Information leakage analysis of complex C code
and its application to OpenSSL

Pasquale Malacaria', Michael Tautchning', and Dino DiStefano!

School of Electronic Engineering and Computer Science,
Queen Mary University of London, UK
{p.malacaria,michael.tautschnig,d.distefano}@qmul.ac.uk,

Abstract. The worldwide attention generated by the Heartbleed bug
has demonstrated even to the general public the potential devastating
consequences of information leaks.

While substantial academic work has been done in the past on infor-
mation leaks, these works have so far not satisfactorily addressed the
challenges of automated analysis of real-world complex C code. On the
other hand, effective working solutions rely on ad-hoc principles that
have little or no theoretical justification.

The foremost contribution of this paper is to bridge this chasm between
advanced theoretical work and concrete practical needs of programmers
developing real world software. We present an analysis, based on clear
security principles and verification tools, which is largely automatic and
effective in detecting information leaks in complex C code running ev-
eryday on millions of systems worldwide.

1 Introduction

The OpenSSL Heartbleed vulnerability (CVE-2014-0160)' has attracted inter-
national attention both from media and security experts. It is difficult to imag-
ine a more serious security flaw: devastating (clear-text passwords are leaked),
widespread (running on millions of systems), untraceable, and repeatable while
leaking up to 64 KB of memory at a time.

Automated security analysis of code have so far proven to be of limited help:
Heartbleed seemingly demonstrated the limitations of current static analysis
tools for this kind of leaks. As noted by Kupsch and Miller [14], static analysis
tools struggle detecting Heartbleed due to the use of pointers, and the complexity
of the execution path from the buffer allocation to its misuse.

Static analyses capable of scrutinising large code bases are effective at de-
tecting bugs that may bring undefined behaviour (e.g., a crash), but they are
less effective at detecting deep intricate bugs which represent functional misbe-
haviour in code of any size.

The code analysis technique used in this paper, while being static in the sense
of being applied at compile time and considering all (bounded) execution paths,

! cve.mitre.org/cgi-bin/cvename. cgi?name=CVE-2014-0160 and
heartbleed.com

is an ideal complement to classical static analysis. Our analysis aims at detect-
ing deep, intricate confidentiality violations. While our methodology allows for
abstractions and sometimes may need them, it is largely a precise analysis down
to the bit level. As such, all aspects of the code and the security requirements
are translated into logic formulae and then checked by SAT or SMT solvers. Our
technique would be a valuable tool for both developers and for code reviewers.
The manual effort required is a labelling of confidential information and to write
appropriate drivers. In this context, it is worth noting that Heartbleed was orig-
inally discovered as part of a code review, described as “laborious auditing of
OpenSSL” [16].

Our methodology is not about detecting undefined behaviour in the code,
such as generic memory errors, but rather detecting confidentiality violations.

The principles underpinning this work go back to the fundamental defini-
tion of security. To the best of our knowledge, however, it was unknown how
to implement such principles for large and complex C code. As such, the first
and foremost contribution of this work is in enabling such real-world, complex
security analysis.

Related work There are several commercial static analysers for C such as Gram-
matech’s CodeSonar [9], Coverity [7], Klokwork [12], HP /Fortify [11]. None of
these tools detected Heartbleed ahead-of-time. Some of the vendors of these
tools are now extending their heuristics for being able to catch similar bugs [1,
4]. Their approach is based on the general idea of taint analysis. All these tools
are very effective at detecting implementation bugs (which may or may not nec-
essarily be security vulnerabilities) violating certain patterns. OpenSSL code is
extremely complex; it includes multiple levels of indirection and other issues that
can easily prevent these tools from finding vulnerabilities. Heartbleed is not an
exception. Most importantly, these tools are not confidentiality checkers and so
may not be able to find leaks not originating from undefined behaviour. Our
technique instead is aimed at detecting subtle information leaks.

Dynamic analysis used in tools like Valgrind [22] is very effective in finding
code defects and improving the security of code. While extremely useful, dynamic
analysis techniques can only check for a limited number of inputs and, therefore,
do not provide the same strong security guarantees as our approach does. Similar
to dynamic analyses symbolic execution tools are very scalable and our approach
can be implemented in KLEE and similarly in other such platforms.

There is a large body of literature on non-interference [17,20] with related
type systems, abstract domains, and data-flow and dynamic analysis. As already
mentioned these approaches have had limited success on complex C code. Our
work builds on the security literature of self-composition and its implementa-
tion [2,21]. Previously, none of these works was able to deal with complex C
code. CBMC has been used to implement self-composition also in [10]. Com-
paring their work with the proposed methodology, they neither use quantifiers,
hence are limited to bounded analysis. Also they didn’t attack the engineering
challenges of an automated analysis of a large code basis like OpenSSL.

2 Background

Our confidentiality analysis is based on the definition of non-interference [8].
Informally:

A program is non-interfering (i.e., doesn’t leak confidential information)
if and only if two runs of the program that only differ in some confiden-
tial value do not yield different behaviours that can be observed by an
attacker.

