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Multi-Feature Analysis and Semantic Context Learning
for Image Classification
QIANNI ZHANG and EBROUL IZQUIERDO, Queen Mary, University of London

This paper introduces an image classification approach in which the semantic context of images and multiple low-level visual

features are jointly exploited. The context consists of a set of semantic terms defining the classes to be associated to unclassified

images. Initially, a multi-objective optimisation technique is used to define a multi-feature fusion model for each semantic class.
Then, a Bayesian learning procedure is applied to derive a context model representing relationships among semantic classes.

Finally, this context model is used to infer object-classes within images. Selected results from a comprehensive experimental

evaluation are reported to show the effectiveness of the proposed approaches.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—Re-
trieval models; I.4.8 [Image Processing and Computer Vision]: Scene Analysis—Object recognition
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1. INTRODUCTION

This paper addresses the challenging problem of automatic image classification and tagging. The aim
is to derive high-level concepts or tags for images by jointly exploiting the effects of interrelated se-
mantic classes and low-level visual features. The novel contributions of this work lays in two main
aspects: First, an approach to derive multi-feature fusion models using a suitable multi-objective op-
timisation technique. This approach is referred to as Multi-Feature Learning (MFL). Second, a novel
Semantic Context Learning (SCL) method is developed to effectively promote image classification per-
formance by exploring contextual relationships in images. The proposed approach uses a block-based
representation scheme for analysing visual elements in images.

In previously reported works on image classification and retrieval, accuracy is often limited due to
the unreliable outputs from the classifiers. This is because classifiers often rely on single low-level
features, which are not always capable of interpreting visual objects into varying and complicated se-
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mantic meanings. To tackle this problem, the combination of low-level features for image classification
has been widely considered in the literature. However, different visual features and their similarity
measures cannot be combined straightforwardly [Deselaers et al. 2008]. Thus, the question related to
the definition of a models joining several similarity functions requires careful consideration. A number
of approaches have been proposed to address this question. One general approach was to append dif-
ferent feature vectors into a large global feature vector or combine distances obtained in each feature
space [Chun et al. 2008; Li and Wang 2003; Jain and Vailaya 1996; Berman and Shapiro 1999; Rui
et al. 1998]. Weights obtained using different methods can be applied on each feature space accord-
ing to their importance. Some research used a generic programming framework to derive a nonlinear
combination of image similarities [Torres et al. 2009]. Another general approach related to merging
multiple classifiers that are trained on individual features, for example, using multiple kernel learn-
ing (MKL) for an optimal combination of kernels which captured different feature channels [Zhang
and Ye 2009; Gehler and Nowozin 2009; Vedaldi et al. 2009]. Alternatively, several other computer
vision approaches were based on local interest point detectors and descriptors invariant to geometric
and illumination variations [Mikolajczyk and Schmid 2005; Csurka et al. 2004].

In this paper a different MFL approach is used to enable multi-feature based image classification.
It relies on a multi-objective learning algorithm for deriving a unique semantic based multi-feature
fusion model [Zhang and Izquierdo 2007]. Such a model aims to represent the most descriptive visual
patterns of an object class considering different visual aspects. Here, the MFL approach is used to
learn a suitable model for combining features and metrics. The core of MFL is the widely used Multi-
Objective Optimisation (MOO) strategy, described in [Steuer 1986; Knowles and Corne 2000]. The main
advantage in this strategy is that it is able to find a general optimum across potentially conflicting
visual signatures for a concept. Thus, the obtained multi-feature model simultaneously encapsulates
different aspects of the most representative visual patterns for each unique concept, without however
assigning fixed relevance factors to each one of the used visual features. To the best of our knowledge,
the MOO strategy has never been applied in feature fusion and content based image classification
scenarios before the authors’ earlier work [Zhang and Izquierdo 2007], in which the initial version of
MFL approach was proposed. In the initial version, the focus of MFL was on finding suitable feature
weighting factors that can later be used to make simple rankings of images. Based on the previous
work, the new contribution in this paper is that the MFL approach is integrated into a classifier so
that it can be directly used for an image classification and annotation purposes. More importantly,
from implementation perspective, the new MFL approach has been carefully optimised to ensure its
capability of handling large datasets. It is worth noting that the MFL approach focuses on deriving
suitable fusion models for multiple features. Instead of relying on any of the single features, the MFL
approach can use any set of features as proposed in the literature. The used features could be MPEG-7
visual features [Chang et al. 2001], well developed colour and texture features [Swain and Ballard
1991; Tuceryan and Jain 1993], local distinctive image descriptors [Lowe 2004], codebooks obtained
using bag-of-features approach [Zhang et al. 2011], etc. The proposed multi-feature fusion model is not
restricted to the features being employed. However, comparison of different visual features is out of
the scope of this paper.

