
On parallel pre-conditioners for pressure Poisson

equation in LES of Complex Geometry Flows
K. M. Singha, E. J. Avitalb, J. J. R. Williamsb, C. Jic, X. Baib and A. Munjizab

aDepartment of Mechanical and Industrial Engg., IIT-Roorkee, Roorkee, India
bSchool of Engineering and Materials, Queen Mary University of London, London, UK

cState Key Lab. of Hydraulic Engg. Simulation and Safety, Tianjin University, Tianjin, China

Corresponding Author
Dr. E. J. Avital

School of Engineering and Materials Science

Queen Mary, University of London

Mile End Road

London, E1 4NS, UK

E-mail: e.j.avital@qmul.ac.uk

Phone: +44 (0)20 7882 3616

Fax: +44 (0)20 8983-1007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/77041664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:e.j.avital@qmul.ac.uk

ABSTRACT

This paper presents an assessment of fast parallel pre-conditioners for numerical solution of the

pressure Poisson equation arising in large eddy simulation of turbulent incompressible flows. Focus

is primarily on the pre-conditioners suitable for domain decomposition based parallel

implementation of finite volume solver on non-uniform structured Cartesian grids. Bi-conjugate

gradient stabilized (BICGSTAB) method has been adopted as the Krylov solver for the linear

algebraic system resulting from the discretization of the pressure Poisson equation. We explore the

performance of multigrid pre-conditioner for the non-uniform grid and compare its performance

with additive Schwarz pre-conditioner, Jacobi and SOR(k) pre-conditioners. Numerical experiments

have been performed to assess the suitability of these pre-conditioners for a wide range of non-

uniformity (stretching) of the grid in the context of LES of a typical flow problem. It is seen that the

multigrid preconditioner shows the best performance. Further, the SOR(k) preconditioner emerges

as the next best alternative.

Keywords: Poisson equation; BiCGSGTAB; Domain decomposition; Preconditioners; Multigrid

1. Introduction

1.1 Background

Numerical solution of incompressible Navier-Stokes equations invariably requires solution of an

elliptic equation for pressure (called the pressure Poisson equation) to enforce continuity. In case of

large eddy simulation (LES) or direct numerical simulation (DNS) of turbulent flow, the time step

required for solution accuracy is usually smaller than that enforced by stability requirements of

explicit methods. Hence, explicit time integration schemes of Adams-Bashforth and Runge-Kutta

family are preferred in LES/DNS. Thus, in such simulations, the most expensive part is the solution

of the pressure Poisson equation required at each time step [1]. Further, large number of grid points

required in LES/DNS invariably requires use of parallel computers. Integration of momentum

equations with explicit time integrations schemes on parallel architectures is rather straightforward.

However, parallel solution of the pressure Poisson equation is not that straightforward. Therefore,

substantial research effort has been devoted to the development of fast parallel Poisson solvers in

recent decades [2–8] .

 Application of a discretization scheme (such as finite difference, finite volume or finite

element) to the pressure Poisson equation leads to a sparse linear system. Nature of this system

depends on the discretization scheme, the underlying grid and the boundary conditions. Cell-centred

finite difference or finite volume discretization usually leads to a symmetric and positive definite

linear system on uniform Cartesian grids. On the other hand, the resulting system would be

indefinite on non-uniform Cartesian grids. With finite element discretization, the resulting system

would be usually symmetric. The nature of the resulting linear system dictates the choice of the

numerical scheme for its numerical solution. Further, in turbulent flow simulations, the size of the

system would be very large which dictates the use of iterative solvers. Basic iterative solvers such

as Jacobi/Gauss-Seidel are easy to program but have very slow convergence. Hence, in practical

applications, Krylov subspace methods [9] or multi-level multigrid methods are normally used

[10,11].

Multigrid methods can be used either as stand-alone solvers [12–15] or with Krylov

subspace acceleration [9]. Further, multigrid methods can be based on the problem and underlying

grid (the geometric multigrid, GMG) [10] or can be based entirely on the linear system with no

reference to what led to this linear system (algebraic multigrid, AMG) [16]. On structured Cartesian

grids where a sequence of nested grids can be easily generated, the geometric multigrid scheme

provides an optimal performance, and can be easily parallelized [10]. It has also been extended for

use on complex problem domains in conjunction with fictitious domain or immersed boundary

method [17]. Algebraic multigrid method is very promising for unstructured grids on complex

geometries [16]. However, its parallel implementation is much more involved, and it has substantial

overheads in terms of additional memory and set-up time requirements as compared to the

geometric multigrid method.

 Krylov subspace methods such as conjugate gradient, GMRES or BiCGSTAB are robust

iterative solvers. However, their performance is critically dependent on the choice of the pre-

conditioner. Most of the preconditioning techniques for Krylov subspace methods can be broadly

put in two categories: (a) incomplete factorization such as incomplete Cholesky (IC) or incomplete

LU (ILU) based preconditioners, and (b) sparse approximate inverse [18]. For full details of the

recent developments, see Saad [9] and the recent review of Benzi [18]. It may be noted that

incomplete factorization based pre-conditioners are more difficult to parallelize as compared to

sparse approximate inverse preconditioners. In parallel implementations, yet another category of

preconditioners based on domain decomposition have been developed [9,19]. These are usually

based on some variant of additive or multiplicative Schwarz methods. Multigrid methods

(geometric or algebraic) can also be thought of as multiplicative multilevel preconditioners of this

family [19]. In context of sparse inverse approximations, a heuristic incomplete Poisson

preconditioner has been proposed by Ament et al. [20] for GPU based parallel implementation.

Recent developments with Krylov subspace methods include use of deflation techniques with PCG

[3,21] and GMRES [22] and BiCG [23,24].

 On unstructured grids, use of purely algebraic methods for design of a preconditioner is

eminently understandable. Parallel version of these preconditioners (whether based on incomplete

factorization, sparse approximate inverse or algebraic multigrid) have been developed in

conjunction with graph-partitioning techniques [18]. However, in the context of structured

Cartesian grids, it is desirable to design and use preconditioners which exploit the information about

the underlying grid and the PDE to the extent possible. Though this latter approach leads to a

problem dependent method, it is also likely to lead to an optimal set of methods for a given

application. Advantages of this approach have already been observed in case of numerical

simulations based on uniform Cartesian grids irrespective of the complexity of the problem domain

which can be overcome using fictitious domain or immersed boundary approach [17]. The present

work is another attempt in this direction but with non-uniform Cartesian grids which can better

capture the development of shear driven flows.

