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Abstract
We develop a frame and dyad gauge-independent formalism for the calculus of variations
of functionals involving spinorial objects. As part of this formalism we define a modified vari-
ation operator which absorbs frame and spin dyad gauge terms. This formalism is applicable
to both the standard spacetime (i.e. SL(2,C)) 2-spinors as well as to space (i.e. SU(2,C))
2-spinors. We compute expressions for the variations of the connection and the curvature
spinors.

1 Introduction

Variational ideas play an important role in various areas of mathematical General Relativity —e.g.
in the ADM formalism [I], in the analysis of Penrose-like inequalities [§] or in the analysis of area-
angular momentum inequalities [6] to mention some. Similarly, spinorial methods constitute a
powerful tool for the analysis and manipulation of the Einstein field equations and their solutions
—most notably the proof of the positivity of the mass by Witten [12] and the analysis of linearised
gravity, see e.g. [10].

To the best of our knowledge, all available treatments of calculus of variations and linerisations
in spinorial settings make use of computations in terms of components with respect to a dyad. It
is therefore of interest to have a setup for performing a dyad-independent calculus of variations
and computation of linearisations with spinors. The purpose of the present article is to develop
such a setup. We expect this formalism to be of great value in both the analysis of the notion
of non-Kerrness introduced in [3, 4] and positivity of the mass in [5], as well as in a covariant
analysis of linearised gravity.

The transformation properties of tensors and spinors pose some conceptual subtleties which
have to be taken into account when computing variations of the basic tensorial and spinorial
structures. It is possible to have variations of of these structures which are pure gauge. This
difficulty is usually dealt with by a careful fixing of the gauge in some geometrically convenient
manner. One thus makes calculus of variations in a specific gauge and has to be careful in
distinguishing between properties which are specific to the particular gauge and those which are
generic. This situation becomes even more complicated as, in principle, both the tensorial and
spinorial structures are allowed to vary simultaneously.

In this article it is shown that it is possible to define a modified variation operator which
absorbs gauge terms in the variation of spinorial fields and thus, allows to perform covariant
variations. The idea behind this modified variation operator is similar to that behind the deriva-
tive operators in the GHP formalism which absorb terms associated to the freedom in a NP
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tetrad —see [7]. As a result of our analysis we are able to obtain expressions involving abstract
tensors and spinors —thus, they are valid in any system of coordinates, and therefore invariant
under diffeomorphisms which are constant with respect to variations. However, linearisations of
diffeomorphisms do affect our variational quantities. This is discussed in Section where we
also find that the diffeomorphism freedom can be controled by a gauge source function.

Finally, we point out that although our primary concern in this article is the construction
of a formalism for the calculus of variations of expressions involving spinors in a 4-dimensional
Lorentzian manifold, the methods can be adapted to a space-spinor formalism on 3-dimensional
Riemannian manifolds. This is briefly discussed in Section [6]

The calculations in this article have been carried out in the Mathematica based symbolic
differential geometry suite zAct [9], in particular SymManipulator [2] developed by TB.

Notation and conventions

All throughout, we use abstract index notation to denote tensors and spinors. In particular, the
indices a, b,c,...and 1, j, k, . . . are abstract spacetime and spatial tensor indices respectively, while
A, B,C, ... denote abstract spinorial indices. The boldface indices a, b, c,... and A,B,C, ... will
be used as tensor frame indices and spinor frame indices, respectively. We follow the tensorial
and spinorial conventions of Penrose & Rindler [I0].

Our signature convention for 4-dimensional Lorentzian metrics is (+, —, —, —), and 3-dimen-
sional Riemannian metrics have signature (—, —, —).

The standard positions for the basic variations are dggp, 6UQAA/, S0 2B, dw?y | 6e® g, Sean,
574%c. If any other index positions appear, this means that the indices are moved up or down
with gqp or eap after the variation. The definitions of the above objects will be given in the main
text.

2 Basic setup

In this section we discuss our basic geometric setup, which will be used in Section [3| to perform
calculus of variations.

2.1 Families of metrics

In what follows, let (M, Gap) denote a 4-dimensional Lorentzian manifold (spacetime). The metric
Jap Will be known as the background metric. In what follows, in addition to g,,, we consider
arbitrary families of Lorentzian metrics {gas[A]} over M with A € R a parameter such that
9ab[0] = Gap- Intuitively, a particular choice of family of metrics can be thought of as a curve in
the moduli space of Lorentzian metrics over M. The fact that we allow for arbitrary families of
metrics enables us to probe all possible directions of this space in a neighbourhood of g4, and thus,
we can compute Fréchet derivatives of functionals depending on the metric —see Section [3.1]

In order to make possible the discussion of spinors, it will be assumed that the spacetimes
(M, gap[A]) for fixed X are orientable and time orientable and admit a spinorial structure.

Notational warning. In what follows, for the ease of the presentation, we often suppress the
dependence on A from the various objects. Thus, unless otherwise stated, all objects not tagged
with a ring () are assumed to depend on a parameter \.

2.2 Frames

In what follows, we assume that associated to each family of metrics {g,p} one has a family {e,*}
of gap-orthonormal frames. Let {w?,} denote the family of associated cobases so that for fixed A
one has e,%wP, = 0,°. Following the conventions of the previous section, we write é,¢ = e,%[0]

and w?, = w?,[0]. By assumption, one has that

Jabea’eb’ = Nab, Jab = NabwWaw . (1)

where, as usual, n.p = diag(1,—1, -1, -1).