In realistic image classification scenarios, images are complex and they usually consist of many
semantically meaningful objects interrelated to each other. The SCL method is designed for jointly
analysing visual-semantic context information hidden in the content based on Bayesian models. Us-
ing the SCL method, the visual-semantic context can be learned and exploited to further improve
the classification power of the MFL approach. In the literature, classification of visual content ac-
cording to their semantic meanings can incorporate domain knowledge to influence the decisions by
context, grammar, semantics and other high-level information. In this aspect, schemes for conceptual
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synthesising and reasoning at semantic level have been developed, including statistical association,
conditional probability distributions, different kinds of monotonic and non-monotonic and fuzzy rela-
tionships [De Jong et al. 2007; Fan et al. 2008; Koskela et al. 2007; Lavrenko et al. 2004; Zhu et al.
2005]. Many object-based image classification frameworks relied on probabilistic models for semantic
context modelling and inference [Kherfi and Ziou 2007; Aksoy et al. 2005; Vailaya et al. 1998; Zhang
and Zhang 2007; Li and Wang 2003]. In contrast to object-based classification solutions, some works
use context modelling in scene classification e.g., indoor vs. outdoor or cityview vs. landscape [Vailaya
et al. 1998; Rasiwasia and Vasconcelos 2009]. Context modelling and exploitation has also been widely
applied in the field of video annotation and retrieval, based on techniques such as boosted conditional
random field (CRF) [Jiang et al. 2007] or domain adaptive semantic diffusion technique [Jiang et al.
2009]. The SCL method proposed in this paper is different from the existing research works targeting
the task of object based image classification, in the sense that it can automatically learn a visual-
semantic context model from a small training set without relying on dedicated model designs that are
restricted to particular scenarios. Thus the definition of the model structure is a fully automatic learn-
ing process. There are two main advantages in such a method. First, the method is not restricted to
a certain scenario or application domain but can be applied to any database with its own semantic
context. Second, the user is not required to be an expert in the application scenario in order to be
able to define the context model according to the domain knowledge. Rather, the context model is au-
tomatically learned using a small sized training set and the multi-feature similarities. The automatic
learning process is conducted using a search-based algorithm – K2. The learned visual-semantic con-
text model is then used to calculate the probabilities conveying the effects that the existing concepts
have on each other.

Some works in the literature shared similar ideas in some aspects to the SCL approach. Despite
of these similar aspects, SCL has its unique and novel contribution to the research topic on seman-
tic context modelling. For example, the work in [Rasiwasia and Vasconcelos 2009] took a similar idea
of context modelling using the output of some visual-feature based concept detection methods. How-
ever, this system was designed for a scene classification task; while in this paper, by using the block
based representation, the proposed system tries to focus on local regions at object level in order to
detect object concepts in natural complex images, which are often ignored at scene level. Moreover,
their main approach used mixtures of Dirichlet distributions for learning the concept models, while
the SCL uses K2 algorithm context modelling. The work in [Tang et al. 2009b] focused on detect-
ing concepts from user generated content including images and their associated tags using a sparse
graph-based semisupervised learning approach. However, it relied on textual data for learning and
classification while the proposed approach in this paper is purely content based and the intermediate
semantic features are directly inferred from the visual features. [Qi et al. 2007] used a Correlative
Multi-Label paradigm based on Gibbs Random Fields which simultaneously classifies concepts and
models correlations between them. [Rabinovich et al. 2007] used a CRF framework to maximise object
label agreement according to contextual relevance. A commonality in these three works [Qi et al. 2007;
Tang et al. 2009a; Rabinovich et al. 2007], was that they constructed correlative models from external
resources, such as LSCOM and Google sets, in off-line settings. Comparing to these works, SCL is a
purely data-driven approach, which means it does not require any external guidance about the statis-
tics of high-level contextual relationships, i.e. Google sets, LSCOM, etc. The inputs required by SCL
is multi-feature similarities directly obtained from the MFL module and the ground-truth annotation
of the class in concern. Moreover, a training set for SCL module consists of only five hundred train-
ing samples, while training sets used in MFL contain only 20 image blocks for each class. The other
systems in the literature usually need significantly bigger training sets.
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In addition to the two new methods, MFL and SCL, an important aspect of this research is that
it uses regular image blocks as the basic units for visual representations of objects associated to se-
mantic concepts. Feature extraction for visual representation, as well as, the generation of training
sets are based on such image blocks. In the literature, most region-based approaches rely on image
segmentation [Athanasiadis et al. 2007; Datta et al. 2008; Jing et al. 2004; Li et al. 2008; Natsev et al.
2004; Wang et al. 2001]. However, there are several intrinsic difficulties in using image segmentation
for semantic classification. Firstly, due to the complexity of natural images, segmentation algorithms
based on visual features usually segment regions, not semantically meaningful objects. Indeed, precise
extraction of objects from images using automated segmentation is an open problem in computer vi-
sion. Secondly, segmentation algorithms often add heavy computation loads to the system. Moreover,
some human assisted segmentation algorithms may impose burdens on users and thus are unfeasible
when large databases are processed. Considering these facts, alternative schemes for image decompo-
sition have been exploited recently [Dagli and Huang 2004]. In this paper, it will be shown experimen-
tally that by combining this approach with other appropriately designed methods, good performance
can be achieved, while maintaining a low computational load. Block regions are used as basic units
without assuming precise segmentation or structures for representing objects. In general, the goal of
block-region based object representation schemes is to reduce the influence of noise coming from the
background and surrounding objects, and to identify suitable visual patterns for a given object with-
out introducing errors or heavy computational cost associated with image segmentation. The work in
[Vogel and Schiele 2007] demonstrated that using block regions and semantic modelling for natural
scene detection, good performance can be achieved. The concepts used in this work were relatively
easy concepts for block regions, such as sky, cloud, etc. In our paper, we intend to test the block-based
representation scheme on some more challenging object concepts, which have clear borders of their
shapes, such as lion and car. An interesting observation on our experiments, is that this ‘simplistic’
approach to object extraction does provide a reasonable performance when they are applied in the pro-
posed image classification framework. However, without losing generality, the proposed framework has
the full flexibility in supporting other representation schemes such as segmented regions, if effective
and efficient segmentation algorithms are available [Levinshtein et al. 2009].

The rest of the paper is organised as follows: Section 2 first gives an overview of the image classifi-
cation framework, in which proposed ideas of MFL, SCL and block based representation scheme, are
instantiated. This section also describes the pre-processing steps in the block-based analysis scheme.
Section 3 introduces the MFL approach to multi-feature fusion. Section 4 presents the SCL method. In
Section 5 the experimental setup and selected results from comprehensive evaluations are presented.
The paper closes with conclusions in Section 6.

