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Abstract: Silver-particle-incorporated polyurethane films were evaluated for antimicrobial 

activity towards two different bacteria: Escherichia coli (E. coli) and Staphylococcus 

aureus (S. aureus). Distributed silver particles sourced from silver nitrate, silver lactate and 

preformed silver nanoparticles were mixed with polyurethane (PU) and variously 

characterized by field emission scanning electron microscopy (FESEM), fourier transform 

infra-red (FTIR) spectroscopy, X-ray diffraction (XRD) and contact angle measurement. 

Antibacterial activity against E.coli was confirmed for films loaded with 10% (w/w) 

AgNO3, 1% and 10% (w/w) Ag lactate and preformed Ag nanoparticles. All were active 

against S. aureus, but Ag nanoparticles loaded with PU had a minor effect. The apparent 

antibacterial performance of Ag lactate-loaded PU is better than other Ag ion-loaded films, 

revealed from the zone of inhibition study. The better performance of silver lactate-loaded 

PU was the likely result of a porous PU structure. FESEM and FTIR indicated direct 

interaction of silver with the PU backbone, and XRD patterns confirmed that face-centred 

cubic-type silver, representative of Ag metal, was present. Young’s modulus, tensile 

strength and the hardness of silver containing PU films were not adversely affected and 

possibly marginally increased with silver incorporation. Dynamic mechanical analysis 

(DMA) indicated greater thermal stability. 
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1. Introduction 

Partially implanted medical devices become increasingly vulnerable with time to microbial 

colonization. A particularly common example of this is the intravascular infusion line, used for both 

acute and chronically ill patients. Maintained sterility here is vital for avoiding frequent line changes 

and for the safe administration of hydration fluids, electrolytes, drugs, nutrients and blood components. 

Regardless of the therapeutic benefits of intravascular devices, the escalating incidence of colonization 

and infection imposes a further, major therapeutic challenge [1]. The most common pathogens causing 

infection are Gram-positive Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis and  

Gram-negative Escherichia coli (E. coli) and Pseudomonas aeruginosa, though infections tend to be 

more severe with S. aureus and E. coli [2]. Such nosocomial pathogens colonize both the outer and 

inner surfaces of catheters and are characteristically multi-antibiotic-resistant. They can also lead to 

bloodstream infection with high morbidity and mortality [3]. The prevention of catheter-related 

infection is becoming a high priority [4,5], particularly in view of the growing incidence of  

antibiotic-resistant organisms. Antibiotic loading of materials has been tried, but a substantial amount 

may be eluted in a first “burst”, posing a potentially serious toxic hazard [6]. 

S. aureus is a common cause of infection, its pathogenicity being partly due to coagulase 

production. This enables it to coagulate plasma in its microenvironment, helping to protect it from host 

defence mechanisms. A further, important feature of the bacterium has been its ability to develop 

resistance to commonly used antibiotics and also antiseptics [7–9]. Effectiveness cannot be guaranteed, 

even with a potent topical antibiotic, such as silver sulphadiazine [10], and alternatives are constantly 

needed. In this context, it is notable that mupirocin, whilst much more potent against S. aureus, does 

not provide universal coverage [11]. There is now an increased impetus to avoid indiscriminate 

antibiotics use to reduce the development of resistance organisms in clinical practice [12]. 

Polymer-silver combinations have been reported for a range of non-medical applications, where 

their electrical conductivity, light scattering and catalytic activity have proven to be valuable [13–16]. 

For medicine, the antimicrobial properties of silver (Ag) hold considerable promise; the mechanism of 

action, the development of bacterial resistance, toxicology and clinical utility have been reviewed 

extensively [17–21]. Ag has one of the highest levels of toxicity for microorganisms, but the least 

toxicity for eukaryotic cells [22]. The antimicrobial spectrum of Ag is exceptionally broad, and there is 

also significant virucidal activity [23]. A sufficient concentration of free silver ions is required, and 

whilst water soluble silver salts can give the necessary high concentrations, this is countered by 

sequestration by protein and other macromolecules. Loss through insoluble AgCl formation and 

chelation to microbial products is also a significant problem. Preformed Ag particles may be used, and 

here, the smaller the particle and the greater the relative surface area, the more efficient the 

antibacterial activity [24], most probably the result of enhanced silver ion release. Furno et al. [25] 

were able to link silver ion release from silver nanoparticles in a silicone to antimicrobial activity. 
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Resistance to the antimicrobial activity of Ag has been reported for some microorganisms [26]. 