In other words a non-leaking program behaves, from the point of view of an
attacker, as a constant function once its non-confidential arguments are fixed.
More formally noting (P,u) | v for “the program P starting from memory
configuration (contents) u terminates with a resulting memory v” then (termi-
nation insensitive) non-interference is defined as: for all memory configurations

M1, K2, V1, V2!
(P p1) L vi AP, p2) L va A iy =1 po] — vi =1 1o

where p1 =, po means the memory configurations agree on the non-confidential
values (also called the public values or low values; public values are assumed to
be observable).

We refer the interested reader to the literature [17] for a more extensive
background on non-interference and confidentiality.

2.1 An Introductory Example

To illustrate non-interference, consider an authentication system testing whether
a user-provided string is a valid password:

int authenticate(int passwd, int guess)

{

int authenticated;

if (passwd==guess)
authenticated=1;
else authenticated=0;
return authentic;

}

The authenticate function above is not secure because we can find two different
confidential values for the variable passwd resulting in two observables by an at-
tacker. The first one is the value of passwd being equal to the value of guess. The
second can be chosen as any different value. In this case the program will return
two different values for authenticated, which is observable by an attacker.

More specifically, by observing authenticated==1 the attacker will know
the password is the value of guess, and by observing authenticated==0 the
attacker will know the password is not the value of guess. In both cases the
attacker will learn something about the password, hence some information is
being leaked.

Handling randomness The classic definition of confidentiality fails to account for
programs the behaviour of which depends on sources of randomness. Consider
the following variation of the above program:

if (random_value) authenticated=1; else authenticated=0;

This program would be deemed non secure following the definition of non-
interference. Assuming random_value doesn’t use any confidential values in its
computation then the above program is, however, secure. One way to under-
standing this in the context of non-interference is to think that a random_value
in a deterministic systems is in fact the result of a deterministic function on
some possibly difficult-to-guess non-confidential inputs, e.g. the seed used in the
function generating random numbers in standard programming languages. A
full discussion of this topic is beyond the scope of this work. For the purposes of
our analysis hence when allowing random values we need to check whether the
source of randomness is non confidential and if that is the case then not count
that as a security violation. If fact we will deal with random values using CBMC
in the same way as we deal with missing code, which is explained in Sec. 4.4.
Handling randomness is crucial when analysing some OpenSSL functions, such
as dtlsl_heartbeat or tlsl_heartbeat (see Sec. 4.5). To correctly label the
source of randomness is usually the task of the developer.

3 Confidentiality Analysis using CBMC

The workflow of the analysis implemented using CBMC is summarised in Fig. 1.
We first expand on how the driver is defined, its relation to non-interference
and self-composition and how C code is handled by CBMC. We explain pre-
processing in Sec. 4.2, i.e., how to prepare the source code for the analysis,
and in Sections 4.3 and 4.4 we will discuss how to deal with missing code and
unbounded analysis using quantifiers.

source code

pre-processing: code merging, labelling, driver
definition, handling missing functions, quantifiers

SATI'SMT no leak if formula
. SOlVer | unsatisfiable else
Logical |———p| " °
formula 1nforn?at10n leak
and witnesses
(counterexample)

source code | | cBM

driver:
code+assertions

Fig. 1. Workflow of the analysis using CBMC

To start with let’s explain how we check non-interference using the bounded
model checker CBMC [5, 13]. To illustrate the use of CBMC in this context, let
us consider the program of Fig. 2, taken from [6]. The first listing on the left
contains the program with an assertion describing the desired postcondition.
That is, for all possible executions of the program it holds that z < 3 at the
end. As first step, CBMC transforms the program into Static Single Assignment
(SSA) form, which introduces the new variables x_1, x_2, x_3 corresponding
to the different definitions of the variable x in the program, and similarly y_1
for variable y. The code in SSA form induces a system of equations which is
then translated to a propositional formula C the atoms of which are bit vector
equations. C represents the program as equation system and a model of C can be
interpreted as an input and its execution trace. Finally the assertion is translated
to the formula P.

x=2; y=1; x1=2; y1=1; C:=x1=2Ay1 = 1A
if (x!=1) if (x1!=1)
{
X=2; Xo=2; T2 = ((.’Kl 75 1)72 : .Tl)/\
if (y) x+-+; if (y1!=0) x3=x2+1; z3=((z1# 1Ay #0)?x2+1: x2)
}
assert(x<=3); assert(x3<=3); Pi=u3<3

Fig. 2. Example of renaming and transformation in CBMC

Following the rules of Hoare Logic, the postcondition P = x3 < 3 holds if
and only if C = P is valid. Equivalently, the original assertion is valid in the
original program if only if the propositional formula C A =P is unsatisfiable.

To see that the above statement is true reason as follows: if CA—P is satisfiable
then the satisfying assignment will provide a counterexample for the property
P, i.e., a trace showing why the program doesn’t satisfy P. If, however, C A =P
is unsatisfiable then the property P holds for all execution traces.

CBMC is a bounded model checker, hence only a bounded version of a pro-
gram, where the loops are unwound up to a user-defined bound, can be analysed.
Consequently it is first and foremost a bug-finding approach, unless the program
under scrutiny only exhibits bounded loops or bounded recursion.

While unbounded verification is thus beyond the scope of CBMC, the user has
options that may, in certain cases, provide unbounded verification results (i.e.,
proofs of correctness): an example is mentioned in Sec. 4.3 where we replace
loops with universally quantified expressions.

