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ABSTRACT 

Five new molecular semiconductors that differ from dioctylbenzothienobenzothiophene, by the 

introduction of ether or thioether side chains, have been synthesized and obtained in good yields. Their 

availability in sufficient quantities has allowed investigation of their electrochemical behaviour in solution 

and their electronic properties in solid state. Both ether and thioether compounds oxidise rather easily in 

solution, but nevertheless, they exhibit rather high ionisation potentials. This is a consequence of their 

crystal structure. Dioctylthioetherbenzothienobenzothiophene is rather sensitive to oxidation and degrades 

easily in close to ambient conditions. Dioctylletherbenzothienobenzothiophene is more stable. Its charge 

carrier mobility remains however rather moderate, on the order of 0.5 cm2/V.s, whereas that of 

dioctylbenzothienobenzothiophene reached 4 cm2/V.s, in the same conditions. The difference is explained 

by intrinsic factors as shown by a theoretical modelling.  
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INTRODUCTION 

 Charge carrier mobility, µ (cm2/V.s), is a key property of organic semiconductors (OSCs) that 

quantifies their ability to transport rapidly electrical charges, and thus, their usefulness as active materials 

in electronic devices.1-3 Most low molecular weight OSCs exhibit mobilities µ < 1 cm2/V.s, few display 1 

< µ < 10 cm2/V.s, and only very few show µ > 10 cm2/V.s.4-12 In terms of molecular structures, rubrene,13-

16  acenes,17  pentacene and anthradithiophene derivatives,18-20 benzothienobenzothiophenes (BTBTs),7,11,21-

23 dinaphthothienothiophenes (DNTTs),12,24  benzothienonaphthodithiophenes (BBTNDTs),25 

dibenzothiophenothienothiophenes (DBTTTs),9 dinaphthothiophene (DNTs),26 and 

dinaphthobenzodithiophenes (DNBDTs)8 qualify as best-performing OSCs for hole (h+) transport. A record 

value of 43 cm2/V.s has been measured for dioctylbenzothienobenzothiophene 1a, at room temperature.27 

Recently, a mobility value of 52 cm2/V.s. has been reported for the same compound at 80 K.4 Charge carrier 

mobility is a material property that depends evidently on the chemical structure, but not exclusively. The 

supramolecular order spanning several lengthscales, i.e., from Å to 100 µm, and the dimensionality of 

charge transport are also of paramount importance.28 Charge carrier mobility is generally measured in field-

effect transistors but in large diversity of experimental conditions that seriously complicates benchmark. 

Moreover, very high charge carrier mobility values could result from unintentional experimental errors or 

data misinterpretation as pointed out by Chen et al.29 If the common sense principle that measurements 

under comparable conditions must have been reproduced by at least two independent groups is applied, 

then a current upper limit of 20 cm2/V.s, measured with field effect transistors at room temperature, is 

commonly admitted and higher values are awaiting to be confirmed.10 Importantly, charge carrier mobility 

is increasingly measured by other methods such as terahertz spectroscopy,30 field-induced time-resolved 

microwave conductivity,31 field-induced electron spin resonance,32-34  and quantum Hall effect.35,36 

 A second important evaluation criterion of p-type OSCs is their first ionization potential, IP (eV), 

that corresponds to the energy required to remove an electron from the highest occupied molecular orbital 

(HOMO). The IP of organic semiconductors must match the work function, ϕ (eV), of electrodes to allow 

for easy charge injection and collection.37,38 It is generally admitted that IP values are mostly determined 

by the chemical structure and not so much by supramolecular order.39  However, this assumption is often 

not valid because it omits the additional electronic contribution of packing inherent to crystalline OSCs, as 

pointed out by recent theoretical40-42  and experimental works.43,44 In addition, it has also been evidenced 

that the ionization potential depends on molecular orientation.45  

 A third evaluation criterion is the chemical stability of OSCs that again depends on molecular 

structure and supramolecular order. Pentacene, that is the most studied OSCs, is dramatically unstable in 

dilute solution. It photo-oxidizes rapidly into pentacenequinone upon exposure to light and oxygen.46,47 

However, the same pentacene is chemically stable in thin films and has abundantly been used as an efficient 

semiconductor in organic field-effect transistors (OFETs).1,2 Note that the chemical stability issue can 
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neither be separated from that of purity, since traces of side products, acids, reagents, or catalyst residues 

can trigger and/or accelerate chemical degradation, nor from phase behaviour, since the diffusion of oxygen 

is facilitated in liquid and liquid crystalline phases in comparison to crystal phases. An indirect evidence of 

that is the detrimental effect that thermal annealing has on charge transport of some OSCs.48,49 

 Among the high mobility hole carriers thienoacene-based organic semiconductors are likely the 

most promising ones, because of their ease of synthesis and performances. They are currently under intense 

investigations to link chemical structure and crystal packing with electronic properties. But structure 

correlates rather moderately with properties, as evidenced recently for a large survey of systems.50 The 

reason is likely that structural information are mostly available at nanometer scale whereas electronic 

properties are measured at macroscopic scales.10,51 This context clearly calls for new physical studies but 

also for the synthesis of homologous series of OSCs. 

 In this paper, we address these three criteria at molecular and supramolecular levels with the selected 

BTBT derivatives, depicted in Figure 1. Specifically, we have used the well-known 

dioctyl[1]benzothieno[3,2-b][1]benzothiophene 1a as a reference point to design 

dioctylether[1]benzothieno[3,2-b][1]benzothiophene 2a,52-54 and dithiooctyl[1]benzothieno [3,2-

b][1]benzothiophene 3a in an attempt to decrease the IP to 5.1-3 eV, i.e. to a value closer to the Fermi level 

of air-exposed solvent cleaned gold,  ϕAu ≈ 4.7-4.9 eV.55 The comparison of the electronic properties of 

compounds 2a-c and 3a, b serves to probe the effect of packing. Known compounds 4-8 have been involved 

as well for the sake of comparison in the framework of the electrochemical study. This work provides fine 

structure property relationships for BTBT derivatives substituted at 2, 7 positions. 
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RESULTS & DISCUSSION 

Design and synthesis 

 The design of the molecules is rather simple. In a first step, heteroatoms have been introduced 

between the aromatic core and alkyl side chains since they are known from the field of liquid crystals to 

considerably modify the thermotropic behaviour.56 Moreover, oxygen and sulphur are electron mesomer 

donor. Lower oxidation potentials and ionization energies are thus anticipated. In a second step, the 

chemical structure of side chains has been varied to tune both thermotropic behavior and crystal structure. 

In particular, branching and the presence of a fluorinated segment should prevent chain interdigitation.  

 The 2,7-dialkyloxy-[1]benzothieno[3,2-b][1]benzothiophenes were synthetized by modified 

copper-mediated Ullmann ether synthesis, as described by Buchwald et al.57  Starting from 2,7-diiodo-

[1]benzothieno[3,2-b][1]benzothiophene (9),58 a coupling reaction with a catalyst system consisting of 

copper(I) iodide, 1,10-phenanthroline, and cesium carbonate in respectively 1-octanol, 5-methyl-1-hexanol, 

and 7,7,8,8,8-pentafluoro-1-octanol afforded 2,7-dialkyloxy-[1]benzothieno[3,2-b][1]benzothiophenes 2a, 

2b, and 2c in 70 %, 43% and 48 % yield, respectively (Table 1).53 

 The 2,7-dialkylthio-[1]benzothieno[3,2-b][1]benzothiophenes were synthetized by two different 

pathways (Scheme 1). As for 2,7-dialkyloxy-[1]benzothieno[3,2-b][1]benzothiophenes, reaction of 9 with 

a catalytic system consisting of copper(I) iodide, 1,10-phenanthroline, and cesium carbonate in octanethiol 

afforded 3a in 66 % yield. The second pathway entailed the synthesis of 3b. Starting from 2,7-dibromo-

[1]benzothieno[3,2-b][1]benzothiophene (10),59 reaction with a large excess of sodium thiomethylate60 in 

DMA at 150 °C61 gave the free thiophenol 11 in 84 % yield. Subsequent alkylation with 1-bromo-5-

methylhexane in DMF62 led to 3b in 58% yield. Two different synthetic routes have been chosen to obtain 

3a and 3b, to document the chemistry of BTBTs. It can be concluded that the target compounds are readily 

accessible in good yield and in sufficiently large amount to allow the investigation of their properties in 

solution and in solid state. 