1.2 Motivation and Scope

For flow problems in complex geometry, unstructured grid finite volume methods have enjoyed the

widest application in CFD analysis, especially in commercial CFD codes. However, with recent

developments in immersed boundary methods [25–31], structured Cartesian grid methods are back

in favour. These methods have been extended for a wide variety of flow problems including moving

boundary and fluid structure interaction problems [32–35]. Cartesian grid methods are very easy to

parallelize using domain decomposition, and hence, these are especially suited for LES/DNS using

massively parallel computers. In view of these features, the authors’ research group has been

involved in the development of a complex geometry large eddy simulation code, CgLES based on

Cartesian grids and domain decomposition approach. This code was initially developed based on

staircase approximation of curved boundary surfaces on a uniform Cartesian grid and use of SOR as

pressure solver. It was augmented with a fictitious domain multigrid preconditioner along with PCG

method as Poisson solver. This development significantly enhanced the parallel scalability and

efficiency of this code [17]. With incorporation of immersed boundary method, CgLES has been

used to solve a wide variety of flow problems [36–38]. To further improve its efficacy, provision of

non-uniform grids with arbitrary gradation has been added. The aim of the present research is to

provide a set of efficient parallel Poisson solvers in the domain decomposition framework.

 Finite volume discretization on a non-uniform grid leads to an indefinite linear system.

Given the domain decomposition based framework, we have opted for BICGSTAB as the Krylov

subspace solver. The method is very robust for general sparse linear systems, and is much easier to

implement than GMRES in a parallel program. The objective of the present research is to develop

and implement a set of parallel preconditioners which can exploit the geometric information as

much as possible, and can be implemented with minimal additions to the existing data structure.

The possible candidates are additive Schwarz, SOR(k) and multigrid preconditioners [9]. In

development of multigrid preconditioners on arbitrarily graded non-uniform Cartesian grid, there

are issues associated with inter-grid transfer operators (prolongation and restriction operators)

which must be addressed.

 With the preceding objective, we summarize the plan of the remaining of the paper. In the

next section, we provide a brief overview of the governing equations, discretization and parallel

implementation. This is followed by the BICGSTAB algorithm, details of the preconditioners and

their parallel implementation, numerical results and conclusions in the succeeding sections.

2. Problem Statement: Governing Equations and Discretization

2.1 Governing Equations

Governing equations for unsteady incompressible flow are the continuity and momentum equations

given by

 0i

i

v

x

 (1)

()() i j iji

j i j

v vv p

t x x x

 (2)

Preceding equations are solved as such in direct numerical simulation (DNS) of turbulent flows. In

large eddy simulation (LES), these equations must be filtered to obtain the pertinent equations.

However, the filtered continuity and momentum equations have the same form as that of Eq. (1) and

Eq. (2) if we assume that v and p represent the filtered velocity and pressure fields, and τ represents

the sum of viscous and subgrid scale (SGS) stresses.

2.2 Discretization of Navier-Stokes Equations

In LES/DNS of turbulent flows, accuracy considerations dictate use of fairly small values of time

step in temporal integration. Thus, the time step is small enough to satisfy the stability requirements

of explicit time integration methods. Hence, explicit techniques of the Adams-Bashforth and the

Runge-Kutta family are very popular in LES/DNS. For simplicity of representation, let us consider

discretization using the explicit Euler method. Further, use of finite difference or finite volume

discretization on a structured grid leads to the following set of discrete equations in the context of

projection methods [1]:

* ()() ()

n nn
i j iji i

j j

v vv v

t x x

 (3)

1

1 *() ()
n

n

i i

i

p
v v t

x

 (4)

*1 ()1n

i

i i i

vp

x x t x

 (5)

where superscripts n and n+1 denote time levels, superscript * denotes an intermediate velocity

field and δ denotes the discrete spatial discretization operator. Equations (3) and (4) represent

explicit formulae for evaluation of the unknown quantities in terms of already computed field

variables. In contrast, Eq. (5) represents a discrete Poisson equation which must be solved at each

time step before Eq. (4) can be used to obtain a divergence-free velocity field.

On a non-uniform cell-centred Cartesian grid, collection of discrete equations (5) for all the

computational nodes leads to an indefinite sparse linear system of equations

 Ax = b (6)

which must be solved using a suitable solver. Choice of the solver must account for the indefinite

nature of the system matrix and the ease of parallel implementation in a domain decomposition

framework. Most commonly used Krylov subspace solvers for indefinite systems are GMRES, bi-

conjugate gradient (BiCG) and bi-conjugate gradient stabilized (BICGSTAB) methods. Amongst

these methods, BICGSTAB method is very robust and is the easiest to implement in parallel.

Hence, we have opted for this method for the solution of Eq. (6) in this work.

2.3 Parallel Implementation

Given the large number of grid points involved in LES/DNS, it is not possible to perform the

numerical simulations on a single serial machine. Hence, a simulation code must be developed

which can exploit large scale high performance parallel clusters. In the context of structured grids,

the best approach for parallelization is the domain decomposition wherein the problem domain is

decomposed into a collection of sub-domains (blocks). Each block is implemented as a data

structure which contains the geometric, grid and algorithm specific data for its partition of the

problem domain plus an overlap region (of one grid layer in context of second order central

difference discretization). Set of one or more blocks can be mapped to one processor core which

takes care of all the computations involved in numerical integration represented by Eqs. (3-5) for

these blocks [17]. In this domain-decomposition framework, implementation of the projection and

correction steps represented by Eqs. (3) and (4) is straightforward. Complicated part is the

implementation of the pressure Poisson solver which depends on the choice of the linear algebraic

solver for Eq. (6), and would be discussed latter.