Thus, in the case of the filamentous fungi, Phoma sp. 3.2883, Phoma PT35, Fusariumoxysporum and 

the bacterium Bacillus megatherium, the adsorption and accumulation of Ag ion without an adverse 

effect are observed, and indeed, such organisms have been used in the reduction of environmental 

pollution and the recovery of Ag from environmental wastes [27–29]. 

Polyurethanes (PUs) comprise an important polymer group, used in industry as coatings, adhesives, 

foams, rubbers and composites. More recently, shape memory materials based on PU have been 

investigated and detailed structure and property correlations derived [30–32]. With their evident 

biocompatibility, they have also become useful implant materials. A key objective has been to improve 

their resistance to mechanical deformation without sacrificing elasticity and biocompatibility; their 

combination of tensile strength and Young’s modulus, whilst maintaining high elongation at break, is 

promising in this regard [33]. 

Here, we report on the structural, mechanical and thermal properties of PU, loaded with Ag salt and 

Ag nanoparticles, along with resultant antimicrobial activity. 

2. Results and Discussion 

Silver is less prone to microbial resistance than antibiotics, especially if rapid bactericidal action is 

achieved [34]. Relatively low concentrations of silver ion are needed, possibly because of active 

uptake and concentration by microorganisms. Organic components in biological fluids can 

significantly diminish the effectiveness [35], and concentrations as high as 0.56 mM have been 

proposed [36,37]. Cell membrane and solution proteins, for example, present nucleophiles and 

coordinating groups, such as sulfhydryls, hydroxyls and amines for silver. Once silver does bind to 

microbial cells, it denatures crucial proteins, disrupts DNA and RNA, inhibits cell replication and, 

ultimately, causes cell death. Silver can also displace other bound metal cations essential to cell 

survival. Accordingly, ionic silver is active against a range of pathogenic organisms, subject to 

complexation effects [38]. 

2.1. Characterization of PU-Ag Composites 

2.1.1. Structure 

Figure 1 shows the fourier transform infra-red (FTIR) spectra of PU and PU-Ag composites 

between 400 and 4000 cm−1. These reveal broad, but consistent, structural effects of silver in PU. 

Absorption bands at 1703 and 1731 cm−1 are characteristic of a carbonyl group stretch; the former 

peak corresponds to carbonyl that is hydrogen bonded with the –NH groups of a neighbouring hard 

segment, whereas the latter is due to non-hydrogen bonded carbonyls within a soft segment. The 

matching peak ratio for pure PU is altered to varying degrees for the silver-loaded PU materials with 

an increase in the high frequency stretch. Peaks at 1310 and 1537 cm−1 are due to the NH– and C–N 

stretches, respectively, and are enhanced in the silver-loaded PU. The peak at 1090 cm−1 (C–O–C, 

aliphatic ether stretching) has a shoulder, and the broad peak at 3326 cm−1 (−NH stretching) is 

increased [39]. Overall, the spectral perturbations indicate that silver interacts with –N– and –O–, as 

might be expected from their electronegative properties. 
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Figure1. Fourier Transform Infra-red (FTIR) spectra of polyurethane (a) unmodified; and 

loaded with (b) 10% (w/w) AgNO3; (c) 1% (w/w) Ag lactate; (d) 10% (w/w) Ag lactate; 

and (e) Ag nanoparticles. 

