
Large random simplicial complexes, II; the fundamental group
FARBER, M; Costa, A

 

 

 

 

 

© The Author(s)  This is an Open Access article published by World Scientific Publishing

Company. It is distributed under the terms of the Creative Commons Attribution 4.0 (CC-BY)

License. Further distribution of this work is permitted, provided the original work is properly

cited.

 

 

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/xmlui/handle/123456789/13436

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/77041469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/xmlui/handle/123456789/13436


Large random simplicial complexes, II;

the fundamental group.

A. Costa and M. Farber

March 29, 2016

Contents

1 Introduction 1

2 Subcomplexes of random complexes 4

3 Uniform Hyperbolicity 9

4 Topology of admissible 2-complexes 14

5 Non-triviality of the fundamental groups of random simplicial
complexes 20

6 The existence of 2-torsion 23

7 Higher torsion 30

8 Asphericity and the Whitehead Conjecture 32

9 Geometric and cohomological dimension of the fundamental
group of a random simplicial complex 35

10 Appendix: Proof of Theorem 15 38

1 Introduction

This paper develops the multi-parameter model of random simplicial complexes
initiated in [12] and [13].

One of the main motivations to study random simplicial complexes comes
from the theory of large networks. Traditionally one models networks by graphs
with nodes representing objects and edges representing connections between the
objects [24]. However if we are interested not only in pairwise relations between
the objects but also in relations between multiple objects we may use the high
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dimensional simplicial complexes instead of graphs as mathematical models of
networks.

The mathematical theory of large random simplicial complexes is a new
active research area, see [9] and [21] for surveys.

The multi-parameter model which we discuss here allows regimes controlled
by a combination of probability parameters associated to various dimensions.
This model includes the well-known Linial - Meshulam - Wallach model [22], [23]
as an important special case; as another important special case it includes the
random simplicial complexes arising as clique complexes of random Erdős–Rényi
graphs, see [20], [11].

In the multi-parameter model one starts with a set of n vertices and retains
each of them with probability p0; on the next step one connects every pair of
retained vertices by an edge with probability p1, and then fills in every triangle
in the obtained random graph with probability p2, and so on. As the result
we obtain a random simplicial complex depending on the set of probability
parameters

(p0, p1, . . . , pr), 0 ≤ pi ≤ 1.

The topological and geometric properties of multi-parameter random simplicial
complexes depend on the whole set of parameters and their thresholds can be
understood as subsets of the space of multi-parameter space and not as single
numbers as in all the previously studied models.

In our recent paper [13] we described the conditions under which a multi-
parameter random simplicial complex is connected and simply connected. In
[14] we showed that the Betti numbers of multi-parameter random simplicial
complexes in one specific dimension dominate significantly the Betti numbers in
all other dimensions. In this paper we focus mainly on the properties of funda-
mental groups of multi-parameter random simplicial complexes, which can be
viewed as a new class of random groups. We describe thresholds for nontrivially
and hyperbolicity (in the sense of Gromov) for these groups. Besides, we find do-
mains in the multi-parameter space where these groups have 2-torsion. We also
prove that these groups have never odd-prime torsion and their geometric and
cohomological dimensions are either 0, 1, 2 or ∞. Another result presented in
this paper states that aspherical 2-dimensional subcomplexes of random com-
plexes satisfy the Whitehead Conjecture, i.e. all their subcomplexes are also
aspherical (with probability tending to one).

To make this paper less dependent on [13] we give now a brief description of
the multi-parameter model. Fix an integer r ≥ 0 and a sequence

p = (p0, p1, . . . , pr)

of real numbers satisfying
0 ≤ pi ≤ 1.

Denote qi = 1 − pi. We consider the probability space Ωrn consisting of all

subcomplexes Y ⊂ ∆n with dimY ≤ r, where the symbol ∆
(r)
n stands for the

2



Figure 1: Areas on the (α1, α2)-plane corresponding to various properties of the
fundamental group: (a) light green - the group is trivial; (b) grey - the group has
2-torsion and is hyperbolic; (c) shaded black (including the horizontal interval
(11/30, 2/5) shown in bold) - the group is nontrivial, hyperbolic, its geometric
dimension is ≤ 2; (d) yellow - the group is trivial for any choice of the base
point.

r-dimensional skeleton of ∆n, which is defined as the union of all simplexes of
dimension ≤ r. The probability function

Pr,p : Ωrn → R

is given by the formula

Pr,p(Y ) =

r∏
i=0

p
fi(Y )
i ·

r∏
i=0

q
ei(Y )
i (1)

Here ei(Y ) denotes the number of i-dimensional external faces of Y , see [13]
for the definition. We use the convention 00 = 1; in other words, if pi = 0 and
fi(Y ) = 0 then the corresponding factor in (1) equals 1.

Some results presented in the paper are illustrated by Figure 1. There for
simplicity we assume that the probability parameters pi have the form

pi = n−αi
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where αi ≥ 0 are constant. We also assume that α0 = 0 and hence various
properties of the fundamental group are described by subsets of the (α1, α2)-
plane since they clearly depend only on p1 and p2. Figure 1 shows domains
corresponding to triviality and non-triviality, existence and non-existence of 2-
torsion as well as the domain showing when the geometric and cohomological
dimension of the fundamental group are ≤ 2.

In area (a) the complex is connected and simply connected, as proven in
[13]. In area (d) the random complex is disconnected and has no cycles and
no 2-simplexes, i.e. it is a forest. Of course, all these properties are satisfied
asymptotically almost surely (a.a.s.), i.e. the limit of the probability that the
corresponding property holds tends to 1 as n→∞.

The properties of fundamental groups of random simplicial complexes along
the coordinate axis of Figure 1 were known from earlier published papers and
we want to mention the relevant references. The case α1 = 0 corresponds to
the Linial-Meshulam-Wallach model; in this case the ranges for the triviality
and hyperbilicity were established in [2]; the range for 2-torsion as well as the
ranges for cohomological dimension 1,2,∞ were found in [10]; the range when the
fundamental group is free was given in [7]. The case when α2 = 0 corresponds
to clique complexes of the Erdös - Rényi random graphs. In this case most of
the results of Figure 1 were obtained in [3] and in [11].

This research was supported by an EPSRC grant.
The authors thank the anonymous referee for careful reading of the manuscript

and making many helpful comments.

2 Subcomplexes of random complexes

Let S be a fixed simplicial complex of dimension ≤ r. Similarly to the random
graph theory, one may wish to determine conditions when S is embeddable into
a random simplicial complex Y ∈ Ωrn with respect to the probability measure
Pr,p, where p = (p0, p1, . . . , pr). In a recent paper [12] we discussed the con-
tainment problem under a simplifying assumption that pi = n−αi where αi ≥ 0
are constant. In this paper we shall need the containment result without this
assumption. Besides the general containment result stated as Theorem 1 we
also treat in this section the relative containment problem, see Theorem 4.

Theorem 1. Consider a random simplicial complex Y ∈ Ωrn with respect to
the measure Pr,p, where p = (p0, p1, . . . , pr). Let S be a fixed finite simplicial
complex of dimension ≤ r.

A. Suppose that

n · min
T⊂S

r∏
i=0

p
fi(T )

f0(T )

i → 0. (2)

Here T ⊂ S runs over all nonempty simplicial subcomplexes of S and fi(T )
denotes the number of i-dimensional faces in T . Then the probability that a
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random complex Y ∈ Ωrn contains a simplicial subcomplex isomorphic to S tends
to zero as n→∞.

B. Suppose that for any nonempty subcomplex T ⊂ S one has

nf0(T ) ·
r∏
i=0

p
fi(T )
i →∞.

Then a random complex Y ∈ Ωrn contains a subcomplex isomorphic to S with
probability tending to 1.

Proof. Let us start with the statement A. For T ⊂ S let XT : Ωrn → R denote
the random variable counting the number of embeddings of T into a random
simplicial complex Y ∈ Ωrn. One has

E(XT ) =

(
n

f0(T )

)
· f0(T )! ·

r∏
i=0

p
fi(T )
i .

Denoting by Pr,p(Y ⊃ S) the probability that Y contains a subcomplex isomor-
phic to S, we have (for n fixed)

Pr,p(Y ⊃ S) ≤ min
T⊂S

Pr,p(Y ⊃ T ) ≤ min
T⊂S

E(XT )

≤ min
T⊂S

nf0(T ) ·
r∏
i=0

p
fi(T )
i . (3)

By (2) for any ε ∈ (0, 1) there exists N such that for any n ≥ N there exists
Tn ⊂ S, T 6= ∅, such that

n ·
r∏
i=0

p
fi(Tn)

f0(Tn)

i < ε < 1.

Then

nf0(Tn) ·
r∏
i=0

p
fi(Tn)
i < εf0(Tn) < ε

which shows that the RHS of (3) tends to zero when n→∞ under our assump-
tion (2).

We now prove statement B. We follow the argument used in the proof of
Lemma 3.4 from [12]. Let F0(S) denote the set of vertices of S and let J :
F0(S) → [n] be an embedding. Consider the indicator random variable XJ :
Ωrn → {0, 1} taking the value 1 on a subcomplex Y ∈ Ωrn iff J extends to a
simplicial embedding J : S → Y . Then X =

∑
J XJ counts the number of

copies of S in Y . We wish to show that X > 0 a.a.s.
We have

E(X) = (1 + o(1)) · nf0(S) ·
r∏
i=0

p
fi(S)
i →∞
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By Chebyshev inequality,

P(X = 0) ≤ Var(X)

E(X)2
.

Our goal is to show that Var(X)
E(X)2 → 0. One has

Var(X) =
∑
J,J ′

Cov(XJ , XJ′) =
∑
J,J ′

(E(XJXJ′)− E(XJ)E(XJ′)).