Remark 1. Observe that in view of the relations (1) any family of frames and coframes {e,*}
and {w'?,} related to {ea®} and {w?,} through a family of Lorentz transformations {A®p} give
rise to the the same family of metrics {gap} —see Appendiz ,

2.3 Spinors

By assumption, the spacetimes (M, g,p) are endowed with a spinorial structure. Accordingly, we
consider families of antisymmetric spinors {e4p} such that for fixed A the spinor e4p gives rise
to the spinor structure of (M, gqap). Moreover, we set €45 = €4p[0].

Associated to the family {¢4p} one considers a family {ea“} of normalised spin dyads —that
is, one has that

0 1
eapea’en” = eam, €EAB = ( 10 ) . (2)

Let {EAA} denote the family of dual covariant bases for which the relation eABe® 4eBp = AB
with (¢AB) = —(eas) ™! holds. It follows that one has

547 =eatea®,  ecap=eameaten®, NP =eAPepden”
Remark 2. As in the case of tensor frames, any family of dyads {e'y*} related to {ea”*} through
a family of Lorentz transformations {AAg} gives rise to the same spinorial structures associated
to the family of antisymmetric spinors {eap} —see Appendix .

2.4 Infeld-van der Waerden and soldering forms

The well-known correspondence between tensors and spinors is realised by the Infeld-van der
Waerden symbols o2 and 02aa/. Given an arbitrary v* € TM and B, € T*M one has that

AA’

’
A= o, M Ba — Baa = Pac®anr

V2 B

where for fized A

v? = ,anaa’ Ba = ﬁaeaaa

denote the components of v® and /3, with respect to the orthonormal basis ea*[\] of (M, gap[\])-
In more explicit terms, the correspondence can be written as

1 [ 00403 ol 40?2 L ( Bo+PBs pr—ip
(00,01702703)H\/§<U1_i1}2 W0 — 3 )7 (50751752,/33)H\/§(ﬁf+i;; 5::)_532 )

From the Infeld-van der Waerden symbols we define the soldering form 0.4 and the dual
of the soldering form o4 4/ by

’ ’ !
0. = eadea wBaoa™N, (3a)

7
0% anr = B 4T pea0tan (3b)

By direct calculation, we can then verify the relations

— AA’ BB’
Jab = €ABEA' B O " 0y, (4a)

5ab = O’aBB,O'bBB/. (4b)

It is important to note that 0.4 and 044 are tensor frame and spin dyad dependent, while
the relations and (4b)) are universal.
Following our approach, in the sequel we consider families {0444} and {o0% 44/} of soldering

forms such that 6,44 = 7,44 [0] and 6% 44 = 0%44/[0] are the soldering forms associated to

(‘:)bav EBA)'

Remark 3. In this article we adopt the point of view that the metric structure provided by gup
and the spinorial structure given by eap are independent from each other. After a choice of frame
and spinor basis these structures are linked to each other —in an, admittedly, arbitrary manner—

through the relations in and ,



3 Calculus of variations

3.1 Basic formalism

The main objective of our calculus of variations is to describe how real valued functionals depend
on their arguments —in particular, in the case the arguments are covariant spinors. To motivate
our analysis, we first consider a real valued functional F|w?,, 2], where £% is a vector field and
&2 = w?,£*. Given a particular family of fields {w?,[\], £2[A]} depending on a parameter \, we
define the variations {dw?,, 062} through the expressions

In terms of the above fields over M we define the Gateuz derivative of Flw?,, €3] at {&®,, €2} in
the direction of the family {w?,[\], £2[\]} as

o d
Suma, ey Fli%a, €] = = Fluoal, €]

d °a a ¢a a
= a}"[w a+ Adw?y, E8 + A0E?]

A=0

A=0

Now, if dgya,, ¢ayF exists for any choice of family {w®,, {*} one then says that Flw?,,£?] is

Fréchet differentiable at {w?,, fa} If this is the case, there exists a functional d.F, the Fréchet
derivative, from which dya, ¢ayF can be computed if a particular choice of the family of the
variations {dw?,, 66} is considered. For more details concerning the notions of Gateaux and
Fréchet derivative and their relation see [I1].

The functional F[w?,,&?] considered in the previous paragraph depends on the coframe and
components of a tensor fields in terms of this basis. As the particular choice of frame involves
the specification of a gauge, instead of regarding the functional . as depending on the fields
[W2q, &7, dw?,, 6€2] it will be convenient to regard it as depending on [Gap, €%, d9ab, Tab, 0], where
the field Ty, describes the frame gauge choice and

5 _ dgab
Gab = EPY )\:0’

where {gqp} is a family of metrics over M such that for fixed A the coframe w?, is gqp-orthonormal.

