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Holons Visual Representation for Image Retrieval
Le Dong, Yan Liang, Gaipeng Kong, Qianni Zhang, Xiaochun Cao and Ebroul Izquierdo

Abstract—Along with the enlargement of image scale, con-
volutional local features, such as SIFT, are ineffective for rep-
resenting or indexing and more compact visual representations
are required. Due to the intrinsic mechanism, state-of-the-art
Vector of Locally Aggregated Descriptors (VLAD) has a few
limits. Based on this, we propose a new descriptor named
Holons Visual Representation (HVR). The proposed HVR is a
derivative mutational self-contained combination of global and
local information. It exploits both global characteristics and the
statistic information of local descriptors in the image dataset.
It also takes advantages of local features of each image and
computes their distribution with respect to the entire local
descriptor space. Accordingly, the HVR is computed by a two-
layer hierarchical scheme, which splits the local feature space
and obtains raw partitions, as well as, the corresponding refined
partitions. Then according to the distances from the centroids
of partition spaces to local features and their spatial correlation,
we assign the local features into their nearest raw partitions
and refined partitions to obtain the global description of an
image. Compared with VLAD, HVR holds critical structure
information and enhances the discriminative power of individual
representation with a small amount of computation cost, while
using the same memory overhead. Extensive experiments on
several benchmark datasets demonstrate that the proposed HVR
outperforms conventional approaches in terms of scalability as
well as retrieval accuracy for images with similar intra local
information.

Index Terms—Visual representation, image retrieval, cluster-
ing, similarity distance regularization.

I. INTRODUCTION

WE are interested in the problem of accurately and
efficiently finding the most similar images of a giv-

en object or scene from the image databases. Along with
the emergence of large-scale image repositories, image re-
trieval faces more challenges. Firstly, the extraction of image
representation and search for similar images lead to huge
computation overheads and memory consumption, which are
stretching beyond the capacity of even the advanced computer
systems. Secondly, different with the medium-scale image
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Fig. 1. Different samples with the same residual vector.

retrieval, the large-scale counterparts impose a crucial addi-
tional challenge due to the fact that retrieval performance
usually decreases proportionally to the size of image database.
As a consequence, the scale and image diversity of modern
databases inevitably bring a critical need for compact visual
representation with high discriminative ability.

Numerous efforts have been made to counter this challenge,
among which the classic bag-of-words (BOW) model is the
most widely adopted method and has achieved great success
in image retrieval [1]. Inspired by the relatively mature text
retrieval techniques, BOW model trains numerous distinctive
visual words and describes an image using a high-dimensional
histogram with respect to the visual words, which is beneficial
for both the effectiveness and efficiency of image retrieval.
BOW model usually employs TF-IDF [2] to weigh visual
words, where the TF has the capability of indicating the
importance of visual words in a query image and the IDF
is able to reflect the discriminative abilities of visual words
in image database. However, in the BOW-based retrieval
algorithms, each image feature is indexed individually as an
item in the inverted index structure. Thus, the memory cost
per image for indexing is proportionally to the feature number.
Since an image usually contains thousands of local features,
the memory overhead to index large-scale image dataset is
extremely heavy, which limits the retrieval scalability in real
applications.

In addition, Jegou et al. proposed Vector of Locally Ag-
gregated Descriptors (VLAD) [7], which has attached much
attention and achieved a more scalable image retrieval. VLAD
records the sum of the differences between local features and
cluster centroids of image datasets. Through dimensionality re-
duction and compression, the obtained VLAD can be reduced
to a very compact vector. Therefore, VLAD can obtain better
retrieval performance than BOW with less memory consump-
tion of image representations in the index files. Unfortunately,
VLAD is limited in real applications to some extent due to its
intrinsic mechanism. When two local descriptors are assigned
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to the same visual word, they may have the same absolute
value but the adverse signs. In this case, their residual vectors
cancel out each other. As illustrated in Fig. 1, the sum of
three residual vectors in the left visual word region is equal
to the sum of only one residual vector in the right region.
Thus, VLAD can not distinguish the sums of the two residual
vectors, which will significantly affect the descriptive ability
of VLAD. Moreover, VLAD only uses the local descriptors
and omits other useful information contained in the original
local features such as the spatial information.

In this paper, we aim at designing a compact visual rep-
resentation of an image and improving the discriminative
ability of image representation by considering more clues.
To achieve this goal, we propose a new image description,
called holons visual representation (HVR). It includes two
visual representations, distance histogram based clustering
(DHC) and distance and orientation histogram based clustering
(DOHC), whose idea differs from BOW and VLAD. HVR is
a derivative mutational self-contained combination of global
and local information. Different from the traditional methods
[16], [36], which learn a linear transformation to integrate the
global and local features of an image, we utilize both the
global characteristics of the image datasets and the local visual
information of an image. In HVR, the local features, such as
SIFT, are utilized to denote the local visual information of an
image. The partitions and their centroids of the whole local
feature space are trained to describe the global characteristics
of the image datasets. As illustrated in Fig.2, HVR employs a
two-layer hierarchical scheme to extract the global information
and statistics of the local feature set of image datasets. We
first roughly split the whole local feature space into K raw
partitions by clustering, and then each raw partition is split
into N refined partitions using the same method.

To obtain the HVR of an image, we first compute the
distances between SIFT descriptors and the centroids of the
raw partitions, and assign the SIFT features into the nearest
raw partitions. Then, through the similar method, the SIFT
features belonging to each raw partition are assigned into their
nearest refined partitions according to the descriptor distance
and the spatial consistency of the local features. The value
of each dimension in HVR describes the number of SIFT
features assigned into the refined partition. Therefore, HVR
utilizes the framework of assigning the SIFT features into the
corresponding partitions and aggregating them, which effec-
tively combines two useful information, namely, the global
information of the whole feature space of image datasets and
the SIFT features of the input image. More specifically, HVR
describes the global distribution of SIFT features of an image
with respect to the whole feature space of image datasets.