The product XJ ·XJ′ is the indicator random variable for the containment of
the simplicial complex J(S) ∪ J ′(S). Hence we have

E(XJXJ′) =

r∏
i=0

p
2fi(S)−fi(T ′)
i

where T ′ = J(S) ∩ J ′(S).
Denote by T the subcomplex T = J−1(T ′) ⊂ S. For a fixed subcomplex

T ⊂ S the number of pairs of embeddings J, J ′ : S → ∆n such that J−1(J(S)∩
J ′(S)) = T is bounded above by

CTn
2f0(S)−f0(T )

where CT denotes the number of isomorphic copies of T in S. We obtain

Var(X) ≤
∑
T⊂S

CTn
2f0(S)−f0(T ) ·

r∏
i=0

p
2fi(S)−fi(T )
i

≤ C · E2(X) ·
∑
T⊂S

CTn
−f0(T ) ·

(
r∏
i=0

p
−fi(T )
i

)

≤ C ′ · E2(X) ·
∑

T⊂S,T 6=∅

n−f0(T )
r∏
i=0

p
−fi(T )
i

= C ′ · E2(X) ·
∑

T⊂S,T 6=∅

[
nf0(T )

r∏
i=0

p
fi(T )
i

]−1

.

It follows that
Var(X)

E(X)2
→ 0

since we assume that nf0(T )
∏r
i=0 p

fi(T )
i → ∞ for all non-empty subcomplexes

T ⊂ S.

Example 2. Let C be a simplicial loop of length m ≥ 3. Then for any non-
empty subcomplex T ⊂ C on a has f1(T ) ≤ f0(T ) and therefore

nf0(T )
r∏
i=0

p
fi(T )
i ≥ [np0p1]

f0(T )
.
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From Theorem 1 we obtain that a random complex Y ∈ Ωrn contains C as a
subcomplex assuming that np0p1 →∞.

Next we shall consider a relative version of Theorem 1. Suppose that S1 ⊃ S2

are two simplicial complexes; we want to describe conditions when a random
simplicial complex Y ∈ Ωrn admits an embedding S2 → Y which cannot be
extended to an embedding S1 → Y .

By the definition, an embedding of S1 into Y is an injective simplicial map
S1 → Y .

We denote fi(S1, S2) = fi(S1)− fi(S2) where i = 0, . . . .

Theorem 3. Assume that for any nonempty subcomplex T ⊂ S2 one has

nf0(T ) ·
r∏
i=0

p
fi(T )
i →∞ (4)

and besides,

nf0(S1,S2) ·
r∏
i=0

p
fi(S1,S2)
i → 0. (5)

Then the number of embeddings of S1 into a random simplicial complex Y ∈ Ωrn
is smaller than the number of embeddings of S2 into Y , a.a.s. In particular,
under the assumptions (4), (5) there exists an embedding of S2 → Y which does
not extend to an embedding S1 → Y , a.a.s.

Proof of Theorem 3. For i = 1, 2, let Xi : Ωrn → Z be the random variable that
counts the number of embeddings of Si into the random complex Y ∈ Ωrn. Our
goal is to show that X1 < X2, a.a.s. This would mean that there exists an
embedding of S2 → Y which does not extend to an embedding S1 → Y , a.a.s.
We prove below a stronger statement that for any fixed ε > 0 one has

X1 < ε ·X2 (6)

with probability tending to 1 as n→∞.
We have

E(X1)

E(X2)
≤ C

nf0(S1)
∏r
i=0 p

fi(S1)
i

nf0(S2)
∏r
i=0 p

fi(S2)
i

= C · nf0(S1,S2)
r∏
i=0

p
fi(S1,S2)
i → 0

tends to zero because of our assumption (5).
Denote

x1 =
ε

2

√
E(X1)E(X2),

and

x2 = E(X2)− E(X1)−
√

E(X1)E(X2)

= E(X2)

[
1− E(X1)

E(X2)
−

√
E(X1)

E(X2)

]
.
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Then
E(X1)

x1
→ 0, and

E(X2)

x2
→ 1.

By the Markov inequality we have

Pr,n(X1 ≥ E(X1) + x1) ≤ E(X1)

E(X1) + x1
=

E(X1)/x1

1 + E(X1)/x1
→ 0.

By Chebyschev’s inequality

Pr,n(X2 < E(X2)− x2) <
Var(X2)

x2
2

=
Var(X2)

E(X2)2
·
(
E(X2)

x2

)2

→ 0.

Here we use the fact (established in the proof of Theorem 1) that the assumption

(4) implies Var(X2)
E(X2)2 → 0.

Thus we see that with probability tending to 1 as n → ∞ one has the
inequalities

X1

X2
≤ E(X1) + x1

E(X2)− x2
=

E(X1) + ε
2

√
E(X1)E(X2)

E(X1) +
√

E(X1)E(X2)
→ ε

2
.

Therefore we obtain that
X1

X2
< ε

with probability tending to 1 as n→∞.

Theorem 4. Let

Sj ⊃ S, j = 1, . . . , N (7)

be a finite family of finite simplicial complexes of dimension ≤ r containing a
given simplicial complex S and satisfying the following conditions:

(a) for every nonempty subcomplex T ⊂ S one has

nf0(T )
r∏
i=0

p
fi(T )
i →∞; (8)

(b) For any j = 1, . . . , N ,

nf0(Sj ,S)
r∏
i=0

p
fi(Sj ,S)
i → 0. (9)

Then with probability tending to one, a random simplicial complex Y ∈ Ωrn
admits an embedding of S which does not extend to an embedding Sj → Y , for
every j = 1, . . . , N .
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Proof. For j = 1, . . . , N , let Xj : Ωrn → Z be the random variable that counts
the number of embeddings of Sj into a random complex Y ∈ Ωrn. Besides, let
X : Ωrn → Z be the random variable counting the number of embeddings of S
into a random complex Y ∈ Ωrn. As in the proof of Theorem 3 (taking ε = 1/N),
we have Xj < εX, a.s.s. Therefore,

N∑
j=1

Xj < X

with probability tending to 1 as n → ∞. We obtain that with probability
tending to one, a random simplicial complex Y ∈ Ωrn admits an embedding of
S which does not extend to an embedding Sj → Y , for every j = 1, . . . , N .

Examples when Theorem 4 can be applied to produce interesting results
appear later, see §5 and §6.

3 Uniform Hyperbolicity

In this section we state a theorem about uniform hyperbolically of random
simplicial complexes. This theorem plays a crucial role later in this paper.

First we recall the relevant definitions. Let X be a finite simplicial complex.
For a simplicial loop in the 1-skeleton γ : S1 → X(1) ⊂ X, we denote by |γ| the
length of γ, i.e. the number of edges composing γ. If γ is null-homotopic, γ ∼ 1,
we denote by AX(γ) the area of γ, i.e. the minimal number of 2-simplices in
any simplicial filling V for γ. A simplicial filling (or a simplicial Van Kampen

diagram) for a loop γ is defined as a pair of simplicial maps S1 i→ V
b→ X

(where V is a contractible 2-dimensional complex) such that γ = b ◦ i and the
mapping cylinder of i is a disc with boundary S1 × 0, see [2].

Next one defines the isoperimetric constant of X:

I(X) = inf

{
|γ|

AX(γ)
; γ : S1 → X(1), γ ∼ 1 in X

}
∈ R.

Clearly I(X) = I(X(2)), i.e. the isoperimetric constant I(X) depends only on
the 2-skeleton X(2). It is well-known that the positivity I(X) > 0 depends only
on the fundamental group π1(X); in fact, one of the many equivalent definitions
of hyperbolicity of discrete groups in the sense of M. Gromov [17] states that
π1(X) is hyperbolic iff I(X) > 0. Clearly, the precise value of I(X) depends
on the simplicial structure of X. Knowing I(X) (or a lower bound for it) is
extremely useful as we shall demonstrate later in this paper.

Below is the main result of this section:

Theorem 5. Consider a random simplicial complex Y ∈ Ωrn with respect to the
probability measure Pr,p, where p = (p0, . . . , pr), r ≥ 2. Assume that

np0 →∞ (10)
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and for some ε > 0,

(np0)1+εp3
1p

2
2 → 0. (11)

Then there exists a constant cε > 0 (depending only on ε) such that a random
complex Y ∈ Ωrn has the following property with probability tending to one: any
subcomplex Y ′ ⊂ Y satisfies

I(Y ′) ≥ cε. (12)

In particular, any subcomplex Y ′ ⊂ Y has a Gromov hyperbolic fundamental
group, a.a.s..

Thus, under the assumption (11), all random complexes and their subcom-
plexes have isoperimetric constants bounded below by cε > 0 with probability
tending to 1 as n→∞.

Assumption (10) guaranties that the number of vertices of Y tends to infinity,
see [12], Lemma 2.5.

Using Theorem 5 we shall establish the following Corollary:

Corollary 6. [see Theorem 30] If additionally to the hypothesis of Theorem 5
one has

np0p1 →∞ (13)

as n → ∞ then a random complex Y ∈ Ωrn has non-trivial fundamental group,
a.a.s.

To illustrate the importance of the assumption (13) note that the “alterna-
tive” assumption

np0p1 → 0 (14)

implies (as is easy to show) that a random complex Y ∈ Ωrn is at most one
dimensional and has no cycles, i.e. it is a forest, a.a.s. In particular, the
fundamental group of Y is trivial with any base point, a.a.s. Note also that (14)
implies that Y is disconnected, see Lemma 5.4 in [13].

Corollary 7. Assume that pi = n−αi , where αi ≥ 0 are constants, i = 0, . . . , r.
Then a random complex Y ∈ Ωrn has hyperbolic and nontrivial fundamental
group for

α0 + 3α1 + 2α2 > 1,
α0 + α1 < 1.

If either α0 + 3α1 + 2α2 < 1 or α0 + α1 > 1 then the fundamental group π1(Y )
is trivial, a.a.s.

The last part of Corollary 7 is proven in an earlier paper [13].
The Figure 2 depicts the domain where the fundamental group of the random

complex is nontrivial. Here we assume that α0 = α3 = α4 = · · · = 0.
Next we state the local-to-global principle of Gromov which plays a crucial

role in the proof of Theorem 5. Recall that a 2-complex is said to be pure if
every vertex and every edge are incident to a face.
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Theorem 8. Let X be a finite 2-complex and let 0 < C < 11 be a constant such
that any pure subcomplex S ⊂ X having at most (44)3 · C−2 two-dimensional
simplexes satisfies I(S) ≥ C. Then I(X) ≥ C · 44−1.