Self-composition The definition of non-interference is a semantic one. A trans-
lation of this definition to verification terms, called self-composition, has been
introduced in [2,21]. In self-composition we consider a program P and a copy
P’ of P. The copy P’ consists of P with all variables renamed (public variables

ﬁ
7 renamed as 2). Let & be disjoint union. Then non-interference is defined as:
for all memory configurations u, u’, v, v/':

(PP uwu) vy Au =g ,u[;’> =7 =V = V[;’> = 7]

In words: the program P; P’, i.e., the sequential composition of P and P’, start-
ing from the memory p W p' (where p/ is the same memory as p on the public

variables 7, except for renaming of Z to #) will terminate resulting in memory
v/ (where v/ is the same memory as v on the public variables 7, except for

%
renaming of @ to z’).

Our implementation of self-composition using CBMC follows the approach
in [10]. Here we only give an intuition about the approach and refer the interested
reader to the literature for a more formal definition and relationship between
self-composition and non-interference [2, 21, 10]. Recall that by definition of non-
interference to find a violation of confidentiality we need to find two runs of the
function under analysis that only differ in some confidential value and result in
two different observables. To implement this using CBMC we add a driver to
the program where we assert that any two runs of the function which differ on
only the confidential values will result in the same observable. A violation to this
assertion (i.e., a counterexample) will hence be an assignment describing two
confidential values for which the function will return two different observables.

Going back to the simple password program in Sec. 2.1, its security analysis
using CBMC is realised using the following code:

int authenticate(int passwd, int guess)
{

int authenticated;

if (passwd==guess)

authenticated=1;

else authenticated=0;

return authentic;

void driver()

{

int pwdl, pwd2, guess;

int resl=authenticate(pwdl, guess);
int res2=authenticate(pwd2, guess);
assert(resl==res2);

}

We have inserted a driver method with the declaration of three variables of type
int. These variables will be used as arguments to the function authenticate in
the two calls and finally an assertion is made about the equality of the results
of the calls. CBMC will translate the above code into a formula and will look
for an assignment satisfying that formula. As the variables are not initialised
their values will be determined by the SAT solver. By running CBMC on the
above code we will get a counterexample, and thus values v, v’, u for pwd1, pwd2,
guess, respectively, have been found by the SAT solver. As those result in the
assertion to fail, this means that the program is leaking confidential information.
In the terminology of self-composition

p = {pwdl — v, guess — u}, y' = {pwd2 — v, guess > u}

and the renaming? of ;1 to y' is
{{pwdl — v} := {pwd2 — v}, {guess > u} := {guess — u}}.

To sum up there are three key ingredients to identify and label when per-
forming a non-interference analysis when using a model checker like CBMC:

1. Confidential inputs: the secret we don’t want the code to leak (in the above
example, the values of password in function authenticate).

2. Public inputs: the inputs that do not contain confidential information (in the
above example the argument guess).

3. Observables: what we assume an attacker can observe when the function is
run (in the above example is the return value of function authenticate).

4 Analysis of OpenSSL

4.1 Labelling and drivers for OpenSSL

A key aspect of the analysis is the labelling of confidential, public, and observable
data. This step cannot be fully automated because it is easy to imagine how
the same code may be used for different purposes and hence the meaning of
confidential, public, and observable data may be application dependent.

We assume that this process of labelling is in general a simple task for the
code developer (and the code reviewer): by writing the code they should know
easily what the confidential, non confidential, and observable components in the
code are.

Of course the labelling is more challenging for a third party not familiar with
the code and, in that case, may require some non-trivial reverse engineering.

In the case of OpenSSL our labelling is determined by reverse engineering
what confidential, public and observable are in the functions where Heartbleed
originated (i.e. functions: dt1sl_process_heartbeat and t1sl_process_heartbeat
). Once this labelling is determined we can proceed to analyse all of OpenSSL for
leaks from similar inputs to similar observables. The labelling is the following:

1. Confidential data: this is the process memory. It is confidential because it
holds confidential data, such as passwords or private keys [23]. Notice that
this is not an input to a function.

2. Public data: these are the ssl_st structures containing the payload from
the sender or any argument that are provided by the user as arguments to
OpenSSL functions. The attacker can control these inputs, which is how
Heartbleed is triggered. In security jargon we are considering an active at-
tacker because the attacker can control the public inputs.

2 Here we map guess on the same name whereas we should use different names; it is
easy to see this is harmless in this context.

void driver(){

declare a_1, ..., an, b_1, ..., bmn;

al = ..; // optional initialisation argument a_1

an = ..; //optional initialisation argument a_n

bl = ..; // optional initialisation argument b_1

b= ..; // optional initialisation argument b_n

assert(observable(f(a_1, ..., a_n))==observable(f(b_1, ..., bn)));
}
Fig. 3. Driver template for checking function £(i1, ..., in).

3. Observables: this is the structure used for communicating between the client
and server. They use (part of) the structures of type ssl_st for communi-
cation and the medium is (the function pointer) msg_callback. The third
and fourth arguments of msg_callback consists of the data buffer of com-
munication and its length. We hence select the third and fourth arguments
of msg_callback as the observables.

