frac{1}{2}Mgh_{C}^{2}}{c\sigma_{Y}} = \frac{5b}{2\varepsilon_{Y}}$$
(6)

158 All three examples, equations (4-6), give similar results, varying only because of 159 the factor *c*, so we conclude that

160
$$\ell_{FH} = \frac{5b}{c\varepsilon_Y} \tag{7}$$

161 The problem of a linearly-graded layer maps perfectly onto half of the problem of a beam 162 in bending, from the neutral plane to either free surface [33]. Taking typical numerical 163 values for pure nickel and other soft metals, $M \sim 100$ GPa, $b \sim 0.25$ nm and yield 164 strengths about 20 MPa, gives $\ell_{FH} = 3.125 \,\mu\text{m}$ from equation (6). This is in good 165 agreement with the results from empirical fits (Fig.1).

166	Evans and Hutchinson [23] give values (but not error bars) of ℓ_{FH} obtained by
167	fitting the FH theory to data from different authors for indentation of iridium, silver,
168	copper and a superalloy, and to data for bending nickel foils. They note the inverse
169	correlation between the values of ℓ_{FH} and the yield strain ϵ_{Y} of the material (figure 1), as
170	in equations (4-7). Their tentative interpretation is that ℓ_{FH} represents the distance

171 moved by dislocations between e.g. cell walls or precipitates, which will be reduced as 172 σ_Y^{-1} in stronger materials. However, this interpretation overlooks the physical origin of 173 the size effect. Moreover, equation (7) *predicts* the absolute magnitudes of ℓ_{FH} very well 174 (figure 1).

The presence of *c*, the ratio of the peak value of ε_P to its average value, in the denominator of equation (7) is interesting. Gradient theory fits DDD simulation results better if the characteristic length is allowed to be a variable and to decrease with strain [24]. The graded layers, equations (5, 6) show that *c* varies from 1 at low strain to 2 at high strain, with a concomitant reduction of a factor of 2 in the characteristic length of equation (7).

The phenomenological FH and similar strain-gradient theories express the *outcomes* of the size effect accurately, but using a fitting parameter, the characteristic length, which is not a true characteristic of the material. Evans and Hutchinson [23] attribute equation (3) to the summation of the energy dissipation caused by the movement of statistically-stored dislocations (SSDs) and that due to the movement of GNDs, the second term.

187 Our interpretation of equation (3) is different. From figure 1 and equation (7), the 188 characteristic length is the Matthews critical thickness h_C or the relaxation critical 189 thickness h_R calculated using the elastic yield strain or flow stress of the material. 190 Equivalently, it is the thickness h at which the size effect doubles the strength of the 191 material. Note that the σ_Y in the denominator of equation (7) permits rewriting equation 192 (3) as

193
$$\overline{\sigma} = \sigma_Y + \frac{c\sigma_Y \ell_{FH}}{h} = \sigma_Y + \frac{5Mb}{h}$$
(8)

194 so that the inverse dependence of ℓ_{FH} on σ_Y is cancelled by the prefactor σ_Y . This is a 195 very clear indication that the size effect is independent of the phenomena determining the 196 yield strength, such as dislocation and defect densities. The first term does indeed 197 represent whatever dissipative mechanism is responsible for the strength of bulk material 198 without a size effect, such as the movements of SSDs. The second term, however, in the 199 case that source operation is not required ($\varepsilon_E \sim b/h$), represents the energy stored (not 200 dissipated) by the creation of GND length – the Matthews model [20–22]. In the case that 201 source operation is required ($\varepsilon_E \sim 5b/h$), and this is generally the case for significant 202 plastic deformation, the second term represents mostly the energy dissipated by source 203 operation under the $\sim 5 \times$ greater stress required to operate sources within a restricted size 204 compared with the stress required merely to create extra GND length [29, 31]. In this 205 interpretation, it is clear that neither the presence of GNDs nor the presence of a plastic 206 strain gradient are directly responsible for the increased strength when they are present. 207 The increased strength arises from the energy required to create the GNDs or to operate 208 sources.

In this context, it is interesting to observe that the Matthews theory ($\varepsilon_E \sim b/h$) for simple strained layers requires the presence of a substrate, for otherwise misfit dislocations have nowhere to exist. But given the need for dislocation multiplication, the need to operate sources, the relationship $\varepsilon_E \sim 5b/h$ is independent of the presence or absence of a substrate, since two free surfaces with a separation *h* constrain the curvatures

of dislocations in a source (to more than $\sim h^{-1}$) in much the same way as one free surface and a strained-layer – substrate interface or neutral plane does, or indeed the two interfaces of a capped layer. Consequently, equation (7) applies as well to a stand-alone thin foil, wire or micropillar under uniaxial tension or compression as it does to an epitaxial layer on a substrate, or to a foil under bending or a wire under torsion, as long as due attention is paid to the appropriate value of *h* in each case.