3. Biconjugate Gradient Stabilized (BICGSTAB) Method

3.1 BICGSTAB Algorithm

BICGSTAB algorithm is a transpose-free method which does not require matrix-vector products

involving transpose of system matrix A. The preconditioned version of the algorithm for generic

linear system of equations Ax = b requires two calls to the preconditioner. Let ()u, v denote the

inner product of vectors u and v. With preconditioning matrix denoted as M, the BICGSTAB

algorithm can be expressed as follows:

 Starting with an initial guess 0 ,x compute residual vector 0 0r b - Ax . Choose a dual

vector *

0r such that *

0 0(,) 0,r r say *

0 0r r . Set 1 1 1 1 11, v p 0

 For i = 0, 1, 2, …. until convergence DO

1. * 1
0 1

1 1

(,), i i
i i i

i i

r r

2. If (i == 0) i ip r

Else 1 1 1 1()i i i i i i p r p v

3. Obtain p̂ by solving ˆ
iMp p (First call to the preconditioner)

4. ˆ ,i v Ap *

0/ (,),i i i v r ,i i i i s r v

5. Obtain iz by solving i iMz s (Second call to the preconditioner)

6. ,i it Az (,) / (,)i i i i i t s t t

7. 1
ˆ

i i i i i x x p z

8. If (1ix is accurate enough) STOP

Else 1i i i i r s t

 END DO

3.2 Parallel Implementation of BICGSTAB Algorithm

With the chosen domain decomposition, each processor core takes care of the computation or

updating of the vector fields such as r, p, v, s, t and x and matrix-vector products ˆAp and Az for

the blocks mapped to it. It also computes partial inner products required in Steps 1, 4 and 6. These

partial inner products are summed up using global communications to form the full inner products.

Inter-processor communications are also required for updating the vector fields in the overlap

regions to facilitate local computation of matrix-vector products in Steps 4 and 6 of BICGSTAB

algorithm. Efficient parallel implementation of the preconditioner (Steps 3 and 5) is crucial to the

overall parallel efficiency of the BICGSTAB algorithm. This part of implementation depends on the

choice of the preconditioner and is discussed separately in the next section.

4. Parallel Preconditioners for BICGSTAB

Convergence rate, robustness and computational efficiency of the parallel Poisson solver based on

BICGSTAB is critically dependent on the choice of preconditioner used in Steps 3 and 5 of the

algorithm. Since the parallel implementation of the BICGSTAB solver is based on the domain

decomposition used in the Navier-Stokes solver, it is only natural to look for the preconditioners

which can be implemented by using minimal additions to the existing data structure. Domain

decomposition based additive methods (e.g. additive Schwarz method) or multiplicative solvers (for

example, geometric multigrid) come across as the most suitable methods to employ as parallel

preconditioners in our implementation. Another method which is inherently parallel and can be

easily implemented in domain decomposition framework is Jacobi’s method (also called the

diagonal preconditioner). Although the convergence of BICGSTAB iterations would be very slow

with Jacobi preconditioner, it provides a convenient benchmark for comparison of the convergence

behaviour and performance of other preconditioners. We can also try a block SOR solver (with a

fixed number of iterations) as a preconditioner which should provide an improvement over Jacobi

preconditioner in terms of convergence of BICGSTAB iterations.

 Let us note that the preconditioner steps return correction vectors required in BICGSTAB

implementation. The theory of Krylov subspace methods requires that the preconditioner represents

the same linear operator at each iteration. Jacobi’s method or multigrid based preconditioners do

satisfy this requirement. However, an additive Schwarz or SOR preconditioner based on an inexact

subdomain solver would violate this requirement, making it inadmissible in theory. However, it has

been observed that inexact solvers are acceptable in practice if the subdomain problems are solved

fairly accurately [19,39]. In view of this observation, the preconditioner need not solve the linear

system ˆ
iMp p (in Step 3) or i iMz s (in Step 5) very accurately; approximate estimates of these

vectors would be good enough for the BICGSTAB iterations. In subsequent discussions in this

section, we shall presume that the preconditioner is required to return an approximate solution of

the linear system of the form .Mz = s

4.1 Jacobi and SOR(k) Preconditioners

In Jacobi preconditioner, the preconditioner is diagonal part of A, i.e. M = diag(A). Thus, the effect

of the preconditioner is given by

 /i i iiz s A (7)

All the data required in Eq. (7) for a subdomain is available on the processor assigned to it. Hence,

parallel implementation of Jacobi preconditioner is straight-forward.

The SOR(k) preconditioner is formally represented as – /diag M A E where

matrix E is the strict lower triangular part of A and ω is over-relaxation parameter [9]. In domain

decomposition framework, parallel SOR preconditioner can be implemented as a block SOR solver

with a fixed number of iterations k in which each processor performs k iterations of the standard

SOR method for the sub-problems corresponding to the blocks mapped on it. Thus, for each block,

it computes the iterates as

1

1 1

1 1

(1) z , 0,1,...,
i N

l l l l

i i ij j ij j i

j j iii

z s A z A z l k
A

 (8)

Note that in this implementation, new values of all iterates will not be available for the

computations for boundary cells of a subdomain as those values are likely to be on different

processors. Global communications must be performed after each iteration l to update the values of

z for the cells in the guard-planes (i.e. the overlap region).

4.2 Additive Schwarz Preconditioner (ASM)

The additive Schwarz preconditioner is similar to the block Jacobi iteration, and essentially consists

of the solution of sub-problems A z s corresponding to all the subdomains α in parallel. Effect

of the preconditioner, z, is union of all the local vectors
z which are available as part of the block-

data structure for each subdomain after solution of the local problems. No global communications

are required as part of the additive Schwarz preconditioner, and hence, this preconditioner provides

maximal parallelism.

 Subdomain problems can be solved using any suitable direct or iterative method. In this

paper, we have used SOR as the iterative solver for the subdomain problems. We have opted for a

fixed number of SOR iterations for inexact subdomain solves.