Different from the traditional BOW, HVR employs a two-
layer hierarchical scheme to extract the global information
and statistics of the local feature set of image datasets. At
the same time, there are clear distinctions between HVR
and vocabulary tree or hierarchical BOW. In fact the two
methods are based on totally different ideas. Firstly, HVR is
a compact image representation obtained by aggregating SIFT
features, while BOW is a high-dimensional descriptor without
aggregation. Next, in hierarchical BOW, the visual words are

Raw Partitions Refined Partitions

Fig. 2. Two-layer hierarchical local feature space split scheme. Here, the local
feature space is first split into 16 raw partitions, and then each raw partition
is split into 10 refined partitions.

the clustering centers of SIFT descriptors and used during the
whole process. In HVR, there are two different codebooks.
The first is the centroids of trained partitions of SIFT feature
space and utilized to form HVRs. The second is the clustering
centers of the whole and sub HVR vectors, and is used in
quantization, index, and retrieval. Moreover, the number of
refined partitions is much less than that of visual words in
hierarchical BOW. This is because HVR just needs a general
holistic statistics of SIFT feature space, while BOW needs a
detailed division which has a considerable influence on the
quantization and similarity measure. Finally, since the refined
partitions belonging to the same raw partition are associate
with the same raw centroid, these can be used as valuable
correspondence information among the N dimensions of the
same raw partition in HVR. Hence, the dimensions in the same
raw partition are bundled together to serve as a component to
build indexes and retrieve. This is different from hierarchical
BOW representation, in which each dimension is relatively
independent and regarded as a component.

In the experiments, we give a detailed analysis of the perfor-
mance of our proposed HVR. We employ the Approximate N-
earest Neighbor Search method [9] to build the index files and
compute the similarity scores between the query image and
database images. We firstly measure the tradeoff between the
different parameters of HVR and the corresponding retrieval
accuracy, and then make a comparison between the DOHC and
HVR. The experimental results show that the proposed HVR
enhances the retrieval accuracy on Oxford5k Building and
Paris6k datasets. Moreover, considering that the scalability of
image representations becomes increasingly important along
with the increase of image dataset size, we also evaluate
the scalability of HVR to demonstrate the validity of our
method when applied to larger scale datasets. 1.26 million
images covering 1000 categories of objects from a large-scale
image dataset are employed as distractors, which are merged
with other medium-scale image datasets in the large-scale
image retrieval experiments. The experimental results show
that, compared with VLAD, the proposed HVR is with great
scalability.

Generally, the contribution of this paper can be concluded
in three folds.

1) Firstly, the proposed approach addresses the retrieval of
the images with the similar intra local structures, rather
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than the general image retrieval.
2) Secondly, we propose a brand new holons visual repre-

sentation, which is a derivative mutational self-contained
combination of global and local information. It can
overcome the limitations of VLAD and enhance the
retrieval accuracy for the images containing similar intra
visual information.

3) Last but not the least, for the proposed HVR, we also
propose a new normalization scheme, i.e. the optimized
raw partition normalization, which integrates SSR and
sub-normalization and can significantly decrease the
burstiness problem of HVR.

The remainder of the paper is organized as follows: We briefly
discuss the related work in Section II. The proposed HVR is
elaborated in Section III. Section IV first introduces the data
sets and evaluation protocol, as well as the implementation
details in experiments. Then a detailed analysis of the exper-
imental results on both medium-scale and large-scale image
datasets is made. Finally, the paper is concluded in Section V.

II. RELATED WORK

For image retrieval, how to describe and represent images is
a crucial and challenging task. The large-scale image retrieval
systems [17], [11], [4], [2], [5], [6], [23] have been significant-
ly advanced by the introduction of local SIFT descriptor [3]
and BOW model which relies on the quantization of local
descriptors into visual words. Recently, numerous methods
combining multiple types of useful information were proposed
to represent the images. For instance, to form a highly dis-
criminative image representation, geometrical relations among
local features [11], [12], [13], [44] and spatial distributions
[17], [42], [19], [18] were utilized; multifarious visual features
were bundled to construct reliable high-dimensional features
in [15], [34]. The combination of the low-level features was
proposed to represent images in [35], [41], [45]. To improve
the retrieval accuracy, an intuitive way of image retrieval was
presented in [43], [20], [21], in which users can describe
the intended search targets with understandable attributes. In
addition, post-processing techniques such as reranking [37]
and query expansion [24], [38] can boost the accuracy. In
this paper, our method focuses on both retrieval accuracy and
memory overhead. However, the spatial verification or query
expansion are not taken into account, since they are much
slower than the retrieval process.

These aforementioned techniques increase the discrimi-
native ability for the image representations and obtain the
improvements on retrieval accuracy. However, most of these
methods require a significant amount of memory overhead per
image, and induce considerable computation overhead to form
each image representation as the size of image datasets reaches
to a million scale. To release the efficiency and memory
constraints, min-hash approach [11], [12] was proposed to
gain binary vectors of image representation. Nevertheless,
compared with BOW representation, the technique reduces the
retrieval accuracy and still requires tremendous memory per
image. In [39], compact feature based clustering was proposed
to represent images by aggregating clustering centers and

statistics of SIFT features assigned to each clusters. Although
it reduces the computation and memory footprint to some
extent, it still needs several feature vectors to describe images.
In addition, feature selection was one main technique for
dimensionality reduction that involved identifying a subset of
the most useful features. [48], [47] proposed a unsupervised
feature selection scheme by by integrating cluster analysis and
sparse structural analysis into a joint framework.