Next, we consider real valued functionals depending on spinors. For concreteness consider the
a functional of the form F[g.s, €* 4, ka]. The Gateaux and Fréchet derivatives of this functional
are defined in the natural way by considering arbitrary families of fields {gqp, €* 4, k4 } depending
on a parameter \. The variations implied by this family of fields is then defined by

dEAA dka
Se = 1) == .
A |y AT T L) AT,

d ab
(SgabE J

In analogy to the example considered in the previous paragraphs, it will be convenient to regard
the Fréchet derivative 6, which in principle depends on [Jap, €2 4, A, 0gap, 0™ 4,0KA], as a
functional of the arguments [Jup, €45, KA, 0gab, 0k A, Tap, Sap] where the field Sap describes the
dyad gauge choice. In this way one obtains a formalism that separates the tensor frame and spin
dyad gauge in the Fréchet derivatives. The main observation in the sequel is that is is possible
to obtain a modified variation operator ¥ which absorbs the frame and dyad gauge terms so that
the Fréchet derivative depends on the parameters [Jap, K4, 0gap, Pk )

Notational warning. In what follows, for ease of presentation, we mostly suppress the ring °
from the background quantities appearing in expressions involving variations. If an expression
does not involves variations then it holds for both the background quantities and any other one
in the family.



3.2 Basic formulae for frames

Consider first the expression for the metric g,p in terms of the coframe {w?,} —namely
Jab = nabwaawbb-

Applying the variational operator § to the above expression, using the Leibnitz rule, and that
Tlab are constants, yields
5gab = nabéwaawbb + nabwaafswbb- (5)

In certain computations it is useful to be able to express dw?, in terms of dg,p. In order to do
this, it is noticed that from it follows that

5gab == 277abWaa§Wbb - 2Tab,

where
Ty = 77cdwd [aéwcb] .

It then follows that
d(w?y) = %ebbnbaégab — e P2 T, (6)

A formula for the variation of the inverse metric can be computed by taking variations of the
defining relation d,” = g,.g*. One finds that

5(g%) = — g*g*6gap.

A formula for the variation of the frame vectors {e,®} in terms of the variation of dw€ is
obtained by computing the variation of the expression 6,P = ea%*wP,. One finds that

5(ead) = —exlectows,.

The previous expressions can be used to compute a formula for the variation of a covector &,.
Writing &, = £aw?,, one obtains that

65(1 = wba(s(gb) + %ecandfd(sgab - ecanddeab-

Remark 4. An interpretation of the tensor T,y appearing in equation @ can be obtained by
considering a situation where §gqp, = 0. In that case equation (@ reduces to

dw?y = —ep'nP2 T,

Writing T,y = Tapw?aw®y, where Tap denote the components of Ty, with respect to the coframe
{w?,} one has that
Sw?, = —ep NP2 Teqwaw®y = T?cw,,

where T?; = —ndaTcdwca. Comparing with the discussion in Section one sees that Ty
encodes a rotation of the basis. With this observation, in what follows we interpret the second
term in equation @ as a gauge term.

3.3 Basic formulae for spinors

The analysis in the previous section admits a straightforward spinorial analogue. Given a covari-
ant spinorial dyad {¢® 4} one can write

A B
€AB = EABE A€ B.
Thus, one has that

Sean = eaBEC O™ A + eape® 40P 5

= 2eape®poe™ 4 — 2945,



where
_ B <A
SAB = €aBE (BOE 4).

The variation of the contravariant antisymmetric spinor €22 can be computed from the above

formulae by first computing the variation of e4ge?¢ = —64¢ and then multiplying with 4.
We obtain that
5(6DC) = —APeBCse .

As, deap is antisymmetric we can fully express it in terms of its trace as deap = —%EAB(SGCC.
Now, if one wants to compute de® 4 in terms of de 45 one has that

5EAA = %EABGBB&EAB + GABGBBSAB. (7)

If we compute the variation of §4€ = €Cgea® and multiply with ecP we get

5(6AA) = —eaPec?eCp.
Now consider a covariant spinor ¢4 and expand it with respect to the spinor dyad {e* 4} as
pa = dac™a.
A calculation using equation @ yields the expression

54 =0pac™ s + pade® 4
=0pac s+ Loac*TepPiean + pac*TepPSan.

Using the identity eACpaec? = ¢“Bpo the variation d¢4 can be reexpressed as
5pa = (0pa)e™a + 1(5690)pa — SaPop.

Remark 5. As in the case of equation @ and the tensor Ty, the spinor Sap admits the
interpretation of a rotation. Indeed, considering a situation where deap = 0, writing Sap =

A 1B pSaB one finds that

5€AA = GABGBBSAB

eABeBBePAeQBSpQ

= SABGBA.

Comparing with Appendiz[A.1], we find that Sap encodes a rotation of the spin dyad.

3.4 Variation of the soldering form

In the reminder of this article we will consider a more general setting in which both the metric g,
and the antisymmetric spinor € 4 can be varied simultaneously. To analyse the relation between
the variations of these two structures it is convenient to consider the soldering form o,44 .

To compute the variation of the soldering form, one starts by computing the variation of
the relation . As we are treating the Infeld-van der Waerden symbols as constants, their
variation vanishes — that is, although both the metric and spinor structure may vary, the formal
relation between tetrads and spin dyads will be preserved. A direct combination of the methods
of Sections and on formula lead, after a computation, to the expression

So A = %56’430@3’4/ + %56‘4/3/0@‘4]3/ + %gbC(SgabacAA/
—§A Lo AB _§A g BA T by AA (8)
The terms in the second line of the previous expression are identified as gauge terms. Observe

that in this case one has two types of gauge terms: one arising from the variation of the tensor
frame and one coming from the variation of the spin frame.