4.3 Geometric Multigrid Preconditioner (GMG)

On Cartesian structured grids, the geometric multigrid method can be employed as solver as well as

preconditioner to Krylov subspace methods. The preconditioner option is especially attractive for

problems on complex domain in conjunction with the fictitious domain method. On uniform

Cartesian grids, the fictitious domain multigrid preconditioner with conjugate gradient method has

been shown to be a robust, efficient and scalable parallel Poisson solver [17]. Hence, it is

worthwhile to design and explore the effectiveness of a parallel fictitious domain multigrid

preconditioner for non-uniform grids. For full algorithmic details of this fictitious domain

preconditioner, see Singh and Willams [17]. For sake of brevity, we would refer this fictitious

domain geometric multigrid preconditioner as GMG (or simply, multigrid) preconditioner in this

paper.

 On non-uniform grids, there are two options for implementation of the multigrid scheme as

a preconditioner. The first option is mapping from a non-uniform grid to an auxiliary uniform

Cartesian grid on which the multigrid method can be easily implemented. The second approach is

the generation of nested grids and relevant operators on the given non-uniform grid. Regarding the

first approach, Douglas et al. [40] suggest that although it is good for moderately graded

unstructured grids, it should be avoided for stretched structured grids in CFD simulations since the

mapping can lead to a system with a high condition number which eliminates advantages of

multigrid. Hence, we focus on the second approach in this work.

Note that the generation of a hierarchy of grids required in the multigrid method is very

simple on structured Cartesian grids (whether uniform or non-uniform). This process is further

simplified if the number of grid divisions in each direction are chosen as some power of two. The

main computational challenge lies in the generation of multi-grid operators. There are two options

for generation of system matrices on each grid of the multigrid hierarchy: (a) use of Galerkin

approach and (b) use of the chosen discretization process on each grid. The former approach is

conceptually more elegant in the sense that it also provides the inter-grid transfer operators.

However, this purely algebraic process is computationally intensive, and would also require

substantial additional memory for storage of these operators. The second approach provides a

computationally efficient route for generation of system matrices on each grid. However, generation

of restriction and prolongation operators is still based on the Galerkin approach. We have opted for

a V-cycle multigrid. To summarize, our geometric multigrid preconditioner consists of the

following components:

 Grid hierarchy based on simple agglomeration of two adjacent cells at the finer grid level.

 Generation of system matrices using the cell-centred finite volume / finite difference

discretization (i.e. using the same discretization scheme which was used at the finest grid).

 Generation of restriction and prolongation based on the Galerkin approach.

 Red-black Gauss-Seidel iterations as smoothing/relaxation procedure.

5. Numerical Results

For evaluation of the performance of the parallel preconditioners for solution of the pressure

Poisson equation, we consider an LES of a marine turbine [38]. In this paper, we confine ourselves

to the aspects relevant to the solution of the pressure Poisson equation only. Geometry of the

turbine is shown in Figure 1. The non-uniform mesh used for the simulations is based on stretched

Cartesian grid in which a uniform fine mesh has been used in a region around the rotor, and a

progressively stretched grid has been used away from this core region. The base mesh used for LES

of the marine turbine [38] has a stretch factor of 1.05 with a maximum aspect ratio limit of 10.

Figure 2 gives a close-up of the mesh around the rotor. For this study of pressure Poisson solvers,

we have used a relatively coarse global mesh of 512×384×384 in X, Y, Z directions respectively.

Numerical simulations have been performed using an in-house explicit Navier-Stokes code CgLES

based on immersed boundary method. For parallel simulations, the computational domain has been

decomposed in 288 sub-domains (8×6×6 blocks along X, Y, Z directions). Each block contains

64×64×64 grid. For full details of the computational domain and methodology used for large eddy

simulation, see Bai et al. [38].

Figure 1. Geometry of marine current turbine

Figure 2. Close-up of view of mesh slice showing grid stretching (stretch factor = 1.05)

To study the effect of the grid stretching, we have performed numerical simulations with two

other grids with a stretching factor of 1.10 and 1.20 respectively. Thus, the three grids used in this

study are

 Grid_105: Stretch factor of 1.05 and maximum permissible aspect ratio of 10

 Grid_110: Stretch factor of 1.10 and maximum permissible aspect ratio of 20

 Grid_120: Stretch factor of 1.20 and maximum permissible aspect ratio of 20

Let us note that the last two grids have not been used in the actual LES simulations of the marine

turbine. These have been artificially created for studying the effect of the grid stretching on the

performance of different preconditioners for solving the pressure Poisson equation. All

computations have been performed using 32 cores on the joint Minerva HPC Cluster of Queen

Mary University of London and the University of Warwick, UK. A relative tolerance of 1.0E-06 has

been used as the convergence criterion for the BICGSTAB iterations.

5.1 Performance of SOR(k) Preconditioner

To assess the performance of the SOR(k) preconditioner, computations have been performed with

different values of k for all the grids. Table 1 and Figure 3 summarize results of the convergence

properties and computational efficiency of the BICGSTAB solver for a representative time step.

With increase in k, we expect better convergence of the BICGSTAB iterations. With all three grids,

rapid rate convergence is observed in the initial stages of the BICGSTAB iterations for all three

values of k. However, the rate of convergence diminishes rapidly thereafter, and shows markedly

non-uniform convergence behaviour. For the base LES grid (Grid_105) with a moderate grid

stretching, convergence behaviour improves with increase in value of k. However, similar pattern is

not observed for highly stretched grids (Grid_110 and Grid_120). On an overall, the choice of k =

10 emerges as the optimum choice from view point of convergence behaviour as well the

computational efficiency as evidenced from the CPU time estimates in Table 1.

Table 1. SOR(k) preconditioner: Effect of number of SOR iterations, k on convergence of

BiCGSTAB solver. (Time indicates wall clock time in seconds)

Grid k = 5 k = 10 k = 15

Iterations Error Time Iterations Error Time Iterations Error Time

Grid_105 21 7.2×10-7 28.35 10 8.9×10-7 23.72 7 9.9×10-7 23.73

Grid_110 95 6.9×10-7 129.3 29 9.8×10-7 68.97 92 9.4×10-7 314.0

Grid_120 155 9.6×10-7 215.0 53 9.6×10-7 126.2 32 9.9×10-7 108.6

(a) Convergence of SOR(k) preconditioner for Grid_105

(b) Convergence of SOR(k) preconditioner for Grid_110

(c) Convergence of SOR(k) preconditioner for Grid_120

Figure 3: Convergence of BICGSTAB iterations with SOR(k) preconditioner

5.2 Performance of Additive Schwarz (ASM) Preconditioner

For the additive Schwarz preconditioner, SOR has been used as the sub-domain solver.