 

Electrochemistry 

 The electrochemical properties of BTBT 8 and of the substituted BTBT derivatives 1a, 2a, 3a, and 

4-7 were investigated, in dichloromethane, by cyclic voltammetry (CV). Their electrochemical data are 

collected in Table 2 together with those of unsubstituted BTBT, for comparison. Cyclic voltammetry curves 

are given in Supporting Information. All BTBT derivatives investigated in this study present at least one 

reversible oxidation process which produces radical cation species. However, the substitution of the BTBT 

core at positions 2 and 7 by electron donating groups such as alkoxy, thioalkyl or amino group, lead to a 

second oxidation process at higher potential corresponding to the formation of dication species. 

Unfortunately, this second process is only perfectly reversible for compound 2a.  
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As expected, the redox potential corresponding to the formation of radical cation is quite sensitive to the 

substituent groups on BTBT core. In fact, the insertion of an electron donating group such as thioalkyl, 

alkoxy or simple alkyl is anticipated to lead to a negative shift of the redox potential in comparison with 

unsubstitued BTBT. In this context, it is not surprising to observe a ~200mV negative shift of the first 

oxidation potential by the introduction of two octyl chains in agreement with reported values for 2,7-

dialkyl-[1]benzothieno[3,2-b][1]benzothiophenes.63     

 As we can see on Table 2, the variation of the first oxidation potential with the nature of the 

substituent follows our expectations. In fact, the introduction of electron donating groups such as alkyl, 

alkyloxy, thioalkyl or amino substituents induce a negative shift up to ~700mV. Conversely, the 

introduction of some electron withdrawing groups such as nitro substituents, induces a positive shift up to 

~400mV.  

In order to study the influence of the substitution on one reactivity, the Hammett linear free energy 

relationship is generally used. The comparison of the rate constants or the equilibrium constants of a 

reaction with substituted (kx) and unsubstitued compounds (kH) allows respectively the determination of a 

variation in the free energies or activation energies of this reaction as function of two parameters: the 

reaction constant, , which reflects the susceptibility of the reaction to the substitution, and the substituent 

constant, , which depends solely on the nature and position of the substituent.64 

 

log
𝑘𝑋

𝑘𝐻
= 𝜌𝜎         Eq. 1 

 

Concerning redox processes, previous studies have demonstrated that a difference of free energy induces a 

variation of the formal potential, and by consequence can be expressed from the reaction and substituent 

constant by the following relation where  and  are respectively the reaction and the substituent 

constants:65 

 

∆E = E𝐻
0 − E𝑋

0 = (
2.3RT

𝑛𝐹
)log

𝑘𝑋

𝑘𝐻
= (

2.3RT

𝑛𝐹
)𝜌𝜎       Eq. 2 

 

In Hammett plots, the redox potentials for the formation of radical cation and anion are correlated with 

Brown coefficients, i.e. the electrophilic constant, + , and the nucleophilic constant, -, respectively.66  

Specifically, the first oxidation potential and the substituent + correlate well for several thiophene-based 

aromatic molecules such as terthiophenes and quatertiophenes.67 As shown in Figure 2, the first oxidation 

potential of BTBT derivatives 1a, 2a, 3a, 4-8 follows a linear relationship with respect to the electrophilic 

substituent constants 𝜎𝑝
+ for the para substitution.66 The correlation of first oxidation potentials with 𝜎𝑝

+ 
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shows that there is a resonance effect enhanced by substituents. As a consequence, the first oxidation 

process implies a mechanism where the positive charge is stabilized by mesomeric effects. In conclusion, 

it is observed that ether and thioether functions ease the oxidation of the BTBT core. The subsequent 

question, that is discussed in the next section, is to know if the easier oxidation in solution is reflected by a 

smaller IP in solid state? 

 

Photoelectron spectroscopy 

 IP has been measured for compounds 1a, 2a-c, and 3a,b, by photoelectron spectroscopy in air 

(PESA) for powder, drop-casted films, and spin-coated films. Results are collected in Table 3. IP of 1a has 

previously been measured by PESA and has been found to have a value of 5.3 eV.49 For the sake of 

completeness, we have also measured it and obtained comparable values. No specific trends are observed 

for IP as a function of sample preparation. For 2a and 3b, films give rise to smaller IPs than powder, 

whereas the reverse is observed for 3a. Here it must be noted that 2a exhibits a substrate-induced polymorph 

with a rather different crystal structure than the bulk phase.52,54 It is, however, not possible to correlate the 

lower IP of spin-coated films with the metastable substrate-induced polymorph, since the depth sensitivity 

of PESA is <10 nm and thus much thicker drop-cast films show a comparable IP to the thinner spin coated 

films. No significant differences are observed between samples for 2b,c. Table 2 shows that compounds 2a 

and 3a are easier to oxidize than the reference compound 1a, by 0.317 and 0.295 V, respectively in solution. 

On this basis, it was anticipated that the IP of 2a-c and 3a,b would be smaller than that of 1a by roughly + 

0.3 eV. To the contrary, compounds 2a-c and 3a,b exhibit all a larger IP by up to 0.64 eV. To shed light 

into this unexpected behaviour, the ionization potentials of 1a and 2a have been calculated at the semi-

empirical Hartree-Fock MNDO (see Experimental section) for isolated molecules and for small clusters. 

The theoretical predictions on isolated molecules confirm the CV data that 2a is easier to oxidize than 1a 

by 0.32 eV (calculated IP is 7.83 eV for 1a and 7.51 eV for 2a).Interestingly, when considering the charged 

molecules within small clusters, i.e., when including polarization effects, the situation is drastically 

different and the calculated ionization potential of 2a becomes larger than 1a (7.58 eV vs 7.29 eV for 2a 

and 1a, respectively), in qualitative agreement with the PESA data. This huge IP difference between 

isolated molecules and small clusters highlights the importance of considering intermolecular interactions 

in the evaluation of the ionization potentials since crystal packing plays a significant role on the stabilization 

of charges by electrostatic and polarization effects in molecular semiconductors and hence on the ease of 

charge injection from electrodes. 

 

Crystal structures 

 Since crystal packing considerably modifies the first ionisation potential, this section explores how 

two modifications of the molecular structures, i.e. the presence of a connecting heteroatom between the 
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aromatic BTBT core and side chains, and the nature of the side chain, impact the crystal structures. 

Crystallographic data of compounds 1a, 2a-c and 3b* (vide infra) are collected in Table 4 and important 

features of the crystal packing are discussed in the following section. The crystal structure of compound 1a 

has previously been reported.68 In the past few years, compound 1a has emerged as the most studied and 

one of the best performing organic semiconductors.10 Hence, it is often considered as a reference structure 

and it is discussed here for the sake of comparison. Compound 1a essentially exhibits a “layer by layer” 

organization with the molecules in each layer packed in a herringbone motif which is known to facilitate 

two dimensional charge transport desirable for thin film transistors. For the sake of simplicity the crystal 

structures of 2a-c are first discussed together with the following sections discussing the crystallisation 

behaviour of 3a,b and finally the structure of 3b*. Molecular views of all compounds are given in Figure 

3. Compounds 2a and 2b crystallize in triclinic and orthorhombic unit cells, respectively, with one molecule 

in the asymmetric unit (Z´= 1), whereas 1a, 2c and 3b* crystallize in monoclinic unit cells with Z´= 0.5. 