If we compute the variation of equation and multiply with 0% 44 we get

’

§(0%anr) = —0(0aPB )0 4nr0’ g

Multiplying equation (8) with ¢*o.BB" and splitting into irreducible parts, we get the relations

5GG(A(A/U\a|B)B/) = %59(,43)(14(3/),
50a(A|B"0_aB)B/ _ TAB o QSAB,
5JaB(A’J‘a|BB') _ TA/B’ B 2§A’B/’

BB’ 15 B B B B
60?7 oupp = 509" B B +6€” g + €7 pr,

where we have defined

_ A b _ b
Tap =Tawo"a” 0’ Bar, d0gaBa'B = 0Gab0" 44/0 BB -

3.5 General variations of spinors

The formulae for the variations of the soldering form and its dual can now be used to compute
the variation of arbitrary spinors under variations of the metric and spinor structures. To this
end, consider spinors (44" and &4 4/. Making use of the Leibnitz rule one obtains the expressions

o_aAA'(sga _ 5(<~AA') o %5EBBCAA' o %5€B/B’CAAI . %dgABA/B’CBB/

o %TA/B/CAB’ + SA’BICAB’ o %TABCBA’ + SABCBA’7 (93)

0% an0€q = 6(Ean) + 1068 pEan + 1085 pigan + 1094”4 epp
+AT0 B € ap — SaP eap + 3TuPepa — SaBepar, (9b)
where (¢ = U“BB/CBB/ and &, = aaBBlfgg/. We observe that both expressions contain a

combination of gauge terms involving the spinors Tap and Sap.
In view of the discussion in the previous paragraph we introduce a general modified variation
operator.

Definition 1. The modified variation operator 9 is for valence 1 spinors defined by
Vpa =06pa + 1568 goa + 3TuP o5 — SaP o5,
Dot = 64 — iéeBquA _ %TAB(ZSB 4 SAReB,
Vpar = 0par + 1068 pioar + 3Ta b — Sa P o,
19(;3,4’ = 5&4’ _ iéEB’B@A/ _ %TA’B/QEB’ + SA’B/(Z;B’,
and extended to arbitrary valence spinors by the Leibnitz rule.
In particular, using the above definitions in expressions — one finds that
U@AA’(;Ca _ 19<AA’ _ %59ABA’B/CBB”
0% Anrd€q = V€an + 36947 47 €y,
showing that 19(‘4‘4/ and ¥Ca 4/ are frame gauge independent. Moreover, a further calculation

shows that
196,43 = 0

so that the process of raising and lowering spinor indices commutes with the modified variation
1 operator.

Remark 6. Expanding the ¢4 in terms of the spin dyad in the d¢ 4 term in Definition [1] gives
Ipa) = ®40(¢B) + 5Ta b5 (10)

Observe that the Sap and deap terms cancel out.



4 Variations and the covariant derivative

The purpose of this section is to to analyse te relation between the variation operators ¢ and ¢
and the Levi-Civita connection V, of the metric ggp.

4.1 Basic tensorial relations

Our analysis of the variations of expressions involving covariant derivatives is based on the fol-
lowing basic assumption:

Assumption. For any scalar field f over M one has that
Vadf =6(Vaf) (11)
In what follows, define the frame dependent tensor
Yo'e = — e Vawe.

The tensor 7,°. can be regarded as a convenient way of grouping the connection coefficients v»Pc
of the connection V, with respect to the frame {e,®}. A calculation shows, indeed, that

b b a c b
Ya ¢ = VYa cW oW c€b -

We can express all covariant derivatives of the cobasis and the basis in terms of v,°. via
£ £ b b b
Vaw c = — W pYa ¢y Volef - €fa’)’d a-

Differentiating the orthonormality condition 72P = w?.wP49°? and multiplying with e,"ep! we

get the relation
75 eg? =0 (12)

encoding the metric compatibility of V,. The variation of this gives
Fyp ) = yplelelsgh). (13)
Now, for any covector &,, its covariant derivative can be expanded in terms of the frame as
Vaés = — w®a¥abée + wVale.

Computing the variation of this last expression, and using the relations above, gives after some
straightforward calculations

5(va€b) = - 57acb£c + Tcdp)/abdgc - de"}/acdfc + %7acd5gbdgc + %’Yabdégcdgc + gcvaTbc
- %gcvaégbc + Vaéfb- (14)

In the previous calculation Assumption has been used. If we use relation with &, = V. f,
antisymmetrize over a and b, and assume that the connection is torsion free, we get

0 = (Te"Vabja + 309" Vavja — Vajep) + ViaThe — 3 Via09je + Tl Vejed + 3Vale|“0961a) VT
Hence, the torsion free condition is encoded by
Valely] = TeVaja + 309 Vabd + ViaThje — 3 V10090 + Tia Vojed + 30l *0981- (15)
Now, using the identity
0Vabe = 0V[alble] = 0V alelt] T OV blale] T OVa(be) — OVb(ac) T 0Ve(ab)>
we can use equations and to compute

57@1)0 - - cd7abd + de')/acd + %Vacdégbd + %’Yabd(ggcd - v(1711)0 - %vbégac + %vcdgab- (16)



It follows then that equation can therefore be simplified to

6(va£b) = va<6£b) - %ng(vaégbc + Vbégac - vcégab)§d~ (17)

It is important to observe that this formula is a tensorial expression. Hence, it allows to define a
transition tensor

Q" = 39"/ (Vo0gae + Vedgoa — Vadge) (18)

relating the connections V, and 6V,. This is not surprising as it is well known that the space of
covariant derivatives on a manifold is an affine space. Making use the definition of %, equation
takes the suggestive form

5(Va&s) = Va(6&) — Qp’aa (19)
Furthermore, making use of the Leibnitz rule one finds that for an arbitrary vector v® one has
5(Vavb) = Vo (00°) + Qb qve.