Computations have been performed with different values of k as defined in Eq. (8) and results

obtained for three grids are summarized in Table 2 and Figure 4 for a representative time step.

Again, rapid rate convergence is observed in the initial stages of BICGSTAB iterations for all three

values of k, whereas erratic convergence pattern is observed in the later stages of BICGSTAB

iterations. For moderately stretched grids (Grid_105 and Grid_110), the choice of k = 10 for

subdomain solves shows a fairly smooth convergence behaviour, and thus should be preferred

choice. At the same time, there is no clear-cut choice of k with additive Schwarz preconditioner for

all grids (as we have observed with SOR(k) preconditioner).

Table 2. Additive-Schwarz preconditioner: Effect of number of SOR iterations, k on convergence of

BiCGSTAB solver. (Time indicates wall clock time in seconds)

Grid k = 5 k = 10 k = 15

Iterations Error Time Iterations Error Time Iterations Error Time

Grid_105 29 9.2×10-7 36.11 26 7.2×10-7 55.25 23 9.9×10-7 69.13

Grid_110 110 7.3×10-7 138.5 90 9.1×10-7 191.3 57 7.0×10-7 172.7

Grid_120 218 7.8×10-7 274.9 103 9.8×10-7 218.8 57 3.4×10-7 173.4

(a) Convergence of additive Schwarz preconditioner for Grid_105

(b) Convergence of additive Schwarz preconditioner for Grid_110

(c) Convergence of additive Schwarz preconditioner for Grid_120

Figure 4: Convergence of BICGSTAB iterations with additive Schwarz preconditioner (with

varying number of SOR iterations k used in sub-domain solves)

5.3 Performance of Geometric Multigrid (GMG) Preconditioner

When multigrid is used as a preconditioner for Krylov subspace solvers, one would normally use

only a few multigrid cycles to obtain the effect of the preconditioners. Further, a small number of

pre- and post-smoothing (one or two) iterations have normally been used in the literature. Thus, we

need to explore the effect of two set of parameters on performance of the fictitious domain

multigrid preconditioner: (a) number on multigrid cycles, and (b) number of smoothing iterations.

We would use the notation V(p,q) to represent a V-cycle multigrid with p pre-smoothing and q

post-smoothing iterations.

 Let us first explore the effect of number of multigrid cycles on convergence of BICGSTAB

iterations with the V(2,2) multigrid cycle. Results of computations for different grids are

summarized in Table 3 and Figure 5. For the base LES grid (Grid_105) with a moderate grid

stretching, best convergence behaviour and computational efficiency is observed with use of three

multigrid cycles. However, similar pattern is not observed for more stretched grids (Grid_110 and

Grid_120) with this choice. For moderately stretched grids (Grid_105 and Grid_110), use of two

multigrid cycles gives consistently good performance (in terms of convergence as well as

computing time). Further, although the choice of only one multigrid cycle may not have the best

computational efficiency on all grids, it shows consistent convergence pattern in all the cases. Thus,

it would be advisable to stick to the use of one or at most two multigrid cycles in the multigrid

preconditioner.

Table 3. Effect of number of V(2,2) multigrid cycles on performance of multigrid preconditioner

(Time indicates wall clock time in seconds)

Grid MG Cycles = 1 MG Cycles = 2 MG Cycles = 3

Iterations Error Time Iterations Error Time Iterations Error Time

Grid_105 3 4.8×10-7 4.85 2 2.4×10-7 5.82 1 6.5×10-7 4.15

Grid_110 7 8.3×10-7 11.45 2 8.8×10-7 5.77 4 6.9×10-7 16.49

Grid_120 9 7.8×10-7 14.70 22 9.8×10-7 62.94 8 3.4×10-7 33.16

(a) Convergence of multigrid preconditioner for Grid_105

(b) Convergence of multigrid preconditioner for Grid_110

(c) Convergence of multigrid preconditioner for Grid_120

Figure 5: Convergence of BICGSTAB iterations with fictitious domain multigrid preconditioner

with different number of multigrid cycles

Next, let us explore the effect of varying number of pre- and post-smoothing iterations, i.e.

the use of different V(p,q) cycles. Results obtained with three multigrid cycles with different

choices of p and q are summarized in Table 4 and Figure 6. Best performance can be observed with

V(2,2) cycle, especially for moderately stretched grids (Grid_105 and Grid 110). Thus, V(2,2)

multigrid cycle should be preferred over V(1,1) and V(1,2) cycles in construction of the fictitious

domain multigrid preconditioner for BICGSTAB iterations.

Table 4. Effect of number of pre- and post-smoothing iterations on performance of multigrid

preconditioner: V(p,q) represents V-cycle with p pre-smoothing and q post-smoothing iterations

(Number of multigrid cycles = 2) (Time indicates wall clock time in seconds)

Grid V(1,1) V(1,2) V(2,2)
Iterations Error Time Iterations Error Time Iterations Error Time

Grid_105 3 4.5×10-7 6.58 2 4.7×10-7 5.10 2 2.4×10-7 5.82

Grid_110 14 9.5×10-7 30.90 13 7.8×10-7 33.29 2 8.8×10-7 5.77

Grid_120 19 9.9×10-7 41.80 17 6.9×10-7 43.44 22 9.8×10-7 62.94

(a) Convergence of multigrid preconditioner for Grid_105

(b) Convergence of multigrid preconditioner for Grid_110

(c) Convergence of multigrid preconditioner for Grid_120

Figure 6: Convergence of BICGSTAB iterations with fictitious domain multigrid preconditioner

with different multigrid V(p,q) cycles

5.4 Comparison of Performance of Different Preconditioners

Convergence plots and timing estimates in the previous sections provide us an idea of the relative

performance of different preconditioners for BICGSTAB iterations. A clearer picture of the

comparative performance of different preconditioners is provided by iteration and timing estimates

in Table 5 and convergence plots in Figure 7. For sake of comparison, we have also included results

with Jacobi (diagonal) preconditioner. We can clearly see that the multigrid preconditioner shows

the best convergence behaviour followed by the SOR(k) preconditioner. Similar pattern holds with

respect to computing time: the multigrid preconditioner requires least computing time for a given

convergence tolerance. The next best preconditioner is SOR(k) with k = 10.