Compound 2a is the only example where the side chains exhibit interdigitation, as shown in Figure 4.54 The 

aromatic cores of the 2a molecules are aligned in a co-facial manner with the BTBT cores interlinked via 

π…π interactions to produce parallel ladder arrangement (Figure 4). The individual ladders are connected 

via C-H…π bonding to form a two dimensional network. The crystal structure of compound 2a is the same 

as the structure observed for the room temperature phase of the bulk material. For compounds 2b and c, the 

side chains extend away from the aromatic core of the molecule; however, they do not interdigitate, as 

found in the case of compound 2a. They exhibit lamellar packing of molecules with each layer arranged in 

a herringbone fashion, as observed in compound 1a and other BTBT based molecules.49,69 The 2D-

herringbone structure is stabilised by C-H…π interactions (Table 5, Figure 5). The conjugated BTBT-cores 

in 2b and 2c make a herringbone angle of ~54° and ~ 68°, respectively with respect to its nearest neighbor. 

Additionally in 2c, the aromatic cores of the molecules are arranged in a slipped stack manner in the b 

direction, forming π stacked columns that are related to the one another by the glide plane and separated by 

a distance equivalent to c/2 (5.69 Å). The ring centroid distance and the slippage distance of one molecule 

relative to another in one stack column were calculated to be 5.649 Å and 4.687 Å respectively. In 2b, 

however, there are no such π…π interactions. 

 Despite several attempts, it was not possible to grow single crystals of compound 3a with sufficient 

quality to allow the elucidation of its crystal structure. Sublimation in a temperature gradient and 

sublimation on a cold finger does not produce crystalline material. Solvent-based methods such as slow 

evaporation from a single solvent or mixtures and vapour diffusion gave multi-crystalline structures and 

twined crystals with curved edges. After several trials, compound 3a turned partially yellow, indicating 

slow sample degradation. HPLC analysis of samples before and after crystallization experiments shows a 

significant increase in impurities upon sample decomposition (see Figure S50). These impurities probably 

prevent compound 3a from growing as single crystals. Compound 3b has been synthesized and its 
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molecular structure has unambiguously been established by NMR spectroscopy and mass spectrometry. 

The following solvents were employed during the process of growing single crystals of compound 3b by 

slow evaporation at RT: hexane, toluene, p-xylene, dichloromethane and chloroform. The initial attempts 

resulted in the formation of non-crystalline structures. However, after several recrystallisation trials using 

the same material, plate-shaped crystals were obtained. These crystals were analysed by single crystal XRD; 

however, they were not crystals of compound 3b but the oxidised form 3b* (Scheme 2). Due to the 

molecular geometry of the SO2 motif, compound 3b* is the only example where side chains do not extend 

away from the centre of the molecule. Instead, the side chains are orientated nearly perpendicular to the 

plane of the aromatic core (Figure 1). As it is the case for compounds 1a, 2b and 2c, compound 3b* displays 

a 2D herringbone arrangement, the herringbone angle between the nearest neighbour BTBT cores being 

64°. Due to the presence of SO2 groups, the crystal packing in 3b* is governed by C-H…O hydrogen bonds 

(Table 5). Similarly to compound 2c, the molecules of compound 3b* form π stacked columns along the b 

direction with an inter-columnar distance of c/2 (5.12 Å) and are related to each other by a glide plane. The 

distance between the ring centroids of the molecules within a column is equal to 5.417 Å and the slippage 

between molecules within a stacked column 5.567 Å.  

 To further investigate quantitatively and visually these intermolecular interactions, the Hirshfeld 

surfaces70 of 2a-c and 3b* were calculated and are illustrated in Figure 6, showing surfaces that have been 

mapped over a dnorm range of 0.15 to 1.5 Å. Due to the varying number and types of the substituents, they 

are not directly comparable across the compounds, but they offer some insights into the effect of the 

different substituents on the BTBT backbone. The dominant interactions can be seen in the Hirshfeld 

surfaces as the bright red areas which correspond to the C-H···π hydrogen interactions in 2a-c and C-H···O 

hydrogen bonds in 3b*. A look at the 2D fingerprint plots (Figure 6) clearly reveals that the packing 

environments are completely different depending on the nature of side-chain modifications. The C-H···π 

hydrogen bonds in 2a appear as two pairs of wings of almost equal lengths (di, de) in the regions between 

(1.7 Å, 1.1 Å) and (1.1 Å, 1.7 Å), marked as a and a* in Figure 6. Similarly in 2b,c and 3b, they are marked 

as b/b*, d/d* and f/f* respectively. In 2b a pair of wings appearing in the (di, de) regions between (2.0 Å, 

1.1 Å) and (1.0 Å, 2.0 Å) in the fingerprint plots marked as b/b* is also a consequence of the C-H···π 

interactions. Additionally in 3b*, prominent pairs of sharp spikes of almost equal length in the (di, de) 

regions between (1.4 Å, 1.0 Å) and (1.0 Å, 1.4 Å), marked as e/e* are characteristics of nearly equal 

C(donor)...O(acceptor) distances. The relative contributions of the different intermolecular interactions to 

the Hirshfeld surface area are depicted in Figure 7 for compounds 1a, 2a-c and 3b*. The quantitative 

analysis clearly shows that H…H contacts are dominant contributors to the Hirshfeld surface area, revealing 

the role that alkyl chains have on the overall crystal packing. The contribution of the H…H is as high as 

79.6 % in 1a and decreases with the number of H-atoms in the molecule. In 2c, the corresponding value is 

only 32.6 % but it is compensated by the F…F and the F…H contacts which contribute by about 49% to 
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the corresponding Hirshfeld surface. The C···H contacts corresponding to C-H···π interactions vary 

marginally, from 11.6% in 1a to 19.1% in 2a despite the fact that the crystal packing in 1a, 2b,c and 3b* 

corresponds to a C-H…π mediated herringbone structure whereas the crystal packing in 2a is essentially a 

co-facial 2D structure stabilized by π…π and C-H…π hydrogen bonds. The presence of C-H…O hydrogen 

bonds in 3b* is reflected through the contribution of O…H contacts, which is 21.8% in 3b* while in 2a-c 

the corresponding value is 3.2-4.7%. The most interesting observation is that, in spite of the presence of C-

H…O interactions in 3b*, it replicates the herringbone-like packing of 1a, 2b and 2c whereas 2a has a 

columnar packing.  

 

Thermal behaviour 

 Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to assess 

the stability and obtain information on phase transitions of compounds 1, 2a-c, and 3a,b. Table 6 shows 

weight loss onset temperatures and transition temperatures with the associated standard enthalpies. TGA 

and DSC traces are given in the supporting information (Figures S28-S39). Weight loss measured by TGA 

encompasses two phenomena. On the one hand, some compounds degrade and their fragments volatilise. 

On the other hand, some other compounds sublime before degradation. The tendency to sublimation 

depends on the molecular weight of the compounds but also on their intermolecular interactions and thus 

on their crystalline or liquid crystalline phases. It is therefore not particularly meaningful to compare the 

Tonset values of compounds 1a, 2a-c, and 3a,b. Tonset only indicates the temperature up to which DSC traces 

can be recorded. It is noteworthy to indicate that both TGA and DSC analyses have been performed under 

inert atmosphere.  

 Upon heating, compound 1a exhibits a crystalline and smectic A phase before reaching the melt 

state as previously reported.68 Compound 2a shows two phase transitions before melting at 173 °C (Figure 

8). Thermal transitions at 90.7 °C and at 159.3 °C were assigned to the transition to another crystalline 

phase (Cr1-Cr2) and to a liquid crystalline phase (Cr2-LC), as indicated by the values of transition enthalpies 

in Table 6.52 New phases have also been identified by the XRD temperature-dependent measurements 

(Figure S41) and the fan shaped texture of LC phase has been observed at 165 °C by POM (Figure S45). 