2. IMAGE CLASSIFICATION FRAMEWORK AND BLOCK-BASED VISUAL ANALYSIS

The research described in this paper consists of two main aspects – the MFL approach for multi-feature
fusion and the SCL method for semantic context inference, both of which rely on the block-based rep-
resentation scheme. These ideas and approaches are instantiated in an integrated image classification
framework for experimental purposes. The general structure of the experimental framework used in
this paper is illustrated in Fig. 1. All experiments carried out and presented in this research are con-
ducted based on this framework.

In the following of this section, we present the details on the visual analysis steps based on the
block-based representation scheme for semantic objects. The reasons for using the block-based repre-
sentation scheme are explained and the advantages and deficiencies are discussed. The block based
analysis module of the framework comprises five processing steps: (1) Image decomposition; (2) Low-
ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 0, Publication date: 2012.
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Fig. 1. Diagrammatic outline of the proposed system for multi-feature analysis and semantic context learning.

level feature extraction; (3) Distance calculation and normalisation; (4) Representative group selection;
(5) Centroid calculation.

2.1 Visual analysis in block regions

This sub-section describes the first two pre-processing steps: image decomposition and low-level fea-
ture extraction. In the first step, each image in the database is partitioned into a grid of blocks. In
Fig.2 an example is presented illustrating the blocks representing existing objects in an image, includ-
ing cloud, vegetation, elephant and rock.

Next, a set of n low-level features, {Fj : j = 1, 2, ..., n}, are extracted from each block in the whole im-
age database. The proposed technique is independent of the choices of low-level features. The features
selected for experimental purposes in this paper are described in Section 5.

2.2 Distance calculation and normalisation

In the third step, suitable feature spaces endowed with appropriate normalised distance functions are
built. Here it is assumed that each feature Fj has an inherent distance function d̃. Thus, it is assumed
that n feature spaces (Fj , d̃) are available. Clearly, the approach to estimate an optimised multi-feature
distance relies on comparing features and distances from different feature spaces. In most cases, the
underlying distances have very different value ranges, scales and densities. To ensure comparability,
a critical normalisation step is required.

Consider two blocks in the dataset Γ, and their feature vectors vi and vk, which are extracted from
feature space Fj . The distance between the two vectors are estimated as d′ = d̃(vi, vk). Once the original
distance is estimated using the dedicated metric of the feature space, a normalisation step is carried
out to transform all distance values into the unitary range [0, 1]:

d =
(d′ − µ)

σ
, (1)

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 0, Publication date: 2012.



0:6 • Q. Zhang and E. Izquierdo

Fig. 2. An example of block regions displaying concepts.

Table I. A bank of suitable PDFs.
Distribution PDF Mean Variance

Normal Θ = (µ, σ)
1

√
2πσ2

exp

(
−

(x− µ)2

2σ2

)
µ σ2

Gamma Θ = (y, σ) xk−1 exp(−x/θ)
Γ(y)θk

yθ yθ2

Laplace Θ = (µ, β)
1

2b
exp

(
−
|x− µ|
β

)
µ 2β2

Log-norm Θ = (µ, σ)
1

x
√

2πσ2
exp

(
−

(ln x− µ)2

2σ2

)
eµ (eσ

2 − 1)e2µ+σ
2

Rayleigh Θ = (µ)
x

σ2
exp

(
−
x2

2σ2

)
σ

√
π

2

4− π
2

σ2

Exponential Θ = (µ) λexp(−λx)
1

λ

1

λ2

where d is the normalised distance, µ and σ are the mean and standard deviation of the underlying
distance distribution for that feature space. To estimate the values of corresponding distribution pa-
rameters for a feature space, such as µ and σ, we approximate the true distance distributions using
a set of Probability Distribution Functions (PDFs). As presented in Table I, six different commonly
used PDFs are considered, including Normal, Gamma, Laplace, Log-norm, Rayleigh and Exponential.
These PDFs are denoted as pk, k = 1, ..., 6. Based on the distances calculated from the dataset, the
parameters Θk of pk are determined and the best distribution approximation is selected by evaluating
the Kullback-Leibler (KL) divergence between the actual distribution and the PDFs.
ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 0, Publication date: 2012.
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Fig. 3. Positive (first row) and negative (second row) samples of concept lion.

In the sequel, normalised distances are denoted as d and the normalised feature space as (Fj , d).
Furthermore, for the sake of simplicity, a normalised feature space (Fj , d) is called a “feature space”
and a normalised distance d is called a “distance”.

2.3 Representative group selection and centroid calculation

In the next two processing steps, the aim is to build a suitable representation for a given object class.
This is done by first selecting a list of sample blocks to visually represent the class, and then general-
ising a ‘centroid’ to indicate the center of the class in the targeted multi-feature space model.

A semantic class or object can often be represented by a single key-word or tag, e.g., tiger. Due to
the complexity of natural images, it is hard to find any single image or image region giving an optimal
visual representation of a single class. Therefore in this paper, we use a small group of block samples
to approximate an optimal representation for an object class. This group of samples is referred to as
the representative group. For the given class, let us denote such a representative group as R = {bi, i =
1, 2, ...,m}, R ∈ Γ. Here, m is the total number of representative samples in R and bi is a sample block.

To improve the discriminative power of the proposed classifier, two types of representative samples
are considered in the proposed MFL approach. R+ contains relevant examples for the semantic class
as defined by ground-truth. They are referred to as positive samples. R− contains samples which do not
represent the class of concern but are easy to be classified as relevant to it. These samples are referred
to as negative samples. R = R+ ∪R−. In the example given in Fig. 3, blocks in the first row are positive
samples for the concept lion. They contain a yellowish hair texture of a lion. The blocks in the second
row are negative samples which represent other objects with “lion-like” colour and texture patterns.

If new classes are added to the set of semantic classes or the database is populated with new im-
ages containing new concepts, new representative groups for the incoming concept classes need to be
generated.