We stress that, while this labelling originated from the Heartbleed bug func-
tions, it is not specific to the Heartbleed bug: labelling the process memory
as confidential is natural and general because the process memory, no matter
what OpenSSL function we consider, contains data like passwords. Labelling
msg_callback as observable is natural and general because this is the main
communication medium between client and server for all OpenSSL functions,
and is also the medium by which data is transferred and so it could be leaked.
Labelling the structure ssl_st as public is natural and general because this is a
structure, argument to most OpenSSL functions, that both parties have access
to and can manipulate.

To check a function, say £(i1, ..., in), for information leaks, we write a
driver function defined according to the template in Fig. 3. This driver declares
and possibly initialises the arguments (ensuring a; = b; if that argument is pub-
lic) and then checks that the results for the observables are the same. Given
the OpenSSL labelling above described it is easy to instantiate such schema for
a particular function that needs to be checked. In the case of these OpenSSL
functions the driver asserts that given two calls to the function which have the
same public inputs the resulting msg_callback observables are the same. For
two of these functions, namely the ones with the Heartbleed bug we were able, by
using quantifiers, to perform an unbounded security analysis. For the remaining
functions the security analysis is bounded. Bounded means we can only assert
that the observables in the resulting msg_callback are the same for the first n
elements. The OpenSSL functions using msg_callback are shown in Fig. 4.

int dtlsl_process_heartbeat(struct ssl_st *)

int dtlsl_heartbeat(struct ssl_st *)

int dtlsl_do_write(struct ssl_st x, int)

long int dtlsl_get_message(struct ssl_st x, int, int, int, long int, int)
long int dtlsl_get_message fragment(struct ssl_st *, int, int, long int, int *)
int dtlsl read bytes(struct ssl st *, int, unsigned char x, int, int)

int dtlsl_dispatch_alert(struct ssl_st)

int ss123_client_hello(struct ssl st *)

int ss123_get_server_hello(struct ssl_st %)

int ss123_get_client_hello(struct ssl_st)

int ssl3_do_write(struct ssl_st *, int)

long int ssl3_get_message(struct ssl_st *, int, int, int, long int, int *)
int ssl3_read_bytes(struct ssl_st *, int, unsigned char x, int, signed int)
int ssl3_dispatch_alert(struct ssl_st *)

int tlsl_process_heartbeat(struct ssl_st x)

int tlsl_heartbeat(struct ssl_st x)

Fig. 4. OpenSSL functions analysed

Most OpenSSL are of the form f(x) where x is public, however if £ uses
process memory say by a call to malloc then it may well be that the two calls
with the same public input result in different observables. This is automatically
detected by CBMC thanks to its memory model.

We stress that while we check for information leakage on individual functions,
our analysis is an information leakage analysis of the whole OpenSSL and not just
a “unit testing” of a subset of OpenSSL. OpenSSL is essentially a library whose
functions are called by server and client. By considering all functions affecting
the observable msg_callback we are considering the whole of OpenSSL involving
the data communication medium msg_callback.

4.2 Preparing for Analysis

Software projects of the scale of OpenSSL cannot be analysed at source-code level
by picking up a single C file: numerous header files and configuration parameters
contribute to each compilation unit. To employ CBMC in such a context, we use
goto-cc, which can be used as drop-in replacement of various common compilers,
including GCC. Running OpenSSL’s standard build process, goto-cc builds an
intermediate representation, called “goto programs” — a control-flow graph like
representation — rather than executable binaries. The compiled files could be
used directly with CBMC; for our experiments, however, we took the additional
step of decompiling to C source code using goto-instrument (which is also
part of CBMC’s distribution). The resulting C code has all preprocessor macros
and typedefs expanded, and adheres to any compile-time command-line options
affecting the semantics of the program. A key benefit of this decompilation step
is that our analysis could potentially be performed using any software analysis
tool for C programs — such as KLEE.

4.3 Using Quantifiers for Unbounded Verification

Bounded model checkers unfold loops up to user-defined bounds. In certain cases,
however, it is possible to use CBMC in a more powerful way. If we can replace
a loop with a quantified formula characterising the loop then we can achieve
unbounded verification.

The OpenSSL functions which suffered from Heatbleed allowed for this trans-
formation. These functions call the standard library function memcpy in the fol-
lowing way:

memcpy((void *)bp, (const void *)pl, (unsigned long)payload)

The semantics of the function memcpy is to copy payload bytes of memory from
the area pointed-to by pl to the memory area pointed-to by bp (we assume the
memory regions involved do not overlap). Therefore the effect of this call can be
summarised by the following quantified formula:

V (0 < i < payload): bp[i] == pl]i]

When loops are replaced by quantifiers, we can then use CBMC to translate
the program and the assertions into a first-order formula over the theory of
bitvectors. The obtained formulae are then passed to the SMT-solver Z3 [15] for
satisfiability checking.

4.4 Missing Source Code and Compositionality Principle

When CBMC encounters a function call like v=g(b) and has no source code for
the function g then a non-deterministically chosen value of the appropriate type
is given to v. The implication for our analysis is that if there are some calls to
missing functions and the analysis is successful, then the verification would be
successful also if the source code were not missing®.