The state-of-the-art description encoding methods intro-
duced a new way to form image description, and achieved
a higher retrieval accuracy [8], [25], [7], [26], [27]. [46]
learned a robust representation for images. The proposed
framework was a general one which can leverage several
well-known algorithms as special cases and elucidate their
intrinsic relationships. VLAD [7] and Fisher vector [26], [27]
represented images via a highly discriminative vector which
was a high-dimensional code. VLAD was based on Fisher
kernels, and in fact, it was a simplified nonprobabilistic version
of the Fisher kernels. It employed the dimension reduction
and compression algorithms to jointly optimize, and used the
Kmeans clustering instead of the GMM clustering. VLAD
with the same size significantly outperforms the BOW repre-
sentation. Arandjelovic et al. proposed an intra-normalization
method to address the burstiness problem of VLAD, and ex-
tracted multiple VLADs for an image to improve the retrieval
accuracy [8]. In [25], residual normalization was proposed to
make each local descriptor contribute equally to the VLAD.
The methods were based on VLAD and used the sum of
the residual vectors to describe images. Since the residual
vectors may be positive or negative values and can offset,
they can not distinguish the different images when the residual
vectors of their local descriptors were offset to be the same.
Furthermore, they only use the local descriptors and omit other
useful information. Based on the above analysis, we propose
a brand new image representation, i.e., HVR. We divide the
entire local descriptor space of the image datasets into two-
layer hierarchical partitions, according to the distances and
spacial consistency among the local features of an image
and the centroids of the refined partitions. HVR records the
distribution of the local features with respect to the entire local
features set of the image datasets.

Quantification and the retrieval algorithms are key fac-
tors affecting the retrieval efficiency. The vocabulary tree
[2] typically contains millions of leaf nodes that represent
visual words. Using an inverted file index of visual words,
it can avoid directly storing and comparing high-dimensional
local descriptors, and reduce the number of target images
since only those images sharing the same visual words with
the query image needed to be matched. The work in [22]
optimized the quantification by softly assigning descriptors
to multiple visual words. Some researchers improved the
retrieval accuracy of vocabulary tree by taking advantages
of more valuable visual information. For instance, a context
dissimilarity measure of visual word vectors [31], [30] was
learned and a projection from descriptor space [32] was trained
to form a new Euclidean space for descriptor comparison
and quantization; descriptor contextual weighting and spatial
contextual weighting were added in [6]. These methods needed
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a large amount of visual words, which made the training
difficult when the number reaches to millions. In [9], an
inverted file system with the asymmetric distance computation
was proposed to avoid learning millions of visual words. In
this paper, we employ the inverted file system with asymmetric
distance computation to build the index files and compute the
similarity.

III. DISCRIMINATIVE HOLONS VISUAL REPRESENTATION

In this section, we first briefly describe the VLAD, and
then introduce the proposed HVR, including two different
approaches, i.e., (I) distance histogram based clustering and
(II) distance and orientation histogram based clustering. The
proposed method is based on the scheme of aggregating local
features in each partition of the local feature space.

A. Description of VLAD

VLAD is an encoding method for local descriptors, which
can transform a variable-size local descriptor set extracted
from an image I = dx1, x2, . . . , xMe ∈ RD×M into a fixed
size image representation. The input set contains M local
descriptors with D dimensions, and the value of D is 128
when SIFT descriptors are extracted to serve as the primitive
image representation.

Similar to BOW, a codebook C = dµ1, . . . , µKe is learned
on the independent SIFT descriptor samples in advance by
clustering, and each cluster center acts as a visual word. The
difference from the BOW representation is that the number of
visual words K is typically a small value, 64 or 256, which
is much smaller than the one of BOW.

Each local descriptor xi of an image is assigned to its
nearest visual word in the codebook.

q(xi) = argmin ||xi − µj ||2, µj ∈ C. (1)

VLAD records the sum of differences between the local
descriptors and the corresponding visual words, rather than the
number of SIFT descriptors assigned to the clusters. For each
visual word µi, the difference between the SIFT descriptor xi
assigned to the visual word µi and its centroid is computed,
and a 128-dimensional vector vi is used to denote the sum of
the residual vectors.

vi =
∑

xj :q(xj)=µi

xj − µi. (2)

The VLAD is the concatenation of the residual vectors. The
K 128-dimensional sums of residual vectors are concatenated
into a single K × 128 dimensional descriptor, as an image
representation V = [vi, v2, . . . , vK ].

Since VLAD is a simplified nonprobabilistic Fisher kernel,
VLAD can be power and L2-normalized. To improve the
retrieval performance, VLAD needs two normalization steps.
First, power normalization is applied. Each component is
normalized as:

vj := sign(vj)|vj |α, j ∈ [1, 2, . . . ,K × 128]. (3)

Here, α is usually set as 0.5 in [7]. The power normalization
step is used to release the burstiness problem of VLAD vector

[33]. Then, L2 normalization is employed for the entire VLAD
vector.

V :=
V

||V ||2
. (4)

If the similarity measure employs inner product, the L2
normalization can guarantee that if we choose an image from
a database as the query image, the first result will be the image
itself.