The extension to higher valence tensors follows in a similar manner.

4.2 Spinorial expressions

In order to discuss the variations of the spinor covariant derivative V 44+ associated to the Levi-
Civita connection V, it is convenient to define a spinorial analogue of the tensor v,?. —namely
B _ B c
Va ¢ = —€c Vee .

B

The hybrid 7,2 ¢ is related to %BBlccz = 7,00 P ,accc/ through the decomposition

BB’ B B | - B B
Yoo cor =Ya ¢l + e crdc” .

It follows then that

’

P = 2.0 cpa PP (20)
From this last expression can then be verified that
YaBC = YaCB-
The variational derivative of v,Z¢ can be computed using equation . One finds that
§(v.c) = iQachdBB/UCCB' - iQachdBB/UCCB' - %’)’acdSCDUCBB/UdDB'

- %’YacdSBDUCCB UdDB’ - %VaTBC- (21)

In this last expression observe, in particular, the appearance of the gauge spinors Sap and Tap.
In turn, equation can be used to compute the variation of the covariant derivative of an
arbitrary spinor k4. Expanding k4 in terms of the spin dyad and differentiating we get

Vakp = €CpVakc — 7. pric.
It follows that the variation of this last expression is given by
8(Vaka) = Vabka — %KJBV@TAB +KkPV,Sup + imAVa(SeBB
+1QuerP ol a4 ¢ par — 1QuerkB b 4N o par
=Vaoka — 266% 5Vaka + 3TapVar” — SapVar”
+1Quek P04 0% par — 1QuakP ot aN o par.

In order to write the spinorial derivative V 44-kp (rather than V,kp) it is convenient to define
the spinor

— 1 b B’
QaaBc = —50"440"B” 0°0B Qlpela- (22)



Theorem 1. The variation of the covariant derivative of a spinor is given by

IVankp) =Vardep +uapckC — 16gacan VP kp, (23a)

WV aakp)=VaasOkp + 0 ap kS — 26gapac VP Ep. (23b)
Proof. Using the expressions in the previous paragraphs one has that

5(Vaakp) =Vaadtp +ua ek’ — 166 cVankp + 3TpcVaa s — SpeVaark®
—00,F 0% AnVopikp
= Vaadkp + aapck’ — 26V ankp — i(sgB/B/VAAfHB + 1TV ans®
~ SpcVaak® + %TA’B’VAB/HB — SapVaPrp+ %TACVCA%B

’

c 1 cB
—SacV~ akp — 5094aca BV Kp.

Expressing the above formula in terms of the modified variation 9, we get (23al). The equation
(23b)) is given by complex conjugation. O

4.2.1 Decomposition of 244/ 5¢c
Starting from the definition in equation , a calculation yields

1

b
QaaBc = — 10%44/0

b

B’ 1 B’
B 0°cB'Vi0gac + 70" 440" 87 0°cp'Vedgap

— V" 6g9c)aprar

The above expression can be conveniently decomposed in irreducible terms. To this end, one
defines

G =09, Gapap = 069(AB)(A'B)-

If we also decompose 2 4gc s into irreducible parts, we get
Qanse = — iV Gpoyan + teasVoyaG — teasVPP Goyparp. (24)

For future use we notice the following relations which follow from the decomposition in irre-
ducible components of equation and the reality of dgapa/p::
Fuap = — EVarG+ WppGaPa?,

’

" aap =2 aan,
Ve Gepa® =22540p — 49" 4 c1a1€p)B — 36018V Dyar G,
VeaGaPpor =21 apc —49% (g1 apiecnar — 3€514'V 4101 G-
We also define the field
FAY =V 6gABAE _ LgAA 5B B (25)
GABA'E _ 1gad' g,

= VBB/
In the next section we will see that this can be interpreted as a gauge source function for the
linearised diffeomorphisms.
4.3 Diffeomorphism dependence

We will now briefly consider the dependence on diffeomorphisms. Let ¢, be a one parameter
group of diffeomorphisms generated by a vector field £* and such that g.p[A] = ¢* \Gap. The
metrics in this family have the same geometric content and one readily finds that

09ab = Legab = 2V (a&p)- (26)

10



Moreover, a further computation yields

Quase = — iV Veypéan — iVie? Viawién s,
FAA _ VBB/VBB’gAA’ _ 6A£AA’ n QCI)ABA/BlgBB’.
Given a general family of metrics g,,[A\], we can compute the field F' A" associated to the

family. Given any F AA/, we can then solve the wave equation
FAA _ pAA _ 6A£AA’ n 2(I)ABA/B,£BB’ + VBB,VBB’fAA/.

