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The Escherichia coli effector EspJ blocks Src kinase
activity via amidation and ADP ribosylation
Joanna C. Young1, Abigail Clements1, Alexander E. Lang2, James A. Garnett3, Diana Munera1, Ana Arbeloa1,

Jaclyn Pearson4, Elizabeth L. Hartland4, Stephen J. Matthews3, Aurelie Mousnier1, David J. Barry5, Michael Way5,

Andreas Schlosser6, Klaus Aktories2,7 & Gad Frankel1

The hallmark of enteropathogenic Escherichia coli (EPEC) infection is the formation of actin-

rich pedestal-like structures, which are generated following phosphorylation of the bacterial

effector Tir by cellular Src and Abl family tyrosine kinases. This leads to recruitment of the

Nck–WIP–N-WASP complex that triggers Arp2/3-dependent actin polymerization in the host

cell. The same phosphorylation-mediated signalling network is also assembled downstream

of the Vaccinia virus protein A36 and the phagocytic Fc-gamma receptor FcgRIIa. Here we

report that the EPEC type-III secretion system effector EspJ inhibits autophosphorylation of

Src and phosphorylation of the Src substrates Tir and FcgRIIa. Consistent with this, EspJ

inhibits actin polymerization downstream of EPEC, Vaccinia virus and opsonized red blood

cells. We identify EspJ as a unique adenosine diphosphate (ADP) ribosyltransferase that

directly inhibits Src kinase by simultaneous amidation and ADP ribosylation of the conserved

kinase-domain residue, Src E310, resulting in glutamine-ADP ribose.
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T
he tyrosine Src family kinases (SFKs) play a fundamental
role in a wide variety of cellular processes including
morphogenesis and proliferation1, phagocytosis2 and host–

pathogen interactions3,4. Furthermore, SFKs are overexpressed
and/or aberrantly activated in a wide variety of cancers5. In
humans, SFKs comprise eight members, with Src, Fyn and Yes
being ubiquitously expressed6. SFKs consist of an N-terminal
myristoylation/palmitoylation site, SH3 and SH2 protein-
interaction domains and a C-terminal kinase domain (SH1). In
their inactive state, SFKs assume an autoinhibited conformation
that is mediated by intramolecular interactions7 (Supplementary
Fig. 1). Interaction between the SH2 domain and a C-terminal
tyrosine Y527, when it is phosphorylated by Csk, promotes the
autoinhibited conformation8,9, while removal of Y527 results in a
constitutively activated kinase10. Dephosphorylation of Y527 as
well as binding of ligands to the SH2 or SH3 domains alleviates
the autoinhibitory state of Src, leading to autophosphorylation of
Y416 and maximal kinase activity10,11. Upon binding of
immunoglobulin (Ig)G-coated particles to FcgRs, active SFK
phosphorylate the immunoglobulin tyrosine activation motif of
FcgR2, which in turn initiates actin-driven opsono-phagocytosis
downstream of Cdc42, Rac1, Nck and N-WASP12,13. We
previously reported that opsono-phagocytosis via FcgRIIa could
be inhibited by the enteropathogenic Escherichia coli (EPEC) and
enterohaemorrhagic E. coli (EHEC) effector EspJ through
an unknown mechanism14. Here we show that EspJ inhibits
opsono-phagocytosis through inactivation of Src, disrupting
phosphorylation of the FcgRIIa. EspJ inhibits Src activity by a
unique post-translational modification mechanism involving
amidation and adenosine diphosphate (ADP) ribosylation of a
key kinase-domain residue, which is conserved across the protein
kinase superfamily.

Results
EspJ resembles ADP ribosyltransferases. The Phyre protein fold
recognition server15 indicated that extensive structural homology
exists between EspJ and the ADP-ribosyltransferase (ART)
domain of the Pseudomonas syringae effector AvrPphF-ORF2
(ref. 16) (E-value¼ 1.3� 10� 8), including the b-sheet fold
characteristic of ARTs (Fig. 1a,b; Supplementary Fig. 2). ARTs
mediate transfer of ADP ribose from nicotinamide adenine
dinucleotide (NADþ ) onto target proteins, modulating their
interactions and subsequent signalling17. To explore whether EspJ
can bind NADþ , we recorded 1H–15N two-dimensional
heteronuclear single quantum coherence (HSQC) nuclear
magnetic resonance (NMR) spectra of recombinant 15N-labelled
EspJ28-217 (lacking the N-terminal secretion signal) in the
presence and absence of NADþ . The addition of NADþ

caused substantial chemical shift perturbations for several
resonances, consistent with a significant interaction with EspJ
(Fig. 1c).

To characterize this interaction further, we mutated R79 and
D187 in EspJ, which would contribute directly to NADþ binding
and catalytic activity based on comparisons with AvrPphF-ORF2
and the canonical ART diphtheria toxin16,18 (Fig. 1a,b;
Supplementary Fig. 2). While the positions of some 1H–15N
HSQC peaks for EspJ28-217R79A and EspJ28-217D187A were
altered relative to the EspJ28-217 spectra, the excellent spectra
dispersion indicates that the mutations have not affected the
overall protein structure. Upon titration with NADþ no
significant chemical shift perturbations were observed for
EspJR79A. When NADþ was present at a 10-fold molar
equivalent some altered chemical shifts were observed for
EspJ28-217 D187A, consistent with D187 contributing to NAD
binding, but not being essential for recognition (Fig. 1c).