B. Holons Visual Representation

To extract the statistics of the local descriptors of the
image database, we follow the method of BOW and VLAD
and employ Kmeans to train a codebook. We cluster the
independent SIFT descriptors of database by Kmeans, and
the number of the obtained clusters K is set beforehand. The
SIFT descriptors extracted from a large-scale image database
often reach to billions, when the number of images is beyond
millions. If we set K as a large value like BOW, the process
of clustering will be very time-consuming and the dimension
of image representation will be extremely large. Thus, the
retrieval performance in terms of efficiency and memory cost
will be affected. In contrast, when we set K as a small value,
the small number of visual words is inadequate to describe the
characteristics and patterns of billions of SIFT descriptors. To
solve this problem, we adopt a two-layer hierarchical scheme
inspired by [42], [40], [6], and employ hierarchical Kmeans
to cluster the SIFT descriptor sets.

We first employ Kmeans to roughly partition the whole
SIFT descriptor set into K clusters C = {c1, c2, . . . , cK} .
Kmeans algorithm works by minimizing the intra-cluster sum
of squares:

arg min

K∑
i=1

∑
dm∈ci

‖dm − µi‖2, i = 1, 2, . . . ,K (5)

Here, µi is the centroid of the ith cluster ci. In this paper, the
number K of clusters obtained by Kmeans is set as a value
of the power of 2.

Then, for the SIFT descriptors in each cluster, we continue
employing Kmeans. Each cluster ci is partitioned into N
refined clusters, ci = {ci,1, ci,2, . . . , ci,N}. Compared with
traditional Kmeans clustering method, the two-layer clustering
scheme can quickly obtain K × N clusters from a large
SIFT descriptor sets by the two-layer hierarchical Kmeans.
Similar to BOW and VLAD, we use the cluster centroids
{µ1, µ2, . . . , µK} to serve as the raw visual words and de-
note the correlative raw clusters C = {c1, c2, . . . , cK}. The
centroids of refined clusters {µi,1, µi,2, . . . , µi,N} are used as
the refined visual words and to represent the corresponding
refined clusters ci = {ci,1, ci,2, . . . , ci,N}.

To qualitatively describe the distribution of SIFT descriptors
with respect to the whole SIFT descriptor set, which are
extracted from an independent image database, we utilize the
relatively simple histogram form. Therefore, we can avoid the
problem that residual vectors of different SIFT descriptors
assigned into the same clusters offset each other. In this paper,
two methods are described to obtain HVR. During the process
of generating HVR, the first method named distance histogram
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Fig. 3. Images and the corresponding DHC representations for the number of the raw partitions K = 16 and the number of the refined partitions N = 10.

based clustering (DHC) considers the distances between lo-
cal descriptors and cluster centroids. The second one called
distance and orientation histogram based clustering (DOHC)
considers the distances, as well as the spatial consistency
between the local features and cluster centroids.

1) Distance Histogram based Clustering (DHC): We re-
gard each cluster ci as a raw partition of the whole local
descriptor space, and each refined cluster ci,j is a refined
partition of the ith raw partition ci. We obtain K ×N refined
clusters, i.e., K×N refined partitions, by employing the two-
layer hierarchical Kmeans method. Let I = [d1, d2, . . . , dM ] ∈
RD×M denote the SIFT descriptor extracted from an image.
The raw and refined partitions and their centroids of the whole
local feature space describe the global characteristics of the
image datasets. According to the distance between the SIFT
descriptor dm and the centroid µi of the raw partition ci, we
assign the SIFT descriptors into the nearest raw partition:

qc(dm) = arg min‖dm − µi‖2, m = 1, 2, . . . ,M (6)

Here, qc(dm) represents the nearest raw partition of dm, and
we use cminc

to denote it for simplicity. After obtaining the
nearest raw partition cminc

, we calculate the distance between
the SIFT descriptor dm and the centroid µminc,j of a refined
partition cminc,j which belongs to the raw partition cminc , and
assign dm to the nearest refined partition qd(dm, cminc

).

qd(dm, cminc
) = arg min‖dm − µqc(dm),j‖2, dm ∈ cminc

(7)
where j = 1, 2, . . . , N . The first representation generation
method DHC only utilizes the distance of the SIFT descriptor
dm to the centroids. Thus we compute the number of SIFT

descriptors assigned into the refined partition ci,j as the value
of the (ith, jth) bin:

h(i, j) =

M∑
m=1

{
1, if dm ∈ ci,j ,
0, otherwise

(8)

When DHC is employed as image representation, an image
is described as a histogram of K × N dimensions I =
[h1,1, h1,2, . . . , hi,j , . . . , hK,N ].

Fig. 3 depicts the 160-dimensional DHC representations
associated with some image samples in Holiday dataset. The
number of the raw partitions K is set as 16, while the number
of the refined partitions N is set as 10. The black dotted lines
delimit blocks of DHC representation associated with each raw
partition. From Fig. 3, we can observe that the dimensions of
DHC representation of the images which belong to the same
categories,i.e. left and right images in the same raw, have the
approximate values. It demonstrates the discriminative ability
of DHC. In Fig. 3, it is also obvious that several dimensions of
DHC representation are with larger values, compared with the
other ones. The dimensions with larger values will affect the
measure of similarity, since the dimensions have the unequal
contribution for the similarity between two images. Intuitively,
as shown in following section, a normalization process is
necessary to release the burstiness problem.