The solution &% = 0% A,fAA/ to this equations will then give a one parameter group of diffeomor-
phisms ¢y, such that gqp[A\] = ¢*  gas[A] has the same geometric content, but with corresponding

FAA" With this observation, we can interpret as a gauge source function for the linearised
diffeomorphisms.

5 Variation of curvature

The purpose of this section is to compute the variation of the various spinorial components of
the curvature tensor. As it will be seen below, the starting point of this computation is the
commutator of covariant derivatives.

We start by computing the variation of

Uasko) = V(AA/VB\A/\HC) = —Uapcpk”

for an arbitrary spinor k4. A direct calculation using the Leibnitz rule for the modified commu-
tator ¢ gives

U apcpIcP + (W apep)k? = — Vad Vpjako) + LGV a4 Vi a ke
— 3G PN AV ppkcy + 3G PV D Vs ey
+2u” 5PV parrcy + 3 (414" Vaimmc)
— kY paiop + §V (Y GVl ke

+ %V(AA GBD|A/B VDB/|’$C)

U apcpIk” — 2GUApcpr” — KDV(AA/QB|A’|C)D
+ %KDG(ABA/B/‘I)C)DA’B“
The above expression holds for all k4, and therefore we can conclude that

IV apep) = —2GUapcp — Via? ianicyp + 3G P ®oyparp:.

The symmetry of ¥ 4pcp can be used to simplify this last expression —the trace of the right
hand side can be shown to vanish due to the commutators.
If we compute the variation of

Ppaapr” ==V 4V ap)kB
we get
Ppaap It +9(Ppaap )kt = — VA4V a ks + LGV 4V a8k
- %GAC(A’C/V\A\B’)VCC'HB + %GAC(A’C,V|AC’VC|B’)/€B
+ 9% 414°Vepyks + Qaren Vacikg
— w4V wQcinpa + 5V WGV am)EB
+ 3V G %5 Veorrs
= Ppaap Ik + Gpaap Ak — 1GOpaa pK?
+ %GCDAfB/\I’BACDF«'A - HAVC(A’Q\CUB’)BA-

11



The last relation holds for all k4, and therefore we can obtain an expression for 9® apa .
Now, using the definition of ?4pc4/, commuting derivatives and exploiting the irreducible
decomposition of the various fields involved one gets
Vaa®4 g0 = - %GBCA/BICI’ACA'B/ - %GACA/B/(I)BCA’B’
+Veou2a 5 +eapVereP sop. (27)
If we compute the variation of ,
AHA = %V(AA VB)A/HB

we get, after a lengthy computation, that

AIka +I9(A)ka = %,QBVAA,QCA’BC _ %VAA/VBAIQSIKJB n ﬁGVAA/VBA/nB
+ é(?B,BA’B'vAA/’%B - TBGBCA’B’VAB/VCA/”B - ﬁVAA/GVBA%B
— IV VAR ORE + LGV VA kP + 185 )45 VA kP
- %GACAIBIVBBIVCA/”B + TlstA//fBVBA/G - %HBVCA’QA ‘B¢
— 1044 VON P — 10504V RP + LV Ap Gpoa® VO kP
+ %VBB/GACA/B/VCA,HB + TIQGBC’A’B/VCBIVAA/KB
+ £ Gacap Ve VA KB
= Adra — 5GARA + %GACA/B/(I)BCA’B’HB + %fiBVAA/QCA/Bc
- %KBVCAIQAAIBC
= Avka - iGA”A + ﬁGBCA,B,(I’BCA/B/HA - %HAVCA’QBAlBC.
In the last equality we have used the relation and the irreducible decomposition of

Y o
GACY B ®peoap . From here we can deduce an expression for 9A.
We summarise the discussion of this section in the following:

Theorem 2. The modified variation of the curvature spinors is given by
VU apcp = — 2GWapcp — Via™ 251100y + 3Gas™ P @cpyarp,

1 1 ~CD c
VPaparp =Gapap A~ 7GPapap + 5G4 Vapep — V7 (a?c|B)ABs

BCA'B’ BA’
JA = — iGA—l— %G ¢ Ppoarp — %VCAIQ BC.

Remark 7. For a pure gauge transformation , we get after a lengthy but straightforward
calculation using commutators, that

I(A) = (LeA),
I DapA' P (ﬁgq’)ABA/B/ - (I)C(ACI(AIVB)B/)£CC’ - (I)C(AC/(AIV|CC’|§B)B/)7

Y(Wapep) = (Le¥V)apep — UapepViAepa,

where [
(Le®)ap?P =99 Voo @apP 420, WV Béco,
(LeW)apep = 5V paUapen + Z‘IJ(ABCFVD)A/EFA’-

In this last calculation we have used the Bianchi identity in the form

VP 4 apcp = V(AB/q)B)CA’B’ +ecaVpyaA

1The primed indices are moved up after the Lie derivative is taken to allow the symmetrizations to be written
nicely.
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6 Variations of space-spinor expressions

The analysis of Sections [3] [] and [f] can be adapted to consider variations of spinorial fields
in a space-spinor formalism. This formalism can be used to analyse variational problems in
3-dimensional Riemannian manifolds.