NAD binding is necessary for the biological activity of EspJ. To
identify the cellular targets of EspJ, we first examined whether the
EspJ-R (R79A), -D (D187A) and -R/D (R79A/D187A) mutants
could inhibit phagocytosis of opsonized red blood cells (RBCs).
J774A.1 macrophages were infected with EPEC and subsequently
challenged with IgG-coated RBC (IgG-RBC). Infection with
EPEC resulted in inhibition of phagocytosis of IgG-RBC to o2%
compared with B40% in uninfected cells (Fig. 2a). In contrast,
there was B23% RBC internalization in cells infected with
EPECDespJ. The level of phagocytosis inhibition was restored by
complementation with plasmid-encoded EspJ (pespJ), but not
EspJ-R, -D or -R/D mutants (Fig. 2a). J774A.1 cells infected with
EPEC and challenged with IgG-RBC also revealed that only EPEC
or EPECDespJ-expressing EspJ, but not EspJ-R/D, significantly
reduced the level of pTyr and actin accumulation at RBC
attachment sites (Fig. 2b,c). In addition, co-expression of EspJ
and FcgRIIa in Cos-7 cells, outside the context of EPEC infection,
demonstrated that EspJ, but not EspJ-R/D, significantly reduced
RBC internalization (Fig. 2d). Immunoblot analysis of FcgRIIa,
crosslinked with anti-FcgRIIa antibodies, demonstrated that
expression of EspJ, but not EspJ-R/D, reduced phosphorylation of
FcgRIIa to that of its non-phosphorylatable Y282F/Y298F mutant
(Fig. 2e; Supplementary Fig. 3). This suggests that EspJ suppresses
phagocytosis by inhibiting SFK-mediated phosphorylation of
FcgRIIa.

EspJ blocks the kinase activity of Src. To determine whether
other Src-dependent phosphorylation events were also inhibited,
we examined the impact of EspJ on EPEC and Vaccinia virus-
induced actin polymerization. The ability of EPEC and Vaccinia
virus to stimulate actin polymerization is dependent on Src- and
Abl-mediated phosphorylation of Tir and A36, respec-
tively3,4,19,20. Phosphorylation of Tir and A36 results in
recruitment of a signalling network consisting of Nck, WIP and
N-WASP, which is required for Arp2/3-dependent actin
polymerization9,21. We found that ectopically expressed EspJ,
but not EspJ-R/D, inhibited actin polymerization induced by
EPEC and Vaccinia virus (Fig. 3a,b). In contrast, EspJ had no
impact on the phosphorylation-independent actin polymerization
ability of EHEC O157:H7 (which naturally expresses the type-III
secretion system effector TccP/EspFU) or EPEC transformed with
a plasmid encoding TccP/EspFU (Supplementary Fig. 4a,b). This
is not surprising as TccP/EspFU-driven actin polymerization
circumvents the requirement of Tir tyrosine phosphorylation by
directly activating N-WASP independently of Nck9,22.

While ectopic expression of EspJ did not interfere with Tir
translocation, a marked reduction in Tir phosphotyrosine
staining and Nck recruitment at bacterial attachment sites
was observed in cells ectopically expressing EspJ, but not
EspJ-R/D (Supplementary Fig. 5a–c). Moreover, EspJ, but not
EspJ-R/D, decreased the level of active SFKs (pY416) beneath
adherent EPEC, although green fluorescent protein (GFP)-Src
was recruited to bacterial attachment sites (Fig. 3c;
Supplementary Fig. 6a). Consistent with this, we found that
EspJ inhibited EPEC-induced actin polymerization even in the
presence of constitutively active SrcY527F (Supplementary
Fig. 6b). Furthermore, immunoblot analysis demonstrated that
EspJ inhibits the marked increase in levels of tyrosine-
phosphorylated cellular proteins seen following expression of
Src or constitutively active SrcY527F, as well as auto-
phosphorylation of the kinase on Y416 (Figs 3d and 4a;
Supplementary Fig. 7). This inhibition was absent in cells
expressing EspJ-R/D (Figs 3d and 4a).

To test whether the inhibition is due to direct inactivation of
the kinase itself, we measured the kinase activity of SrcY527F
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immunoprecipitated from cells co-expressing EspJ or EspJ-R/D
(Fig. 4b; Supplementary Fig. 8). We found that SrcY527F
immunoprecipitated from cells expressing EspJ-R/D, but not
EspJ, readily phosphorylated the C terminus of TirEPEC (TirC)
forming a doublet on a-pTyr immunoblot, suggesting that

Tir is phosphorylated on multiple tyrosines by Src (Fig. 4b).
Furthermore, EspJ also inhibited autophosphorylation of
the kinase domain in Src (SH1), as well as phosphorylation
of Tir in vitro (Fig. 4a,b). Interestingly, one of the phosphory-
lated Tir bands was still observed in the presence of
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Figure 1 | EspJ ART domain residues are required for NADþ binding. (a) Overlay of a model of EspJ (cyan) and the canonical ART diphtheria toxin (DT)

(orange). The NADþ -binding region is highlighted by a black box and magnified in b (NADþ C shown in green, O in red, N in blue and P in orange). The

side chains of R79, D187 (EspJ) and H21, E148 (diphtheria toxin) are shown (with O in red and N in blue). (c) Two-dimensional 1H–15N HSQC NMR spectra

of recombinant 15N-labelled EspJ28-217, EspJ28-217 R79A and EspJ28-217 D187A (black) in the presence of 1 (red) or 10-fold (cyan) molar equivalents of

NADþ . Arrows highlight examples of spectral changes upon addition of NADþ . Enlarged boxes show spectral changes in the EspJ28-217 spectra and

equivalent peaks in EspJ28-217 R79A and EspJ28-217 D187A spectra.
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Figure 2 | EspJ inhibits FccRIIa tyrosine phosphorylation and downstream actin polymerization. (a–c) Macrophages were infected with GFP-EPEC,

EPECDespJ or EPECDespJ expressing plasmid-encoded EspJ (pespJ), EspJ-R, EspJ-D or EspJ-R/D and then were challenged with IgG-opsonized RBC.