220 In the applications of equations (1-3) the primary unknown is the plastic strain 221 distribution. It can be obtained within the strain-gradient theory by analytic means for 222 very simple cases such as the beam in bending [23], or by numerical methods [19]. 223 However, these methods rely upon the approximation that the stress-strain relationship 224 implied by equations (1-3) is local. This is an approximation that is severely in error for 225 the simple strained layer, since only the material at the substrate – layer interface 226 experiences a plastic strain gradient, yet the full thickness of the layer is capable of 227 sustaining the stress $M\varepsilon_E \gg \sigma_Y$. Source operation and significant plastic deformation do 228 not depend upon conditions at a point, but upon conditions over an extended region 229 (source size) around the point, as recognised in nonlocal plasticity theories. Nevertheless, 230 the approximation can be good – this is best seen in the beam-bending or graded layer 231 problems. That is why, as observed by Liu *et al.* [10], the experimental data cannot test 232 between critical thickness theory and strain-gradient theory, for both will fit well.

It is worth commenting on the possible application of this analysis to other gradient theories. Whenever the gradient term is multiplied by the yield or flow stress, as in equation (3), and then the characteristic length turns out to vary as the inverse of the yield or flow stress (or plastic strain), the separation we have done in equation (8) is

possible. This gives a gradient coefficient *unrelated* to yield or flow stress and then
interpretations in terms of dislocation or defect spacing become inappropriate. From the
review by Zhang and K. Aifantis [34], this seems to be the case for most gradient theories

including those based on, or equivalent to, the Aifantis theories [24, 35].

241 In conclusion, it is demonstrated that the characteristic length in the FH strain-242 gradient theory can be obtained from known material and structural parameters, 243 $\ell_{FH} = 5b/c\epsilon_{\gamma}$, $c \sim 1$. The derivation shows that this SGP corresponds physically to 244 critical thickness theory. It explains why SGP theories are capable of fitting experimental 245 data. It validates the use of this theory to obtain approximate constitutive laws for use in 246 finite-element calculations. It offers the prospect of understanding in general, on a secure physical basis, why strong metals are strong, and how to include size effects in rigorous 247 248 engineering modelling and simulation.

- 249 Acknowledgements: Undergraduate students David Lewis and Viktor Jevdomikov
- assisted with strain-gradient theory. Discussions with the late Tony (A.G.) Evans, and
- with Dabiao Liu, Andy J. Bushby and Alan J. Drew are gratefully acknowledged.

252

253 **References**

- 254 1. E.O. Hall, Proc. Phys. Soc. B64, (1951) p.747.
- 255 2. S.V. Raj and G.M. Pharr, Mater. Sci. Eng. 81 (1986) p.217.
- 256 3. W.D. Nix and H.J. Gao, J. Mech. Phys. Sol. 46 (1988) p.411.
- 4. N.A. Fleck, G.M. Muller, M.F. Ashby and J.W. Hutchinson, Acta Met. Mat. 42
 (1994) p.475.
- 259 5. Q. Ma and D.R. Clarke, J. Mater. Res. 10 (1995) p.853.
- 260 6. J.S. Stölken and A.G. Evans, Acta Mat. 46, (1998) p.5109.
- 261 7. M.D. Uchic, D.M. Dimiduk, J.N. Florando and W.D. Nix, Science 305 (2004) p.986.