 

The field emission scanning electron microscopy (FESEM) micrographs of PU and PU-Ag films 

are shown in Figure 2. PU under our casting conditions formed a dense fibrillary structure with fibril 

diameters of ~300 nm. The PU-Ag lactate film shows a porous structure with increased pore sizes at 

the higher Ag-lactate level; the surfaces are also covered with ~400nm Ag particles (Figure 2d). The 

porosity here may have been due to phase separation during preparation. AgNO3 tended to aggregated 

in the polymer, and aggregated silver particles with a highly variable cluster size (1–10 μm) are seen 

on the PU-AgNO3 (Figure 2b). A high surface coverage is seen for the PU-Ag nanoparticles  

(Figure 2e); solvent exposure was likely to have led to sub-surface particle penetration. Ag 

nanoparticles (AgNPs) of increased size ranging from 30 to 290 nm were coated on the PU-AgNPs 

composite film compared to the original 30–40 nm [40]. 
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Figure 2. Field emission scanning electron microscopy (FESEM) images of polyurethane 

(a) unmodified; and loaded with (b) 10% (w/w) AgNO3; (c) 1% (w/w) Ag lactate; 

(d) 10% (w/w) Ag lactate; and (e) Ag nanoparticles. 

 

Except for Ag-lactate, the contact angle for PU decreased from 89.8° to 75.9° after Ag loading, 

indicating a more hydrophilic surface (Figure 3). Values of the contact angles were determined from 

fitting of the captured drop profile to the Young–Laplace Equation. The reproducibility of contact 

angles measurements was within ±5° or better. The PU used here was initially hydrophobic, and the 

greater hydrophilicity confirmed the presence of surface silver. In principle, more hydrophilic surfaces 

are advantageous with regard to blood compatibility [41,42]. The apparent increased hydrophobicity 

with Ag lactate-loaded material was the result of increased surface roughness (Figure 2). 

The X-ray Diffraction (XRD) patterns of pure PU, PU-10% (w/w) AgNO3, PU-1% (w/w) Ag 

lactate, PU-10% (w/w) Ag lactate and PU-Ag nanoparticles are shown in Figure 4. The diffraction 

peak near 2θ =20.26° is due to the hard segments in the PU, with Ag nanoparticles generating the 

sharp peaks seen at 2θ values of 38.20°, 44.45° and 65.89°, indicative of crystalline silver. Peaks seen 

in PU-Ag lactate at 2θ values of 8.72°, 38.23°, 44.45°, 64.57° and 77.37° and in PU-AgNO3 at 2θ 

values of 22.66°, 29.44°, 34.80°, 41.88°, 46.13°, 48.40°, 55.48° and 59.39° are also consistent with the 
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presence of Ag metal in composites made using silver salt. The peak shifts in the PU-Ag nanoparticle 

composite may have been due to the formation of different lattice planes of face-centred cubic silver.  

Figure 3. Contact angle measurements for polyurethane (a) unmodified polyurethane; and 

incorporated (b) 10% (w/w) AgNO3; (c) 1% (w/w) Ag lactate; (d) 10% (w/w) Ag lactate; 

and (e) Ag nanoparticles. 
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Figure 4. X-ray Diffraction curves for polyurethane (a) unmodified; and loaded with  

(b) 10% (w/w) AgNO3; (c) 1% (w/w) Ag lactate; (d) 10% (w/w) Ag lactate; and  

(e) Ag nanoparticles. 
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A different distribution of silver in the polyurethane-silver composites may account for slight 

differences in the observed peaks for each formulation, but the presence of hard segments appears 

unaffected. A decrease in the number of hydrogen bonds between the soft and hard segments of 

polyurethane might be expected, decreasing crystallinity, consistent with such an observation on 

polypropylene containing micro- and nano-scale silver powders [43]. The peaks at, or near, 2θ values 

of 38.2°, 44.45° and 64.57° for all the composites are from the {111}, {200} and {220} lattice planes, 

of face-centred cubic silver, and indicate that the particles formed from the salts are silver metal, 



J. Funct. Biomater. 2013, 4 364 

 

 

consistent with the top crystal plane reported previously [44–46]. Overall, the XRD and FTIR results 

indicate that the polymer chains interacted with embedded silver.  