6.1 Basic formalism

In what follows, let (S, h;;) denote a 3-dimensional Riemannian manifold with negative-definite
metric. On (S, h;;) we assume the existence of a spinor structure with an antisymmetric spinor
eap. In addition, we assume that the spinor structure is endowed with an Hermitian product. It
follows from this assumption that there exists an Hermitian spinor w4 4. such given two spinors
&4 and np the Hermitian inner product can be expressed as

Ean = waan™
The spinor 7 defined by the above relation is called the Hermitian conjugate of n“.

Let ex!, w¥; denote, respectively, an orthonormal frame and coframe of (S, hi;j) and let A p
denote a normalised spin dyad such that the components of € 45 and w44/ are given, respectively,

by
0 1 1 0

The transformations of the spin dyad respecting the above expressions is given by SU(2,C)
matrices OaB.

The correspondence between spatial tensors and spinors is realised by the spatial Infeld-van
der Waerden symbols 0B and 0¥ ag. Given an arbitrary v* € TS and B), € T*S one has that

% 5 vAB = kg AB B + Bas = Pro*aB,

where
ok = ofuky, Bk = Brex”.
In more explicit terms, the correspondence is
1 —ol —iv? v3 1 —B1 +i8 B

1,2 3 1 2 3
v, U0 — . , , B2, = — . .
( ) NG < 3 ol — 2 (B1, B2, B3) NG B3 81 + 102

From these, we define the spatial soldering form to be

kAB — 1 A B CD (293,)

g =W kEC €D 01 5

k —,C D k1
0O AB = € A€ B€] 0 CD- (29b)

As we allow the spinor and tensor frames to be independent, the soldering form will therefore be
frame dependent. However, we will always have the universal relations

or“Polcp = 6kl (30a)
hkl = O'kABO'lCDGCAGDB. (30b)

The Hermitian conjugate of
$a = poe®a + d1e" 4
is given by

¢4 =—01ea+ doe'a.
It clearly follows that
A= —da.
The Hermitian conjugation can be extended to higher valence space spinors by requiring that the
conjugate of a product equals the product of conjugates. We also get

2 kA
KAy Ay = (_1) KAy Ay
Furthermore, it is important to note

€AB = €4B, 6%ap = —0"4B. (31)
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6.2 Basic variational formulae

As in the case of standard spacetime spinors, we can compute the variations of the frames and
the inverse metrics from the relations

5(ell) = — e elowk s
5(ea”) = —eaPecPoe%p,
(hkl) — ( )hzkhjl’
( C’D) . 5€A GACEBD.
Likewise, from the relation (30a)) we get
5(0’lAB) = —O’kABUlC[)éUkCD.

We can also split the variation of the coframes in terms of the variation of the metric and spin
metric and gauge pieces

ow™, = — GhbhhmTab + %ehbhhm(Shab,

P B_HP 1___B_HP
de- 4= —em € Sap—5€m € = Oeap,

where the tensor and spinor frame gauge fields are
Tab = hcdwd[aéwcb], SAB = wD(A(chB)GCD.

A calculation following the same principles as for the spacetime version starting from the relation
(29al) gives the variation of the spatial soldering form:

(5O'kAB = — TklO'lAB + %UIABtshkl - 20k(A‘C‘SB)C + O’k(A‘CltscB)

The irreducible parts are given by
O'k(CDéUkAB) _ %(5h(ABCD),

Sk(C )B _ PAC _ 9gAC,

poo VB =

k €D _ 151CD c
o cpbop“P = 16n°Pcp + 366,

where

_ k C 1
Tap =Tro"s 0 Be,

_ k !
d0hapcp = 0" Ao cpdhy.

We can now use this to see how the variation of vectors and covectors in space-spinor and
tensor form differ:

O'kAB(SCk _ 5(<AB) o %(5ECCCAB _ %5hABCD§CD + T(A|C\<—B)C _ 2s(A\C|CB)C’
oF apd&k = 0(€an) + 20 cap + 26hapopé” + Ta%Epyc — 284 ¢y

where (¥ = 6FcpC¢©P and &, = 0,P(cp. This leads us to define a modified variation that
cancels the gauge terms and the variation of the spin metric.

Definition 2. For valence 1 space spinors we define the modified variation operator ¥ via

(¢pa) + 20 pda + 3TaPdp — SaPp,

)
5(¢™) — L6eP ot — LT P + S pp".

These relations extend to higher valence spinors via the Leibnitz rule.
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In the same way as for the spacetime variations, we get a relation between 9 and spin frame
component variation:

Vpa = €2 46(dB) + 3Ta 5. (32)
The reality of Ty, and gives
Tap =Tas.

Expanding the frame index in equation and taking Hermitian conjugate yields

D4 = *4(dor) — ®a6(d1) + 1Tu B
©46(do) + €' 4d(p1) + 3Tu 55

=0(¢)a.

Hence, the operation of Hermitian conjugation and the modified variation ¢ commute.

6.3 Variations of the spatial connection

Let Rapcp denote the space spinor version of the trace free Ricci tensor, and let R be the Ricci
scalar. Define

HABCD _ 51,(ABCD)

H = 6h AP,
Qapcp = — 3D Shpyrap,
FAB = _ %DAB(WLCDCD + DcpcshABCD.

Similarly to the case of spacetime spinors, we can compute the variation of a covariant derivative.
Theorem 3. The variation of a covariant space-spinor derivative is given by
Y(Dapkc) = DapVkc +upcpk” — 26happrDP ke
We also get
04“pc = — tDapH + 1DcpHAp®P,
Fap= — iDapH + DepHap®P,

DprHapc™ =22 apcyp + 26pa28" c)r + 3ep(aDpcyH.