Theorem 8 follows from [2], Theorem 3.9. Indeed, suppose that the assump-
tions of Theorem 6.1 are satisfied. Let γ : S1 → X be a simplicial loop with
AX(γ) < (44)3 ·C−2 = 44ρ2, where ρ = 44/C. Then there is a pure subcomplex
S ⊂ X with at most (44)3 · C−2 faces which contains both γ and the minimal
spanning disk of γ in X, and by our assumption

|γ|
AS(γ)

≥ I(S) ≥ C = 44/ρ,

i.e. AX(γ) = AS(γ) ≤ ρ
44 · |γ|. Applying Theorem 3.9 from [2] we obtain

I(X) ≥ ρ−1 = C/44.
Next we give the following definition.

Definition 9. Let ε > 0 be a positive number. We shall say that a finite 2-
dimensional simplicial complex S is ε-admissible if the following system of linear
inequalities {

3α1 + 2α2 > 1 + ε,
α1f1(T ) + α2f2(T ) < f0(T ), T ⊂ S, (15)

admits a solution with α1 ≥ 0, α2 ≥ 0, where T ⊂ S runs over all non-empty
subcomplexes. In other words, a 2-complex S is ε-admissible if there exist non-
negative real numbers α1 and α2 such that 3α1 + 2α2 > 1 + ε and for any
non-empty subcomplex T ⊂ S one has α1f1(T ) + α2f2(T ) < f0(T ).

We shall say that a simplicial complex S is admissible if it is ε-admissible
for some ε > 0.

The property of being ε-admissible is a combinatorial property of a 2-complex
S which amounts to certain restrictions on the numbers of vertices, edges and
faces for all subcomplexes of S. We may mention two special cases:

Case A: A complex S is ε-admissible if for any subcomplex T ⊂ S one has

µ2(T ) ≡ f0(T )

f2(T )
>

1

2
+
ε

2
.

This is equivalent to Definition 9 under an additional assumption that α1 = 0.
Complexes with µ2(S) > 1/2 were studies in §2 of [10], see also [2].

Case B: A complex S is ε-admissible if for any subcomplex T ⊂ S one has

µ1(T ) ≡ f0(T )

f1(T )
>

1

3
+
ε

3
.

This is equivalent to Definition 9 under an additional assumption that α2 = 0.
Complexes with µ1(S) > 1/3 were studies in §5 of [11].
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Example 10. Let X be a simplicial complex X homeomorphic to the torus
T 2. Then using the Euler characteristic relation we obtain f1(X) = 3f0(X) and
f2(X) = 2f0(X). The inequality α1f1(X) + α2f2(X) < f0(X) (see the second
line in (15)) is equivalent to 3α1 + 2α2 < 1 which contradicts the first line of
(15). Hence the is no ε > 0 such that X is ε-admissible.

Remark 11. A 2-complex S is said to be balanced if for any subcomplex T ⊂ S
one has µi(T ) ≥ µi(S) for i = 1, 2; see §4 from [12]. Recall that µi(T ) denotes
the ratio f0(T )/fi(T ). A balanced 2-complex S is ε-admissible iff

α1f1(S) + α2f2(S) < f0(S) (16)

for some α1 ≥ 0 and α2 ≥ 0 satisfying 3α1 + 2α2 > 1 + ε. Note that any trian-
gulation of a closed surface with non-negative Euler characteristic is balanced,
see Theorem 4.4 from [12].

Example 12. Let S be a connected 2-complex homeomorphic to a closed sur-
face with positive Euler characteristic, χ(S) > 0. Then S is ε-admissible assum-
ing that

f0(S) ≤ χ(S) · 1 + ε

ε
. (17)

Indeed, S is balanced (see above) and the well-known Euler type relations imply

f1(S) = 3(f0(S)− χ(S)), f2(S) = 2(f0(S)− χ(S)).

The inequality (16) can be rewritten in this case as

(3α1 + 2α2) · (f0(S)− χ(S)) < f0(S)

and hence the system (15) is equivalent to

1 + ε < 3α1 + 2α2 <
f0(S)

f0(S)− χ(S)
.

We see that the existence of α1, α2 follows from the inequality

1 + ε <
f0(S)

f0(S)− χ(S)

which is equivalent to (17). We obtain that any triangulated sphere or projective
plane with sufficiently “small” number of vertices (as prescribed by (17)) is ε-
admissible.

Therefore, all triangulations of the 2-sphere and of the real projective plane
are admissible.

Example 13. Any graph is ε-admissible. Indeed, since f2(T ) = 0, in the
Definition 9 one may take α1 very small and α2 very large.
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The importance of the notion of ε-admissibility stems from the following
Lemma:

Lemma 14. Assume that np0 →∞ and for some ε > 0,

(np0)1+εp3
1p

2
2 → 0. (18)

For a fixed constant C > 0, a random simplicial complex Y ∈ Ωrn with probability
tending to one has the following property: any simplicial pure 2-dimensional
subcomplex of Y with at most C 2-simplexes is ε-admissible. In other words,
under the condition (18), consider the finite set FC,ε = {X} of isomorphism
classes of pure 2-dimensional simplicial complexes X satisfying f2(X) ≤ C
which are not ε-admissible. Then with probability tending to 1 a random complex
Y ∈ Ωrn with respect to the multiparameter measure p = (p0, . . . , pr) contains
none of the complexes X ∈ FC,ε as a simplicial subcomplex.

Proof. We may write
pi = n−αi ,

where in general αi = αi(n) is a function of n. By our assumption np0 → ∞,
we have α0(n) < 1 for all large n, i.e. for all n except finitely many. Our
assumption (18) implies that

3α1 + 2α2 − (1− α0)(1 + ε) =
ω

log n
,

where ω →∞. This can be rewritten as

3α′1 + 2α′2 = 1 + ε+ x,

where
α′i =

αi
1− α0

, x =
ω

(1− α0) · log n
.

Note that x ≤ 5 ·max{α′1, α′2}. For i = 1, 2 define

βi(n) =

 α′i(n)− x/10, if α′i(n) = max{α′1(n), α′2(n)},

α′i(n), otherwise.

Then
βi(n) ≥ 0, and 3β1(n) + 2β2(n) > 1 + ε

for any n.
Let S be a simplicial complex with f2(S) ≤ C which is not ε-admissible. As

follows from Definition 9, for any n there is a subcomplex Tn ⊂ S such that

β1f1(Tn) + β2f2(Tn) ≥ f0(Tn),

which implies that

α′1f1(Tn) + α′2f2(Tn)− f0(Tn) ≥ x

10
.
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Therefore

(np0)f0(Tn) ·
r∏
i=1

p
fi(Tn)
i =

[
n1−α0

]f0(Tn)−
∑2
i=1 α

′
ifi(Tn)

≤
[
n1−α0

]−x/10
= e−ω/10.

Now we apply Theorem 1 to conclude that the probability that S is embed-
dable into Y tends to zero as n→∞.

A crucial role in the proof of Theorem 5 plays the following theorem stating
that all ε-admissible 2-dimensional complexes admit a universal lower bound on
the value of their isoperimetric constant:

Theorem 15. Given ε > 0 there exists a constant Cε > 0 such that for any
ε-admissible finite simplicial pure 2-complex X one has I(X) ≥ Cε.

Proof of Theorem 5 using Theorem 8 and Theorem 15. Let Cε > 0 be
the constant given by Theorem 15. Consider the set S of all isomorphism
types of finite pure 2-complexes having at most C = 443 ·C−2

ε two-dimensional
simplexes. Clearly, the set S is finite. Let S ′ ⊂ S denote the subset of complexes
in S which are not ε-admissible. Under the assumptions of Theorem 5 a random
complex Y ∈ Ωrn contains a complex from S ′ as a subcomplex with probability
tending to zero as n→∞ as follows from Lemma 14.

All remaining complexes lying in S ′′ = S −S ′ are ε-admissible. Theorem 15
states that any complex S ∈ S ′′ satisfies I(S) ≥ Cε. Now applying Theorem 8
we obtain that any subcomplex Y ′ ⊂ Y satisfies I(Y ′) ≥ Cε · 44−1 = cε with
probability tending to 1 as n→∞.

Theorem 15 will be proven in §10.

4 Topology of admissible 2-complexes

In this section we examine the topology of 2-complexes which are admissible in
the sense of Definition 9. One of the central results proven here is Theorem 28
describing homotopy types of admissible 2-complexes. In §10 we shall continue
the study of ε-admissible complexes and present a proof of Theorem 15.

Recall the definitions of the density invariants:

µi(S) =
f0(S)

fi(S)
, i = 1, 2. (19)

We shall use the formulae

µ1(S) =
1

3
+

3χ(S) + L(S)

3f1(S)
, µ2(S) =

1

2
+

2χ(S) + L(S)

2f2(S)
, (20)
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see formula (8) in [11] and formula (2) in [10]. Here

L(S) =
∑
e

(2− deg e) , (21)

the sum is taken over the edges e of S and for an edge e the symbol deg e (the
degree of e) denotes the number of 2-simplexes containing e.

Lemma 16. Let S be an ε-admissible 2-complex. Then for any subcomplex
T ⊂ S either

µ1(T ) >
1 + ε

3
, or µ2(T ) >

1 + ε

2
.

In particular, if S is admissible then for any subcomplex T ⊂ S one has either

3χ(T ) + L(T ) > 0, or 2χ(T ) + L(T ) > 0.

Moreover, if S is admissible then for any subcomplex T ⊂ S with L(T ) ≤ 0 one
has

µ1(T ) > 1/3.

Proof. Suppose that for some T ⊂ S one has

µ1(T ) ≤ (1 + ε)/3, and µ2(T ) ≤ (1 + ε)/2.