The UV-Vis spectra of pure PU, PU-AgNP film along with preformed AgNP solution are shown in 

Figure 5. The colour of the PU films changed from colourless to yellow when coated with Ag NPs. 

The resultant broad spectrum of PU-AgNP film compared to AgNP solution may be due to the 

aggregation of AgNPs, showing a surface Plasmon resonance (SPR) peak at λmax = 435 nm along with 

a shoulder at 500 nm and a new peak at 665 nm. 

Figure 5.UV-Vis absorption spectra of PU-AgNP film (∇) along with PU film (Δ) and 

12.46μg/ml AgNP solution ( ). 
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2.1.2. Analysis of Mechanical Properties  

To assess the effect of silver on the PU mechanical properties, tensile testing was undertaken 

(Figure 6). A change in the stress-strain behaviour after the introduction of silver can be seen. Stress 

increases in the modified PU films, which retain a clearly distinguishable yield point. Ag has  

led to slightly increased Young’s modulus and tensile strength. The hardness of modified PU also 

increased from 85.92 shore A (unmodified PU) up to 97.62 shore (Figure 7), indicating matrix  

reinforcement [14,47]. Tear resistance, expressed as the maximum force needed to tear a film  

(Figure 8) shows that a force of 28.59 N/mm is required for pure PU; the value decreases for all  

silver-incorporated materials, maximally for PU-10% (w/w) AgNO3, but is almost unchanged for  

PU-Ag nanoparticles, consistent with the report by Chou et.al. [47] and the superficial deposition of 

these particles in the PU. One effect of tear resistance may have been the generation of inter-locks or 

stress concentrating points by silver, leading to earlier failure [41]. The maintenance of mechanical 

properties suggests that the silver incorporation is feasible, without eroding the optimized properties of 

a base polymer. 
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Figure 6. The stress-strain curves recorded for polyurethane (a) unmodified; and loaded 

with (b) 10% (w/w) AgNO3; (c) 1% (w/w) Ag lactate; (d) 10% (w/w) Ag lactate;  

and (e) Ag nanoparticles. 
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Figure 7. Hardness measurements of polyurethane (a) unmodified; and loaded with  

(b) 10% (w/w) AgNO3; (c) 1% (w/w) Ag lactate; (d) 10% (w/w) Ag lactate; and  

(e) Ag nanoparticles. 
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Figure 8. Tear resistance measurements of polyurethane (a) unmodified; and loaded with  

(b) 10% (w/w) AgNO3; (c) 1% (w/w) Ag lactate; (d) 10% (w/w) Ag lactate;  

(e) Ag nanoparticles. 
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2.1.3. Analysis of Thermal Property 

The storage modulus E' (energy stored during deformation due to stress) and damping factor tanδ 

(the ratio of energy dissipated and energy stored during deformation) of PU and PU-silver composites 

as a function of temperature are shown in Figures 9 and 10, respectively. It can be seen that E' 

increases for different Ag composites, except 10% Ag-lactate, due presumably to its porous nature 

(Figure 2). The tanδ peak is associated with the soft segment glass transition temperature (Tg). The 

introduction of Ag particles resulted in a slight increase in Tg and damping capacity in all composite 

films, except 10% AgNO3-PU.Well-dispersed Ag will restrict molecular motion, and this could have 

led to an increase in Tg. In the case of 10% AgNO3-PU, micro-scale phase separation could have 

reduced hard segment content in the soft phase [48], decreasing Tg from pure PU (−5 °C from  

Figure 10). A Tg shift to a higher temperature has also been seen in polyvinyl alcohol with the addition 

of Ag particles [14]. 