Table 5. Iteration counts and computing time estimates for BICGSTAB solver with different

preconditioners. Time indicates wall clock time in seconds. Additive-Schwarz preconditioner is based on 10

SOR iterations for subdomain solves; Multigrid preconditioner consists of two V(2,2) cycles.

Grid Jacobi SOR(k) (k = 10) Additive-Schwarz Multigrid
Iterations Time Iterations Time Iterations Time Iterations Time

Grid_105 140 66.73 10 23.72 26 55.25 2 5.82

Grid_110 415 198.3 29 68.97 90 191.3 2 5.77

Grid_120 ----* -----* 53 126.2 103 218.8 22 62.94

* Did not converge to specified tolerance of 1.0E-06 in 10000 iterations

(a) Convergence of various preconditioners for Grid_105

(b) Convergence of various preconditioners for Grid_110

(c) Convergence of various preconditioners for Grid_120

Figure 7: Convergence of BICGSTAB iterations with different preconditioners. SOR(k) results

correspond to k = 10, additive-Schwarz results are based on 10 SOR iterations for sub-domain

solves, and multigrid results are obtained using two V(2,2) cycles.

5.5 Effect of Grid Refinement on Performance of Preconditioners

Preceding results provide an estimate of performance of different preconditioners for a single grid

(with different stretch factors). To get a more complete picture of the performance of these

preconditioners, we have carried out simulations on a fine mesh of 2X resolution as compared to the

coarse grid employed for preceding simulations. The fine mesh consists of 1024×768×768 grid

points in X, Y, Z directions respectively (approximately 600 million cells). For parallel simulations,

the computational domain has again been decomposed in 288 sub-domains (8×6×6 blocks along X,

Y, Z directions). Each subdomain contains a 128×128×128 grid.

Performance of SOR(k) and Additive-Schwarz Preconditioners

Fine grid results with the SOR(k) and additive Schwarz preconditioners are summarized in Table 6

and Figures 8 and 9 for a representative time step. Both of these preconditioners exhibit fairly

similar convergence behaviour for the fine grid with all the three grid stretching. For the base LES

grid (Grid_105) with a moderate grid stretching, very smooth and rapid convergence is observed

with SOR preconditioner for both values of k (k = 10 and 15). However, choice of k = 15 gives

better convergence for all three stretched grids. SOR(k) preconditioner can be observed to be more

efficient than additive Schwarz preconditioner from the CPU time estimates in Table 6. This trend

is very similar to that observed with coarse grid simulations in preceding sections.

Table 6 . Performance of SOR(k) and additive-Schwarz preconditioners for the fine grid. (Time: wall

clock time in seconds)

Grid SOR(k) Additive-Schwarz

k = 10 k = 15 (k = 15)
Iterations Error Time Iterations Error Time Iterations Error Time

Grid_105 41 8.55×10-7 204 30 7.42×10-7 215 72 8.13×10-7 476

Grid_110 718 9.88×10-7 3546 429 9.52×10-7 3070 796 8.99×10-7 5253

Grid_120 * --- * --- * --- 525 3.87×10-7 3721 844 8.91×10-7 5672

* Did not converge to specified tolerance of 1.0×10-6 in 1000 iterations.

Iterations

E
rr

o
r

10
0

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Grid_105: K = 10

Grid_110: K = 10

Grid_120: K = 10

Grid_105: K = 15

Grid_110: K = 15

Grid_120: K = 15

SOR(k) Preconditioner

Figure 8: Convergence of BICGSTAB iterations with SOR(k) preconditioner for the fine grid

Iterations

E
rr

o
r

10
0

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Grid_105: K = 15

Grid_110: K = 15

Grid_120: K = 15

Additive-Schwarz Preconditioner

Figure 9: Convergence of BICGSTAB iterations with additive Schwarz preconditioner for the

fine grid

Performance of Multigrid Preconditioner

Convergence history for the fine grid simulations with multigrid preconditioner is summarized in

Figure 10 for the selected grid stretch factors. Effect of the grid anisotropy on convergence is again

very similar to that observed in coarse grid simulations. The multigrid preconditioner shows

excellent convergence behaviour for the moderately stretched grids (Grid_105 and Grid_110).

Convergence of multigrid preconditioner is not very smooth for the excessively stretched grid

(Grid_120), but is still much better than that observed with SOR(k) (Figure 8) or additive Schwarz

preconditioners (Figures 9). Further, to observe the effect of the number of degrees of freedom on

convergence behaviour, we have plotted the convergence history of BiCGSTAB iterations with

multigrid and SOR(k) preconditioners for the coarse as well as find grid in Figure 11. It can be

clearly seen that the convergence behaviour of BiCGSTAB iterations is more a function of grid

anisotropy (stretching) than the number of degrees of freedom for both the preconditioners. For the

base LES grid (Grid_105), convergence of the multigrid preconditioner is seen to be almost

independent of the number of degrees of freedom.

Iterations

E
rr

o
r

10
0

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Grid_105

Grid_110

Grid_120

Multigrid V(2,2) Preconditioner

Figure 10: Convergence of BICGSTAB iterations with multigrid preconditioner for fine grid

Iterations

E
rr

o
r

10
0

10
1

10
2

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Coarse Grid_105: Multigrid

Coarse Grid_105: SOR(k=10)

Fine Grid_105: Multigrid

Fine Grid_105 SOR(k=15)

(a) Convergence of multigrid and SOR(k) preconditioners for Grid_105

Iterations

E
rr

o
r

10
0

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Coarse Grid_110: Multigrid

Coarse Grid_110: SOR(k=10)

Fine Grid_110: Multigrid

Fine Grid_110: SOR(k=15)

(b) Convergence of multigrid and SOR(k) preconditioners for Grid_110

Iterations

E
rr

o
r

10
0

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Coarse Grid_120: Multigrid

Coarse Grid_120: SOR(k=10)

Fine Grid_120: Multigrid

Fine Grid_120: SOR(k=15)

(c) Convergence of multigrid and SOR(k) preconditioners for Grid_120

Figure 11: Convergence of BICGSTAB iterations with multigrid and SOR(k) preconditioners for

different grid stretch factors for coarse as well as fine grid.