The final processing step of the block-based analysis module calculates the centroid of a class in each
of the considered feature spaces using the positive representative group R+. A centroid v̄ in feature
space (Fj , d) can be calculated by finding the sample with the minimal sum of distances to all other
positive samples in R+. Let vi and vk be the feature vectors extracted from representative samples bi
and bk , i, k ∈ [1, |R+|], in feature space (Fj , d). d(vi, vk) is the distance between these two blocks. Then
the centroid of the representative group in the feature space (Fj , d) can be defined as:

v̄ = argmin
i∈[1,|R+|]

 ∑
k∈[1,|R+|],k 6=i

d(vi, vk)

 . (2)

Taking v̄ as an anchor, for a given block bk in Γ, where k ∈ [1, |Γ|], the distance in feature space Fj from
bk to the centroid v̄ can be calculated using feature vector vk of bk:

d̄k = d(v̄, vk). (3)
ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 0, Publication date: 2012.
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All the centroids of different feature spaces form a particular set of vectors V̄ = {v̄1, v̄2, ..., v̄n}. V̄ is
referred to as the generalised centroid of R, since V̄ may be represented by multiple positive samples.
The generalised centroid V̄ is always calculated considering only positive samples. This is because the
negative samples can locate anywhere in the feature space and calculating the generalised centroid of
both positive and negative representative samples would become meaningless and adversely affect the
subsequent classification process.

For the representative group R containing a total number ofm representative samples, a generalised
distance matrix M̄ of size m× n can thus be constructed:

M̄ =

d̄1,1 d̄1,2 ... d̄1,n

d̄2,1 d̄2,2 ... d̄2,n

...
. . .

...
d̄m,1 d̄m,2 ... d̄m,n

, (4)

in which the element d̄i,j in row i and column j is the normalised distance from representative block
bi, i = 1, 2, ...,m, to the centroid vector v̄j in feature space (Fj , d), j = 1, 2, ..., n.

Now, let us assume that a total number of r semantic classes are considered in an experiment. Based
on the methods described in this section, for each class, a representative group R can first be selected,
a generalised centroid V̄ can then be calculated and a generalised distance matrix M̄ can be built as
in (4).

3. MULTI-FEATURE SPACE LEARNING BY MOO

The main goal of the MFL approach is to define a suitable multi-feature model for each semantic class.
The core in this approach is a multi-objective optimisation strategy that is used for learning an opti-
mal combination model through optimising multiple objective functions. Since several representative
samples are required in order to display a representative visual pattern for a semantic class, the con-
tribution of each single sample may conflict with others. Thus, we construct an objective function for
each of the representative samples, and use the MOO strategy to find a solution that can achieve a
common optimum for all these functions.

Compared to multi-kernel learning methods [Gehler and Nowozin 2009; Vedaldi et al. 2009] or late
fusion methods of multiple classifiers [Zhang and Ye 2009], the proposed MFL does not require using
kernels for classification or ranking of data. As described in Section 2, it uses only normalised similar-
ities in each feature space which cost very little in computation compared to the use of kernels. In this
section, we describe the novel approach to fusion model optimisation in the MFL module.

3.1 Objective functions for optimisation-based learning

As a result of the steps described in Section 2, for a semantic class, a generalised distance matrix M̄ is
derived. The next stage would be to build the objective functions from the generalised distance matrix.
The objective functions will be used as the basis for performing optimisation in the subsequent stage.

In order to take into account the contribution from each single representative sample, we use each
row in M̄ to construct one objective function. Each objective function is formed as weighted linear com-
binations of feature-specific distances. The weighting factors α are used as the optimisation variables
in the next stage. Considering M̄ in (4), a number of m objective functions can be constructed:
ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 0, Publication date: 2012.
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D(A) =


D1 =

∑n
j=1 αj d̄1,j ,

D2 =
∑n

j=1 αj d̄2,j ,
...,

Dm =
∑n

j=1 αj d̄n,j .

 (5)

The MFL approach seeks to learn from the representative group, a suitable set of coefficients A =
{αj : j = 1, 2, ..., n} subject to the constraint:

∑n
j=1 αj = 1. Objective functions for the positive repre-

sentative samples are denoted by D+
i and those for negative representative samples are denoted by

D−i .
Learning a multi-feature fusion model is now transformed into a problem of finding a solution that

optimises each of these objective functions in (5). The weighted linear combination model D, together
with the targeted optimal weighting factors Â, are referred to as the multi-feature fusion model in this
paper.

3.2 Optimising a multi-feature fusion model using MFL

Generally speaking, an optimum is usually defined as the maximum or minimum of some objectives.
The optimal solution Â should lead to the maximal or minimal value of the objective function(s) in
D(A) among all possible scalar combination of A that satisfy the constraint(s). In the proposed MFL
approach, the optimum is regarded as the minimum of all positive objective functions D+

i and max-
imum of all negative objective functions D−i . The problem of learning a multi-feature model is now
posed as to find a solution that optimises each of these, in some cases contradicting, objective func-
tions. Observe that different representative blocks may display different visual characters but these
differences need to be harmonised. In other words, it means that simultaneous optimisation of multi-
ple objectives is required. This optimisation process can be achieved using the MOO strategy. While
various algorithms have been developed based on the MOO strategy, in this work Pareto Archived Evo-
lution Strategy (PAES) [Knowles and Corne 2000] is adopted as the MOO algorithm to optimise the
fusion model for visual descriptors. In PAES, the optimisation process first generates a set of potential
Pareto optimal solutions according to the algorithm 1.

Using one sentence to describe the rule in this algorithm for defining the Pareto optimum Â, it can
be stated as:

There does not exist another A′ ∈ Φ such that Di(A
′) ≤ Di(Â), for all i ∈ {1, 2, ...,m}, where

Φ is the whole set of possible solutions.