Then for any α1, α2 ≥ 0 satisfying 3α1 + 2α2 > 1 + ε one has

α1

µ1(T )
+

α2

µ2(T )
> 1

which is equivalent to

α1f1(T ) + α2f2(T ) > f0(T ),

implying that S is not ε-admissible.
The other statements follow from formulae (20).

Corollary 17. Let S be a simplicial 2-complex homeomorphic to a closed sur-
face. If χ(S) ≤ 0 then S is not admissible.

Proof. Applying the previous Lemma 16 with T = S and observing that L(S) =
0 we have

µ1(S) =
1

3
+
χ(S)

f1(S)
≤ 1

3

which shows that S is not admissible due to Lemma 16.

In Example 12 we showed that any closed surface S with χ(S) > 0 is admis-
sible.

Recall that a 2-complex S is called closed if every edge e of S is contained in
at least two 2-simplexes. Note that for a closed complex S one has L(S) ≤ 0. A
2-complex S is said to be pure if each vertex and each edge of S are contained
in a 2-simplex. A 2-complex S is said to be strongly connected if the space
S − V (S) is path-connected; here V (S) denotes the set of vertexes of S.
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Corollary 18. Any closed strongly connected 2-dimensional admissible simpli-
cial complex S with b2(S) = 0 is either a triangulation of the real projective
plane P 2 or the quotient Q2 of a triangulation of P 2 obtained by identifying two
adjacent edges.

Proof. By Lemma 16 we have that µ1(S) > 1/3. Lemma 5.1 of [11] implies that
S is a triangulated projective plane P 2 or the quotient of a triangulation of P 2

obtained by identifying two adjacent edges.

Definition 19. A finite simplicial 2-complex Z is said to be a minimal cycle if
b2(Z) = 1 and for any proper subcomplex Z ′ ( Z one has b2(Z ′) = 0.

Definition 20. A minimal cycle Z is said to be of type A if it does not contain
closed proper subcomplexes. Otherwise Z is said to be of type B.

Example 21. We give here examples of minimal cycles. Some details of proofs
are left to the reader.

1. A triangulation of the sphere S2 is an admissible minimal cycle of type A,
see Example 12.

2. One also obtains an admissible minimal cycle of type A by starting from
a triangulation of S2 and identifying two vertices.

However, if one identifies more than two vertices the obtained minimal
cycle is not admissible. [This follows by applying formulae (20) and show-
ing that the complex S obtained from a triangulated sphere by identifying
more than 2 vertices satisfies χ(S) ≤ 0 and therefore µ1(S) ≤ 1/3 and
µ2(S) ≤ 1/2].

3. An admissible minimal cycle of type A is obtained from a triangulation of
S2 by identifying two adjacent edges.

4. An example of a minimal cycle of type B is given by the union Z =
P 2 ∪D2 where P 2 is a triangulation of the real projective plane and D2

is a triangulated disc such that P 2 ∩ D2 = ∂D2 is a non-contractible
simple closed loop on P 2. This minimal cycle is admissible if f1(∂D2) ≤ 5
(compare Lemma 24 below).

5. Consider the union Z = P 2 ∪ P 2 of two real projective planes where the
intersection P 2 ∩ P 2 is a loop non-contractible in each of the projective
planes. Z is a minimal cycle of type B which is not admissible as one
observes that µ1(Z) < 1/3 and µ2(Z) < 1/2 by applying formulae (20).

Remark 22. One can easily see that minimal cycles are closed, strongly con-
nected simplicial complexes. Hence, for any minimal cycle Z one has L(Z) ≤ 0;
besides, χ(Z) ≤ 2. Using Lemma 16 we find that every admissible minimal
cycle Z must satisfy 3χ(Z) + L(Z) > 0 implying that

1 ≤ χ(Z) ≤ 2 and − 5 ≤ L(Z) ≤ 0. (22)
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Lemma 23. Any admissible minimal cycle Z of type A is homotopy equivalent
to either S2 or to S2 ∨ S1. Moreover, for every 2-simplex σ ⊂ Z the boundary
∂σ is null-homotopic in Z − Int(σ).

Proof. Suppose Z is an admissible minimal cycle of type A. Since Z is closed,
one has L(Z) ≤ 0. Using the second part of Lemma 16, we obtain µ1(Z) > 1/3.
Now we may apply Lemma 5.6 from [11]. Note that the statement of Lemma
5.6 from [11] requires that µ1(T ) > 1/3 for any subcomplex T ⊂ Z; however
the proof presented in [11] uses only the assumption µ1(Z) > 1/3.

Next we establish the following simple fact about minimal cycles of type B
which strengthens Remark 22.

Lemma 24. Every admissible minimal cycle Z of type B satisfies χ(Z) = 2
and −5 ≤ L(Z) ≤ −3.

Proof. Let Z ′ be a proper closed subcomplex of Z. If the graph Γ = Z ′∩(Z − Z ′)
has no cycles, then

b2(Z) = b2(Z ′) + b2(Z − Z ′)

and either b2(Z ′) = 1 or b2(Z − Z ′) = 1; either of these possibilities contradicts
the minimality of Z. Hence the graph Γ must contain a cycle and in particular,
the number of edges of Γ satisfies f1(Γ) ≥ 3. Each edge of Z ′ is incident to at
least two faces of Z ′ and every edge of Γ ⊂ Z ′ is incident to at least one face of
Z which is not in Z ′. Since f1(Γ) ≥ 3 and Z is closed it follows that L(Z) ≤ −3.
Since Z is admissible, by Lemma 16 we obtain 0 < 3χ(Z) + L(Z) ≤ 3χ(Z)− 3.
In particular χ(Z) > 1. Since b0(Z) = b2(Z) = 1 we obtain χ(Z) = 2, as
claimed.

Definition 25. Let Z be an admissible minimal cycle of type B. Any closed
strongly connected proper subcomplex Z0 ⊂ Z is called a core of Z.

Clearly, for any core Z0 ⊂ Z one has b2(Z0) = 0 (by minimality). Applying
Corollary 18 we see that any core is homeomorphic either to P 2 or to P 2 with
two adjacent edges identified.

Lemma 26. An admissible minimal cycle Z of type B has a unique core Z0 ⊂ Z.

Proof. Let Z be an admissible minimal cycle of type B. Let us assume that Z
has two distinct cores Z ′, Z ′′ ⊂ Z.

Consider the graphs

Γ′ = Z ′ ∩ Z − Z ′, Γ′′ = Z ′′ ∩ Z − Z ′′.

By the arguments used in the proof of Lemma 24 we obtain that f1(Γ′) ≥ 3
and f1(Γ′′) ≥ 3. The graphs Γ′ and Γ′′ cannot be edge-disjoint since otherwise
Z would have at least 6 edges of degree ≥ 3; the latter would give L(Z) ≤ −6
contradicting Lemma 24. This implies that f1(Z ′ ∩ Z ′′) > 0 and therefore the
union Z ′ ∪ Z ′′ is strongly connected.
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We observe next that the union Z ′ ∪ Z ′′ must coincide with Z. Indeed, if
Z ′ ∪Z ′′ 6= Z then by minimality b2(Z ′ ∪Z ′′) = 0 and by Corollary 18 the union
Z ′ ∪ Z ′′ is either homeomorphic to P 2 or to the quotient Q2 of P 2 where two
adjacent edges are identified. But neither P 2 nor Q2 admits a triangulation in
which it is a union of two distinct closed proper subcomplexes. Here we use our
assumption Z ′ 6= Z ′′.

Now we may show that

Γ′ = S ∩ Z ′′ − S, Γ′′ = S ∩ Z ′ − S,

where
S = Z ′ ∩ Z ′′

is the intersection. Indeed, since Z = Z ′ ∪Z ′′ one obtains Z −Z ′ = Z ′′−S and

Γ′ = Z ′ ∩ Z − Z ′

= Z ′ ∩ Z ′′ − S
=

[
S ∩ Z ′′ − S

]
∪
[
(Z ′ − S) ∩ Z ′′ − S

]
= S ∩ Z ′′ − S.

On the last step we used the observation (Z ′−S)∩Z ′′ − S ⊂ (Z ′−S)∩Z ′′ = ∅.
The statement regarding Γ′′ follows similarly.

We know that χ(Z ′ ∪ Z ′′) = 2 and χ(Z ′) = χ(Z ′′) = 1; therefore χ(S) = 0.
If S is disconnected then b1(Z) = b1(Z ′ ∪ Z ′′) ≥ 1 contradicting χ(Z) = 2.
Hence we obtain

b0(S) = b1(S) = 1. (23)

Suppose that the intersection S has no 2-faces. Then S is a connected graph
and every edge of S has degree ≥ 4 in Z since it is incident to at least two faces
of Z ′ and two faces of Z ′′. However, since b1(S) = 1 we have f1(S) ≥ 3 implying
that L(Z) ≤ −2f1(S) ≤ −6; this contradicts L(Z) ≥ −5, see above.