Table 7 presents a comparison of computational efficiency (in terms of CPU time estimates)

for fine grid simulations with multigrid, SOR(k) and additive Schwarz preconditioners. Once again,

the multigrid preconditioner emerges as the most efficient choice: it is more efficient by an order of

magnitude for the moderately stretched grids (Grid_105 and Grid 110) which are commonly

employed in LES/DNS of turbulent flows. For highly stretched grid (Grid_120), SOR(k) can be

seen to be its close competitor.

Table 7. Performance of multigrid preconditioner (V(2,2) cycle with number of multigrid

cycles = 2) as compared to SOR and additive Schwarz preconditioners for the fine grid.

(Time indicates wall clock time in seconds).

Grid Multigrid SOR(k), k = 15 Additive-Schwarz (k=15)
Iterations Time Iterations Time Iterations Time

Grid_105 3 19 30 215 72 476

Grid_110 65 405 429 3070 796 5253

Grid_120 458 2844 525 3721 844 5672

Preceding numerical results for a coarse grid as well as a fine grid clearly establish the

superior performance of the geometric multigrid preconditioner for stretched grids involving mild to

moderate stretching. For these grids, multigrid preconditioner requires CPU time an order of

magnitude lower than SOR(k) and additive Schwarz preconditioners. However, performance of the

multigrid preconditioner is not as good for highly stretched grids. This behaviour could be

attributed to the insufficient smoothing provide by red-black Gauss-Seidel smoother used in present

implementation. Therefore, to improve the performance of multigrid preconditioner for these highly

anisotropic grids, more effective smoothers of ILU type would be required. Nevertheless, even for

the grids involving excessive stretching (stretch factor of 1.2), multigrid preconditioner gives better

performance than the other two preconditioners. Further, the SOR(k) preconditioner is seen as the

next best alternative, especially for highly stretched grids.

Thus, we have successfully implemented and tested an efficient pressure Poisson solver for

immersed boundary Navier-Stokes solver on non-uniform grids for LES/DNS of turbulent flow in

complex geometries. This Poisson solver is based on the BiCGSTAB method with a set of parallel

preconditioners for arbitrarily graded Cartesian grids. The set of preconditioners includes a

geometric multigrid preconditioner, SOR(k) preconditioner and additive Schwarz preconditioner for

stretched grids. Multigrid preconditioner emerges as the best choice followed by SOR(k)

preconditioner.

6. Concluding Remarks

We have presented an assessment of a set of parallel pre-conditioners for numerical solution of the

pressure Poisson equation arising in large eddy simulation of turbulent incompressible flows on

non-uniform Cartesian grids. Since parallel implementation of our explicit Navier-Stokes solver is

based on domain decomposition, we have considered pre-conditioners suitable for domain

decomposition based parallel implementation of the pressure Poisson solver on non-uniform

Cartesian grids. Bi-conjugate gradient stabilized (BICGSTAB) method has been adopted as the

Krylov solver for the linear algebraic system resulting from the discretization of the Poisson

equation. Numerical experiments have been performed to assess the performance of different

parallel preconditioners such as Jacobi, SOR(k), additive Schwarz and multigrid preconditioners for

difference mesh stretching. Numerical results clearly show the effectiveness and superior

performance of multigrid preconditioner as compared to the Jacobi, SOR(k) or additive Schwarz

preconditioners. The SOR(k) preconditioner emerges as the next best alternative.

 Acknowledgements

This work was supported by Research Exchanges with China & India Award of Royal Academy of

Engineering, UK to Drs Eldad Avital and Krishna M. Singh (Grant No. SEMF1A4R). Parallel

computing facilities were extended by UK-EPSRC Turbulence Consortium (Grant No.

EP/L000261/1), Queen Mary University of London and the Centre of Scientific Computing,

Warwick University, UK. Support of these organizations is gratefully acknowledged. The authors

also gratefully acknowledge the suggestion for improvement received from the anonymous referees.

References

[1] J.H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin

(2003).

[2] G.H. Golub, L.C. Huang, H. Simon, W.-P. Tang, A Fast Poisson Solver for the Finite

Difference Solution of the Incompressible Navier--Stokes Equations, SIAM J. Sci. Comput.

19 (1998) 1606–1624.

[3] R. Löhner, F. Mut, J.R. Cebral, R. Aubry, G. Houzeaux, Deflated preconditioned conjugate

gradient solvers for the pressure-Poisson equation : Extensions and improvements, Int. J.

Numer. Meth. Engng. (2011) 2–14.

[4] A. Segal, M. ur Rehman, C. Vuik, Preconditioners for Incompressible Navier-Stokes

Solvers, Numer. Math. Theory Meth. Appl. 3 (2010) 245–275.

[5] H.-W. Hsu, F.-N. Hwang, Z.-H. Wei, S.-H. Lai, C.-A. Lin, A parallel multilevel

preconditioned iterative pressure Poisson solver for the large-eddy simulation of turbulent

flow inside a duct, Comput. Fluids. 45 (2011) 138–146.

[6] A. Mcadams, E. Sifakis, J. Teran, A parallel multigrid Poisson solver for fluids simulation on

large grids, in: M. Otaduy and Z. Popovic (Editors), Proc. Eurographics/ ACM SIGGRAPH

Symposium on Computer Animation 2010.

[7] N. Zhao, X. Wang, A Parallel Preconditioned Bi-Conjugate Gradient Stabilized Solver for

the Poisson Problem, J. Comput. 7 (2012) 3088–3095.

[8] E.J. Avital, A second look at the role of the fast Fourier transform as an elliptic solver, Int. J.

Numer. Meth. Fluids, 48 (2005) 909–927.