Internalized RBCs (a) (total RBC are shown in red, external RBC in both red and cyan and actin in blue), tyrosine phosphorylation (b) and actin

polymerization (c) (arrowheads) were visualized. Scale bars, 10mm. Only EPEC and EPECDespJ expressing EspJ reduced RBC phagocytosis, tyrosine

phosphorylation and actin polymerization. (d) Cos-7 cells co-expressing FcgRIIa and myc-tagged (blue) EspJ, or EspJ-R/D were challenged with IgG-

opsonized RBC and the percentage of internalized RBC quantified (arrowheads). Scale bars, 10mm. Again, only EspJ could inhibit RBC phagocytosis. Results

are the mean±s.d. of three independent experiments in which 100 (a) or 50 (b–d) cells were analysed. Data sets were analysed using one-way analysis of

variance (GraphPad Prism v6.0). A significant result is defined as Po0.05 (shown as * and Po0.01 shown as **) as compared with uninfected or

untransfected controls. (e) Cos-7 cells co-expressing GFP-tagged FcgRIIa or FcgRIIa Y282F/Y298F with EspJ, EspJ-R/D or an empty vector were treated

with anti-FcgR IV.3 antibody with or without secondary antibody crosslinking. The FcgRIIa was immunoprecipitated and analysed by immunoblotting with

anti-pTyr and anti-GFP antibodies, which shows phosphorylation of wild-type FcgRIIa in the control and EspJ-R/D-expressing cells (arrow), but not in cells

expressing EspJ or FcgRIIa Y282F/Y298F. Similar results were obtained in three independent experiments. Representative immunoblots are shown.

Full immunoblots are shown in Supplementary Fig. 3.
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SrcSH1, likely due to incomplete inhibition by EspJ. SrcSH1
immunoprecipitated from cells expressing EspJ-R/D was, as
expected, fully active (Fig. 4b). Taken together, these results

demonstrate that EspJ permanently inactivates the activity
of Src, in a NADþ -binding-dependent manner, by directly
targeting its SH1 kinase domain.
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EspJ amidates and ADP-ribosylates Src. We next investigated
whether the inactivation of Src was through ADP ribosylation by
performing an in vitro ADP-ribosylation assay on purified glu-
tatione S-transferase (GST)-tagged Src, Src-K295M (kinase
inactive) and SrcSH1-K295M in the absence and presence of EspJ
or EspJ-R/D. Using radiolabelled NADþ revealed that EspJ, but
not EspJ-R/D, could ADP-ribosylate the three Src proteins
(Fig. 4c; Supplementary Fig. 9).

The site of Src ADP-ribosylation was then determined by mass
spectrometry (MS). In vitro ADP-ribosylated Src-K295M was
separated by SDS–polyacrylamide gel electrophoresis (PAGE),
and the Coomassie-stained protein band was excised and digested
with either trypsin, thermolysin or elastase. All digests were
analysed by nanoliquid chromatography (LC)-MS/MS using
higher-energy C-trap dissociation (HCD), as well as electron-
transfer dissociation (ETD) fragmentation. HCD spectra of ADP-
ribosylated peptides were identified by filtering the spectra for the
presence of ADP-ribosyl-specific marker fragments (m/z 250.09,
348.07 and 428.04)23. The spectrum shown in Fig. 4e shows
typical ADP-ribosyl-specific marker fragments (for example, m4,
m6 and m8) as well as a series of b ions (b8–b12) that enabled the
identification of the peptide, as well as the localization of the ADP
ribosylation to E310. Unexpectedly, in addition to the ADP
ribosylation, E310 was also amidated, so that E310 was converted
to Q310. This finding was confirmed by searching all fragment
ion spectra against a custom database containing the sequences of
both Src-K295M and Src-K295M/E310Q. Whereas no ADP-
ribosylated peptide was mapped to the sequence of Src-K295M,
27 ADP-ribosylated peptides (all containing Q310) were mapped
to the sequence of Src-K295M/E310Q (Supplementary Table 4).
ADP ribosylation of E310 was completely abolished when E310
was mutated to either A or Q (Fig. 4d). Additional evidence for
the simultaneous modification of E310 of Src-K295M by
amidation and ADP ribosylation came from a comparison of
the tryptic digests of EspJ-treated and untreated Src-K295M
(Fig. 4f). As expected, the tryptic peptide modified by amidation
and ADP ribosylation was only detectable in the EspJ-treated
sample. However, in addition we were able to identify the same
tryptic peptide modified by amidation (E310Q) only, specifically in
the EspJ-treated sample (Supplementary Fig. 10). Accordingly, the
MS data provide clear evidence for the simultaneous modification
of E310 of Src-K295M by amidation and ADP ribosylation. The
exact molecular mechanism of the concurrent modifications
remains to be uncovered. However, since Src-K295M/E310Q is
no longer modified by ADP ribosylation (Fig. 4d), we postulate a
one-step mechanism where amidation and ADP ribosylation are
directly coupled to each other rather than a two-step mechanism
with successive amidation and ADP ribosylation.