Thus we see that f2(S) ≥ 1, i.e. the complex S is 2-dimensional.
Note that b1(Z ′) = b2(Z ′) = 0 and b1(Z ′′) = b2(Z ′′) = 0, see Corollary

18. The Mayer-Vietoris exact sequences with rational coefficients for the covers
Z ′ = S ∪ Z ′ − S and Z ′′ = S ∪ Z ′′ − S give the isomorphims

H1(Γ′;Q) ∼= H1(S;Q)⊕H1(Z ′′ − S;Q), (24)

H1(Γ′′;Q) ∼= H1(S;Q)⊕H1(Z ′ − S;Q). (25)

Since H1(S;Q) = Q we obtain from (24), (25):

b1(Γ′), b1(Γ′′) ≥ 1. (26)

In the beginning of the proof we have observed that every edge of Γ′ and
of Γ′′ has degree ≥ 3 in Z and that Γ′ and Γ′′ cannot be edge-disjoint. Hence
f1(Γ′ ∪ Γ′′) ≤ 5 and therefore b1(Γ′ ∪ Γ′′) ≤ 2 since any graph on at most five
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edges has at most 2 independent cycles. Let us show that the case b1(Γ′∪Γ′′) = 2
is impossible. If b1(Γ′∪Γ′′) = 2 then Γ′∪Γ′′ is a square with one diagonal, it has
5 edges and each of the edges has degree 3 in Z (since L(Z) ≥ −5, see above).
Moreover, in this case all other edges of Z have degree 2 (as again follows from
L(Z) ≥ −5). Let v be one of the vertices of degree 3 in the graph Γ′ ∪ Γ′′.
Then v is incident to exactly three odd degree edges in Z (see similar argument
in [11], proof of Lemma 5.7 on page 15). All edges of Z incident to v which
do not belong to Γ′ ∪ Γ′′ have degree 2 in Z. In particular the link LkZ(v) of
v in Z would be a graph with an odd number of odd degree vertices which is
impossible. Therefore, we obtain that

b1(Γ′ ∪ Γ′′) = 1 (27)

From (26) and (27) it follows that

b1(Γ′ ∩ Γ′′) = b1(Γ′) = b1(Γ′′) = 1 (28)

i.e. the graphs Γ′ and Γ′′ possess a common cycle C. The isomorphisms (24)
and (25) give

b1(Z ′ − S) = b1(Z ′′ − S) = 0.

We obtain that some integral multiple of the cycle C bounds a Z-chains in
Z ′ − S and in Z ′′ − S and the difference of these two chains will be a non-
trivial 2-dimensional cycle c lying in Z−S′ 6= Z contradicting the minimality of
Z. Here S′ denotes the union of interiors of all 2-simplexes of S. Note that the
complexes Z ′ − S, Z ′′ − S and S have no common 2-simplexes. This completes
the proof.

Lemma 27. Any admissible minimal cycle Z of type B is homotopy equivalent
to the sphere S2. Let Z0 ⊂ Z denote the core of Z. Then for any 2-simplex
σ ⊂ Z0 the complement Z − Int(σ) is contractible.

Proof. Consider the complex Z − Int(σ) where σ is a 2-simplex, σ ⊂ Z0 lying
in the core. Starting from the complex Z − Int(σ) and collapsing subsequently
faces across the free edges we shall arrive to a connected graph Γ, as follows
from the uniqueness of the core (Lemma 26). Since χ(Z) = 2 (see Lemma 24)
we find χ(Γ) = χ(Z − Int(σ)) = 1. Therefore Γ is a tree. Hence the complex
Z − Int(σ) is contractible. This implies that Z is homotopy equivalent to the
result of attaching a 2-cell to Z − Int(σ), hence Z ' S2.

Theorem 28. Any admissible 2-complex X is homotopy equivalent to a wedge
of circles, spheres and projective planes.

Proof. We will act by induction on b2(X). If b2(X) = 0 and X is admissible
then using Corollary 18 we see that each strongly connected component of X
is homotopy equivalent to P 2. Hence X is homotopy equivalent to a wedge of
circles and projective planes.
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Assume now that the statement of the Theorem has been proven for all
connected admissible 2-complexes X with b2(X) < k. Consider an admissible
2-complexX satisfying b2(X) = k > 0. Find a minimal cycle Z ⊂ X and observe
that the homomorphism H2(Z;Z) = Z→ H2(X;Z) induced by the inclusion is
injective. Let σ ⊂ Z be a 2-simplex; if Z is of type B we shall assume that σ
lies in the core Z0 ⊂ Z. We shall use Lemmas 23 or 27 depending whether Z
is of type A or B. The complex X ′ = X − Int(σ) satisfies b2(X ′) = k − 1 and
is admissible and thus by induction X ′ is homotopy equivalent to a wedge of
circles, spheres and projective planes. Therefore, X is homotopy equivalent to
X ′ ∨ S2 and hence X is homotopy equivalent to a wedge of circles, spheres and
projective planes.

Corollary 29. The fundamental group of any admissible 2-complex X is the
free product of several copies of Z and Z2. In particular, π1(X) is hyperbolic.

Corollary 29 is in some sense a weak version of Theorem 15 which will be
proven later in §10.

5 Non-triviality of the fundamental groups of
random simplicial complexes

Theorem 30. Let Y ∈ Ωrn be a random simplicial complex with respect to the
probability measure Pr,p where p = (p0, p1, . . . , pr). Assume that

np0p1 →∞ (29)

and for some ε > 0,

(np0)1+εp3
1p

2
2 → 0. (30)

Then for some choice of the base point y0 ∈ Y the fundamental group π1(Y, y0)
is nontrivial, a.a.s.

Remark 31. If the assumption (29) is replaced by the stronger assumption

np0p1 − log(np0)→∞, (31)

then Y ∈ Ωrn is connected, a.a.s. (see Corollary 7.2 from [13]). However under
the assumption (29) a random complex might be disconnected, see §7 from [13])
and thus, the fundamental group π1(Y, y0) might depend on the choice of the
base point y0 ∈ Y .

Remark 32. In the special case when

pi = n−αi

with αi ≥ 0 constant, where i = 0, 1, . . . Theorem 30 states that a random
complex Y has a nontrivial fundamental group assuming that
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Figure 2: The region on the plane of α1, α2 where the fundamental group π1(Y )
is nontrivial and hyperbolic in the sense of Gromov.

α0 + α1 < 1,

α0 + 3α1 + 2α2 > 1.

From paper [13] we know that the inequality α0 + α1 < 1 implies connectivity
of Y .

Proof of Theorem 30. Let C be the simplicial loop of length 4, i.e. the boundary
of the square. Using Example 2, we note that our assumption (29) implies that
a random complex Y ∈ Ωrn contains C as a subcomplex with probability tending
to one.

We want to show that Y contains C as “an essential subcomplex”, i.e. such
that the inclusion C ⊂ Y induces a non-trivial homomorphism π1(C, y0) →
π1(Y, y0). This would imply that π1(Y, y0) 6= 1 for some choice of the base
point. We shall use Theorem 4 to show the existence of essential embeddings
C → Y .

Let cε > 0 be the constant given by Theorem 5.
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The arguments of the proof which is presented below may seem formal, and
to illustrate them we give in this paragraph a brief vague intuitive description. If
an inclusion C ⊂ Y is not essential then C → Y can be extended to a simplicial
map D → Y where D is a simplicial disc. Using the inequality I(Y ) ≥ cε
(which we may assume to be satisfied due to Theorem 15), we may assume
that D has at most 4 · c−1

ε 2-simplexes. Of course the map D → Y does not
have to be injective; therefore the image of D → Y is a subcomplex S ⊂ Y
with at most 4 · c−1

ε 2-simplexes. There are finitely many isomorphism types
of disc triangulations with at most 4 · c−1

ε 2-simplexes and there are finitely
many isomorphism types of their simplicial images S; those S’s which are not
ε-admissible appear with probability tending to 0 (due to Lemma 14). Below
we formalise the properties of complexes S which may appear in this way and
use Theorem 4 to show that there exists an embedding C → Y which cannot
be extended to an embedding S → Y ; this embedding is clearly essential.

Now we continue with the formal argument. Consider the set Lε of isomor-
phism types of pairs (S,C) where S is a finite 2-complex such that:

(a) the inclusion C → S induces the trivial homomorphism of the funda-
mental groups;

(b) S is minimal in the sense that for any proper subcomplex C ⊂ S′ ( S
the inclusion C → S′ induces a non-trivial homomorphism π1(C)→ π1(S′);

(c) f2(S) ≤ 4 · c−1
ε ;

(d) S is ε-admissible.
Note that for S ∈ Lε one has b2(S) = 0. Indeed, if b2(S) 6= 0 then S would

contain a minimal cycle Z ⊂ S and this minimal cycle would be ε-admissible.
By Lemma 23 and Lemma 27 the complex Z contains a 2-simplex σ such that
the boundary ∂σ is null-homotopic in Z − Int(σ). Hence removing σ does not
change the fundamental group and we obtain contradiction with the minimality
property (b).

We obtain that χ(S) ≤ 1 for any S ∈ Lε.
It is easy to see that S cannot have edges of degree zero (i.e. S must be

pure) and any edge of S of degree 1 must lie in C (as follows from the minimality
property (b)). Therefore L(S) ≤ f1(C) = 4.

We observe that for any S ∈ Lε one has

f1(S,C) ≥ 3f0(S,C) + 1, (32)

f2(S,C) ≥ 2f0(S,C) + 2. (33)

Recall that the notation fi(S,C) stands for fi(S) − fi(C), the number of i-
simplexes lying in S − C. For any simplicial complex X of dimension ≤ 2 one
has

3χ(X) + L(X) = 3f0(X)− f1(X),

(34)

2χ(X) + L(X) = 2f0(X)− f2(X).

Applying these equalities to S and to C and using

χ(S) ≤ 1, L(S) ≤ 4, χ(C) = 0, L(C) = 8
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gives (32) and (33).
Now, using (32) and (33) for S ∈ Lε we obtain

nf0(S,C)
2∏
i=0

p
fi(S,C)
i ≤

[
np0p

3
1p

2
2

]f0(S,C) · p1p
2
2.

We claim that our assumptions (29) and (30) imply that np0p
3
1p

2
2 → 0 and

p1p
2
2 → 0. Indeed, (29) implies that np0 → ∞ and then (30) implies that

np0p
3
1p

2
2 → 0. It is easy to see that p1p

2
2 → 0 follows.

Next we observe that the set Lε is finite and hence we may apply Theorem
4. Since all the assumptions of this theorem are satisfied we obtain that with
probability tending to one, for Y ∈ Ωrn there exists an embedding C → Y which
cannot be extended to an embedding S → Y for any S ∈ Lε.

Consider the set Ω′n ⊂ Ωrn consisting of complexes Y ∈ Ωrn satisfying the
following three conditions:

(1) every subcomplex Y ′ ⊂ Y satisfies I(Y ′) ≥ cε;
(2) any 2-dimensional pure subcomplex S ⊂ Y with f2(S) ≤ 4 · c−1

ε is ε-
admissible.