Both DSC and temperature-dependent XRD measurements confirm that the structure of the room 

temperature (RT) phase is the same before and after the thermal treatment and corresponds to the solved 

crystal structure presented above. This was demonstrated by comparison of the calculated XRD pattern of 

the single crystal phase and the experimental XRD pattern of the bulk phase. XRD patterns were also 

collected at various temperatures according to the phase transitions observed by the DSC, revealing the 

transition to the high temperature crystalline phase (Cr2) (Figure S40a) that differs from the substrate-

induced polymorph reported by Jones et al.52 Furthermore, the powder XRD pattern of compound 2a 

collected at 165 °C shows the presence of only three diffraction peaks (Figure S40b), which correspond to 
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the 001, 002 and 003 planes with a calculated d spacing of 31.07 Å, 15.49 Å, and 10.29 Å, respectively, 

pointing to a lamella packing. The d spacing, which agrees with the c cell parameter, is characteristic for 

the LC phase which was identified as the smectic C phase (SmC) with a calculated tilt angle of 23.6 °, 

considering that the length of 2a is ~ 33.9 Å for a fully extended conformation.  Compound 2b shows only 

one transition before melting at 172 °C which was identified as a transition to a high temperature polymorph 

(Cr1-Cr2) as shown by the enthalpy value. This solid-solid transition is reversible upon cooling of the sample 

indicating enantiotropic behaviour of the two polymorphs. Powder XRD patterns of the RT and HT phases 

are given in Figure S41. Compound 2c, similarly to 2a, exhibits two phase transitions before melting, but 

melts at a slightly higher temperature: 205.7 °C (Figure 8). Based on the enthalpy values in Table X, the 

transition at 134 °C was identified as Cr1-Cr2 and at 148 °C as Cr2-LC. Compound 2c also exhibits an 

enantiotropic behaviour as the solid-solid conversion is a reversible process, also observed in cooling step 

(Figure 8). These phases were also observed using the POM and temperature-dependent XRD 

measurements (Figures S42 and S45). A comparison of the calculated powder XRD pattern of the solved 

crystal structure and experimental patterns of the RT and HT phases shows that the single crystal phase 

does not match any of the phases observed in the bulk material. Figure S42 presents the powder XRD 

pattern showing diffraction from first order reflections of a LC phase of compound 2c collected at 170 °C. 

The texture of the LC phase was identified as SmC. A tilt angle of 23.9° has been calculated from the d 

spacing of 31.17 Å, considering that the length of 2a is ~ 34.1 Å for a fully extended conformation. 

Compound 3a also exhibits polymorphism with the Cr1-Cr2 transition occurring at 109 °C for the first 

heating run (Figure S37). Upon further heating, the Cr2 phase melts at 162.1 °C. The second heating run 

exhibits only the melting at 161.8°C. For compound 3b, polymorphism was observed close to the melting 

point. The initial scan performed with a heating rate of 10 °C/min shows the presence of a shoulder in the 

melting peak. To obtain better resolution, the heating rate was reduced to 1 °C/min; however, this did not 

improve peak separation (Figure S39). The phase behaviour upon temperature variation has not been further 

investigated given the tendency of these compounds to oxidize in solution, as evidenced by HPLC traces 

(Figures S50 and S51). 

 

Charge transport 

Bottom-gate, top-contact (BG-TC) OTFTs were fabricated using molecules 1a, 2a, and 3a. Compounds 

2b,c have not been investigated because of their to high IP precluding an easy charge injection. Results are 

collected in Table 7. All three molecules exhibited a p-type semiconducting behaviour with the performance 

closely linked to the level of film crystallinity that was achieved and observed using polarized optical 

microscopy (POM). Molecule 1a formed large, extended crystals that spanned the transistor channel. As 

such, the device performance was exceedingly high (Figure 10), exhibiting a typical saturation mobility of 

4 cm2/Vs and a subthreshold slope of 1.5 V/dec. Molecule 2a was also found to form crystals spanning the 
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transistor channel; however, the mottled appearance of the crystals, as imaged by POM (Figure 9), suggests 

that the molecular packing is less uniform than in molecule 1a. Consequently, a typical saturation mobility 

of ~0.5 cm2/Vs and subthreshold slope of close to 5 V/dec is observed (Figure 11). In spite of the lower 

performance, the device suffered less from charge injection problems from the Au electrodes compared to 

molecule 1a. The reason for that is undetermined but could be related to a local change of structure. 

Molecule 3a on the other hand was found to form poor quality polycrystalline thin films that resulted into 

low performance transistors exhibiting a high VT of -50 V and hole mobilities on the order of 10-4 cm2/Vs 

(Figures 9 and 12). The poor quality of the interface between the semiconductor and the SiO2 dielectric is 

believed to be the predominant reason for the observed poor transistor performance. We confirmed this by 

fabricating top gate devices which exhibited reduced threshold voltage and hole mobilities up to 0.05 

cm2/Vs, albeit with increased hysteresis in the transfer characteristics. However, we cannot exclude a 

negative impact on charge transport of the poor chemical stability.  

 

Theoretical modelling 

In order to probe whether the lower hole mobility measured for 2a has an intrinsic origin or is only due to 

a less uniform packing, as suggested by POM images, the hole transport properties of 1a and 2a have been 

investigated at the theoretical level, considering in the first approximation a hopping transport regime (see 

Experimental section). The internal reorganization energies associated to positive polarons are larger for 

2a (360 meV and 245 meV for 2a and 1a, respectively, in agreement with earlier studies)71,72 and hence 

detrimental for hole transport. This evolution is consistent with a previous work pointing to a systematic 

increase in the reorganization energies of discotic conjugated compounds upon introduction of oxygen 

atoms between the conjugated core and alkyl chains.73,74 The HOMO transfer integrals in 1a are large along 

the a crystallographic axis (40 meV), much smaller in the herringbone directions (12 meV) and negligible 

along the b crystallographic axis (see Figure 13). This translates into an anisotropic behaviour of the charge 

transport in the ab plane with a maximal calculated hole mobility of 1.37 cm²/Vs and an anisotropic ratio 

of 13. The order of magnitude of the calculated hole mobilities are consistent with the measured mobilities 

as well as with previous theoretical data obtained in the hopping regime limit.71 Note also that higher hole 

mobilities have been reported for 1a (~36 cm²/Vs)72 when considering a band model, as expected. In light 

of the results provided by the two extreme theoretical models, the experimental mobilities suggest that 

charge transport occurs rather through a hopping regime and a band regime hindered by the presence of 

structural defects since POM images reveal large crystals. The HOMO transfer integrals in 2a are also large 

(40 meV) and negligible along the a and b crystallographic axes, respectively. In contrast to the herringbone 

packing of 1a which gives rise to moderate transfer integrals (12 meV) along the herringbone direction, the 

other pathways for charge transport in 2a are rather inefficient (never exceeding 5 meV) since they involve 

parallel molecules translated along the c axis, which therefore does not favour large overlap between their 
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HOMO orbitals. In terms of hole mobility, this translates into a maximal calculated hole mobility of 0.65 

cm²/Vs and an anisotropic ratio of 92. Such a high ratio implies that hole transport in 2a mostly takes place 

along one direction. Interestingly, the limited upper value for the hole mobility in 2a is mainly driven by 

its large reorganization energy; if 2a shared the same value of reorganization energy as 1a, it would 

hypothetically reach a theoretical value of 1.18 cm²/Vs which is comparable to 1a. Putting all this together, 

our theoretical predictions suggest that the lower measured hole mobility in 2a can be explained from 

intrinsic reasons without referring necessarily to less uniform crystals in the transistor channel. 