2) Distance and Orientation Histogram based
Clustering (DOHC): A SIFT feature fi = {di, ui, si, θi}
includes not only the descriptor di, but also the location
ui, the characteristic scale si and the main orientation θi.
The descriptor of SIFT feature describes the relationship of
neighborhood pixels, and the main orientation θi describes
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(a)

(b)

(c)

(d)

Fig. 4. The comparison of the normalization methods for DHC on the Holidays dataset. (a) denotes the standard deviation distribution of original DHC on
the Holiday datatset. (b), (c), and (d) represent the distribution about standard deviation of DHC with the normalization methods in [7], [8], and the proposed
normalization method, respectively

the orientation of the descriptor, i.e., where the descriptor
encoding starts. When the main orientations of SIFT features
are different, the corresponding descriptors are also vary-
ing. As aforementioned, DHC describes the distribution of
the SIFT descriptors according to the distances between the
descriptors and cluster centroids, while neglects their main
orientations, which can serve as another valuable element
in accurate retrieval. According to the analysis above, we
develop DOHC to generate the holons histogram, distance and
orientation histogram based clustering, which considers both
the distance and the main orientation consistency between the
local descriptors and centroids.

We compute the statistics of main orientations of the ex-
tracted SIFT features from an independent image database.
According to the statistic information of the main orientations
of SIFT features, the main orientation space is divided into
R regions, and each region contains the approximate number
of SIFT features. Then, each refined partition ci,j is further
partitioned into R regions c(i, j, r). Thus, the whole feature
space is composed of K ×N ×R regions. The dimension of
DOHC is K×N×R. Based on the main orientation, the SIFT
features in the refined partition ci,j are assigned to the nearest

regions. Similar with the method of DHC, we calculate the
number of SIFT descriptors assigned into the region c(i, j, r)
to serve as the value of the (ith, jth, rth) bin of DOHC:

h(i, j, k) =

M∑
m=1

{
1, if dm ∈ ci,j,k,
0, otherwise

(9)

When DOHC is employed to represent images, each image is
described as a compact histogram of K ×N ×R dimensions
I = [h1,1,1, h1,1,2, . . . , hK,N,R].

C. Optimized raw partition normalization scheme

For a histogram vector, a few large dimensions may strongly
affect the similarity score of histograms as shown in Fig. 3. In
that case, the contribution of other dimensions will be largely
reduced. To address the problem of burstiness, we propose
a new normalization scheme based on the performance of
HVR, namely the optimized raw partition normalization. Our
normalization scheme firstly signs square root (SSR) on HVR,
because it can reduce the burstiness effect by discounting
large values with element-wise square rooting on the HVR
histogram, and then the sub-normalization is employed on
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the HVR, where the histogram vector is L2 normalized on
each sub-vector of the raw partition. Take DHC representation
as an example, in this paper, the optimized raw partition
normalization is done as follows:

h(i, j) = |hi,j |α, (10)

Vi =
Vi
||Vi||2

, (11)

where α is a parameter and its value is set as 0 ≤ α ≤
1. Vi represents the sub-histogram belonging to the ith raw
partition, i.e., Vi = [hi,1, hi,2, . . . , hi,N ]. Our normalization
method focuses on each sub-vector of the raw partition, rather
than the whole HVR vector. This method can greatly suppress
bursts and obtain higher retrieval accuracy.

Fig. 4 displays the comparison of different normalization
methods for DHC on the Holidays dataset. For the original
DHC representation from the Fig. 4 (a), we discover that a
few dimensions own most of the energy. The dimensions with
the standard deviation of high values strongly influence the
similarity scores of DHC representation. Compared with the
normalization methods in [7], [8] displayed in Fig.4 (b) and
(c), the result of Intra-normalization, our normalization results
in Fig.4 (d), shows no peaks in the energy spectrum. The
optimized raw partition normalization scheme we proposed
is straightforward, and effectively suppresses the burstiness
problem.

D. Retrieval Based on HVR

In order to improve the efficiency of image retrieval and
reduce the storage cost, it is necessary to encode a high-
dimensional image representation into a code of B bits. Since
the DHC and DOHC representations aggregate local features
in each refined partition and keep the structural property, we
use the Approximate Nearest Neighbor Search method in [9]
to encode the DHC and DOHC representations. The algorithm
regards similarity search as a technique derived from source
coding. Through the Approximate Nearest Neighbor Search
algorithm, the encoded descriptors can be approximately re-
constructed.

For a DHC or DOHC vector x, it is uniformly split
into m sub-vectors x1, x2, . . . , xm. Since DHC and DOHC
representations are based on the raw partitions, and each raw
partition is independent, the number of sub-vector m is set
as the same as that of raw partitions K. Each sub-vector is
the sub-histogram in the raw partition, thus it can keep the
structure information.

A product quantizer q(x) is composed of m distinct sub-
quantizers with respect to m sub-vectors. The vector x is
encoded by the product quantizer:

q(x) = (q1(x
1), q2(x

2), . . . , qm(xm)) (12)

The vector x is mapped to a tuple of indices by quantizing
the sub-vectors, respectively. All distinct sub-quantizers are
with the same number ks of reproduction values obtained by
Kmeans. To reduce the assignment complexity O(m×ks), ks
is usually set as a small number. The total number of centroids
produced by the product quantizer is (ks)

m, which is a very

large value. Finally, a vector is encoded as a code of B =
m log2 ks bits.

The Inverted File System with the Asymmetric Distance
Computation (IVFADC) [9] is used to build the index files and
search for nearest neighbors. The query x is not encoded, thus
there is no approximation error for query vector. According to
decomposition, the square distance between the query vector
x and database vector y are computed as follows:

d(x, y) = ||x− q(y)||2 =
∑

j=1,...,m

||xj − qj(yj)||2, (13)

where yj denotes the jth sub-vector of the database vector
y. The square distance of each sub-vector xj to the ks
centroids of the corresponding sub-quantizer qj is computed
prior to search, and stored in a look-up table. Thus, the square
distances in Eq. (13) can be obtained by looking up the tables.
The complexity of the generation of the look-up tables is
O(K×N×ks) for DHC representation, and O(K×N×R×ks)
for DOHC representation. Since ks is much smaller than
the number n of images in the database, the complexity
can be minor, compared with the cost O(K × N × n) or
O(K ×N ×R× n) resulting from the direct computation of
the query vector and all the database vectors.