(3) Y contains C as a subcomplex such that no complex S ∈ Lε can be
embedded into Y extending the embedding C → Y .

By Theorem 15, Lemma 14, Theorem 4 and Example 2, the probability that
Y belongs to Ω′n tends to one as n→∞. We show below that for every Y ∈ Ω′n
the fundamental group π1(Y, y0) is non-trivial for some choice of the base point.

Let us explain that for Y ∈ Ω′n the embedding C → Y is essential. For any
embedding C ⊂ Y which is not essential there exists a simplicial disc D with at
most 4 · c−1

ε 2-simplexes and ∂D = C which can be simplicially mapped into Y
extending the embedding C → Y (this follows from the inequality I(Y ) ≥ c−1

ε

given by Theorem 5). The image of this disc is a subcomplex S ⊂ Y containing
C which satisfies the properties (a), (c). Property (d) is satisfied because of
Lemma 14. If the minimality property (b) is not satisfied, then instead of S
we can consider an appropriate smaller subcomplex. Hence any non-essential
embedding C → Y can be extended to an embedding S → Y for some S ∈ Lε.
This completes the proof.

Remark 33. In the proof presented above we showed the existence of essential
loops of length 4. The same argument applies for loops of any fixed length ≥ 4;
it also applies to loops of length 3 under an additional assumption p2 → 0. It is
obvious that in the case when p2 = 1 every loop of length 3 is the boundary of
a 2-simplex in Y and hence our statement would be false for loops of length 3.

6 The existence of 2-torsion

Theorem 34. Let Y ∈ Ωrn be a random simplicial complex with respect to the
probability measure Pr,p where p = (p0, p1, . . . , pr). Assume that

p2 → 0, (35)
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np0p
5/2
1 p

5/3
2 →∞, (36)

and for some ε > 0,

(np0)1+εp3
1p

2
2 → 0. (37)

Then the fundamental group π1(Y ) has elements of order 2, a.a.s.

Remark 35. The assumptions of Theorem 34 imply that Y ∈ Ωrn connected,
a.a.s. To show this one may use Corollary 7.2 from [13], which requires that

ω →∞ and ωp1 − log(ω)→∞ where ω = np0. By (36) we have n2/5p
2/5
0 p1 =

ω′ →∞. Hence ωp1 − logω = ω3/5 · ω′ − logω →∞.

Remark 36. In the special case when

pi = n−αi

with αi ≥ 0 constant, where i = 0, 1, . . . Theorem 34 states that the fundamen-
tal group of a random complex Y has a nontrivial element of order 2 assuming
that

α0 +
5

2
α1 +

5

3
α2 < 1,

α0 + 3α1 + 2α2 > 1,

α2 > 0.

This result was proven in [10] in the special case when α1 = 0. See Figure 3.

Proof of Theorem 34. Consider the triangulation S0 of the real projective plane
P 2 shown in Figure 4; it has 6 vertices, 15 1-simplexes and 10 2-simplexes. It
is the triangulation of P 2 having the smallest number of vertices. By Theorem
4.4 from [12] S0 is balanced, which means that for any non-empty subcomplex
T ⊂ S0 one has

fi(T )

f0(T )
≤ fi(S0)

f0(S0)
.

Applying Theorem 1, B, se see that for any T ⊂ S0, T 6= ∅,[
nf0(T )

2∏
i=0

p
fi(T )
i

] 1
f0(T )

≥ n ·
2∏
i=0

p
fi(T )

f0(T )

i ≥ n ·
2∏
i=0

p
fi(S0)

f0(S0)

i = np0p
5/2
1 p

5/3
2 →∞.

Thus we see that under the assumption (36) the simplicial complex S0 embeds
into a random complex Y ∈ Ωrn, a.a.s.

We want to show that Y contains S0 as “an essential subcomplex”, i.e. such
that the inclusion S0 ⊂ Y induces a non-trivial homomorphism π1(S0) = Z2 →
π1(Y ); this would imply that π1(Y ) has 2-torsion. We shall use Theorem 4 to
show the existence of an essential embedding S0 → Y . Our strategy will be
similar to those used in the proof of Theorem 30.
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Figure 3: The region on the plane of α1, α2 where the fundamental group π1(Y )
has 2-tosion.

We construct below a finite list Lε of 2-complexes S containing S0 such that
every non-essential embedding of S0 into Y ∈ Ω′n extends to an embedding
S → Y , for some S ∈ Lε.

Consider the set Lε of isomorphism types of pairs (S, S0) where S is a finite
2-complex containing S0 satisfying the following conditions:

(a) the inclusion S0 → S induces the trivial homomorphism of the funda-
mental groups;

(b) S is minimal in the sense that for any proper subcomplex S0 ⊂ S′ ( S
the inclusion S0 → S′ induces an injective homomorphism π1(S0)→ π1(S′);

(c) f2(S) ≤ 3 · c−1
ε + 10;

(d) S is ε-admissible.
Note that any S ∈ Lε is pure. Indeed, if S′ ⊂ S denotes the pure part of

S then π1(S′) → π1(S) is injective and hence the inclusion S0 ⊂ S′ induces a
trivial homomorphism π1(S0) → π1(S′); therefore the minimality property (b)
implies S = S′.
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32

Figure 4: The triangulation of the real projective plane having 6 vertices, 15
edges and 10 faces. The vertices and edges on the outer circle must be identified
as indicated.

Consider the minimal cycles contained in a complex S ∈ Lε. If Z ⊂ S is
a minimal cycle of type A then Z cannot be contained in S0 and by Lemma
23 there is a 2-simplex σ ⊂ Z − S0 with ∂σ null-homotopic in Z − Int(σ).
Removing σ from S does not change the fundamental group and leads to a
proper subcomplex S0 ⊂ S′ ⊂ S contradicting the minimality property (b).
Hence S does not contain minimal cycles of type A.

Let Z ⊂ S be a minimal cycle of type B where S ∈ Lε. Let Z0 ⊂ Z be
the core of Z. Recall that the core Z0 is either homeomorphic to P 2 or to
the quotient Q2 of P 2 where two adjacent edges are identified. If Z0 does not
coincide with S0 then by Lemma 27 we may find a 2-simplex σ ⊂ Z0 − S0

with ∂σ null-homotopic in Z − Int(σ). Removing σ from S does not change the
fundamental group and leads to a subcomplex of S contradicting the minimality
property (b). Hence Z0 = S0.

This shows that S cannot have minimal cycles of type A and any minimal
cycle of type B contained in S must have S0 as its core.

Let Z ⊂ S be a minimal cycle of type B contained in S. Then S0 ⊂ Zand
by Lemma 27 Z is simply connected and therefore the inclusion S0 ⊂ Z induces
the trivial homomorphism on the fundamental groups. Hence by minimality (b)
we have Z = S. This shows that b2(S) ≤ 1. In particular,

χ(S, S0) = χ(S)− χ(S0) ≤ 1. (38)

Next we show that L(S, S0) = L(S)− L(S0) ≤ −3. Let S′ = S − S0 be the
closure of the complement of S0 in S. The intersection S0 ∩ S′ is a graph Γ.
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If b1(Γ) = 0 then the inclusion S0 → S is injective on the fundamental groups.
Hence b1(Γ) ≥ 1 and thus f1(Γ) ≥ 3 implying that

L(S, S0) = L(S)− L(S0) ≤ −3. (39)

Recall that for any simplicial complex X of dimension ≤ 2 one has

3χ(X) + L(X) = 3f0(X)− f1(X),

(40)

2χ(X) + L(X) = 2f0(X)− f2(X),

see (34). Using these equalities and the above relations we obtain

3f0(S, S0)− f1(S, S0) = 3χ(S, S0) + L(S, S0) ≤ 0

2f0(S, S0)− f2(S, S0) = 2χ(S, S0) + L(S, S0) ≤ −1

We conclude that for any S ∈ Lε one has

f1(S, S0) ≥ 3f0(S, S0),

f2(S, S0) ≥ 2f0(S, S0) + 1.

Now we see that

nf0(S,S0)
2∏
i=0

p
fi(S,S0)
i ≤

[
np0p

3
1p

2
2

]f0(S,S0) · p2 → 0. (41)

Applying Theorem 4 we obtain that with probability tending to one, Y ∈ Ωrn
admits an embedding of S0 which does not extend to an embedding S → Y for
every S ∈ Lε.

Let cε > 0 be the constant given by Theorem 5. Consider the set Ω′n ⊂ Ωrn
consisting of complexes Y ∈ Ωrn satisfying the following three conditions:

(1) Y satisfies I(Y ) ≥ cε;
(2) any pure 2-dimensional subcomplex S ⊂ Y with

f2(S) ≤ 3 · c−1
ε + 10

is ε-admissible.
(3) Y contains a copy of S0 as a subcomplex such that there exists no

complex S ∈ Lε for which the embedding S0 → Y can be extended to an
embedding S → Y .

By Theorem 5, Lemma 14, Theorem 1 and Theorem 4.4 from [12], the prob-
ability that Y belongs to Ω′n tends to one as n→∞.

Let us explain that for Y ∈ Ω′n the embedding S0 → Y is essential. For any
embedding S0 ⊂ Y which is not essential there exists a simplicial disc D with
at most 3 · c−1

ε 2-simplexes and ∂D = C where C ⊂ S0 is the non-null-homotpic
loop on S0 of length 3. The disc D is simplicially mapped into Y extending
the embedding C → Y (this follows from the inequality I(Y ) ≥ c−1

ε given by
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Theorem 5). The union of S0 and the image of this disc is a subcomplex S ⊂ Y
containing S0 which satisfies the properties (a), (c). Property (d) is satisfied
because of Lemma 14. If the minimality property (b) is not satisfied, then
instead of S we can take an appropriate smaller subcomplex. Hence any non-
essential embedding C → Y can be extended to an embedding S → Y for some
S ∈ Lε.

This completes the proof.