 

CONCLUSIONS 

Five novel molecular semiconductors, compounds 2a-c and 3a,b, have been synthesized. They differ 

structurally from the well-known 1a, by the introduction of a oxygen or a sulphur atom between the 

aromatic BTBT core and the aliphatic side chains. In solution, compounds 2a and 3a are easier to oxidize 

than 1a. But in solid state, the ease of oxidation of 2a and 3a is cancelled out by packing effects that lead 

to high IP. The effect of packing is further documented by the comparison of 2a-c that by structure of their 

alkyl side chains. 1a exhibits a rather high charge carrier mobility, µsaturation = 4 cm2/V.s, whereas 2a and 

3a show charge carrier mobility values that are roughly one and two order of magnitudes lower, 

respectively. The moderate charge carrier mobility of 2a originates from its molecular and crystal 

structures. The poor performances of 3a are likely related to its instability towards close to ambient 

conditions. It is concluded that the functionalization of the BTBT core by ether and thioether side chains is 

not a good molecular design element to reach high charge carrier mobility values but it has proven to be 

valuable to demonstrate the effect of packing on electronic properties.  
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EXPERIMENTAL SECTION 

Reagents, solvents, and known compounds: All reagents and solvents were purchased from Aldrich, Alfa 

Aesar, or Acros. 7,7,8,8,8-Pentafluorooctan-1-ol was purchased from Manchester Organics. 2,7-dioctyl-

[1]benzothieno[3,2-b][1]benzothiophene (1) was prepared following a literature procedure.75  The reagents 

2,7-diiodo-[1]benzothieno[3,2-b][1]benzothiophene (9),58 2,7-dibromo-[1]benzothieno[3,2-

b][1]benzothiophene (10),59 and sodium thiomethylate60 were synthesized according to known procedures. 

Compounds 4-8 that have served for electrochemical studies have also been prepared according to 

literatures.58,76-77  

Synthesis of 2,7-dioctyloxy-[1]benzothieno[3,2,b]benzothiophene (2a): A mixture of 2,7-diiodo-

[1]benzothieno[3,2-b][1]benzothiophene (6) (984 mg, 2 mmol), CuI (152 mg, 0.8 mmol), 1,10-

phenanthroline (317 mg, 1.6 mmol), and Cs2CO3 (2.61 g, 8 mmol) in 1-octanol (50 mL) in a Schlenk flask 

was degassed by 2 “freeze-pump-thaw” cycles. The Schlenk flask was filled with Ar, and sealed. The 

mixture was heated for 2 days at 160 °C. After cooling to room temperature, water (50 mL) was added. The 

resulting precipitate was filtrated, washed with water, and methanol. The dried residue was subjected to 

column chromatography [silica, hot n-hexane/CHCl3 (9/1)] to afford after recrystallization in hexane a 

white powder (673 mg, 70 %). m.p. 173.1°C; 1H NMR (300 MHz, CDCl3) δ = 7.68 (d, J=8.6 Hz, 2H), 7.36 

(d, J=2.2 Hz, 2H), 7.03 (dd, J=8.7 and 2.3 Hz, 2H), 4.04 (t, J=6.5 Hz, 4H), 1.92–1.73 (m, 4H), 1.58–1.41 

(m, 4H), 1.40–1.12 (m, 16H), 0.90 (t, J=6.8 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ = 157.2, 143.6, 131.2, 

127.4, 121.8, 114.8, 108.0, 68.7, 32.0, 29.5, 29.4, 29.4, 26.2, 22.8, 14.2; HRMS (EI): m/z calcd for 

C30H40O2S2 : 496.2470 ; found 496.2459. 

Synthesis of 2,7-bis((5-methylhexyl)oxy)-[1]benzothieno[3,2,b]benzothiophene (2b): A mixture of 2,7-

diiodo-[1]benzothieno[3,2-b][1]benzothiophene (6) (492 mg, 1 mmol), CuI (76 mg, 0.4 mmol), 1,10-

phenanthroline (158 mg, 0.8 mmol), and Cs2CO3 (1.3 g, 4 mmol) in 5-methyl-1-hexanol (7 mL) in a Schlenk 

flask was degassed by 2 “freeze-pump-thaw” cycles. The Schlenk flask was filled with Ar, and sealed. The 

mixture was heated for 2 days at 160 °C. After cooling to room temperature, water (50 mL) was added. The 

resulting precipitate was filtrated, washed with water, and methanol. The dried residue was subjected to 

column chromatography [silica, hot n-hexane/CHCl3 (4/1)] to afford after recrystallization in hexane a 

white powder (200 mg, 43 %). m.p. 172.7 °C; 1H NMR (300 MHz, CDCl3) δ = 7.67 (d, J=8.7 Hz, 2H), 7.35 

(d, J=2.2 Hz, 2H), 7.02 (dd, J=8.7 and 2.2 Hz, 2H), 4.03 (t, J=6.5 Hz, 4H), 1.86–1.75 (m, 4H), 1.63–1.56 

(m, 2H), 1.54–1.40 (m, 4H), 1.30–1.20 (m, 4H), 0.87 (d, J=6.6 Hz, 12H); 13C NMR (75 MHz, CDCl3) δ = 

157.0, 143.4, 131.0, 127.2, 121.6, 114.6, 107.8, 68.6, 38.7, 29.5, 27.9, 23.9, 22.6; HRMS (MALDI): m/z 

calcd for C28H36O2S2 : 468.2157 ; found 468.2146. 

Synthesis of 2,7-bis((7,7,8,8,8-pentafluorooctyl)oxy)-[1]benzothieno[3,2,b] benzothiophene (2c): A 

mixture of 2,7-diiodo-[1]benzothieno[3,2-b][1]benzothiophene (6) (492 mg, 1 mmol), CuI (76 mg, 0.4 
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mmol), 1,10-phenanthroline (158 mg, 0.8 mmol), and Cs2CO3 (1.3 g, 4 mmol) in 7,7,8,8,8-

pentafluorooctanol (4 mL) in a Schlenk flask was degassed by 2 “freeze-pump-thaw” cycles. The Schlenk 

flask was filled with Ar, and sealed. The mixture was heated for 2 days at 160 °C. After cooling to room 

temperature, water (50 mL) was added. The resulting precipitate was filtrated, washed with water, and 

methanol. The dried residue was subjected to column chromatography [silica, hot n-hexane/CHCl3 (7/3)] 

to afford after recrystallization in hexane a white powder (323 mg, 48 %). m.p. 205.7 °C; 1H NMR (400 

MHz, C2D2Cl4) δ = 7.75 (d, J=8.7 Hz, 2H), 7.45 (d, J=2.2 Hz, 2H), 7.11 (dd, J=8.7 and 2.2 Hz, 2H), 4.13 

(t, J=6.4 Hz, 4H), 2.20–2.05 (m, 4H), 1.96–1.87 (m, 4H), 1.76–1.67 (m, 4H), 1.66–1.52 (m, 8H); 19F NMR 

(376 MHz, C2D2Cl4) δ = -84.8 (s, 6F), -116.77 (t, J=18.2 Hz, 4F); 13C NMR (100 MHz, CDCl3) δ = 157.0, 

143.4, 131.1, 127.3, 121.5, 114.6, 108.6, 68.6, 30.6, 28.9, 28.6, 25.5, 20.2; HRMS (MALDI): m/z calcd for 

C30H30O2F10S2 : 676.1528 ; found 676.1520. 

Synthesis of 2,7-dioctylthio-[1]benzothieno[3,2,b]benzothiophene (3a): A mixture of 2,7-diiodo-

[1]benzothieno[3,2-b][1]benzothiophene (9) (982 mg, 2 mmol), CuI (152 mg, 0.8 mmol), 1,10-

phenanthroline (317 mg, 1.6 mmol), and Cs2CO3 (2.6 g, 8 mmol) in octanethiol (40 mL) in a Schlenk flask 

was degassed by 2 “freeze-pump-thaw” cycles. The Schlenk flask was filled with Ar, and sealed. The 

mixture was heated for 2 days at 160 °C. After cooling to room temperature, water (50 mL) was added. The 

resulting precipitate was filtrated, washed with water, and methanol. The dried residue was subjected to 

column chromatography [silica, hot n-hexane/CHCl3 (7/3)] to afford after recrystallization in hexane a 

white powder (693 mg, 66 %). 1H NMR (300 MHz, CDCl3) m.p. 162.1 °C; δ = 7.83 (d, J=1.4 Hz, 2H), 7.74 

(d, J=8.3 Hz, 2H), 7.41 (dd, J=8.3 and 1.4 Hz, 2H), 3.00 (broad s, 4H), 1.75–1.62 (m, 4H), 1.48–1.39 (m, 

4H), 1.36–1.20 (m, 16H), 0.87 (t, J=6.7 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ = 142.9, 134.1, 132.8, 

131.1, 126.6, 124.0, 121.4, 34.3, 31.8, 29.2, 29.1, 28.8, 22.6, 14.1; HRMS (MALDI): m/z calcd for 

C30H40S4 : 528.2013 ; found 528.2015. 