Figure 9. Temperature dependence of the storage modulus of polyurethane (a) unmodified; 

and loaded with (b) 10% (w/w) AgNO3; (c) 1% (w/w) Ag lactate;  

(d) 10% (w/w) Ag lactate; and (e) Ag nanoparticles. 
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Figure 10. Temperature dependence of the tanδ of polyurethane (a) unmodified; and 

loaded with (b) 10% (w/w) AgNO3; (c) 1% (w/w) Ag lactate; (d) 10% (w/w) Ag lactate; 

and (e) Ag nanoparticles. 
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2.2. Antimicrobial Activity Test of PU-Ag Composites 

When antibacterial activity was assessed for E. coli (Figure 11),there was a growth inhibition zone 

around PU loaded with 10% (w/w) AgNO3, 1%, 10% (w/w) Ag lactate and Ag nanoparticles. No 

inhibition was seen around unmodified polyurethane film or polyurethane loaded with  

1% (w/w) AgNO3. The lack of activity of the latter was presumably due to lower Ag+ release, and this 

film was not used for further study. The effectiveness of 1% (w/w) silver lactate was likely to have 

been due to the higher surface area of the associated porous PU (Figure 2).  

Film activity was also seen against S. aureus, but the film coated with preformed Ag nanoparticles 

(Figure 12) showed only a minor effect. With the latter, particle loading and size will have been 

relevant to silver ion release; this has implications for materials designed for clinical use. The zone of 

inhibition (ZOI) was determined on each side of a polymer film for E. coli and S. aureus and measured 

mean values are reported in Tables 1 and 2 respectively. The greater resistance of S. aureus may have 

been due to its thick peptidoglycan walls, reducing the penetration of Ag+, while the 

lipopolysaccharide walls of Gram-negative bacteria likely provided an electrostatically attractive 

surface [49]. 

Figure 11. E. coli grown on iso-sensitest agar supplemented with 5% (v/v) defibrinated 

horse blood and incubated with (a) unmodified polyurethane; and polyurethane loaded 

with (b) 1% (w/w) AgNO3; (c) 10% (w/w) AgNO3; (d) 1% (w/w) Ag lactate;  

(e) 10% (w/w) Ag lactate; and (f) Ag nanoparticles. 
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Figure 11.Cont. 

 

Figure 12. S. aureus grown on iso-sensitest agar supplemented with 5% (v/v) defibrinated 

horse blood and incubated with (a) unmodified polyurethane; and polyurethane loaded with 

(b) 1% (w/w) AgNO3; (c) 10% (w/w) AgNO3; (d) 1% (w/w) Ag lactate; (e) 10% (w/w) Ag 

lactate; and (f) Ag nanoparticles. 
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Table 1. Zone of inhibition (ZOI) for different PU-Ag composite films for E. coli. 

Film type 
E. coli 

Average ZOI (mm) Haemolysis effect 

1% AgNO3 1.5 none 
10% AgNO3 3.0 wide effect 
1%Aglactate 5.0 yes 

10% Aglactate 4.0 yes 
Ag nanoparticles 3.0 yes 

Table 2. Zone of inhibition (ZOI) for different PU-Ag composite films for S. aureus. 

Film type 
S. aureus 

Average ZOI (mm) Haemolysis effect 

1% AgNO3 none none 
10% AgNO3 1.5 wide effect 
1% Aglactate 2.5 yes 
10% Aglactate 2.0 yes 

Ag nanoparticles minor none 

3. Experimental Section 

3.1. Materials 

Two bacterial strains, namely E. coli (NCTC 10148) and S. aureus (NCTC 6571), were used in the 

microbial study. Luria-Bertani (LB) medium (Oxoid, Basingstoke, UK) was used to grow and maintain 

the bacterial cultures, and the zone of inhibition was studied with iso-sensitest agar (ISA; Oxoid, 

Basingstoke, UK) supplemented with 5% (v/v) defibrinated horse blood. Silver nitrate, silver lactate, 

sodium citrate tribasic dehydrate, 4,4'-methylene bis(phenylisocyanate) (MDI), polytetramethylene 

glycol (PTMO, Mw 1000 g/mol), 1,4-butandiol (BD), tetrahydrofuran (THF), N,N-dimethylformamide 

(DMF) were of the highest purity available (Sigma) and used as received without further purification. 