IV. EXPERIMENT

The experiments are conducted by submitting each query
image to the image retrieval system, and obtains a list of
images sorted by decreasing similarity. In this section, we first
introduce the data sets and evaluation protocol and then give
a description of implementation details in the experiments.
Finally, a detailed analysis of the results is made.

A. Data Sets And Evaluation Protocol

In this paper, we use four challenging image datasets,
namely, UKbench, Holidays, Oxford5k Building and Paris6k,
as the testbed. We also employ two large image datasets,
ImageNet-V and ImageNet-T, for all the learning stages and
large-scale retrieval experiments.

UKbench [2] contains 10,200 images belonging to 2,550
objects. Each object has four images taken from different
viewpoints. In our experiments, all the 10,200 images are
used as both queries and database images. The expected result
of using each image query is the four most similar images
of the same object. The most common evaluation manner of
UKbench dataset is to count the average number of relevant
images (including the query itself) that are ranked in the first
four positions. This corresponds to N-S score and the Mean
Average Precision (MAP).

Holidays [11] is collected by INRIA. It contains 1,491
personal holiday images undergoing various transformations.
In Holidays dataset, only 500 images are used as queries
and the other 991 are the corresponding similar images. The
retrieval performance of the dataset is usually estimated by
MAP.

Oxford5k Building [5] is a collection of 5062 building
images, which are downloaded from Flickr. For simplification,
we use Oxford5k to denote it. The dataset defines 55 queries
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by a rectangular region of interest. The query images corre-
spond to 11 distinct buildings in Oxford, and the images in
the dataset are annotated as good, OK, bad, or junk. The good
image is a clear picture of the building, and in the OK images,
more than 25% of the building is visible. In contrast, the junk
images are with very high levels of occlusion or distortion,
which indicates it is unclear whether a user would consider the
image as relevant or not. MAP is used to evaluate performance
of the dataset.

Paris6k [28] is composed of 6412 images, which are all
collected from Flickr by searching for the particular Paris
landmarks. Similar with Oxford5k Building dataset, it also
contains 55 query images annotated by a rectangular of
interest. The ground truths of images are offered as Oxford5k
Building. The retrieval performance is evaluated by MAP.

ImageNet is an image database organized according to the
WordNet hierarchy [10] in which each node of the hierarchy is
depicted by hundreds and thousands of images. Since the Ima-
geNet dataset is publicly available and contains sufficient large
variations, it is well suited to benchmark the retrieval accuracy,
computation, and memory usage for the large-scale image
retrieval. We use 1.26 million images of 1,000 categories as a
large-scale image dataset, denoted by ImageNet-T. The large-
scale image retrieval experiment is conducted by merging the
images in ImageNet-T with the other data sets. In addition,
we employ 100K images, denoted by ImageNet-V, to sample
the SIFT features, split the feature space, generate VLAD,
DHC and DOHC representations, and train all quantizers.
The ImageNet-V has no overlap with the four aforementioned
datasets and ImageNet-T.

B. Implementation Details

For each image, we describe it by a VLAD, DHC or DOHC
representation. From the description in section IV, it can be
noticed that the critical parameters of our HVR is K and N.
In the experiments, we set the number of the raw partitions as
the power of 2, namely 8, 16, 32, 64 and 128. And relevantly,
the number of refined partitions is set as 10, 20, 30, 40. Thus,
each VLAD is a K × 128 vector and the dimension of the
DHC is K×N . In order to further enhance the discrimination
power of HVR, we take the main orientation of SIFT features
into account in DOHC representation. The main orientation
θ is split into 4 regions, i.e., [−π,−1.67], [−1.67, 0.213, ],
[0.213, 1.68, ], [1.68, π], and the DOHC presentation has the
dimension of K × N × 4. Especially, we use DHC-N to
represent the DHC representation with N refined partitions.
DHC-10, DHC-20, DHC-30 and DHC-40 denote that the
corresponding DHC representations with N=10, 20, 30 and 40,
respectively. Correspondingly, DOHC representation adopts
the same way to distinguish different number of refined
partitions.

For large-scale image retrieval experiments, we train two
different kinds of complete quantizers, as well as two product
quantizers, with the equal number of centroids for VLAD
and DOHC representations, by employing Kmeans on the
independent ImageNet-V database. In this paper, ks is set
as 8. All VLAD and DOHC representation vectors in the

database are first quantized into their corresponding complete
quantizers, and then quantized into the nearest distinct sub-
quantizers according to the residual vectors of the represen-
tation vectors to the centroids of their complete quantizers.
When an image representation is quantized into the complete
quantizer, the relevant inverted file will add an item, containing
an image ID and a vector code. Since all representation
vectors are partitioned into K sub-vectors, a VLAD or DOHC
representation is converted to a code of K×log2 ks. Therefore,
the DOHC and VLAD cost the same memory in the inverted
files.

Since DOHC and VLAD cost the same memory in the
inverted files, which is explained in experimental details. In
addition, the index structure and search method employed
by HVR and VLAD are the same, the difference of re-
trieval efficiency mainly derives from the distribution of image
representations from the whole datasets with respect to the
quantizers. It shows in the diversity of items in the inverted
lists associated with the centroids of the quantizers, which
is related to the corresponding trained quantizers. However,
the training process of quantizers has a certain randomness
because K-means algorithm adopts random method starts with
a random initialization. Therefore, the retrieval time cannot
effectively prove which method has better efficiency. Thus, in
this paper, we primarily focus on the comparison of accuracy.