On the other hand if the verification is unsuccessful then the failure may be
spurious and originate from the non-deterministic choice of the missing func-
tion return value, because in each of the two runs different values may be non-
deterministically chosen. A way to determine whether this is indeed the case
is to make sure that the non-deterministically chosen return value for g is the
same for the two calls of the function under analysis. This is easily achieved by
defining this symbolic value as a non-deterministic global variable. Because of
scalability issues we have excluded from the analysis the code of a few functions
which we believe are safe to exclude, e.g., dtlsl_write_bytes.

Compositionality Principle : If a function f(a) calls a function g(b) and the
analysis reports f(a) to be secure while the source code for g(b) is missing
(where the missing code is handled as explained above), and in an independent

analysis g(b) is reported to be secure, then f(a) is secure?.

3 Provided these functions don’t leak and return deterministic values. Also if these
functions have side-effects these should be deterministic.

4 A soundness proof of this principle for a complex language like C is arguably infea-
sible and surely beyond the scope of this work.

10

To verify confidentiality we can thus split the code base in several fragments.
This compositionality principle is helpful when dealing with a large code base.

Notice that the converse direction is not valid, i.e., it is possible that the
analysis returns that f(a) is not secure in the analysis where the source code
for g(b) is missing, and the analysis returns g(b) is not secure but in fact the
function f is secure. A simple example is the following program:

int f(int a) {

int b=1; int g(int b) {
int v=g(b); if (b) return 0;
if (v) leak ... else leak ...
else non—leak ... }

The function f leaks only if the value of v is 1 and v is set by the call to g. The
function, g leaks only when b is 0. As b is set to 1 in f before calling g then g
will not leak and return 0. This in turn will prevent £ from leaking.

The analysis will return that £ and g both leak when analysed in isolation.
However, f is secure as v is never 1 inside £ which is the only case when f leaks.

4.5 Analysis of OpenSSL Functions

For the analysis of the OpenSSL functions we use the basic driver pattern of
Fig. 3. An example of initialisation of arguments for dt1si_process_heartbeat
and tlsl_process_heartbeat is reported in Fig. 5. The data size used is 37,
because the size of payload and padding of a non-malicious heartbeat sent by
the client is 34 bytes plus 2 bytes for the length and 1 byte for the type. Pointer
rrec.data points to a structure for which we provide an unspecified values:
this can be achieved in CBMC by giving to the element of the structure a non-
initialised value.

Other functions analysed in OpenSSL use the pointer init_buf .data instead
of rrec.data; however, the initialisation is similar. For init_buf.data we used
the value 12, 24, and 48 as possible lengths. These values are simple guessworks
on possible sizes and are just meant to prove that our methodology provides us
with the ability to perform the analysis. An OpenSSL developer would be able
to assign appropriate range of sizes for init_buf .data allowing therefore a more
complete security analysis of the OpenSSL functions unrelated to Heartbleed.

Tab. 1 summarises the experimental results of the automated analysis using
CBMC version 5.0. The tests were performed on Linux systems with 64-core
AMD Opteron processors running at 2.5 GHz, equipped with 256 GB of memory.

In the table we write fun__N__0PTION meaning that the function fun was

analysed by unrolling its loops N times and OPTION is one of the following:

— C_NO_OBSERVATION_IS_LEAK: with this option the assertion used is precisely
the one from non-interference, i.e. it states that the observables are equal. If

11

struct sslst s_1,s.2;

int i;

s_1.msg_callback=fobservable_1;

s_2.msg_callback=fobservable_2;

struct ssl3_state_st s3.1,s3.2;

unsigned char r_data_1[37], r_data_2[37];

for(i=0; i<37; i++) {
rdata_2[i]=r_data_1[i];

}

s3_1.rrec.data=r_data_1;
s3_2.rrec.data=r_data_2;
s3-1.rrec.length=37;
s3_2.rrec.length=37;
s_1.83=&s3_1;
s-2.53=&s3_2;

Fig.5. Initialisation of data structures for dtlsl_process_heartbeat and
tlsl_process_heartbeat. These structures are the public inputs for those functions

this option is not selected we use a weaker assertion, i.e. the assertion states
that either the observables are equal or one of the observables is null, i.e. with
the option not selected we accept a possible 1 bit leakage because, depending
on the value of the secret, the function may produce a null observable or a
specific non-null observable. The combination of these two assertions has
shown to be helpful to detect spurious 1 bit leakage (details below).

— C_INIT_BUF_LENGTH__M: this option sets init_buf.data to size M.

— C_HB_SEQ_HIGH: this option sets tlsext_hb_seq field as high (i.e., confiden-
tial). This option only applies to dt1sl_heartbeat and tlsl_heartbeat.

— C_HB_ART_LEAK: this option adds an artificial information-flow leak (de-
scribed later on) inside the function (d)tlsl_process_heartbeat.

— C_HB_BUG: this option disables the Heartbleed patch.

— C_FORALL: this option introduces quantifiers.

— C_HB_CORR_SIZE: configures the heartbeat payload to the correct size.

— C_RANDOM_LOW__M: set M random bytes in the heartbeat payload to be public.

— C_CLIENT_HELLO_CONSTRAINED: forbid ss123_write_bytes return value be-
tween 2 and 5.

Notice that a few functions with no option selected verify successfully and
with option C_NO_OBSERVATION_IS_LEAK yield a counterexample. This indicates
a possible maximal one-bit leak. A quick code inspection following the CBMC
error trace suggests this small leak is spurious and caused by some missing
initialisation or missing functions called by the analysed functions.