Note that the assumption p2 → 0 was essentially used in the proof since in
the product (41) the exponent f0(S, S0) may happen to be 0. We believe that
Theorem 34 will remain true under a weaker assumption p2 < c < 1 where c is
a constant.

Next we state another result assuming that p2 = 1, which is a generalisation
of Theorem 7.2 from [11].

Theorem 37. Let Y ∈ Ωrn be a random simplicial complex with respect to the
probability measure Pr,p where p = (p0, p1, . . . , pr). Assume that

p2 = 1, (42)

np0p
30/11
1 →∞, (43)

and for some ε > 0,

(np0)1+εp3
1 → 0. (44)

Then the fundamental group π1(Y ) has nontrivial elements of order two, a.a.s.

Remark 38. In the special case when

pi = n−αi

with αi ≥ 0 constant, where i = 0, 1, . . . Theorem 37 states that the fundamen-
tal group of a random complex Y has a nontrivial element of order 2 assuming
that

α0 +
30

11
α1 < 1,

α0 + 3α1 > 1,

α2 = 0.

This result was proven in [11] in the special case when α0 = 0.

Remark 39. The main distinctions between Theorems 34 and 37 are the as-
sumptions regarding the behaviour of p2. The 2-torsion in the fundamental
group is generated by essential embeddings of the real projective plane P 2. In
the case of Theorem 34 we are dealing with the embeddings of the minimal tri-
angulation S0 of P 2. However, in the case when p2 = 1 the triangular essential
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loop of S0 bounds a triangle in Y . This explains that in the case p2 = 1 one has
consider clean triangulations of P 2. Recall that a triangulation of a 2-complex
is called clean if for any clique of 3 vertices {v0, v1, v2} the complex contains
also the 2-simplex (v0, v1, v2).

We shall use the following fact: any clean triangulation of the projective
plane P 2 contains at least 11 vertices and 30 edges, see [18]. The minimal clean
triangulation is shown in Figure 5; the antipodal points of the circle must be
identified.

Figure 5: The minimal clean triangulation of P 2, according to [18].

Proof of Theorem 37. The proof is very similar to the proof of Theorem 34; we
shall indicate the main steps and emphasise the main distinctions.

Let S0 be the minimal clean triangulation of the real projective plane shown
on Figure 5. It is balanced (by Theorem 4.4 from [12]) and as in the proof of

Theorem 34 we find that for np0p
30/11
1 p

20/11
2 → ∞ the complex S0 simplicially

embeds into Y , a.a.s. Since we assume that p2 = 1, this conditions coincides
with (43).

As above, we want to show that Y contains S0 as “an essential subcomplex”.
Consider the set Lε of isomorphism types of pairs (S, S0) where S is a finite

2-complex containing S0 satisfying the following conditions:
(a) the inclusion S0 → S induces the trivial homomorphism of the funda-

mental groups;
(b) S is minimal in the sense that for any proper subcomplex S0 ⊂ S′ ( S

the inclusion S0 → S′ induces an injective homomorphism π1(S0)→ π1(S′);
(c) f2(S) ≤ 4 · c−1

ε + 20;
(d) S is ε-admissible.
As in the proof of Theorem 34 one obtains that each S ∈ Lε is pure and

χ(S, S0) = χ(S)− χ(S0) ≤ 1. (45)

Let us show that

L(S, S0) = L(S)− L(S0) ≤ −4. (46)
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(unlike the case of Theorem 34). Let S′ = S − S0 be the closure of the com-
plement of S0 in S. The intersection S0 ∩ S′ is a graph Γ. If b1(Γ) = 0 then
the inclusion S0 → S is injective on the fundamental groups. Hence b1(Γ) ≥ 1.
Thus Γ has a cycle and has at least 3 edges. However if f1(Γ) = 3 then the
cycle of Γ bounds a 2-simplex on S0 and hence the inclusion S0 → S is injective
on the fundamental group, in contradiction with our assumption (a). Thus,
f1(Γ) ≥ 4 implying (46).

Combining (45) and (46) with (40), we conclude that for any S ∈ Lε one has

f1(S, S0) ≥ 3f0(S, S0) + 1,

f2(S, S0) ≥ 2f0(S, S0) + 2.

and we see that

nf0(S,S0)
2∏
i=0

p
fi(S,S0)
i ≤

[
np0p

3
1p

2
2

]f0(S,S0) · p1p
2
2 (47)

=
[
np0p

3
1

]f0(S,S0) · p1 (48)

≤ p1 → 0. (49)

Note that p1 → 0 as follows from (44).
The rest of the proof is identical to the proof of Theorem 34.
This completes the proof.

7 Higher torsion

In this section we show that random simplicial complexes have no odd torsion
for a large range of probability parameters.

Theorem 40. Let m ≥ 3 be a fixed odd prime. Consider a random simplicial
complex Y ∈ Ωrn, r ≥ 2, with respect to the probability measure Pr,p where
p = (p0, p1, . . . , pr). Assume that np0 →∞ and for some ε > 0 one has

(np0)1+εp3
1p

2
2 → 0.

Then a random complex Y ∈ Ωrn with probability tending to 1 has the following
property: the fundamental group of any connected subcomplex Y ′ ⊂ Y has no
m-torsion.

Remark 41. In the special case when

pi = n−αi

with αi ≥ 0 being constant, where i = 0, 1, . . . Theorem 40 states that for
any odd prime m ≥ 3 the fundamental group of a random complex Y has no
nontrivial elements of order m assuming that

α0 < 1, and α0 + 3α1 + 2α2 > 1.
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This result was proven in [10] in the special case when α0 = α1 = 0 and in [11]
in the special case α0 = α2 = 0.

The proof of Theorem 40 given below uses an auxiliary material which we
now describe.

Let fm : S1 → S1 denote the canonical degree m map, fm(z) = zm where
z ∈ S1; we think of S1 as being the unit circle on the complex plane. Any
simplicial complex Σ homeomorphic

M(Zm, 1) = S1 ∪fm e2

is called a Moore surface.
Everywhere in this section we shall assume that m ≥ 3 is a fixed odd prime.
Then any Moore surface Σ has a well defined circle C ⊂ Σ (called the singular

circle) which is the union of all edges of degreem; all other edges of Σ have degree
2. Clearly, the homotopy class of the singular circle generates the fundamental
group π1(Σ) ' Zm.

Define an integer Nm(Y ) ≥ 0 associated to any connected simplicial complex
Y ∈ Ωrn. If π1(Y ) has no m-torsion we set Nm(Y ) = 0. If π1(Y ) has elements
of order m we consider homotopically nontrivial simplicial maps γ : Cr → Y ,
where Cr is the simplicial circle with r edges, such that

(a) γm is null-homotopic (as a free loop in Y );

(b) r is minimal: for r′ < r any simplicial loop γ : Cr′ → Y satisfying (a) is
homotopically trivial.

Any such simplicial map γ : Cr → Y can be extended to a simplicial map
f : Σ → Y of a Moore surface Σ such that the singular circle C of Σ is iso-
morphic to Cr and f |C = γ. We shall say that a simplicial map f : Σ → Y
is m-minimal if it satisfies (a), (b) and the number of 2-simplexes in Σ is the
smallest possible. Clearly, any m-minimal map Σ → Y induces an injective
homomorphism π1(Σ) ' Zm → π1(Y ). We denote by

Nm(Y ) ∈ Z

the number of 2-simplexes in a triangulation of a Moore surface Σ admitting an
m-minimal map f : Σ→ Y .

We recall Lemma 4.7 from [10]:

Lemma 42. Let Y be a simplicial complex satisfying I(Y ) ≥ c > 0 and let
m ≥ 3 be an odd prime. Then one has

Nm(Y ) ≤
(

6m

c

)2

.

Using this lemma we may obtain a global upper bound on the numbers
Nm(Y ) for random complexes:
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Theorem 43. Assume that the probability multi-parameter p = (p0, p1, . . . , pr),
where r ≥ 2, satisfies

np0 →∞, (np0)1+εp3
1p

2
2 → 0

with ε > 0 is fixed. Let m ≥ 3 be an odd prime. Then there exists a constant
Cε > 0 such that a random complex Y ∈ Ωrn with probability tending to 1 has
the following property: for any subcomplex Y ′ ⊂ Y one has

Nm(Y ′) ≤ Cε. (50)

Proof. We know from Theorem 5 that, with probability tending to 1, a random
complex Y has the following property: for any subcomplex Y ′ ⊂ Y one has
I(Y ′) ≥ cε > 0 where cε > 0 is the constant given by Theorem 5. Then, setting

Cε =
(

6m
cε

)2

, the inequality (50) follows from Lemma 42.

Now we are ready to present the proof of Theorem 40:

Proof of Theorem 40. Let cε > 0 be the number given by Theorem 5. Consider
the finite set of all isomorphism types of Moore surfaces Sm = {Σ} having at

most
(

6m
cε

)2

two-dimensional simplexes. Let Xm denote the set of isomorphism

types of images of all surjective simplicial maps Σ → X inducing injective
homomorphisms π1(Σ) = Zm → π1(X), where Σ ∈ Sm. The set Xm is also
finite.

From Theorem 43 we obtain that, with probability tending to one, for any
subcomplex Y ′ ⊂ Y , either π1(Y ′) has no m-torsion, or there exists an m-

minimal map f : Σ → Y ′ where Σ is a Moore surface having at most
(

6m
cε

)2

2-simplexes of dimension 2; in the second case the image X = f(Σ) is a sub-
complex of Y ′ and f : Σ → X induces a monomorphism π1(Σ) → π1(X), i.e.
X ∈ Xm. Denote by X ′m ⊂ Xm the set of complexes X ∈ Xm such that their
2-dimensional pure parts are ε-admissible. We may apply Lemma 14 (using the

upper bound f2(X) ≤ C =
(

6m
cε

)2

) to conclude that the pure part of the image

X = f(Σ) of any m-minimal map f : Σ → Y belongs to X ′m. However, by
Theorem 28 the fundamental group of any X ∈ X ′m is a free product of several
copies of Z and Z2 and hence it has no m-torsion. This leads to a contradiction
which shows that the fundamental group of any subcomplex Y ′ ⊂ Y does not
have m-torsion, a.a.s.