This algorithm usually generates a set of potential Pareto optimal solutions Φ = {A1, A2, ...}. Thus,
a second step is required to decide which one of these solutions is the most suitable or most feasible
one. The meaning of optimum in our specific task can be described as the fusion model in which all the
vectors for positive representative blocks are closely gathered around the generalised centroid while
the vectors for negative representative blocks are randomly scattered around the generalised centroid.
Thus, a sensible selection criterion can be defined as to find the Â that satisfies:

Â = argmin
Â∈Φ

∑
i∈[1,|R+|]Di(Â)∑
k∈[1,|R−|]Dk(Â)

. (6)

At this point the MFL approach has achieved its goal in finding a most suitable multi-feature fusion
model for a semantic class. Then in the next stage, the obtained fusion model D(Â) will be employed
to build a multi-feature based image classifier.

ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 0, Publication date: 2012.
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ALGORITHM 1: PAES Algorithm
ran = generateInitialRandonSolution()*;
archive.add(ran);
main: mut = mutate(ran);
if (ran.dominates(mut)) then

mut = null; // discard mut
else if (mut.dominates(ran)) then

ran = mut; archive.add(mut);
else if (mut.dominatedby(archive)) then

mut = null;
else

isNew = test(ran, mut, archive); // check whether mut is a new solution
if (isNew) then

archive.add(mut);
end
if (checkTerminationCriterion() == ture) then

return;
else

goto main; // goto line 3
end
*Here, ran is a random data sample, mut is a mutant data sample, archive is the archive of Pareto optimum.

3.3 Image classification in optimised multi-feature space

For a particular semantic class w, an optimal multi-feature fusion model D(Â) is obtained from the
previous optimisation step. Using D(Â), the multi-feature distance of any block b ∈ Γ considering class
w, can be calculated by:

D̂b,w = Db,w(Â) =

n∑
j=1

α̂j d̄j,b,w, (7)

where α̂j ∈ Â. Among all blocks of an image g, the block b that has the smallest multi-feature
distance to the generalised centroid of class w is defined as the salient block for class w in this image.
In the classification stage, a similarity value Sb,w = 1− D̂b,w, is used instead of the distance value that
demonstrate the dissimilarities. For instance, salient blocks for the classes tiger, vegetation and rock
are highlighted in Fig. 4 with solid borders. Here, the similarities of this image to the semantic classes
tiger, vegetation and rock are 0.9438, 0.7675, 0.6927, respectively.

Images that have larger similarities than an empirically defined threshold are considered as rele-
vant to the target semantic class. In this way, an initial semantic image classification can be achieved
by the first two modules in the framework. In Section 5, some experiment results using this classifier
are presented, comparing to several single feature based classification results. It shows that the pro-
posed multi-feature based classification approach performs better than the best single feature-based
classification.

4. SEMANTIC CONTEXT LEARNING AND INFERENCE

The performance of MFL module is considerably better compared to classifications based on single
features. However, there may be more potential for improvements beyond the intrinsic limitation of
relying on low-level visual features to describe high-level semantics. Indeed, low-level visual features
are generally considered as more ambiguous and semantically impoverished compared with sound
patterns, phonemes, words or dialogues. In the example given in Fig. 4, enlarged blocks with red solid
ACM Transactions on Applied Perception, Vol. 0, No. 0, Article 0, Publication date: 2012.
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Fig. 4. An example of an image and its salient blocks for classes.

borders contain concepts that actually exist in this image. The similarities between these salient blocks
and the classes are higher than their corresponding thresholds, so this image can be correctly labelled
with keywords tiger, vegetation and rock. Blocks with blue dashed borders are salient blocks of some
classes that do not match with this image. The obtained similarities of the salient blocks to water, car,
cloud, flower, and building classes are lower than their thresholds. Thus, this image is correctly not-
labelled with the corresponding keywords. The similarities of the salient blocks to lion and elephant
classes are higher than their thresholds, so these two corresponding keywords are wrongly labelled on
this image. These mistakes are unavoidably due to the limited discrimination power of visual feature
based classification.

This observation motivated us to exploit the semantic context existing in images and thus improve
the system performance. To illustrate the meaning of context, let us consider Fig. 4 again. Here, we use
the similarity values to represent the probabilities of a block belonging to a particular class. Thus, the
probability of an image belongs to class tiger should be increased when the same image also belongs to
vegetation or rock classes, and should be decreased if the image belongs to building or car classes. We
note that the semantic interrelations in images form a meaningful context, which can be potentially
used to improve the image classification performance.

Semantic context learning is achieved by jointly considering the multi-feature similarities extracted
from each block using the MFL module, and exploring the relationships between them. The proposed
SCL module uses a Bayesian network to model these relationships. As shown in Fig. 5 (left), two steps
are considered in the SCL module. In the learning step, a small set of images are used as a training set
to obtain the semantic context inference model. In each one of these images, both visual and semantic
evidences are taken into account as training data. Then, in the inference step, the learned context model
is used to infer on the interrelationships between multiple classes within an input image, synthesis
visual-semantic evidences and generate improved semantic labels.

A key feature of the Bayesian Network is its capability to handle incomplete information gracefully.
Thus, despite of the fact that the multi-feature visual similarities extracted from the MFL module
are not 100 percent correct, they can be used as a good evidence in building a meaningful Bayesian
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Fig. 5. Left: Illustration of the learning, inference and classification process based on the visual-semantic context model; Right:
An example of a Bayesian network structure modelling a simple scenario of five classes.

network model. Improved classification is then achieved by solving a joint inference problem relying
on the integration of existing clues to disambiguate the visual-semantic evidences in a suitable context
defined through an experimental scenario.

Assume a total number of r semantic classes are considered in the experiment, denoted as W =
{w1, w2, ...., wr}. Multi-feature based classifications are performed on all the images for all these classes
using the MFL module. The corresponding input for obtaining a context model for class wi is a set of
training images that come with two types of information. The first type of information is the ground-
truth annotation on the class wi. This data is referred to as the semantic evidence, denoted as ci. The
other type of the input information is the multi-feature similarities of the training images to all classes
inW . This data is referred to as the contextual visual evidences, denoted as E = {ei, i = 1, 2, ..., r}where
ei is the contextual visual evidence for class wi and E is the collection of this evidence for all classes.