3.2. Synthesis of Polyurethane 

Polyurethane was synthesized from its monomer, MDI and PTMO by a two-step process, using BD 

as a chain extender. First, the pre-polymer was prepared from a reaction of 5.005 g of MDI in 40 mL 

of DMF and 10 g of PTMO in 20 mL of DMF in a 500-mL four-neck cylindrical vessel heated to  

60 °C for 90 min with mechanical stirring under a nitrogen atmosphere. Subsequently, 0.92 g of BD in 

10 mL DMF was added slowly to the prepolymer at 110 °C over 240 min and the mixture allowed to 

react fully. The molar ratio used was 1:2:1 for MDI:PTMO:BD, which was consistent with providing a 

67% soft segment polymer. The polyurethane product was finally washed with Milli-Q water  

(18 MΩ·cm) then methanol and in an oven at 80 °C [50,51]. 
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3.3. Preparation of Silver Nanoparticles 

Five-hundred millilitres of 1 mM silver nitrate solution in distilled water was heated to boiling. 

Then, 20 mL of 1% (w/v) sodium citrate solution was added, and boiling continued until a pale yellow 

solution was obtained [52]. The solution was cooled to room temperature, and Ag nanoparticles were 

harvested using a previously reported procedure [52] after the addition of THF as a stabilizer [40]. 

3.4. Preparation of Polyurethane and Polyurethane-Ag Composites Films 

One gram of PU was dissolved in 25 mL THF, and after stirring until homogeneous, 25 mL of the 

polymer solution was cast in a glass Petri dish of a 96-mm diameter. The polyurethane-only films were 

allowed to dry at room temperature for two days; then, they were removed for further characterization.  

Composite films of different silver content were readily obtained using a solvent casting  

method [14]. For the of PU-AgNO3 films, 1 g of polyurethane was dissolved in 25 mL of THF, and 

after stirring until homogeneous, 25 mL of the solution was mixed with 0.3 and 3 mL, respectively, of 

3.33% (w/v) silver nitrate in aqueous solution to produce polyurethane containing 1% and  

10% (w/w) AgNO3. For the PU-Ag lactate film, 0.2 and 2 mL of 5% silver lactate aqueous  

solution were mixed with 25 mL of polymer solution to produce polyurethane containing 1% and  

10% (w/w) Ag-lactate. Mixtures were cast in Petri dishes of a 96-mm diameter, and the films were 

allowed to dry at room temperature for two days. 

A polyurethane film of a 96-mm diameter was soaked in 520 mL of an aqueous suspension of silver 

nanoparticles (100 μg/mL). One millilitre of THF was added, and the mixture was kept in closed glass 

vials overnight to promote the coverage of the surface. THF served as a stabilizer and prevented the 

formation of larger nanoparticles [40]. The film was washed several times with Milli-Q water to 

remove any absorbed citrate and air-dried.  

3.5. Preparation of Inoculum 

E. coli and S. aureus were selected as target indicators for antimicrobial activity. Strains for the 

control were stored at −70 °C on beads in glycerol broth. From the beads, the strains were subcultured 

in LB medium every week. From this pure culture, touching at least four morphologically similar 

colonies, the culture was transferred into iso-sensitest broth supplemented with 5% (v/v) defibrinated 

horse blood. The bacteria were grown aerobically at 37 °C for 18 h. Visible turbidity equal to  

0.5 McFarland Standards (BioMérieux, Basingstoke, UK) was achieved by adding sterile distilled 

water. To aid visual comparison, a white background with a contrasting black line was used for 

inspection. The culture was finalized by 1:100 and 1:10 dilution in sterile distilled water before 

inoculation of either E. coli or S. aureus [53]. 