6.4 Diffeomorphism dependence

To analyse the dependence of the formalism on diffeomorphisms, we proceed in the same way as
in Section [£.3] Accordingly, let ¢ be a one parameter group of diffeomorphisms generated by a
vector field £€*. Now, let hqp[A] = ¢* \hgp. All members of the family h.p[A] will have the same
geometric content and we get

Ohay = Lehap = 2D ,&p). (33)
Moreover, one has that

Qapcp = — 3Dc" Dpyréap — D" Diagip)r
3 .

Again, we see that FAZ can be interpreted as a gauge source function for the linearised diffeo-
morphisms, but this time one needs to solve an elliptic equation instead of a wave equation to

obtain £47 from FAB.
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6.5 Variations of the spatial curvature

By computing the variation of the commutator relations
Ria =8D1“Dpycr”, (34a)
Rapcpk” = 2D4" Dpp|key, (34b)

we get, after calculations similar to those carried out in the spacetime case, the variation of the
curvature.

Theorem 4. The variation of the spatial curvature spinors is given by
9(R) = — $HR — HP“PPRpcopr — 4Dcp?P¢ 5P,
¥ (Rapcp) = — 5 HapepR — sHR apcep +2Da” 5 riop) + sHas"™ " Repyru.
Proof. Computing the variation of relation ([34a)) gives

RIkA +(R)ka = —4DacDpIk® + SHDscDECkP +495° cpD 4 kP + 4P D ap?P pe
—2HpeppDa" DYPKP — 2D4PHDpck® — 4DpeD s 9kP
+ 4HDpcDAKP + 494 cpDp“kP — 2HscprDp" DP kP
+ 2D ackpDPYH — 4kP Dcp9a© g — 424cpD“P P — 4950 ap DO KP
+2DapHpep " DPrP + 2DppHacp DP kP + 2HpeprDPF D AC kP
+2HacprDPF D"
=ROks — sHRK s — 2H AP Y Rpoprr®? + 48 Dap?°P e
—4k"Dcp2a© "
=ROks — sHRis — HP? PP Rpcprra — 464 Dep?P¢ P
Computing the variation of relation gives
RapcpVc® +9(Rapep)k” =2DuP Dpp9kcy — 2HD(4” Dp|pkc)
+ HaP" " DppDruikcy — Ha” ™ Dipp/Dpjmkc)
— 224”5 " Diprikcy — 224" p|" Dpjrikc)
+ 26D 4" 25 r10)p — 3Da” HDg p|kc)
— D" Hp p"™ Dpp ke
= RapcpVs” — $5HapepRED — Y HR apcpk”

+ 2K,DD(AF93|F‘C)D + %KDH(ABFHRC)DFH'

Remark 8. For a pure gauge transformation , we get

I(R) = LR,
W (Rapep) = LeRapep — Rap” " Depyérn — Ras™ " Dirméon),
where
LeRapep =& DpyRapep + 2Rap"™ Depyérn.
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A Rotations

The purpose of this appendix is to discuss some issues related to the gauge in the frame and spin
dyad formalisms.

A.1 Lorentz transformations

As it is well known, the metric g,p is not determined in a unique way by the orthonormal coframe
w?,. Any other coframe related to w?, by means of a Lorentz transformation —i.e. a matrix
(A?p) such that

nabAacAbd = Ted- (35)

It follows that w?, = A2,wP, is also orthonormal with respect to g.p and one can write g, =
NabW®awPy. The associated orthonormal frame is ¢,® = AaPep® with (Aab) = (A?p) ! where the
last expression is a relation between matrices.

The discussion in the previous paragraph can be extended to include spinors. Making use of
the Infeld-van der Waerden symbols, equation can be rewritten as

AA BB’
eaBea'B' A" co A7 ppr = ecpecp,

with AAA oo = 0228 6°cor A2 It can be shown that the spinorial components AAA o can
be decomposed as ) o

A oo = MM o,
where (AAc) is a SL(2,C) matrix. The latter naturally induces a change of spinorial basis via
the relations

. oA B_ A ‘A A B
ea” =Aa"eB”, €4 =A"Be 4,

with (AaB) = (A%)~!. Crucially, one has that

C D AB A B _CD
EAB:A AA BE€CD, € :AC AD € .

A.2 O(3)-rotations

Given a 3-dimensional negative-definite Riemannian metric h;; and an associated orthonormal
coframe w'y one has that o

hij = —51jw‘iw~'j.
Any other coframe w'j, related to the coframe w';, through the relation wij, = Ojiwjk, where (Oji)
is a O(3)-matrix, gives rise to the same metric. The defining condition for (O';) can be expressed

as
8ij = 0005

A direct calculation using the definition of the Hermitian product shows that the changes
of spin dyad preserving the Hermitian structure induced by the Hermitian spinor wa4- are of
the form éa? = OaBep? where (OAB) are SU(2,C) matrices. As SU(2,C) is a subgroup of
SL(2,C), one has that eap = OACOsPecp. The matrices (Oj') and (OaB) are related to each
other via the spatial Infeld-van der Waerden symbols:

Oi‘] = O'iABO"]CDOACOBD.
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