Functions dt1ls1_process_heartbeat, dtlsl_heartbeat, tlsl_heartbeat,
tlsl_process_heartbeat, and ss123_client_hello show more serious fail-
ures: from a security perspective they are the most interesting and we now
comment more in details on our findings.

12

Functions dtlsl_process_heartbeat and tlsi_process_heartbeat The ver-
ification fails when there is no patch and rrec.data[1], rrec.data[2] are
left unspecified (i.e., option C_HB_BUG). This is the Heartbleed bug. In fact
rrec.datal[1] and rrec.data[2] together define the payload size. By not ini-
tialising these variables CBMC will find values mismatching the real payload
size and so triggering Heartbleed. Notice that we are not only able to detect the
leak but CBMC’s counterexample tells us precise inputs triggering Heartbleed.

An important point is that our analysis require absolutely no knowledge or
suspect of the existence of the Heartbleed in order to detect it. We stress that
by leaving the size of the buffers rrec.data[1], rrec.datal[2] unspecified we
are eliminating the guesswork on the buffer size. That is we leave to CBMC
to determine if there exist buffer sizes for which there is an information leak.
CBMC is able to find the buffer sizes triggering the bug. This is an important
feature of our analysis because if it were to rely on this guess work it would
require the developer already to suspect the leak and where it could arise.

Once the patch is applied (i.e., removing option C_HB_BUG), the verification
becomes successful. We add option C_FORALL to perform an unbounded verifica-
tion by using quantifiers. As such our result provides the first formal verification
that the patch actually fixes the Heartbleed bug.

Another case where the verification is successful is when the code is un-
patched but rrec.datal[1] and rrec.data[2] are given as values the correct
payload size (option C_HB_CORR_SIZE). Since rrec.data is 37 bytes (the first
byte is the type; the following two bytes are the length description and 16 bytes
are padding) this is achieved by setting rrec.datal[1]=0;rrec.data[2]=18;.
As expected the verification is in this case successful.

To test the power of our approach we then inserted in hearbeat functions a
leak originating from an indirect flow modelling the reading of one byte of pro-
cess memory (option C_HB_ART_LEAK). Fig. 6 reports a snippet of the modified
function once C_HB_ART_LEAK is used. The added lines test whether some byte
from the process memory has a specific value (say 1). In that case the function
assigns to the 6'" element of bp the value 0 otherwise 1. Because bp is in fact
a name for the buffer becoming later observable via msg_callback that bit of
information about the process memory is leaked. Given this setting we get a
verification failure. This case shows our ability to detect all possible leaks, i.e.,
not only leaks due to the bugs as in Heartbleed, but also those originating from
direct and indirect flows of confidential information in code without bugs.

Functions dtlsi_heartbeat and tlsi_heartbeat The verification fails. On
code inspection following the counterexample we notice that the reason is that
the payload is randomly generated (see Sec. 2.1 for discussion). Once we as-
sume that the payload is not confidential we can eliminate this leak from our
analysis (option C_RANDOM_LOW). Consistently with the handling of random data
described in the introduction, to implement the assumption that payload is not
confidential we initialise all elements in the payload buffer to arbitrary yet iden-
tical values for the two runs. Under these conditions the verification succeeds.

13

bp = bp + (signed long int)2;

memcpy((void *)bp, (const void *)pl, (unsigned long int)payload);
char process_memory_byte; //ADDED CODE

if (process_memory_byte) bp[5]=0; else bp[5|=1; //ADDED CODE
bp = bp + (signed long int)payload;

RAND _pseudo_bytes(bp, (signed int)padding);

Fig. 6. Modified (d)tlsl_process_heartbeat code with artificial leak.

We detected another potential leak (option C_HB_SEQ_HIGH) which could lead
an eavesdropper to estimate how many heartbeats are exchanged. The leak orig-
inates from the tlsext_hb_seq field of the structure argument to the functions
dtls1_heartbeat and tlsl_heartbeat. This field stores a heartbeat sequence
number and this information is leaked in the observable. Our default assumption
is that the argument is public. However, our methodology is flexible enough to
consider arguments that have both confidential and public components.

Function ssl23_client_hello The verification fails. On code inspection fol-
lowing the error trace provided by CBMC we discovered a possible (very large)
information leak depending on the return value of ss123_write_bytes which
is called by ss123_client_hello. With option C_CLIENT_HELLO_CONSTRAINED
this return value is assumed not to be between 2 and 5 and we then succeed
to verify the absence of leaks. The bound 5 comes from the packet header and
should guarantee no abnormal behaviour is triggered. It would be possibly better
to add a fail-safe feature to enforce these bounds, e.g., an if-then-else making
sure the return value of ss123_write_bytes is within those safe bounds and exit
otherwise. This case illustrates how our analysis can help to determine possible
conditions triggering a leak.