Taking the simple example as in Fig. 4 again, if W = {cloud, rock, tiger, vegetation,water|r = 5} and
the class in concern is w3 tiger, a typical naı̈ve Bayesian network can be constructed as depicted in
Fig. 5 (right). Since w3 is the current concerned class, the node for semantic evidence c3 is the parent
node and the contextual visual evidence nodes e1, ..., e5 are the child nodes. For this example structure,
the joint probability of c3 and E is denoted as P (E, c3). According to the Bayes’ rule, P (E, c3) can be
re-written as:

P (E, c3) = P (c3) · P (E|c3) = P (c3) · P (e1, e2, ..., e5|c3). (8)

Then if we apply the chain rule of probability theory on (8):

P (e1, e2, ..., e5|c3) = P (e1|c3) · P (e2, e3, e4, e5|e1, c3)

= P (e1|c3) · P (e2|e1, c3) · P (e3, e4, e5|e1, e2, c3)

= P (e1|c3) · P (e2|e1, c3) · P (e3|e1, e2, c3) · P (e4, e5|e1, e2, e3, c3)

= P (e1|c3) · P (e2|e1, c3) · P (e3|e1, e2, c3) · P (e4|e1, e2, e3, c3)

P (e5|e1, e2, e3, e4, c3).

(9)
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Intuitively, it is reasonable to assume that the multi-feature similarity of one image to class w1

is an independent value to its multi-feature similarity to class w2. Therefore, any two evidences in
{e1, e2, ..., e5} should be independent to each other. Based on this assumption, the following terms can
be re-written:

P (e2|e1, c3) = P (e2|c3)

P (e3|e1, e2, c3) = P (e3|c3)

P (e4|e1, e2, e3, c3) = P (e4|c3)

P (e5|e1, e2, e3, e4, c3) = P (e5|c3).

(10)

Thus, the joint probability P (E, c3) can be re-written as:

P (E, c3) = P (c3) · P (E|c3) = P (c3) · P (e1, e2, ..., e5|c3)

= P (c3) · P (e1|c3) · P (e2|c3) · · ·P (e5|c3)

= P (c3) ·
5∏

i=1

P (ei|c3),

(11)

In a general case, assuming r semantic classes are available and the class of concern is ck, k =
1, 2, ..., r, instead of (11) we have:

P (E, ck) = P (ck) ·
r∏

i=1

P (ei|ck). (12)

There are many methods for learning both the structure and parameters of Bayesian networks from
the given training data. Learning the network structure and parameters is in fact a search through the
space of all possible links and parameters of the set of nodes ni, i = 1, 2, ..., t, where t is the total number
of nodes. In the proposed SCL method, given a set of pre-defined classes and the training data, a visual-
semantic context model is constructed by applying the K2 algorithm [Cooper and Herskovits 1992]. K2
is a greedy search technique. It starts from an empty network with random initial settings and create
a Bayesian network by iteratively adding a directed arc to a given node ni from the parent node whose
addition most increases the K2 score of the resulting graph structure. The iterations terminates when
no more possible additions could increase the K2 score. The evaluation metric for calculating the K2
score of network structure is described as follows.

Given a database ∆, the K2 algorithm searches for the Bayesian network structure G∗ with maximal
Pr(G∗|∆), where Pr(G|∆) is the probability of network structure G given the database ∆. For two
Bayesian network structures G1 and G2, we have

Pr(G1|∆)

Pr(G2|∆)
=
Pr(G1,∆)

Pr(G2,∆)
(13)

Thus, the problem of calculating Pr(G|∆) boils down to estimate Pr(G,∆). Let N(G) = {ni, i =
1, 2, ..., t} be the set of nodes in ∆, where each node ni has pi possible values {υik : k = 1, 2, ..., pi}. Be-
sides, each node ni has a set of parent nodes π(ni), with a total number of qi instantiations. Define sijk
to be the number of cases in ∆ in which node ni has the value υik and ωij to be a unique instantiation
of π(ni), j ∈ [1, qi] and sij =

∑pi

k=1 sijk. The set of conditional probability distributions associated to a
directed acyclic graph G is further denoted as GPr. Assuming that the cases occur independently and
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the conditional probability density function pdf(GPr|G) is uniform, then the K2 score can be computed
as:

Pr(G, I) = Pr(G)

t∏
i=1

qi∏
j=1

(pi − 1)!

(sij + pi − 1)!

pi∏
k=1

sijk!, (14)

where Pr(G) is the prior on the network structure that equals to a constant, thus it can be ignored.
Therefore, the evaluation metric for computing the K2 score of a network structure G is given by:

K2score =

t∏
i=1

qi∏
j=1

(pi − 1)!

(sij + pi − 1)!

pi∏
k=1

sijk!. (15)

Assume the nodes are in a given order and ni cannot be a parent of nj if i > j. The algorithm starts
a iterative process for each node ni, including the following steps: 1) calculate the score for the case
where ni has no parents; 2) calculate the score for the case where ni has a parent among all nodes
that have smaller indices than i. If any of these are greater the case with no parents, select the node
nj which gives the maximum and add an arrow from ni to nj . This process is iterated by adding more
parents and continue until no further nodes increasing the score can be found.

After the structure G∗ of the Bayesian context model is learned, an inference process is carried out
to measure joint probability distributions between the contextual visual evidences and the semantic
class in each input image, as in (12). The multi-visual-feature similarities of images are replaced by
the posterior probabilities inferred using the visual-semantic context model learned for a class. By
applying the Bayes classifier using the context model of a class, images in the database are classified
and labelled accordingly.