Discussion
Here we show the modification and inactivation of the host cell
kinase Src by a bacterial effector protein, resulting in the
inhibition of a number of Src-mediated actin polymerization

events including opsono-phagocytosis and pathogen-induced
actin polymerization. EspJ targets the kinase domain of Src,
disrupting Src autophosphorylation and the phosphorylation of
Src substrates by post-translational modification of residue E310.
Protein kinase domains are highly conserved sharing a common
bilobal structure and 12 conserved motifs24. Phosphotransfer
occurs in the cleft between the two lobes25, and E310 is part of the
catalytic C helix, which projects into the catalytic cleft forming a
salt bridge with K295, required for phosphotransfer7,11. Addition
of ADP ribose on E310 would therefore disrupt salt-bridge
formation and abrogate catalytic activity. By post-translationally
modifying a highly conserved residue such as E310, EspJ may be
able to inactivate multiple kinases (Supplementary Fig. 11). This
is further supported by the fact that EspJ can inhibit EPEC and
Vaccinia actin polymerization, which rely on both Src and Abl
family kinases19,20.

Host cell tyrosine kinases are hijacked by many bacterial and
viral pathogens during infection to enhance their own adhesion
or spread, trigger internalization or ensure they remain extra-
cellular. For example, Shigella initiates host cell signalling to
induce membrane ruffles facilitating their invasion requiring Src
and Abl/Arg kinases26,27. The Helicobacter pylori effector protein
CagA is phosphorylated by SFK and Abl/Arg with pleiotropic
effects within the cell, including cytoskeletal rearrangements and
cell elongation28. Interestingly, phosphorylated CagA then
initiates a negative-feedback loop to inhibit Src activity by
activating Csk, which then phosphorylates Src on Y527 inducing
the inactive conformation29. In this study, we show that in
addition to using host cell kinases for actin pedestal formation,
EPEC translocates an effector protein to inhibit Src signalling.
Inhibition of Src, Abl and possibly further tyrosine kinases by
EspJ could contribute to EPEC and EHEC virulence by blocking
phagocytosis and pedestal formation by secondary EPEC
infection, or by antagonizing Tir signalling and promoting
pedestal disassembly during late stages of infection. However,
given Src is required for many signalling events, the full role
during infection requires further analysis.

The post-translational modification ADP ribosylation is used
by many pathogens to target host cell signalling. For example,
Corynebacterium diptherium diphtheria toxin inhibits protein
synthesis by ADP-ribosylating elongation factor 2 (refs 30,31).
Several other bacterial toxins and effector proteins use
ADP ribosylation to disrupt host cell cytoskeletal signalling.
P. aeruginosa type-III secretion system effector ExoT ADP-
ribosylates the Crk adaptor proteins32, which are involved in
phagocytosis33, while the Clostridium botulinum ADP-
ribosylating toxins C2 and C3 target monomeric actin and Rho
GTPases, respectively34,35. The P. syringae effector HopF2, which
shares homology with EspJ, ADP-ribosylates Mitogen-activated
protein kinase (MAPK) disrupting plant responses to infection36.
However, the activity of EspJ is novel as the combined amidation
and ADP ribosylation of a target protein has not previously been
reported. Furthermore, the inability to detect Src Q310 by MS
and the lack of modification of Src E310Q suggest that amidation

Figure 3 | EspJ inhibits EPEC- and Vaccinia virus-induced actin polymerization and recruitment of active Src to sites of bacterial attachment. Cultured

cells expressing Flag-tagged GFP, EspJ or, EspJ-R/D were infected with EPEC (a) or Vaccinia virus (b) and were quantified for actin polymerization

associated with attached EPEC (DAPI stained) or Vaccinia virions (RFP-tagged A3 viral core protein). EspJ, but not EspJ-R/D, inhibited actin polymerization

under both EPEC and Vaccinia virions. (c) Cells expressing Flag-tagged GFP, EspJ, or EspJ-R/D, were infected with EPEC and stained with anti-pY416, to

detect active SFKs, and 4’,6-diamidino-2-phenylindole (DAPI). EspJ, but not EspJ-R/D, inhibited accumulation of pY416 under adherent EPEC. Fifty cells

were analysed in each of three independent experiments. Data sets were analysed using one-way analysis of variance (GraphPad Prism v6.0). A significant

result is defined as Po0.05 (Po0.01 shown as ** and Po0.0001 shown as ****) as compared with control infections. Scale bars, 10mm (a,c) or 20mm (b).

(d) Swiss 3T3 cells co-expressing GFP, Src-GFP or Src Y527F-GFP with Flag-tagged EspJ, EspJ-R/D or an empty vector were analysed by anti-pTyr

immunoblot. EspJ inhibited general protein tyrosine phosphorylation. Similar results were obtained in three independent experiments. Representative

immunoblots are shown. Full immunoblots are shown in Supplementary Fig. 7.
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and ADP ribosylation are coupled rather than individual
reactions. This represents a novel mechanism of action, the
biochemical details of which require further investigation. EspJ
therefore adds to the growing repertoire of bacterial effectors,
which post-translationally modify host cell proteins, in this case
using a novel amidase and ADP- ribosyltransferase activity to
inactivate the tyrosine kinase Src.