5 Conclusion

We presented a general technique for the analysis of confidentiality in complex
C code. We applied our analysis to OpenSSL and showed that it correctly de-
tects Heartbleed as a form of information leak. Moreover we verified that the
patched code does not leak information. We verified the whole of OpenSSL for
similar leaks. The analysis returned interesting findings and where CBMC failed
to verify the absence of leaks, by using error traces we have found some pos-
sible security problems with the functions dtls1_heartbeat, t1lsl_heartbeat
and ss123_client_hello. In doing so we didn’t have to modify the analysed
code, but our approach, except for labelling, and writing the driver, works out
of the box. The only annotation required is to label the confidential and non
confidential data and what data and structures are observables to an attacker.
As any program analysis, our approach presents limitations. The main are:

14

Benchmark Result Time RAM

[s] [GB]
dtls1l_dispatch_alert__104__ v 267.6 3.0
dtlsl_dispatch_alert__104__.C_NO_OBSERVATION_IS_LEAK X 222.5 3.0
dtlsl_do_write__58__ v 305.3 0.8
dtlsl_do_write__58__C_INIT_.BUF_LENGTH__24 v 234.1 0.9
dtlsl_do_write__58__C_INIT_BUF_LENGTH__48 v 202.3 1.0
dtlsl_do_write__58__C_.NO_OBSERVATION_IS_.LEAK v 243.2 0.8
dtlsl_get_message__7__ v/ 32842.6 16.8
dtlsl_get_message__7__C_INIT_BUF_LENGTH_24 v’ 26933.5 16.9
dtlsl_get-message__7__C_INIT_.BUF_LENGTH__48 v 275284 17.2
dtlsl_get_message__7__C_NO_OBSERVATION_IS_LEAK v’ 30636.2 16.8
dtlsl_get_message_fragment__18__ v 5655.1 8.7
dtlsl_get_message_fragment__18__C_INIT_BUF_LENGTH__24 v 5493.6 8.8
dtlsl_get_message_fragment__18__C_INIT_BUF_LENGTH__48 v 3397.5 9.0
dtlsl_get-message_fragment__18__C_NO_OBSERVATION_IS_.LEAK v 5649.6 8.7
dtls1l_heartbeat__20000__ X 3.5 0.1
dtlsl_heartbeat__20000_-.C_HB_SEQ_HIGH__C_RANDOM_LOW__32 X 3.5 0.1
dtlsl_heartbeat__20000__.C_RANDOM_LOW__32 v 3.3 0.1
dtlsl_process_heartbeat__102__ v 13.6 0.3
dtlsl_process_heartbeat__102__C_FORALL v 3.1 0.0
dtlsl_process_heartbeat__102_._.C_HB_ART_LEAK X 8.3 0.3
dtlsl_process_heartbeat__102__C_HB_ART_LEAK__C_FORALL X 2.4 0.0
dtlsl_process_heartbeat__102__C_HB_BUG X 83 0.3
dtlsl_process_heartbeat__102__C_HB_BUG__.C_FORALL X 636.3 0.2
dtlsl_process_heartbeat__102_._C_HB_BUG__.C_HB_.CORR_SIZE v 52 0.2
dtlsl_process_heartbeat__102._.C_NO_OBSERVATION_IS_LEAK v 10.8 0.3
dtlsl_process_heartbeat__102__C_HB_ART_LEAK__C_FORALL__C_HB_CORR_SIZE X 2.6 0.0
dtlsl_process_heartbeat__102__C_HB_ART_LEAK__C_HB_CORR_SIZE X 55 0.2
dtlsl_read_bytes__ v 247.2 4.0
dtlsl_read_bytes._.C_.NO_OBSERVATION_IS_.LEAK v 2114 4.0
ss123_client_hello__100__ X 108.9 2.0
ss123_client_hello__100__C_INIT_BUF_LENGTH__24 X 96.5 2.1
ss123_client_hello__100__C_INIT_BUF_LENGTH__48 X 99.7 2.1
ssl23_client_hello__100._.C_NO_OBSERVATION_IS_LEAK X 95.8 2.0
ssl23_client_hello__100__.C_CLIENT__HELLO__.CONSTRAINED v 83.8 2.0
ss123_get_client_hello__1040__ v 1026.1 10.4
ss123_get_client_hello__1040__C_NO_OBSERVATION_IS_.LEAK X 933.0 10.3
ssl23_get_server_hello__1040__ v 600.2 7.0
ssl23_get_server_hello-_1040__C_NO_OBSERVATION_IS_.LEAK X 552.4 7.0
ssl3_dispatch_alert__18__ v 1603.7 11.3
ssl3_dispatch_alert__18__C_NO_OBSERVATION_IS_LEAK v 1465.1 11.3
ssl3_do_write__58__ v 1.1 0.0
ssl3_do_write__58 __C_INIT_BUF_LENGTH__24 v 1.4 0.1
ssl3_do_write__58__C_INIT_BUF_LENGTH__48 v 1.6 0.1
ssl3_do_write__58__C_NO_OBSERVATION_IS_.LEAK X 1.4 0.0
ssl3_get_message__6__ v 21.5 0.1
ssl3_get_message__6__C_INIT_BUF_LENGTH__24 v 149 0.1
ssl3_get-message__6__C_INIT_.BUF_LENGTH__48 v 15.3 0.1
ssl3_get_message__6__C_NO_OBSERVATION_IS_LEAK v 20.0 0.1
ssl3_read_bytes__ v 158.1 4.1
ssl3_read_bytes__ C_NO_OBSERVATION_IS_.LEAK v 222.7 4.1
tlsl_heartbeat__102__ X 3.0 0.1
tlsl_heartbeat__102__.C_HB_SEQ-HIGH__.C_.RANDOM_LOW__32 X 3.7 0.1
tls1_heartbeat__102__C_RANDOM_LOW__32 v 28 0.1
tlsl_process_heartbeat__102__ v 10.1 0.2
tlsl_process_heartbeat__102__C_FORALL v 3.2 0.0
tlsl_process_heartbeat__102__C_HB_ART_LEAK X 88 0.2
tlsl_process_heartbeat__102__C_HB_ART_-LEAK__C_FORALL X 1.7 0.0
tlsl_process_heartbeat__102__C_HB_BUG X 81 0.2
tlsl_process_heartbeat__102__C_HB_BUG__.C_FORALL X 4.7 0.0
tlsl_process_heartbeat__102__C_HB_BUG__.C_HB_CORR_SIZE v 55 0.2
tlsl_process_heartbeat__102__C_NO_OBSERVATION_IS_LEAK v 11.8 0.2
tlsl_process_heartbeat__102__C_HB_ART_LEAK__C_FORALL__.C_HB_.CORR_SIZE X 1.4 0.0
tlsl_process_heartbeat__102__C_HB_ART_LEAK__C_HB_CORR_SIZE X 5.1 0.2