[9] Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition, SIAM, 2003.

[10] U. Trottenberg, C.W. Oosterlee, A. Schüller, Multigrid, Academic Press, London, 2000.

[11] P. Wesseling, An Introduction to Multigrid Methods, R. T. Edwards, 2004.

[12] A. Brandt, N. Dinar, Multigrid solutions to elliptic flow problems, in: S. Parter (Ed.),

Numerical Methods for Partial Differential Equations, Academic Press, New York, 1979: pp.

53–147.

[13] J.H. Bramble, Multigrid Methods, Longman Scientific & Technical, Essex, England, 1993.

[14] C.C. Douglas, Multigrid methods in science and engineering, IEEE Comput. Sci. Eng. 3

(1997) 55–68.

[15] W. Hackbusch, U. Trottenberg, Multigrid Methods, Springer-Verlag, Berlin, 1982.

[16] J.W. Ruge, K. Stüben, Algebraic multigrid (AMG), in: S.F. McCormick (Ed.), Multigrid

Methods, SIAM, Philadelphia, PA, 1987: pp. 73–130.

[17] K.M. Singh, J.J.R. Williams, A parallel fictitious domain multigrid preconditioner for the

solution of Poisson’s equation in complex geometries, Comput. Methods Appl. Mech. Eng.

194 (2005) 4845–4860.

[18] M. Benzi, Preconditioning techniques for large linear systems: A survey, J. Comput. Phys.

182 (2002) 418–477.

[19] B.F. Smith, P.E. Bjørstad, W.D. Gropp, Domain Decomposition: Parallel Multilevel Methods

for Elliptic Partial Differential Equations, Cambridge University Press, New York, 1996.

[20] M. Ament, G. Knittel, D. Weiskopf, W. Strasser, A parallel preconditioned conjugate

gradient solver for the Poisson problem on a multi-GPU platform, Proc. 18th Euromicro

Conf. Parallel, Distrib. Network-Based Process. (2010) 583–592.

[21] R. Aubry, F. Mut, R. Löhner, J.R. Cebral, Deflated preconditioned conjugate gradient solvers

for the pressure–Poisson equation, J. Comput. Phys. 227 (2008) 10196–10208.

[22] A. Gaul, M.H. Gutknecht, J. Liesen, R. Nabben, A framework for deflated and augmented

Krylov subspace methods, SIAM J. Matrix Anal. Appl. 34 (2013) 495–518.

[23] M.H. Gutknecht, Deflated and augmented Krylov subspace methods : A framework for

deflated BiCG and related solvers, SIAM J. Matrix Anal. Appl. (submitted).

[24] M.H. Gutknecht, Spectral deflation in Krylov solvers: a theory of coordinate space based

methods, Electronic Trans. Numer. Anal. 39 (2012)156–185.

[25] B.J. Mohd-Yusof, Development of immersed boundary methods for complex geometry,

Annual Research Briefs, Centre for Turbulence Research, Stanford University, 1998, pp.

325–336.

[26] R. Mittal, H. Dong, M. Bozkurttas, F.M. Najjar, A. Vargas, A. von Loebbecke, A versatile

sharp interface immersed boundary method for incompressible flows with complex

boundaries, J. Comput. Phys. 227 (2008) 4825–4852.

[27] M.-C. Lai, C.S. Peskin, An immersed boundary method with formal second-order accuracy

and reduced numerical viscosity, J. Comput. Phys. 160 (2000) 705–719.

[28] J. Kim, D. Kim, H. Choi, An immersed-boundary finite-volume method for simulations of

flow in complex geometries, J. Comput. Phys. 171 (2001) 132–150.

[29] J.H. Seo, R. Mittal, A sharp-interface immersed boundary method with improved mass

conservation and reduced spurious pressure oscillations, J. Comput. Phys. 230 (2011) 7347–

7363.

[30] J. Yang, F. Stern, Sharp interface immersed-boundary/level-set method for wave–body

interactions, J. Comput. Phys. 228 (2009) 6590–6616.

[31] T. Ye, R. Mittal, H.S. Udaykumar, W. Shyy, An accurate Cartesian grid method for viscous

incompressible flows with complex immersed boundaries, J. Comput. Phys. 156 (1999) 209–

240.

[32] J. Yang, E. Balaras, An embedded-boundary formulation for large-eddy simulation of

turbulent flows interacting with moving boundaries, J. Comput. Phys. 215 (2006) 12–40.

[33] C.S. Wu, D.L. Young, C.L. Chiu, Simulation of wave–structure interaction by hybrid

Cartesian/immersed boundary and arbitrary Lagrangian–Eulerian finite-element method, J.

Comput. Phys. 254 (2013) 155–183.

[34] B. Yildirim, S. Lin, S. Mathur, J.Y. Murthy, A parallel implementation of fluid–solid

interaction solver using an immersed boundary method, Comput. Fluids. 86 (2013) 251–274.

[35] K. Anupindi, Y. Delorme, D. a Shetty, S.H. Frankel, A novel multiblock immersed boundary

method for large eddy simulation of complex arterial hemodynamics., J. Comput. Phys. 254

(2013) 200–218.

[36] C. Ji, A. Munjiza, J.J.R. Williams, A novel iterative direct-forcing immersed boundary

method and its finite volume applications, J. Comput. Phys. 231 (2012) 1797–1821.

[37] D. Xu, E. Kaliviotis, A. Munjiza, E. Avital, C. Ji, J. Williams, Large scale simulation of red

blood cell aggregation in shear flows., J. Biomech. 46 (2013) 1810–7.

[38] X. Bai, E.J. Avital, A. Munjiza, J.J.R. Williams, Numerical simulation of a marine current

turbine in free surface flow, Renew. Energy 63 (2014) 715–723.

[39] K.M. Singh, J.J.R. Williams, Application of the additive Schwarz method to large scale

Poisson problems, Commun. Numer. Methods Eng. 20 (2004) 193–205.

[40] C.C. Douglas, S. Malhotra, M.H. Schultz, A characterization of mapping unstructured grids

onto structured grids and using multigrid as a preconditioner, BIT 37 (1997) 661–677.