Methods
Eukaryotic cell culture. Swiss 3T3, Cos-7 and J774.A1 cell lines were maintained
in 4,500 mg l� 1 glucose Dulbecco’s modified Eagle’s medium (DMEM) (Sigma)
supplemented with 10% heat-inactivated fetal bovine serum and 2 mM Glutamax
(Invitrogen) at 37 �C and 5% CO2.

Bacterial strains and growth conditions. The bacterial strains used in this study
are listed in Supplementary Table 1. Bacteria were cultured in Luria-Bertani (LB)
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broth at 37 �C, with ampicillin (100 mg ml� 1), chloramphenicol (34mg ml� 1) or
kanamycin (50mg ml� 1) as appropriate. For EPEC infections, overnight cultures
were primed in DMEM by diluting 1:100 and incubating statically at 37 �C and 5%
CO2 for 3 h as described37. For EHEC cultures, bacteria were grown in LB shaking
for 8 h, then diluted 1:100 in DMEM and incubated overnight statically at 37 �C
and 5% CO2. Bacterial cultures were induced with 0.05 mM isopropyl-beta-D-
thiogalactopyranoside (IPTG) 30 min before infection if required.

EPEC JPN15 espJ mutant was constructed using the lambda red method38.
Briefly, a PCR product was generated by amplifying the kanamycin resistance
cassette from the pKD4 template plasmid using primers (EPEC-espJ-pKD4-f and
EPEC-espJ-pKD4-r shown in Supplementary Table 2), which add 50 nucleotides of
flanking DNA regions homologous to the 50 and 30 ends of the espJ gene. The PCR
product was transformed into EPEC JPN15 containing the pKD46 plasmid. Clones
were grown on LB medium containing kanamycin, the pKD46 cured by growth at
42 �C and the mutation verified by PCR using primers flanking espJ gene and
primers into the antibiotic resistance gene.

Plasmid construction. Oligonucleotides used for gene amplification and site-
directed mutagenesis are shown in Supplementary Table 2, and plasmids used in
this study are listed in Supplementary Table 3. For pcDNA–NTAP constructs,
genes optimized for mammalian expression encoding EspJEHEC, EspJEPEC and
EspJEPEC R79A/D187A were synthesized by GeneArt and subcloned into pcDNA–
NTAP. For all other constructs, bacterial sequences were amplified from EPEC
O127:H6 E2348/69 genomic DNA. The QuikChange II Site-Directed Mutagenesis
kit (Stratagene) was used as per the manufacturer’s instructions to generate
pcDNA–NTAP-espJEHEC R79A/D187A and pSA10-espJ R79A, D187A and R79A/
D187A. Mutated espJEPECwas then subcloned into pET28a and pRK5. pCB6–Src
expression constructs were a kind gift from Professor Michael Way. Full-length Src
(chicken c-Src) and Src SH1 (250–533) sequences were subcloned into pEGFP-N1
for expression with a myc tag or pGEX–KG for expression as a GST fusion. Site-
directed mutagenesis was used to insert E310A and E310Q mutations. All con-
structs were verified by DNA sequencing.

Protein expression and purification. BL21 (pET28a-espJ28-217) strains were
grown in LB overnight at 37 �C and then diluted 1:100 in LB or in minimal media
containing 0.07% 15NH4Cl for 1H15N HSQC analysis. Cultures were grown until
an OD600 of B0.6, induced with 1 mM IPTG and grown for a further 18 h at 37 �C.
For purification, the culture was centrifuged at 2,400 relative centrifugal force
(RCF) for 20 min and the pellet resuspended in 25 ml denaturing protein buffer
(8 M urea, 50 mM NaPO4 pH 7.4, 200 mM NaCl, 10 mM imidazole and 5 mM b-
mercaptoethanol) with cOmplete EDTA-free protease inhibitors (Roche) and lysed
with three passes through an Emulsiflex B-15. Samples were clarified at 17,000 RCF
for 20 min and the supernatant loaded onto His-bind resin (Novagen) pre-equi-
librated in denaturing protein buffer. Resin was washed with denaturing protein
buffer, denaturing protein buffer containing 30 mM imidazole and the sample
eluted with denaturing protein buffer containing 200 mM imidazole. Eluents were
dialysed against 1 M urea, 50 mM NaPO4 pH 7.4, 200 mM NaCl and 5 mM b-
mercaptoethanol followed by the same buffer containing no urea and finally gel
filtered using a Superdex-75 gel filtration column (GE healthcare). His-tagged
TirCEPEC was purified from BL21(pET28a-TirCEPEC) grown in LB as above, except
bacteria were grown at 30 �C for 4 h following IPTG induction and purification was
performed on ice with non-denaturing buffers. TirCEPEC was eluted in 5 ml protein
buffer with 200 mM imidazole and dialysed against 50 mM Tris pH 7.5, 200 mM
NaCl and 5 mM b-mercaptoethanol 10% glycerol. GST and GST-tagged Src deri-
vatives were purified from BL21 carrying the appropriate pGEX–KG construct,

following induction at 30 �C for 4 h using Glutathione Sepharose resin (GE
Healthcare) as per manufacturers’ instructions.