Table 1. Benchmarks results obtained using CBMC 5.0; v'is successful (bounded)
verification, X denotes a counterexample

15

— As it is based on the bounded model checker CBMC, the approach is in

general bounded. In some simple, yet crucial, case we were able to overcome
this limitation by encoding loops with quantified formulae. However a general
automated translation from loops to quantified formulae is a challenging
problem and a topic left for further research.

The analysis is not completely automatic but it requires some simple an-
notations by the user: public, secret, and observable data. The driver also
requires some user effort, but it follows a simple pattern easy to implement.
Also for a given specific software contexts the driver can be automated.
While the methodology is completely general there may be some limitation
introduced by the implementation platform. For example CBMC provides
limited support for string manipulation functions. Hence it may return false
positive when analyzing leakage from string formatting attacks involving
uninterpreted functions in CBMC.

Acknowledgments

This research was supported by EPSRC grant EP/K032011/1

References

11.
12.
13.

. Anderson, P.: Finding heartbleed with codesonar, www.grammatech.com/blog/

finding-heartbleed-with-codesonar

Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004). pp.
100-114. IEEE Computer Society (2004)

Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: 8th USENIX Sympo-
sium on Operating Systems Design and Implementation, OSDI 2008. pp. 209-224.
USENIX Association (2008)

Chou, A.: On detecting heartbleed with static analysis, security.coverity.com/
blog/2014/Apr/on-detecting-heartbleed-with-static-analysis.html

Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
TACAS 2004. pp. 168-176. Springer (2004)

Clarke, E.M., Kroening, D., Yorav, K.: Behavioral consistency of C and verilog
programs using bounded model checking. In: DAC 2003. pp. 368-371. ACM (2003)
Coverity: www.coverity.com

Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy. pp. 11-20. IEEE Computer Society (1982)
Grammatech: www.grammatech.com/codesonar

. Heusser, J., Malacaria, P.: Quantifying information leaks in software. In: Twenty-

Sixth Annual Computer Security Applications Conference 2010. pp. 261-269. ACM
HP /Fortify: saas.hp.com/software/fortify-on-demand

Klokwork: www.klokwork.com

Kroening, D., Tautschnig, M.: CBMC - C bounded model checker - (competition
contribution). In: Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS 2014). pp. 389-391. Springer (2014)

16

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

Kupsch, J.A., Miller, B.P.. Why do software assurance tools have problems
finding bugs like heartbleed? (Apr 2014), continuousassurance.org/swamp/
SWAMP-Heartbleed-White-Paper-22Apr2014-current.pdf

de Moura, L.M., Bjgrner, N.: Z3: an efficient SMT solver. In: Tools and Algo-
rithms for the Construction and Analysis of Systems, 14th International Confer-
ence, TACAS 2008. pp. 337-340. Springer (2008)

Risky Business: #339 — Neel Mehta on Heartbleed, Shellshock (Oct 2014), media.
risky.biz/RB339.mp3

Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21(1), 5-19 (2003)

Schneier, B.: Heartbleed (Apr 2014), www.schneier.com/blog/archives/2014/
04/heartbleed.html

Seggelmann, R., Tuexen, M., Williams, M.: Transport layer security (TLS) and
datagram transport layer security (DTLS) heartbeat extension. RFC 6520, RFC
Editor (Feb 2012), www.rfc-editor.org/rfc/rfc6520.txt

Smith, G.: Principles of secure information flow analysis. In: Malware Detection,
Advances in Information Security, vol. 27, pp. 291-307. Springer (2007)

Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Static
Analysis, 12th International Symposium, SAS 2005. pp. 352-367. Springer (2005)
Valgrind: valgrind.org

Zhang, L., Choffnes, D.R., Levin, D., Dumitras, T., Mislove, A., Schulman, A.,
Wilson, C.: Analysis of SSL certificate reissues and revocations in the wake of
heartbleed. In: Internet Measurement Conference 2014. pp. 489-502. ACM

17