- 8. B. Ehrler, X.D. Hou, T.T. Zhu, K.M.Y. P'ng, C.J. Walker, A.J. Bushby and D.J.
 Dunstan, Phil. Mag. 88 (2008) p.3043.
- 264 9. D.J. Dunstan, B. Ehrler, R. Bossis, S. Joly, K.M.Y. P'ng and A.J. Bushby, Phys. Rev.
 265 Lett. 103 (2009) p.155501.
- 10. D. Liu, Y. He, D.J. Dunstan, B. Zhang, Z. Gan, P. Hu and H. Ding, Int. J. Plasticity
 41 (2013) p.30.
- 11. J.-K. Heyer, S. Brinckmann, J. Pfetzing-Micklich and G. Eggeler, Acta Mat. 62
 (2014) p.225.
- 270 12. D.J. Dunstan and A.J. Bushby, Int. J. Plasticity 53 (2014) p.56.
- 13. M. W. Kapp, C. Kirchlechner, R. Pippan and G. Dehm , J. Mater. Res. 30 (2015)
 p.791.
- 273 14. D.J. Dunstan and A.J. Bushby, Int. J. Plasticity 40 (2013) p.152.
- 274 15. M.F. Ashby, Phil. Mag. 21 (1970) p.399.
- 275 16. E.C. Aifantis, J. Eng. Mater. Tech. Trans. ASME 106 (1984), p.326.
- 276 17. N.A. Fleck and J.W. Hutchinson, J. Mech. Phys. Solids, 41 (1993) p.1825.
- 18. M.I. Idiart, V.S. Deshpande, N.A. Fleck and J.R. Willis, Int. J. Eng. Sci. 47 (2009)
 p.1251.
- 279 19. N.A. Fleck, J.W. Hutchinson and J.R. Willis, J. Appl. Mech. 82 (2015) p.071002.
- 280 20. J.W. Matthews, S. Mader and T.B. Light, J. Appl. Phys. 41 (1970) p.3800.
- 281 21. E.A. Fitzgerald, Mater. Sci. Rep. 7 (1991) p.91.
- 282 22. D.J. Dunstan, J. Mater. Sci.: Mater. Electronics 8 (1997) p.337.
- 283 23. A.G. Evans and J.W. Hutchinson, Acta Mat. 57 (2009) p.1675.
- 284 24. X. Zhang and K.E. Aifantis, Mater. Sci. Eng. A631 (2015) p.27.
- 285 25. L. Bragg, Nature 149 (1942) p.511.
- 286 26. D.J. Dunstan, S. Young and R.H. Dixon, J. Appl. Phys. 70 (1991) p.3038.
- 287 27. D.J. Dunstan, Phil. Mag. A73 (1996) p.1323.
- 288 28. R. Beanland, J. Appl. Phys. 72 (1992) p.4031.
- 289 29. R. Beanland, J. Appl. Phys. 77 (1995) p.6217.
- 30. D.J. Dunstan, P. Kidd, L.K. Howard and R.H. Dixon, Appl. Phys. Lett. 59 (1991)
 p.3390.
- 31. D.J. Dunstan, P. Kidd, R. Beanland, A. Sacedón, E. Calleja, L. González, Y. González
 and F.J. Pacheco, Mater. Sci. Technol. 12 (1996) p.181.
- 294 32. J. Tersoff, Appl. Phys. Lett. 62 (1993) p.693.
- 295 33. C. Motz and D.J. Dunstan, Acta Mat. 60 (2012) p.1603.
- 296 34. X. Zhang and K. Aifantis, Rev. Adv. Mater. Sci. 41 (2015) p.72.

298 35. E.C. Aifantis, Mechanics of Materials, 35 (2003) p. 259.

Structure	$\epsilon(z)$	H_R	h	$\varepsilon_E(z)$	$\overline{\sigma}$	$\epsilon_P(z)$	$\overline{\epsilon}_{P}$	$\overline{\epsilon}'_{P}$	С
Simple layer	E 0	$5b/\varepsilon_0$	$> h_R$	5 <i>b</i> / <i>h</i>	5Mb/h	ε ₀ - ε _E	ε _P	ϵ_{P}/h	1
Thin grade	gz.	$\sqrt{10b/g}$	$h_R + \delta$	<i>z</i> <δ: 0	$\sim \frac{1}{2}Mgh_R$	$z < \delta$: gz	~ gδ	~ $g\delta/h$	~1
		•		else: $g(z-\delta)$		else: gδ			
Thick grade	gz.	$\sqrt{10b/g}$	$>> h_R$	$z < (h - h_R): 0$	h_{R}^{2}	$z < (h-h_R): gz$	~½gh	~g	~2
		V		else: $g(z-h+h_R)$	$\sim \frac{1}{2}Mg\frac{\pi}{h}$	else: $g(h-h_R)$			

299 Table I. Parameters in the critical thickness calculations for strained layers with $\sigma_Y = 0$. Symbols are defined in the text.

301 Figure Caption

- 302 Figure 1. Characteristic lengths ℓ_{FH} are plotted against the tensile yield strains ε_{Y} . The
- 303 length scales were found by fitting the FH theory to indentation data from the literature
- 304 for Ir, Ag, Cu and superalloy and to foil-bending data for Ni. After figure 13 of reference
- 305 23. The solid line is the prediction of equation (7), for a typical value of b = 0.25 nm and
- 306 with c = 2.