NMR analysis. NMR 1H15N HSQC experiments were performed on a Bruker
Avance II 800 MHz spectrometer equipped with a TXI cryoprobe at 295 K using
0.25 mM 15N-labelled EspJ in 50 mM NaPO4 pH 7.4, 200 mM NaCl, 5 mM b-
mercaptoethanol and 10% D2O in the presence and absence of NADþ (Sigma)
prepared in the same buffer. Data were processed with NMRpipe39 and analysed
with NMRview40.

Eukaryotic cell transfection. Cos-7 cells and Swiss 3T3 cells were seeded onto
glass coverslips in 24-well plates at a density of 5� 104 or 7.5� 104 cells per well
24 h prior to transfection with FuGene 6 (Roche) or Lipofectamine 2000 (Invi-
trogen), respectively, according to the manufacturer’s instructions. Cells were
incubated at 37 �C with 5% CO2 and assayed 15 h post transfection.

EPEC/EHEC infection of eukaryotic cells. J774.A1 cells were seeded on glass
coverslips in a 24-well plate at a density of 1.5� 105 cells per well and cultured
overnight. Cells were starved in serum free (SF)-DMEM before infection with
200 ml JPN15 cultures, grown as described above. Plates were centrifuged at 500
RCF for 4 min and incubated for 1 h at 37 �C in 5% CO2. Infected cells were washed
three times with PBS and challenged with opsonized RBCs to assay phagocytosis, as
described below. Transfected Swiss 3T3 cells were infected with 100 ml EPEC or
EPEC (pSA10-TccP) culture, grown as described above, and incubated for 1 or 3 h,
respectively. For EHEC 85–170 infection, 25 ml culture was added and plates
centrifuged at 500 RCF for 4 min, incubated at 37 �C in 5% CO2 for 2.5 h washed
three times and incubated for a further 2.5 h. For all infections, cells were washed
three times in PBS and fixed with 4% paraformaldehyde for 20 min at room
temperature (RT).

Vaccinia infection. Vaccinia expression vectors pEL-NTAP-espJEHEC and
pEL-NTAP-espJEHEC R79A/D187A were generated by replacing GFP with the
relevant insert in a previously described pEL vector3. For Vaccinia infection
assays, HeLa cells were seeded on fibronectin-coated coverslips at B50%
confluency and cultured overnight. Cells were infected with a WR strain of
Vaccinia virus expressing an RFP-tagged version of the viral core protein A3
(ref. 41). Approximately 4 h post infection, cells were transfected with indicated
constructs or pEL-CFP (control) using the Fugene transfection protocol (Promega)
and then fixed in 4% paraformaldehyde B9 h post infection. Cells were permeabilized
with PHEM buffer (60 mM PIPES, 25 mM Hepes, 10 mM EGTA and 1 mM
Mg-acetate, pH 6.9), incubated with a-FLAG M2 (Sigma), washed with PBS, incubated
with Alexa350 a-mouse and Alexa488 Phalloidin (Invitrogen) and mounted in mowiol.

RBC opsonization and phagocytosis assay. 0.3 or 0.1 ml of sheep RBC per well
(J774.A1 or Cos-7, respectively) were opsonized with an equal volume of a-sRBC
IgG (Sigma) previously diluted 1:50 in gelatin veronal buffer (Sigma) and rotated in
a total volume of 500ml gelatin veronal buffer for 30 min at RT. Opsonized RBCs
were pelleted at 1,500 RCF for 2 min and resuspended in 500 ml DMEM per well.
Prior to challenge, cells were serum-starved for at least 1 h. To assay for % inter-
nalization, infected cells were challenged with opsonized RBC for 30 min and
transfected Cos-7 cells were challenged for 90 min. Where actin accumulation or
phosphotyrosine staining were assessed, infected macrophages were incubated at
4 �C for 15 min and then 37 �C for 8 min after the addition of IgG-RBC. Where
differential staining of RBC was required, cells were chilled on ice, washed with

Figure 4 | EspJ inhibits Src kinase activity by amidation and ADP ribosylation of Src E310. (a) Swiss 3T3 cells co-expressing myc-tagged SrcY527F or

SrcSH1 with Flag-tagged EspJ, or EspJ-R/D were analysed by anti-pY416, anti-Myc and anti-Flag antibodies. EspJ inhibited autophosphorylation (pY416) of

both SrcY527F and SrcSH1. (b) Myc-tagged SrcY527F or SrcSH1 were immunoprecipitated from lysates of cells expressing EspJ or EspJ-R/D and incubated

with His-tagged TirCEPEC. Analysis of TirCEPEC by immunobloting with anti-pTyr and anti-His antibodies indicated that SrcY527F and SrcSH1 were inactive

when immunoprecipitated from cells co-expressing EspJ. Similar results were obtained in three independent experiments. Representative immunoblots are

shown. The full immunoblots are shown in Supplementary Fig. 8. (c) Recombinant EspJ and EspJ EspJ-R/D were incubated with GST, GST-Src, GST-Src

K295M (Src K) or GST-SrcSH1 K295M (SrcSH1 K) and 32P-labelled NADþ . Autoradiograph (AR) showing 32P-labelled Src and SrcSH1 in the presence of

EspJ, but not EspJ-R/D. Corresponding commassie-stained PAGE gels are shown in Supplementary Fig. 9. Similar results were obtained in three

independent experiments. (d) Recombinant EspJ was incubated with GST-Src K295M (Src K), GST-SrcK-E310Q or GST-SrcK-E310A and 32P-labelled