Synthesis of 2,7-Dithio-[1]benzothieno[3,2,b]benzothiophene (11): A suspension of 2,7-dibromo-

[1]benzothieno[3,2-b][1]benzothiophene (10) (796 mg, 2 mmol) in anhydrous DMA (60 mL) was treated 

with NaSMe (2.27g, 32 mmol), and the mixture was heated to 150 °C for 16 h. After cooling to room 

temperature, HCl 2M (10 mL) was added. The resulting precipitate was filtrated, washed with water, and 

methanol. The dried residue (514 mg, 84%) was used without further purification. 1H NMR (300 MHz, 

DMSO-d6) δ = 8.06 (s, 2H), 7.89 (d, J=8.6 Hz, 2H), 7.43 (d, J=8.6, 2H), 5.75 (s, 2H; HRMS (EI): m/z calcd 

for C14H8S4 : 303.9509 ; found 303.9516. A tendency towards rapid degradation has been observed and 

explains why no m.p. and 13C NMR are reported. 

Synthesis of 2,7-bis((5-methylhexyl)thio)-[1]benzothieno[3,2,b]benzothiophene (3b): A solution of 11 

(305 mg, 1 mmol) in anhydrous DMF (40 mL) was treated with K2CO3 (345 mg, 2.5 mmol). The mixture 

was stirred for 5 min, and then 1-bromo-5-methylhexane (406 µL, 2.5 mmol) was added. The mixture was 

stiired for 16 h at 85 °C. After cooling to room temperature, water (80 mL) was added. The resulting 
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precipitate was filtrated, washed with water, and methanol. The filtered material was subjected to column 

chromatography [silica, hot n-hexane/CHCl3 (7/3)] to afford after recrystallization in hexane a white 

powder (290 mg, 58 %). m.p. 163.5°C; 1H NMR (300 MHz, CDCl3) δ = 7.85 (d, J=1.6 Hz, 2H), 7.75 (d, 

J=8.3 Hz, 2H), 7.42 (dd, J=8.3 and 1.6 Hz, 2H), 3.00 (t, J=7.4 Hz, 4H), 1.73–1.59 (m, 4H), 1.54–1.39 (m, 

6H), 1.24–1.14 (m, 4H), 0.87 (d, J=6.6 Hz, 12H); 13C NMR (75 MHz, CDCl3) δ = 143.0, 134.1, 132.9, 

131.1, 126.6, 124.0, 121.5, 38.4, 34.4, 29.4, 27.9, 26.6, 22.6; HRMS (EI): m/z calcd for C28H36S4 : 

500.1700 ; found 500.1692. 

Purification: Samples 2a, 2c and 3a were purified by rapid sublimation on a cold finger at 290 °C under 

vacuum using a glass oven as a source of heat. The system was covered with aluminium foil to prevent 

samples from degradation via light exposure. Samples 2b and 3b were purified by recrystallisation from 

hexane.  

Electrochemistry: Dichloromethane (HPLC grade) and tetra-n-butylammonium hexafluorophosphate 

(TBAP, electrochemical grade, Fluka was recrystallised from ethanol). Cyclic voltammetry (CV) was 

performed in a three-electrode cell equipped with a platinum millielectrode, a platinum wire counter-

electrode and a silver wire used as a quasi-reference electrode. The electrochemical experiments were 

carried out under a dry and oxygen-free atmosphere (H2O < 1 ppm, O2 < 1 ppm) in CH2Cl2 with TBAP (0.1 

M) as the support electrolyte. The voltammograms were recorded on a potentiostat/galvanostat (BioLogic 

– SP150) driven by the EC-Lab software with positive feedback compensation. Based on repetitive 

measurements, absolute errors on potentials were estimated to be  ± 5 mV. All the potential reported 

below, were calibrated versus Ferrocene/Ferrocenium oxidation potential (+0.405V vs SCE or +0.425V vs 

Ag/AgCl).  

Photoelectron spectroscopy in air (PESA): The ionization potentials of powders, and drop-cast or spin-

coated films were measured with an AC-2 Photoelectron Spectrometer (RKI Instruments), working in 

ambient conditions. The films were deposited on gold layers supported on silicon substrates. 

Crystal growth: Single crystals of compounds 1, 2a, 2b and 2c were grown by slow evaporation of 

unsaturated solutions of hexane, chloroform, 2-butanone and dichloromethane respectively (all HPLC 

grade). We were not able to obtain single crystals of compounds 3a,b. Compound 3b proved to be unstable 

in ambient conditions, therefore crystallisation from dichloromethane led to the crystal formation of the 

corresponding oxidised form (3b*). Also the production of single crystals of the oxidised form for 3a 

proved to be difficult due to the presence of impurities appearing during the degradation process (see Figure 

S50). 

Crystal structure: X-ray diffraction data for crystals of compounds 2a, 2c were collected at 123 K with 

graphite monochromated Cu kα radiation (λ = 1.5418 Å) using an Oxford Diffraction Gemini S instrument. 

Data for 2b was collected at DIAMOND synchrotron radiation source by National Crystallographic 

Service, University of Southampton. All non-hydrogen atoms were refined anisotropically. Hydrogen 
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atoms were included in calculated positions utilizing riding modes. All structures were refined to converge 

against F2 using the SHELXL-97 program. Detailed crystallographic data with refinement parameters are 

listed in complete crystallographic information files (CIF) and are available in the Supporting Information. 

High Performance Liquid Chromatography (HPLC): An Agilent HP 1100 system equipped with a 

Supelco HPLC column (150 mm x 4.6 mm/3 µm) and a UV detector was used to assess the purity of the 

analysed materials. Approximately 1 mg of each sample was dissolved in 1 ml of a mobile phase consisting 

of 70% hexane and 30% chloroform (both HPLC grade). The column temperature was set to 60 °C and the 

chromatograms were analysed at 254 nm (see Figures S46-51). 

Nuclear Magnetic Resonance (NMR): The 1H NMR spectra were recorded at 298 K on a Bruker Avance 

300 spectrometer or at 363 K on a Varian VNMRS 400. Chemical shifts are reported in parts per million 

(ppm) with TMS as internal standard.  

Mass spectrometry (MS): A Waters Autospec 6F or a Waters QToF Premier high-resolution mass 

spectrometers (HRMS) were used to obtain the mass spectra of the samples. 

Thermogravimetry (TGA): Thermogravimetric analysis was performed on a Pyris 6 TGA instrument with 

Pyris software for instrument managing and data analysis. Approximately 3-5 mg of sample was scanned 

at a rate of 10 °C/min from 30 °C to 500 °C for compounds 1, 2a-c, and 3a, and 30 °C to 450 °C for 

compound 3b, under a nitrogen purge at 20 mL/min in open ceramic crucibles. The system was calibrated 

using alumel, nickel and perkalloy standards with reference temperatures of 154.2 °C, 355.3 °C and 596 °C 

respectively.  

Differential scanning calorimetry (DSC): Differential scanning calorimetry (DSC) analysis was 

performed on a Perkin Elmer Diamond DSC instrument with Pyris software for instrument managing and 

data analysis. Approximately 3-5 mg samples of compounds 1, 2a-c, and  3a,b were scanned at a rate of 10 

°C/min under a nitrogen purge at 20 mL/min in aluminum pans with holes. Additionally, compound 3b was 

scanned at a rate of 1 °C/min to obtain a better resolution. The system was calibrated using an indium and 

zinc standards with reference temperatures of 156.600 °C and 419.470 °C respectively. 