5. EXPERIMENTS

In this section, we present our experimental results and analyse the performance of the multi-feature
fusion model and semantic context model obtained using MFL and SCL approaches. In Section 5.1, the
results are evaluated based on a dataset called DB-COMB10000. In Section 5.2, we compare the perfor-
mance of the proposed approaches with some other state-of-the-art approaches using a benchmarking
dataset in the MIRFlickr database.

Without losing generality, seven visual primitives have been used to assess the performance of our
experiments: Colour Layout Descriptor (CLD), Colour Structure Descriptor (CSD), Dominant Colour
Descriptor (DCD), Edge Histogram Descriptor (EHD), Texture based on Gabor Filter (TGF), Grey-
Level Co-Occurrence (GLC) and Colour Histograms in HSV Space (HSV). Observe that the first four
primitives are MPEG-7 descriptors [Chang et al. 2001], while the other three are well established
descriptors from the literature [Swain and Ballard 1991; Tuceryan and Jain 1993]. It is important
to stress that the proposed approaches are not tailored to a given number of low-level descriptors;
instead, any descriptor bank can be used.

Training sets of SCL module were randomly selected subset from the experimental image collections.
In our experiments each training set contained five hundred images. The representative groups for the
MFL module were also selected from the these training sets. Positive representative samples were
collected directly based on existing ground-truth of the training sets. In case when negative samples
were needed, they were selected by using the first a few false positive samples in the result of R+ based
MFL classification.
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5.1 Experiments in DB-COMB10000 dataset

The proposed image classification approaches were first evaluated using an image collection named
DB-COMB10000. DB-COMB10000 contains 10000 images selected from the Corel database and the
LabelMe database [Russell et al. 2008]. The aim is to produce a dataset that is close to realistic image
repositories in which images are complex and contains multiple semantic objects in both background
and foreground. The context formed by multiple concept classes is an essential ground for inference and
classification in the SCL method. For that reason this paper did not use popular object classification
databases such as PASCAL VOC [Everingham et al. 2010], in which each image only contains a single
object class. The DB-COMB10000 dataset has pictures depicting a variety of topics, taken in different
time, places and conditions. As a consequence, only a small portion of images belong to some of the
considered classes used in this paper, especially for the classes representing un-common objects such
as elephant and tiger. Thus, the classification task in this dataset was very difficult and represents a
realistic image classification scenario. Notice that the DB-COMB10000 dataset is fully annotated and
of reasonable size comparing to some of the state-of-the-art image databases in the literature that also
have full annotations.

The proposed approaches in this paper mainly target object based image classification. Thus, a set
of object classes were selected here for experiments, covering most object-like semantic elements of
image content. For DB-COMB10000, ten classes have been selected for testing based on subjective
observation throughout the experimental dataset. These classes are: building, car, cloud, elephant,
flower, lion, rock, tiger, vegetation and water.

The first experiment was performed based on the multi-feature fusion models generated by the MFL
approach. To assess the performance of the multi-feature fusion models, the obtained results were
compared to similar classifications but employing only single features. Thus for each class, eight exper-
iments were performed, including one Multi-Feature Based Classification (MFBC) using the obtained
class-specific multi-feature fusion models, and seven single feature based classifications (SFBCs) based
on each one of the seven visual features. Fig.6 (left) shows the mean precision-recall curves across ten
classes for the MFBC result and seven single feature based classification results. It can be observed
in this figure, that the proposed multi-feature fusion models significantly improved the classification
performance against any of the used single visual features.

A second experiment was performed to assess the performance of the SCL approach. Here, the multi-
feature similarities were used as the contextual visual evidences for SCL based inference and classifica-
tion. A Bayesian network was constructed to model this semantic context by carrying out the learning
process as depicted in Fig. 5. In the inference process, a posterior probability can be calculated through
this Bayesian model, indicating how likely each testing image belongs to a target class given both
its multi-feature similarity and the visual-semantic context model. This round of experiments is re-
ferred to as the Context Inference Based Classification (CIBC). To show the classification performance
of CIBC, the same mean precision-recall curve is depicted in Fig.6 (right). For comparison, the curve
for MFBC is also depicted in the same figure. A clear observation from this picture is that the CIBC
results have shown clear advantage over the MFBC results.

The results of MFBC and CIBC experiments show that the classes of an image can be effectively de-
termined using the two proposed approaches: MFL and SCL. MFBC performed much better than any
single feature based classification, which means that the MFL approach was able to build a suitable
multi-feature fusion model for a particular semantic class. The obtained multi-feature fusion model
synthesised the useful aspects from different features, and thus provided better discrimination power
compared to the single features. Furthermore, the CIBC produced even better results compared to
MFBC. This means that the SCL approach was able to build a useful visual-semantic context model
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Fig. 6. Left: Mean precision-recall curves of ten classes using MFBC and SFBCs. The curve marked with o presents results
of MFBC, while the other curves present results of SFBCs; Right: Mean precision-recall curves of ten classes using the two
proposed approaches.

using the imperfect visual evidences, which in our case were the multi-feature similarities generated
by the MFL approach. The inference process based on this model can boost the classification perfor-
mance significantly.

5.2 Image classification in MIRFlickr25000 dataset

MIRFlickr25000 dataset [Huiskes and Lew 2008] is an image collection consists of 25000 images that
were downloaded from the social photography site Flickr.com through its public API. These images are
representative of a generic domain. MIRFlickr mainly targets concrete visual concepts in high-quality
colour images, which suits the purpose of the object-based image classification system. This image
collection has been used in image annotation tasks of the ImageCLEF benchmarking forum. In this
task, usually both visual features and semantic features, i.e., user tags associated to the images, are
used. However, in this paper, the proposed image classification system is purely visual based.