NADþ . Autoradiograph showing 32P-labelling of only Src K. Similar results were obtained in two independent experiments. (e) HCD MS/MS spectrum of

the precursor 1023.4071 (2þ ) corresponding to the amidated and ADP-ribosylated peptide with the sequence 298-KPGTMSPEAFLQEA-311 generated by

digest of EspJ-incubated Src-K295M with elastase. Collision-induced fragmentation is observed at the backbone (b ion series) as well as in the ADP-ribose

moiety (m and p ions). All p ions are shifted by �0.984 Da indicating the amidation (O to NH exchange) at the side chain of E310. (f) Src-K295M was

incubated with or without addition of EspJ. Proteins were separated by SDS–PAGE, digested and analysed by nanoLC-MS/MS. Extracted ion

chromatograms for the differentially modified tryptic peptide VAIMTLKPGTMSPEAFLQEAQVMK are shown: the unmodified sequence (E310), the

amidated form of this peptide (E310 amidation) and the amidated and ADP-ribosylated form (E310 amidation and ADP ribosylation). The unmodified form

of the tryptic peptide is detected in the presence and in the absence of EspJ, whereas the modified forms are only detectable when Src-K295M has been

incubated with EspJ. Results were consistent in a repeat experiment using SrcSH1.
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PBS and external RBC were stained with Alexa647 conjugated a-rabbit antibody
(1:500, Invitrogen) before fixing with 4% paraformaldehyde for 20 min at RT.

Immunofluorescence staining. Fixed cells were permeabilized with 0.1% Triton
X-100 for 2 min and incubated in 2% bovine serum albumin (BSA)/PBS at RT to
block non-specific interactions. Total RBC were then stained with Alexa555 con-
jugated a-rabbit antibody (1:500, Invitrogen). Alternatively, cells were incubated
with antibodies against Flag M2 (1:500, Sigma), Myc tag clone 4A6 (1:500, Milli-
pore), Tir (1:500), phosphotyrosine (1:500, Sigma), Nck (1:250, Millipore) or Src
pY418 (labels chicken Src pY416) (1:500, Sigma) for 45 min at RT, washed and
then incubated with appropriate secondary antibodies (1:200, Jackson Immunor-
esearch), Phalloidin TRITC (Sigma) or Phalloidin AlexaFluor350 (Invitrogen)
to visualize F-actin and 4’,6-diamidino-2-phenylindole (Invitrogen) to visualize
cellular and bacterial nuclei. Coverslips were mounted in ProLong Gold antifade
reagent (Invitrogen) and analysed using a ZEISS Axio Imager fluorescence
microscope. The percentage of phagocytosis was defined as % bound RBC that are
internalized by macrophages/transfected Cos-7 cells. In total, 50 transfected Cos-7
or 100 J774.A1 cells were counted for each experiment. For pedestal analysis, actin,
Nck or pY416 staining was scored for bacteria attached to 50 transfected Swiss 3T3
cells. Three repeats were performed for each experiment. GraphPad Prism v6.0
(GraphPad Software, California, USA) was used to statistically analyse data sets
using one-way analysis of variance, where appropriate. A significant result is
defined as Po0.05 (shown as *, Po0.01 as **, Po0.001 as ***, and Po0.0001 as
****) as compared with uninfected, FcgRIIa or GFP control.

Immunoprecipitations and kinase assay. For analysis of receptor phosphoryla-
tion 8� 105 Cos-7 cells were seeded 24 h before transfection with pEGFP-FcgRIIa
or pEGFP-FcgRIIa Y282F/Y298F along with pcDNA–NTAP, pcDNA–NTAP-
espJEPEC or pcDNA–NTAP-espJEPEC R79A/D187A. Cells were washed and incu-
bated with serum-free media for 1 h before incubation with 0.5 mg ml� 1 mouse
anti-FcgRIIa (IV.3) (Stemcell Technologies) at 4 �C. Cells were washed three times
and treated with 2 mg ml� 1 goat anti-mouse antibody (Merck) for crosslinked or
media alone for non-crosslinked samples. Samples were washed three times and
lysed on ice in 1 ml RIPA buffer (1% Triton X-100, 0.5% Nonidet P-40, 100 mM
NaCl, 2 mM EGTA, 2 mM EDTA and 30 mM HEPES, pH 7.4) with cOmplete
EDTA-free protease inhibitors (Roche) and phosSTOP phosphatase inhibitors
(Roche). Lysed cells were clarified by centrifugation at 510 RCF for 10 min and the
supernatant was mixed with 20 ml protein G Dynabeads (Invitrogen) for 2.5 h at
4 �C and 30 min at RT. For non-crosslinked samples, beads were pre-coated with
anti-mouse IgG. Beads were washed with RIPA buffer, 0.2% Triton X-100/tris
buffered saline and tris-buffered saline, then boiled in 2� Laemmli sample buffer
for 5 min. Proteins were separated by SDS–PAGE and transferred to Hybond
PVDF membrane (GE Healthcare) before blocking in 10 mM Tris pH 7.4, 150 mM
NaCl, 0.1% Tween-20, 1 mM EDTA, 3% BSA and 0.5% gelatin. The membrane was
probed with mouse anti-pTyr antibody (Sigma) diluted 1:2,500 and then HRP-
conjugate anti-mouse (1:10,000, Jackson ImmunoResearch) and visualized with
EZ-ECL (GeneFlow) as per the manufacturer’s instructions. Membranes were
stripped with RestorePLUS stripping buffer (Thermo Scientific) and probed with
rabbit anti-GFP (Abcam) diluted 1:1,000 in 3% milk, 0.1% Tween-20/PBS and then
HRP-conjugated anti-rabbit antibody (1:10,000, Jackson ImmunoResearch).