Polarized optical microscopy (POM): A Nikon Eclipse 80i equipped with a heating stage and NIS-

Elements microscope imaging software was used to observe the texture of the liquid crystal phase of 

compounds 2a. 

Specular X-ray diffraction (sXRD): Specular X-ray diffraction (sXRD) measurements were performed 

on a Bruker D8 Advance diffractometer using Cu Kα radiation (λ = 1.5418 Å) equipped with a MRI 

(Material Research Instruments) heating stage for temperature-dependent measurements. Diffraction 

patterns were collected in the scattered angular range between 1.5° and 30° with an angular resolution of 

0.02° per step and a typical counting time of 10 s per step, using the θ/θ reflection geometry. Powder 

patterns were also calculated using the atomic coordinates by programs within the Oscail package.  
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Field effect transistors: Organic thin film transistors (OTFTs) were fabricated via spin-casting the organic 

semiconductor onto a heavily doped silicon wafer with a thermally grown, 200nm SiO2 layer as the gate 

dielectric. Molecule 1a was deposited from a 2 wt% chloroform solution, while molecules 2a and 3a were 

deposited from 1 wt% chloroform solutions. The films were then annealed at 120 oC for molecule 1a, 170 

oC for molecule 2a and 150 oC for molecule 3a for 10 minutes. This was required to induce extended 

crystallisation of the small molecules. The devices were completed with Au source and drain electrodes 

evaporated through a shadow mask. Transistor channel widths were typically 1.5 mm and channel lengths 

were in the range 20-50 μm. Top gate devices were fabricated by spin coating molecule 3a onto silicon a 

substrate with ready-patterned Au electrodes (via the evaporation process explained above). To complete 

the structure an 800 nm layer of the Cytop gate dielectric (𝐶𝑖 = 2.1nF/cm2) was spin coated on top of the 

semiconductor followed by the evaporation of a patterned Al gate electrode using shadow mask in high 

vacuum (10-6 mbar). Electrical characteristics were measured with an Agilent B2902A semiconductor 

parameter analyser and device parameters were extracted from the equation 𝐼𝐷 = 𝜇𝑊𝐶𝑖(𝑉𝐺 − 𝑉𝑇)
2/2𝐿, 

where 𝐼𝐷  is the drain current, 𝜇  is the saturation mobility, 𝑊  is the channel width, 𝐶𝑖  is the geometric 

capacitance of the gate dielectric, 𝑉𝐺 is the gate voltage, 𝑉𝑇 is the threshold voltage and 𝐿 is the channel 

length. Device fabrication and electrical characterisation was performed entirely in nitrogen. 

Quantum-chemical calculations and Kinetic Monte Carlo simulations: The ionization potentials of 1a 

and 2a were estimated as the energy difference between the neutral and positively charged molecules on 

the basis of their optimized geometries calculated with the semi-empirical Hartree-Fock MNDO method.78 

The impact of solid-state effects on the ionization potential has been assessed with the help of a valence 

bond / Hartree-Fock MNDO model described in large details in literature.79,80 Briefly, the calculations are 

performed on small molecular clusters extracted from the crystal structures. The fragment orbital formalism 

allows assigning a different number of electrons on the different fragments so that it is possible to evaluate 

the electronic properties of charged molecules embedded in a condensed medium, including the induced 

polarization effects. Here, in practice, one molecule has been embedded in a cluster made of 27 and 37 

molecules for 1a and 2a, respectively. The size of the cluster has been chosen such that there are at least 

two layers of molecules within the crystalline plane and one layer of molecules in the interlayer direction. 

The IP has then been estimated by subtracting the energy of the neutral cluster to the energy of the cluster 

with the central molecule positively charged. We neglect here a possible delocalization of the charge over 

the neighboring molecules since our primary goal is to demonstrate that packing effects can lead to 

significant changes in the solid-state polarization effects rather than to assess the exact delocalization of the 

charge in the crystal. 

The hole transport properties of 1a and 2a have been described using the Marcus-Levich-Jortner formalism. 

This model assumes that charges are hopping between neighboring molecules and expresses the rate of hole 

transfer khop as:81  
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𝑘ℎ𝑜𝑝 =
4𝜋2

ℎ
𝐽2

1

√4𝜋𝜆𝑠𝑘𝐵𝑇
∑ 𝑒𝑥𝑝(−𝑆)

𝑆𝜈

𝜈!𝜐 𝑒𝑥𝑝 [−
(𝜆𝑠+𝜈ℏ𝜔+Δ𝐺0)

2

4𝜆𝑠𝑘𝐵𝑇
]       (2) 

where S is the Huang-Rhys factor which is related to the internal reorganization energy i (S = i / ћ), J 

the transfer integral, s the external reorganization energy, kB the Boltzmann constant, T the temperature, 

G° the free energy of the reaction and ћ an effective vibrational mode (carbon-carbon stretching mode) 

assisting charge transport. The internal reorganization energy entering the Huang-Rhys factor is a parameter 

that reflects the geometric changes of the molecules involved in the charge transfer process  It has been 

evaluated at the DFT level (B3LYP/6-31g**) according to the procedure described elsewhere.73 The ћ 

effective stretching mode was set to 0.2 eV and the external reorganization energy to a typical value of 0.1 

eV.82 The HOMO transfer integral (J) describes the amplitude of the interactions between the HOMO 

electronic levels of the two molecules involved in the hole transfer process. This term has been estimated 

in a fragment approach at the DFT level (B3LYP/DZ) with the Amsterdam Density Functional (ADF) 

package83 as described elsewhere.42,84 Due to the weak energetic disorder in crystals, G° can be expressed 

solely as G° = , where  and  are the electric field vector and the distance vector between mass 

centers, respectively. Finally, the charge carrier mobility () was evaluated using a Kinetic Monte Carlo 

technique with the First Reaction Method algorithm. This technique allows us to propagate a single charge 

carrier in the crystals following a stochastic dynamics where the direction taken by the charge in the crystal 

in each Monte Carlo cycle is chosen according to the smallest hopping time. The hopping time tij between 

two molecules i and j is related to the hopping rate kij with the following expression: 

𝑡𝑖𝑗 = −
𝑙𝑛(𝑟)

𝑘𝑖𝑗
       (3) 

where r is a random number chosen between 0 and 1. The charge carrier mobility is obtained at the end of 

the simulation as: 

𝜇 =
𝑑𝑡𝑜𝑡

𝑡𝑡𝑜𝑡𝐹
       (4) 

where dtot and ttot are the total distance travelled during the Kinetic Monte Carlo simulation and the total 

time of the simulation obtained as the sum of the tij values, respectively. 
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FIGURES, SCHEMES, & TABLES 

 

 

 

Figure 1. Molecular structures of the BTBT derivatives considered in this study. 
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Figure 2. Hammett plot of the variation of the first oxidation potential among substituted and unsubstituted 

BTBT as function of the Brown coefficient of their substituents.  

 



April 2016 Manuscript J. Mater. Chem. C 

 

26 
 

 

 

 

Figure 3. Molecular view of compounds 2a-c and 3b* with the atom labelling scheme. For 2c and 3b*, the atoms 

generated by symmetry are not labelled. 