C. Experimental Results

In the following section, we make a detailed analysis of
the performance of the proposed representation HVR. First,
performance of DHC and DOHC with different number of raw
and refined partitions is evaluated. Then, a comparison is made
between the performance of DHC, DOHC and VLAD on the
medium-scale image databases. Finally, we report the retrieval
performance of DOHC and VLAD on large-scale retrieval
experiments merged by the ImageNet-T with Holidays.

1) Impact of parameters for DHC and DOHC: We conduct
experiments on the four aforementioned datasets, namely, UK-
bench, Holidays, Oxford5k Building and Parisy6k, to evaluate
the influence of parameters on the retrieval performance. In
order to explore the relationship of the number of raw and
refined partitions with retrieval accuracy, we control the value
of one parameter. Here, we set the number of refined partitions
as 10 and obtain the retrieval accuracies of DHC and DOHC
representation with the increasing of raw partitions, as shown
in Fig. 5. Intuitively, we can observe that, both the MAPs
of DHC-10 and DOHC-10 representation increase with the
continually increasing number of the raw partitions. Take the
experimental results on UKbench as an example, when the
number of raw partitions K increases from 8 to 128, the MAP
of DHC-10 representation improves from 70.90% to 79.77%,
while that of DOHC-10 representation improves from 71.70%
to 80.57%. Moreover, the improvement of MAPs with the
increase of parameter K, which is obtained by DHC-10 and
DOHC-10 representation on the rest of the three datasets, are
also evidently demonstrated in the Fig. 5. It can be stated the
larger number of the raw partitions, the higher descriptive and
discriminative ability DHC and DOHC have. The reason is
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Fig. 5. The MAPs of DHC and DOHC on different datasets with the
increasing number of raw partitions and the value parameter N=10.

that the whole SIFT feature space is split up more precisely
when the number of raw partitions increases. Thus, the SIFT
descriptors of an image can be assigned into more approximate
raw partitions, and the distribution with respect to the whole
SIFT feature space is more accurate.
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Fig. 6. The MAPs of DHC and DOHC on different datasets with the
increasing number of refined partitions and the value of parameter K=128.

Meanwhile, we take the same way, namely, give the param-
eter K a certain value, to explore the influence of parameter N
on the retrieval performance of the DHC and DOHC represen-
tation. Particularly, we fix the number of the raw partitions K

to 128, which achieves the best performance among all values.
From the Fig. 6, it can be observed that both DHC and DOHC
with the number of refined partitions N = 30 obtain the
higher retrieval accuracy than other partitions, while the MAP
with the least refined partitions is lowest. The experimental
results on the four datasets all follow this rule. For example,
on UKbench dataset, DHC-30 achieves the highest MAP of
81.63% among all the DHC representations. Compared with
DHC-10, the MAP of DHC-30 improves approximate 2%.
For DHC-20, DHC-40, their MAP is also 1.43% and 0.66%
lower than that achieved by DHC-30, respectively. And the
changing rule of the MAP of DOHC has the similar trend
with that of DHC. In addition, DHC-30 achieves the best
accuracies of 52.84%, 30.55% and 25.32% on the Holidays,
Oxford5k Building and Paris6k, respectively. Thus, it worths
to note that the MAP of DHC and DOHC does not always
monotonously increase with the increase of the number N of
refined partitions.

2) Comparison with the State-of-the-Art: We compare with
the state-of-the-art approaches, e.g. BOW and VLAD. Specif-
ically, the codebook size of BOW is set to 20, 000. Table
1 demonstrates that both HVR outperforms BOW in terms
of both memory usage and retrieval performance and VLAD
outperforms BOW as verified in [17]. Moreover, HVR and
VLAD both employ the idea of aggregation. Thus, in this
section, we focus on comparing the retrieval performance of
DHC and DOHC, with the VLAD on the medium-scale image
datasets.

Fig. 5 and Fig. 6 clearly demonstrate that the DOHC
representation obtains higher retrieval accuracy than DHC.
For example, DOHC-30 representation achieves the MAP of
82.41% on the Ukbench, which is 0.78% higher than that of
DHC with the same parameters. This advantage of DOHC
representation is more obvious on Holidays and Oxford5k
datasets. Take the Holidays as another example, the DOHC-
30 obtains the best MAP of 30.78%, which is 5.46% higher
than the best MAP of the DHC representation. In fact, the
advantages of MAP achieved by the DOHC representation are
beneficial from the generation of compact histograms. When
the whole feature space is spilt, the DOHC representation
not only refers to the distances between SIFT descriptors
and centroids of the partitions, but also considers the main
orientations of SIFT, which describes the spatial information
of SIFT descriptors, i.e., the orientations where the descriptors
start encoding. The main orientations of SIFT features serve
as a valuable supplement for the descriptors.