For Src immunoprecipitation assays, 1.8� 106 Swiss 3T3 cells were seeded 24 h
before transfection with pEGFP-N1-SrcY527F-myc or pEGFP-N1-Src 250–533
(SH1)-myc and pcDNA–NTAP, pcDNA–NTAP-espJEHEC or pcDNA–NTAP-
espJEHEC R79A/D187A. After 16 h, cells were lysed in 250ml lysis buffer (0.5% Triton
X-100, 0.5% Nonidet P-40, 20 mM NaPO4 pH 7.4, 150 mM NaCl and 2 mM EGTA)
with cOmplete EDTA-free protease inhibitors (Roche) and phosSTOP phosphatase
inhibitors (Roche). Lysates were clarified at 10,000 RCF for 15 min and incubated
with anti-Myc clone A46 (Millipore) antibody-coated protein G Dynabeads
(Invitrogen) for 3 h at 4 �C. Bead complexes were washed three times with lysis
buffer and twice in kinase assay buffer (100 mM Tris pH 7.2, 50 mM NaCl, 125 mM
MgCl2, 25 mM MnCl2, 2 mM EGTA, 0.1 mg ml� 1 BSA, 2 mM dithiothreitol and
250mM Na3VO4) and the myc-tagged protein eluted in kinase buffer with
20mg ml� 1 Myc peptide (Sigma) for 30 min at 30 �C. Eluates were incubated with
2mg TirCEPEC and 100mM adenosine triphosphate for 30 min at 30 �C, boiled in
Laemmli sample buffer and analysed by SDS–PAGE and immunoblot as above.

ADP-ribosylation assay. Purified His-tagged EspJ28-217 and EspJ28-217 R79A/
D187A (0.5 mg) was incubated with 2 mg GST or GST-tagged Src, Src K295M, Src
K295M/E310Q, K295M/E310A or SrcSH1 K295M in PBS pH 7.5 with 150 mM
NADþ and 0.5 mCi 32P-labelled NADþ . Samples were incubated at RT for 30 min,
then separated by SDS–PAGE and analysed by phosphorimaging (Molecular
Dynamics).

Protein digest. For in-gel digestion, the excised gel bands were destained with 30%
acetonitrile, shrunk with 100% acetonitrile and dried in a vacuum concentrator
(Concentrator 5301, Eppendorf, Hamburg, Germany). Digests with trypsin,
elastase and thermolysin were performed overnight at 37 �C in 0.05 M NH4HCO3

(pH 8). Approximately 0.1 mg of protease was used for one gel band. Peptides
were extracted from the gel slices with 5% formic acid.

NanoLC-MS/MS analysis. NanoLC-MS/MS analyses were performed on an LTQ-
Orbitrap Velos Pro (Thermo Scientific) equipped with an EASY-Spray Ion Source
and coupled to an EASY-nLC 1000 (Thermo Scientific). Peptides were loaded on a
trapping column (2 cm� 75 mm inner diameter, PepMap C18 3 mm particles, 100 Å
pore size) and separated on an EASY-Spray column (25 cm� 75 mm inner dia-
meter, PepMap C18 2 mm particles, 100 Å pore size) with a 45-min linear gradient
from 3 to 30% acetonitrile and 0.1% formic acid. MS scans were acquired in the
Orbitrap analyzer with a resolution of 30,000 at m/z 400; MS/MS scans were
acquired in the Orbitrap analyzer with a resolution of 7,500 at m/z 400 using HCD
fragmentation with 30% normalized collision energy. A TOP5 data-dependent MS/
MS method was used; dynamic exclusion was applied with a repeat count of 1 and
an exclusion duration of 30 s; singly charged precursors were excluded from
selection. Minimum signal threshold for precursor selection was set to 50,000.
Predictive AGC was used with an AGC target value of 1e6 for MS scans and 5e4 for
MS/MS scans. The same options were used for ETD fragmentation except for the
following settings: a TOP3 method was applied, singly and doubly charged pre-
cursors were excluded, ETD activation time was set to 60 ms for triply and 45 ms
for quadruply charged precursors and the AGC target was set to 300,000 for
fluoranthene. Lock mass option was applied for internal calibration in all runs
using background ions from protonated decamethylcyclopentasiloxane (m/z
371.10124).

Mascot Distiller 2.4 was used for raw data processing and for generating peak
lists, essentially with standard settings for the Orbitrap Velos (high/high settings).
Mascot Server 2.4 was used for database searching with the following parameters:
peptide mass tolerance: 8 p.p.m., MS/MS mass tolerance: 0.02 Da, enzyme: ‘trypsin’
with three missed cleavage sites allowed for trypsin or ‘none’ for elastase and
thermolysin; fixed modification: carbamidomethyl (C), variable modifications: Gln-
4pyroGlu (N-term. Q), oxidation (M) and ADP ribosylation (RKCEDNQ).
Database searching was performed against a small custom database containing Src
sequence (K295M and K295MþE310Q).
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