3.6. Zone of Inhibition 

For the zone inhibition study, 25 mL of sterile iso-sensitest agar, according to the manufacturer’s 

instructions, was poured into 90-mm disposable, sterilized Petri dishes supplemented with 5% (v/v) 

defibrinated horse blood and allowed to solidify. The plates were stored at 4–8 °C in sealed plastic 

bags. Ten microlitres of bacterial water were streaked over a plate and spread uniformly using a 6-cm 
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sterile needle. PU pieces were then gently placed over the solidified agar in different Petri dishes. 

Incubation times were 24 h at 37 °C. 

3.7. Film Characterization 

For structure analysis, the FTIR spectra of samples were recorded on an FTIR spectrometer (Nicolet 

8700 FTIR, Thermo Electron Corporation, Hertfortshire, UK) and spectra collected from 400 to 4000 cm−1, 

with 4 cm−1 resolution over 128 scans. For the FESEM study, a Jeol JSM 6300F instrument (Tokyo, 

Japan) recorded gray scale images with 8-bit resolution at different magnifications at a primary 

electron beam energy of 10 kV operated at a working distance of 15 mm. Ultrasonically-cleaned 

unmodified and modified PU with different Ag loadings were made conductive with an ultrathin layer 

of gold deposited by sputtering before the FESEM measurements. 

Contact angle measurement was undertaken using a CAM 200 model, KSV instrument using 

droplets of 2 μL of double distilled water dispensed on film on a glass substrate. Five sets of 

measurements were made to derive the mean and standard deviation. The X-ray Diffraction patterns of 

samples were recorded with an Xpert-Pro X-ray diffractometer (PANalytical, Almelo, the Netherlands) 

employing a scanning rate of 0.03° /min from 5° to 120° with Cu Kα irradiation (45KV, 30 mA; the 

wavelengths of Cu Kα1 and Cu Kα2 are 1.540598Å and 1.54442Å, ratio 2:1). 

For mechanical testing, tensile strength was determined using an Instron Universal Testing machine 

(model No 5584, Instron Co., Macclesfield, UK) at room temperature. Rectangular specimens  

(60 mm × 6 mm) were stretched until breaking at a crosshead rate of 20 mm·min−1; stress-strain  

curves were recorded. Hardness and tear resistance were respectively determined according to  

ASTM D2240-05 [54] and ASTM D1004-66 standards [55] using an H17 Shore Scale Hardness Tester 

(H.W. Wallace & Co. Ltd., Croydon, UK) and an Instron Universal Testing machine (model No. 

5584). The data represents the mean values of five independent measurements. 

To test thermal properties, Dynamic Mechanical Analysis (DMA) was performed on a Dynamic 

Mechanical Thermal Analyser DMA Q 800 at a frequency of 1 Hz, an amplitude of 15 μm and a static 

force of 0.01 Newtons. Samples were kept under isothermal conditions at −100 °C for 2 min and 

heated from −100 to 0 °C at a heating rate of 5 °C·min−1. The sample used had a dimension of 20 mm 

in length, 5.3 mm in width and 0.14 mm in thickness. The data presented represent the mean of three 

independent measurements. 

4. Conclusions 

Polyurethane, despite its hydrophobic nature, is hygroscopic and so can take up silver salt solution 

for composite formation. The later interaction with an external solution can then release bactericidal 

concentrations of silver ion with an evident effect on E. coli and S. aureus. In this study, the method 

used to detect antibacterial activity was relatively insensitive, relying on gross inhibition of an 

inoculum visible to the naked eye. In vivo, the scale of initial bacterial loading would be expected to be 

much lower, and inhibition effects might be more pronounced than observed here. The components 

used here are cheap; chemical derivatization is not required, and loading can be varied, making the 

method simple to apply. The avoidance of mechanical compromise is also an advantage. There are 

clearly multiple routes to silver addition, and further work is warranted on their different release 
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dynamics and, also, on the resistance to surface film formation, a distinct modality of the remote 

inhibition of growth through diffusive release of silver ions. The silver composite films have improved 

marginally mechanical properties and greater thermal stability, but the feasibility of silver loading for 

such an application would need further evaluation.  
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