 

 

 

 

Figure 4. A perspective view of the crystal packing of 2a-c and 3b* showing the alkyl chain behavior  
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Figure 5. Crystal packing of the aromatic cores in 2a-c and 3b*showing the formation of a π-stacked 

ladder architecture in 2a, and herringbone like motif in 2b, c and 3b*. Only the BTBT-cores and atoms 

driving the packing are shown for clarity. 
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Figure 6. Hirshfeld surfaces and the corresponding fingerprint plots for compounds 2a-c, and 3b*. 
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Figure 7. Relative contributions (in %) to the Hirshfeld surface areas for the various intermolecular 

contacts in 1, 2a-c and 3b* 
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Figure 8. DSC traces of compounds 2a (top) and 2c (bottom) exhibiting crystalline and liquid crystalline 

phases (second heating and cooling scans at 10 °C/min). 
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Figure 9. Polarized optical micrographs of the transistors fabricated using the semiconducting molecules 

1a, 2a, and 3a. 
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Figure 10. Transfer and output characteristics of a bottom-gate OTFT fabricated with molecules 1a. The 

transistor channel dimensions were L = 50 μm and W = 1.5 mm.  
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Figure 11. Transfer and output characteristics of a bottom-gate OTFT fabricated with molecules 2a. The 

transistor channel dimensions were L = 50 μm and W = 1.5 mm.  
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Figure 12. Transfer and output characteristics of a top-gate OTFT fabricated with molecules 3a. The 

transistor channel dimensions were L = 30 μm and W = 1 mm.  
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Figure 13. Representation of the packing of 1a (left) and 2a (right) as well as amplitude of their HOMO 

transfer integrals. Center: Anisotropy of the hole mobilities (in cm²/Vs) in 1a (red) and 2a (blue), as 

calculated within a pure hopping regime. 
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Scheme 1. Synthesis of 2,7-dialkylthio-[1]benzothieno[3,2-b][1]benzothiophenes. a) CuI, 1,10-

phenanthroline, Cs2CO3, octanethiol, 160 °C; b) 1) NaSMe, DMA, 150 °C. 2) HCl; c) 1-Bromo-5-

methylhexane, K2CO3, DMF, 85 °C. 

 

 

 

 

Scheme 2. Spontaneous oxidation of 3b into 3b* upon crystallization in ambient atmosphere.  
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Table 1. Synthesis of 2,7-dialkyloxy-[1]benzothieno[3,2-b][1]benzothiophenes.53 

 

Entry ROH 2,7-dialkyloxyBTBT Yield [%] 

I 1-octanol 2a 70 

II 6-methyl-1-hexanol 2b 43 

III 7,7,8,8,8-pentafluoro-1-octanol 2c 48 

 

 

 

Table 2. Redox potentials, in V versus Fc/Fc+, measured for the BTBT series together with the Brown 

coefficients corresponding to the substitution pattern.85 

 1a 2a 3a 4 5 6 7 8 

𝐸1/2
𝑜𝑥1 0.824 0.507 0.529 0.930 1.469 0.899 0.344 1.038 

𝐸1/2
𝑜𝑥2 n/a 1.027 0.970 n/a n/a n/a 1.069 n/a 

∑𝜎𝑝
+ -0.62 -1.56 -1.20 -0.31 1.58 -0.36 -1.3 0 

 

 

Table 3. Experimental ionisation potentials of compounds 1a, 2a-c, and 3a-b. 

Ionisation Potentials (eV) a) 1a 2a 2b 2c 3a 3b 

IP (powder) 5.35 5.71 5.87 5.99 5.40 5.72 

IP (drop-casted films) 5.38 5.39 5.90 5.99 5.60 5.63 

IP (spin-coated films) 5.35 5.42 5.90 - b) 5.57 5.63 

a) The error on IPs is ± 0.04 eV. b) Measurement not possible due to significant background signal from the 

substrate as a consequence of low surface coverage.   
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Table 4. Crystallographic data for compounds 2a-c. The data for 1a were acquired from the literature.68 

Crystal data for 3b* corresponds to the structure of the oxidised form of compound 3b, as explained in the 

text. 

 1a 68 2a 2b 2c 3b* 

empirical formula C30H40S2 C30H40O2S2 C28 H36 O2S2 C30H30F10O2S2 C28H36O4S4 

molecular weight 464.77 496.74 468.69 676.66 564.81 

crystal system monoclinic triclinic Orthorhombic monoclinic monoclinic 

space group P21/a P-1 P212121 P21/c C2/c 

a /Å 5.927(7) 5.5225(4) 7.639(3) 23.0898(13) 49.296(2) 

b /Å 7.88(1) 8.0712(4) 7.759(3) 5.6492(3) 5.4166(3) 

c /Å 29.18(4) 31.0578(15) 42.556(17) 11.3886(8) 10.2355(6) 

 /  ̊ - 94.482(4) - - - 

β /  ̊ 92.443(4) 92.994(5) - 93.482(5) 96.310(5) 

 /  ̊ - 105.696(5) - - - 

volume /Å3 1362(3) 1324.76(13) 2522.5(18) 1482.77(15) 2716.5(2) 

Z 2 2 4 2 4 

ρ / g/cm3  1.245 1.234 1.516 1.381 

Temperature / K 293 123 100(2) 123 123 

(Rint)unique 

reflections 

0.077 

1268 

0.0474 

5633 

0.0459 

5690 

0.0425 

3683 

0.0299 

2706 

final R, ωR2 

[I > 2σ(I)] 

0.070 

0.152 

0.0537 

0.0918 

0.0489 

0.1207 

0.0452 

0.1025 

0.0333 

0.0879 

R, ωR2 

(all data) 

- 

- 

0.0939 

0.1040 

0.0511 

0.1232 

0.0632 

0.1156 

0.0360 

0.0912 

Goof 1.329 1.054 1.064 1.024 1.041 
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Table 5. Intermolecular hydrogen bonds in the crystal structures of 2a-c and 3b*. 

 D···A / D-H···A (Å) d(D-H) (Å) d(D-A) (Å) d(H···A) (Å) D-H···A (°) symmetry 

2a 
C24-H24B···Cg4 0.98 3.671(2) 2.78 150 -x,-1-y,1-z 

C25-H25A···Cg1 0.98 3.654(2) 2.79 146 -x,-y,1-z 

2b 
C15-H15A···Cg4 0.99 3.581(3) 2.67 153 1/2+x,-1/2-y,-z 

C22-H22B···Cg3 0.99 3.848(3) 2.93 154 -1/2+x,1/2-y,-z 

2c C8-H8B···Cg3 0.99 3.668(2) 2.85 140 x,1/2-y,1/2+z 

3b* 
C6-H6···O2 0.95 3.423 2.56 152 x,-y,-1/2+z 

C8-H8A···O1 0.99 3.469 2.60 147 x,1+y,z 

where Cg1 is the centroid of the ring formed by atoms S1, C2-C4 in 2a; Cg3 is the centroid of the ring 

formed by atoms C3-C8 in 2b and atoms C2-C7 in 2c. Cg4 is the centroid of the ring formed by atoms C9-

C14 in 2a and 2b.  

Table 6. TGA weight loss onset temperatures and DSC transition temperatures with their associated 

enthalpies 

Comp. 
TGA 

Tonset (°C) 

DSC Tonset (°C) / H (kJ mol-1) 

TCr-Cr HCr-Cr TCr-CL HCr-CL TCL-L TCr-L HCL-L/Cr-L 

1a 341 - - 109.1 32.3 125.6 - 7.5 

2a 385 90.7 6.4 159.3 15.8 173.1 - 9.4 

2b 342 108.8 1.1 - - - 172.7 33.3 

2c 349 134.2 6.8 148.7 32.1 - 205.7 8.0 

3a I 
361 

109.2 3.8 - - - 162.1 29.5 

3a II - - - - - 161.8 29.3 

3b 328 163.2 4.9 - - - 163.5 36.9 
I 1st heating-cooling cycle, II 2nd heating-cooling cycle 

 

Table 7. Device parameters of best-performing TFTs fabricated with molecules 1a, 2a, and 3a.  

molecule μsaturation (cm2/Vs) Ion/Ioff VT (V) subthreshold slope (V/dec) 

1a (Bottom Gate) 4 106 -5 1.5 

2a (Bottom Gate) 0.5 105 -17 5 

3a (Top Gate) 0.05 3 x 103 -20 7.5 

 

 