MIRFlickr provides full annotation of 24 potential labels and 14 regular (subjective) annotations.
These concepts classes were considered in our experiments except two types of concepts. First, concepts
about scenes were not considered in this paper. The task for the proposed framework is object-centered
image classification. Scene classification is out of the scope of this paper. Second, concepts about hu-
man, i.e., female or baby, were not used in our experiments. Human detection and recognition has been
a famous and well-studied research topic. Many specialised systems are available in the literature ded-
icated to this task. Our proposed system aims at general image classification, and is not suitable in
detecting of human-related concepts. Therefore, the object classes being considered in our experiments
include 14 labels: sky, plant life, structure, clouds, sea, river, tree, flower, dog, bird, car, water, animals,
lake; and 8 regular annotations: clouds(r), sea(r), river(r), tree(r), flower(r), dog(r), bird(r), car(r).

The same seven visual features were used in the MFBC and CIBC experiments. Classifiers of MFBC
and CIBC were trained for each of the classes and the mean precision-recall curves across the 22
classes are presented in Figure 7.

For benchmarking purpose, the resulting average precisions (APs) of each of the 22 classes were
compared with the output of two visual feature based classification methods: a linear discriminant
classifier (LDA) and a support vector machine classifier (SVM) with RBF kernel, provided in [Huiskes
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Fig. 7. Mean precision-recall curves of 14 classes using the two proposed approaches.

Table II. Comparison in terms of AP of MFBC, CIBC, LDA and SVMs.

% animals bird bird(r) car car(r) clouds clouds(r) dog

MFBC 27.8 12.1 11.0 26.4 23.3 45.0 25.9 17.3
CIBC 29.6 11.6 10.6 27.0 22.9 50.9 29.6 17.8
LDA 26.8 9.7 9.6 14.2 12.2 57.7 44.5 10.8
SVM 27.8 12.8 12.9 17.9 22.7 65.1 51.1 15.5
relevant rate 12.9 3.0 2.0 5.0 1.7 14.5 5.4 2.7

% dog(r) flower flower(r) lake plant life river river(r) sea

MFBC 17.6 28.8 23.0 13.9 62.9 14.1 11.0 21.5
CIBC 22.9 30.2 17.4 15.8 64.7 18.1 13.0 35.9
LDA 11.2 30.1 31.8 13.9 64.2 13.0 6.9 25.5
SVM 15.6 46.9 51.9 18.8 68.7 17.9 10.2 36.6
relevant rate 2.3 7.4 4.4 3.0 34.8 3.7 0.6 5.3

% sea(r) sky structure tree tree(r) water Mean

MFBC 11.4 56.7 61.0 42.6 16.3 30.6 27.3
CIBC 14.4 63.9 62.5 43.5 13.3 36.6 29.6
LDA 9.1 74.9 61.5 43.4 14.4 35.7 28.2
SVM 12.6 77.5 62.6 51.4 20.5 44.8 34.6
relevant rate 0.8 31.0 40.4 18.3 2.7 13.1 9.8

et al. 2010]. In Table II, we present AP scores per concept class, for MFBC, CIBC, LDA and SVM. For
reference, a rate of relevant images per concept in the ground-truth database is also included.

For 17 classes out of 22, CIBC approach yielded higher AP scores compared to MFBC approach. In
average, CIBC had a higher mean AP score compared to LDA, while MFBC had slightly lower AP than
LDA (less than 1%). SVM performed better than the other three approaches in most classes. It should
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be noted that the better performance of SVM approach came at a much higher cost in calculation,
compared with the two proposed approaches.

In terms of performance, in our experiment, there were mainly two real-time steps to be considered:
1) distance calculation using the multi-feature fusion model in MFL and 2) semantic context inference
in SCL. A computer with Windows XP operating system and Intel Core-Duo E5200 CPU was used
in all experiments. For one classification process in about 20 thousand images on concept car, step 1)
used 13.37 seconds and step 2) used less than 1 second. As these on-line steps are based on straightfor-
ward arithmetic, the overall system has potential to be extended for application in large-scale image
databases. Some of the off-line processes, such as feature extraction, may be time consuming but as
they take place off-line, they would not affect the performance of the system.

6. CONCLUSIONS

In this paper, we have described an innovative framework for content based image classification sup-
ported by three closely collaborative approaches: multi-feature learning, semantic context learning
and block-based representation scheme for semantic classes. The block-based representation scheme
is an intuitive but effective way to extract object classes from complex images. The multi-feature learn-
ing process involves a multi-objective learning algorithm that is able to build optimised multi-feature
fusion models for each semantic class. The aim is to harmonise the different interests of multiple repre-
sentative block samples and generate a commonly agreed solution that satisfies the overall optimum.
By using this approach, different aspects of the characteristic visual patterns in an object can be syn-
thesised to generate a unified multi-feature space. The semantic context inference method has then
been employed to enhance the classification performance by jointly exploring the context among ob-
ject classes represented by blocks of an image. The visual-semantic context, which can be represented
by the interrelationships among object classes, is modelled using a Bayesian network. This Bayesian
model has been generated through learning process based on a search based algorithm K2 in a fully
automatic manner.

We have shown that, with extensive experiments, the proposed framework for image classification
was able to effectively classify visual content that belongs to a class. We have also shown that the
proposed approaches were able to handle a variety of problems in image classification without requir-
ing extensive human expertise and efforts for constructing the Bayesian model. We first demonstrated
the adequacy of the multi feature learning approach in semantic classification based on block regions.
The multi-feature based classification employing the learned fusion model outperformed single visual
feature based classifications, and other similar multi-feature based classification methods described in
the literature. On top of that, we have shown that the proposed semantic context learning method can
further boost the classification performance. The advantage of the semantic context learning method
is that it exploits the very important, but usually ignored, visual and semantic context information to
assist the classification. Thus, it can often improve the classification accuracy compared to the classi-
fiers relying on purely visual features. The improvement introduced by the semantic context inference
method has demonstrated the effectiveness of exploring the resourceful context information in addition
to the isolated visual content and vocabularies.
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