Since both VLAD and DOHC representations with the
number of raw partitions K = 128 have achieved the best
retrieval MAP, We fix the parameter K to 128. According to
Table 1, we can discover that, compared with VLAD, the pro-
posed DOHC representation achieves the approximate retrieval
performance on Ukbench and Holidays datasets. Particularly,
the best MAP of DOHC representation is 82.41% on the
Ukbench dataset, which is close to that of VLAD. On the
Holidays, the DOHC representation also achieves approximate
MAP of 54.12% to that of 55.75%, which is obtained by
VLAD. Table 1 also clearly demonstrates that the proposed
DOHC representation outperforms VLAD on Oxford5k and
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TABLE I
MAP OF DHC, DOHC, BOW AND VLAD (MAP IS THE AVERAGE OF

ACCURACY PRECISION %)

Datasets Ukbench Holidays Oxford5k Paris6k
BOW 79.62 46.91 33.85 25.42
VLAD 84.68 55.75 32.10 29.12

DHC-10 79.77 50.11 28.36 24.86
DHC-20 80.20 51.76 29.04 25.26
DHC-30 81.63 52.84 30.55 25.32
DHC-40 80.97 52.34 30.17 25.23

DDHC-10 80.57 51.10 32.28 29.53
DOHC-20 81.43 53.45 33.09 30.17
DOHC-30 82.41 54.32 34.76 30.78
DOHC-40 81.93 53.94 33.84 29.23

Paris6k. The MAP of the DOHC-30 representation reaches
to 34.76%, which is 2.66% higher than that of VLAD on the
Oxford5k dataset, and the DOHC representation also improves
the MAP to 30.78% on the Paris6k dataset. Based on these
analysis, we conclude that DOHC representation is suitable
for the images with similar intra structures. In the Oxford5k
and Paris6k datasets, the building images are usually with
more similar intra structures, e.g., the similar windows and
roofs, than those in the Ukbench and Holidays datasets. In
this case, DOHC representation generated by assigning the
SIFT features into the corresponding refined partitions can
successfully describe the distribution of SIFT features with
respect to the centroids of the partitions.

TABLE II
THE COMPARISON OF MAP OBTAINED BY DOHC AND VLAD WITH

DIFFERENT NUMBERS OF DISTRACTOR IMAGES

Distractor Size VLAD DOHC
N = 10 N = 20 N = 30 N = 40

0 55.75 51.10 53.45 54.12 53.94
10k 47.03 45.12 46.72 48.34 47.88

120k 39.26 38.64 40.66 42.86 42.13
600k 36.57 35.96 38.32 40.85 39.69

1.26M 34.63 34.18 36.15 38.78 37.64

3) Large-Scale Image Retrieval Experiments : To further
evaluate the performance of HVR on the large-scale image
datasets, we merge Holidays with ImageNet-T dataset, which
are used as distractors. We use different numbers of distrac-
tors, including 0, 10,000, 120,000, 600,000, and the whole
ImageNet-T dataset, to test the scalability of the proposed
representation. Since it is certified that the performance of
DOHC precedes that of DHC in the previous experiments, we
only compare the performance of DOHC and VLAD in the
large-scale retrieval experiments. We also set the parameter K
to 128 when conducting large-scale retrieval experiments. Fig.
7 depicts the large-scale image retrieval accuracies of VLAD
and DOHC with different numbers of distractor images.

TABLE II displays that the performance of both VLAD and
DOHC representations gradually decreases with the augment
of distractor images in the database. When the number of
distractor images is 0, all DOHC and VLAD obtain their
best accuracies. When the entire ImageNet-T dataset is added
into the Holidays database, which means 1,260,000 distrac-

Fig. 7. Large-scale image retrieval performance of VLAD and DOHC with
different numbers of distractor images.

tor images, the MAP values of VLAD and DOHC reduce
significantly. Especially, the performance of VLAD reduces
from 55.75% to 34.63% and DOHC-30 and DOHC-40 almost
reduce 15% and 16%, respectively. The decline of MAP
mainly results from the inverted files containing more items
with the increase of the distractors. The query vector has to
compute the similarity scores with more candidate images.
Since the similar images of query image does not increase, the
difficulty of searching the similar images from larger candidate
image sets enlarges, and then the MAP of image retrieval
decreases.

Although the MAPs of both VLAD and DOHC decrease
with the increase of distractor images, we can learn that
the MAP of the DOHC representation reduces more gently
than that of VLAD. When the distractor images increase
from 0 to 1,260,000, on the Holidays dataset, the MAP
of VLAD declines to 34.63%, which is 21.12% less than
the MAP obtained by VLAD without distractors. However,
the decline of the MAPs achieved by the different DOHC
representations is no more than 20%. The MAP only reduces
by 17.30% for the DOHC-20 representation, and the decrease
of the MAPs obtained by the DOHC-10, DOHC-30, DOHC-40
representations is less than 17%. Thus, compared with VLAD,
DOHC can maintain its discriminative ability more effectively
when the size of image database increases. Namely, the DOHC
representation outperforms VLAD in the terms of scalability.

From aforementioned analysis, we obtain the following
observations. First, the DOHC representation outperforms
DHC with the same parameters, and DOHC shows higher
retrieval performance for the images with more similar local
information. Furthermore, compared with VLAD, DOHC has
better scalability, i.e., with the increase of distractor images in
the database, the retrieval performance of the DOHC declines
more gently than that of VLAD, as shown in Fig. 7.
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V. CONCLUSION

In this paper, we introduce a new image representation
method, named holons visual representation, to improve the
retrieval accuracy of the images with similar intra-structures.
The proposed HVR, including DHC and DOHC, makes full
use of the global characteristics and statistics of the indepen-
dent local feature set. In addition, the HVR also describes
the global distribution of the local features of an image with
respect to the entire local features set of image datasets.
HVR enhances the discriminative power of individual features,
by utilizing the two-layer hierarchical partitions of the local
feature space and the correlation of distance and spatial infor-
mation. The comprehensive experimental results demonstrate
that HVR improves the retrieval accuracy and achieves better
scalability for large-scale image datasets, which demonstrates
the effectiveness of our image representation.
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