8 Asphericity and the Whitehead Conjecture

Recall that a connected simplicial complex Y is said to be aspherical if πk(Y ) = 0
for all k ≥ 2. A 2-dimensional connected simplicial complex Y is aspherical if
and only if π2(Y ) = 0. The well-known Whitehead Conjecture states that any
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subcomplex of an aspherical 2-complex is also aspherical, see [1, 5, 6, 26]. At
the time of writing the Whitehead Conjecture is still open.

In this section we show that for random simplicial 2-complexes, with prob-
ability tending to one, the asphericity of a subcomplex of a random complex
is equivalent to the absence of “small bubbles”. It follows that in the random
setting any subcomplex of an aspherical 2-complex is also aspherical, supporting
a probabilistic analogue of the Whitehead Conjecture.

Theorem 44. Consider a random simplicial complex Y ∈ Ωrn, r ≥ 2, with
respect to the probability measure Pr,p where p = (p0, p1, . . . , pr). Assume that
np0 →∞ and for some ε > 0 one has

(np0)1+εp3
1p

2
2 → 0.

Let cε be the constant given by Theorem 5. Then, a random complex Y ∈ Ωrn has
the following property with probability tending to 1 as n→∞: any subcomplex
Y ′ ⊂ Y (2) is aspherical if and only if every pure subcomplex S ⊂ Y ′ satisfying

f2(S) ≤ C = 162c−2
ε

is collapsible to a graph. In particular, under the above assumptions, with prob-
ability tending to one, any aspherical subcomplex of Y (2) satisfies the Whitehead
Conjecture.

The proof given below in this section will use the following auxiliary material.
Let Y be a simplicial complex with π2(Y ) 6= 0. As in [10] and [11], we

define a numerical invariant M(Y ) ∈ Z, M(Y ) ≥ 4, as the minimal number of
faces in a 2-complex Σ homeomorphic to the sphere S2 such that there exists a
homotopically nontrivial simplicial map Σ→ Y .

We define M(Y ) = 0, if π2(Y ) = 0.

Lemma 45 (See Corollary 5.4 in [10]). Let Y be a 2-complex with I(Y ) ≥ c > 0.
Then

M(Y ) ≤
(

16

c

)2

.

Combining this lemma with Theorem 5 we obtain:

Lemma 46. Assume that

np0 →∞ and (np0)1+εp3
1p

2
2 → 0

for some ε > 0. Then there exists a constant Cε > 0 such that a random
complex Y ∈ Ωrn has the following property with probability tending to one: for
any subcomplex Y ′ ⊂ Y (2) one has

M(Y ′) ≤ Cε.

Hence, if we want to find homotopically nontrivial simplicial maps from S2

to a random complex it is sufficient to consider triangulations of S2 having at
most Cε 2-simplexes.

The following lemma will be used in the proof of Theorem 44.
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Lemma 47. Let S be a connected admissible 2-complex (see Definition 9). Then
S is aspherical if and only if S is simplicially collapsible to a graph.

Proof. Let S be a connected admissible 2-complex satisfying π2(S) = 0. Per-
forming all possible simplicial collapses of 2-simplexes we may find a closed
pure subcomplex S′ ⊂ S without free edges. We need to show that S′ is
1-dimensional. We shall assume below that dimS′ = 2 and arrive to a con-
tradiction.

If b2(S′) ≥ 1 then S′ contains an admissible minimal cycle Z ⊂ S′ as a
subcomplex. Using Lemmas 23 and 27 (depending on whether Z is of type A
or B) we find a 2-simplex σ ⊂ Z such that ∂σ is null-homotopic in Z − Int(σ).
Then S′ is homotopy equivalent to the wedge (S′ − Int(σ)) ∨ S2 contradicting
the assumption π2(S′) = 0.

Hence we must assume that b2(S′) = 0. Using Corollary 18 we see that
every strongly connected component of S′ is homeomorphic to either P 2 or to
the quotient Q2 of P 2 with two adjacent edges identified. In both cases we
may apply a theorem of Cockcroft [6] (see also Adams [1]) which claims that
π2(S′) 6= 0, in contradiction with our hypothesis.

Lemma 48. Let S be a connected admissible 2-complex. If S is not aspherical
then S contains a subcomplex which is homotopy equivalent to one of S2, S2∨S1

or P 2.

Proof. Let S be a connected admissible 2-complex; without loss of generality
we may assume that S is closed and pure. If b2(S) 6= 0 then S contains an
admissible minimal cycle Z ⊂ S and Z is homotopy equivalent to either S2,
S2 ∨ S1 (in the case of type A, see Lemma 23), or to P 2 (in the case of type B,
see Lemma 27). In the case b2(S) = 0 we invoke Corollary 18.

Proof of Theorem 44. Consider the set S of isomorphism types of all pure 2-
complexes S satisfying f2(S) ≤ C where C is defined in the statement of The-
orem 44. We may represent S as the disjoint union S = S ′ ∪ S ′′ where the
complexes S ∈ S ′ are ε-admissible and the complexes S ∈ S ′′ are not.

Let Ω′n ⊂ Ωrn be the set of complexes Y ∈ Ωrn such that (a) no S ∈ S ′′ can
be embedded into Y and (b) each Y ∈ Ω′n satisfies the conclusion of Lemma 46.
By Lemmas 14 and 46 we know that Pr,p(Ω′n)→ 1 as n→∞.

Suppose that Y ∈ Ω′n and let Y ′ ⊂ Y (2) be an aspherical subcomplex.
For any pure subcomplex S ⊂ Y ′ with f2(S) ≤ C we know that S ∈ S ′ and
by Lemma 48 either S is aspherical or it contains a subcomplex homotopy
equivalent to either S2 or P 2. Both these possibilities would imply π2(Y ′) 6= 0
(the case of S2 is obvious and the case of P 2 follows from the work of Cockcroft
[6], see also [1]. Thus we see that in Y ′ ⊂ Y is aspherical then any subcomplex
S ⊂ Y ′ with f2(S) < C is also aspherical; the latter due to Lemma 47 is
equivalent for S to be collapsible to a graph.

We now prove the inverse implication by assuming that Y ′ ⊂ Y is non-
aspherical and Y ∈ Ω′n. By Lemma 46 there exists a 2-complex Σ homeomorphic
to a 2-sphere with f2(Σ) ≤ C = 162c−2

ε and a homotopically nontrivial simplicial
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map φ : Σ → Y ′. We denote S = φ(Σ) and thus we have f2(S) ≤ f2(Σ) ≤ C
and π2(S) 6= 0. Hence we conclude that if Y ′ ⊂ Y is not aspherical then there
exists a subcomplex S ⊂ Y ′, S ∈ S ′, and f2(S) ≤ C and π2(S) 6= 0.

This completes the proof.

9 Geometric and cohomological dimension of the
fundamental group of a random simplicial com-
plex

Theorem 49. Consider a random simplicial complex Y ∈ Ωrn with respect to
the multi-parameter probability measure Pr,p, where p = (p0, p1, . . . , pr), r ≥ 2.
Assume that np0 →∞ and

np0p
5/2
1 p

5/3
2 → 0 (51)

Then for any choice of the base point y0 ∈ Y the fundamental group π1(Y, y0)
has geometric dimension at most 2, a.a.s. In particular, the group π1(Y, y0) has
cohomological dimension at most 2 and is torsion free, a.a.s.

Proof. We will show that with probability tending to one a random complex
Y ∈ Ωrn contains a 2-dimension subcomplex Y ′ ⊂ Y such that

(1) Y (1) = Y ′(1);

(2) π1(Y ′, y0) ' π1(Y, y0) for any vertex y0 ∈ Y ;

(3) any connected component of Y ′ is aspherical.

This would clearly imply the statement of Theorem 49.
Note that our assumption (51) implies the condition (11) for any ε < 1/5.

Hence we may apply Theorem 5 and Theorem 44. To be specific we may set
ε = 1/10 and denote by cε > 0 the constant given by Theorem 5.

Denote by Ω′n ⊂ Ωrn the set of complexes Y ∈ Ωrn satisfying the following
conditions:

(a) For Y ∈ Ω′n any 2-dimensional pure subcomplex S ⊂ Y with f2(S) ≤ C
is admissible. Here C denotes 162c−2

ε .

(b) For Y ∈ Ω′n a subcomplex Y ′ ⊂ Y (2) is aspherical if and only if every
subcomplex S ⊂ Y ′ satisfying f2(S) < C is collapsible to a graph.

(c) Any complex Y ∈ Ω′n has no closed admissible 2-dimensional pure sub-
complexes S ⊂ Y with f2(S) ≤ C satisfying b2(S) = 0.

We know that Pr,p(Ω′n)→ 1 due to Lemma 14 and Theorem 44; to explain that
the property (c) can be achieved we observe that by Corollary 18 any such S is
either a triangulation of P 2 or the quotient Q2 of P 2 obtained by identifying two
adjacent edges in certain triangulation. Assuming that S is a triangulation of
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P 2 we have f0(S)−f1(S)+f2(S) = 1, 3f2(S) = 2f1(S) and f0(S) ≥ 6 implying
that f1(S) ≥ 15 and f2(S) ≥ 10 and also

f0(S)

f1(S)
=

1

3
+

1

f1(S)
≤ 2/5,

f0(S)

f2(S)
=

1

2
+

1

f2(S)
≤ 3/5.

Therefore,

np0p
f1(S)

f0(S)

1 p
f2(S)

f0(S)

2 ≤ np0p
5/2
1 p

5/3
2 → 0

because of our assumption (51). In the case when S is obtained from a trian-
gulation T of P 2 by identifying two adjacent edges we have f0(S) = f0(T )− 1,
f1(S) = f1(T )− 1 and f2(S) = f2(T ). Then

fi(T )

f0(T )
≥ fi(S)

f0(S)
, i = 1, 2,

and we obtain

np0p
f1(T )

f0(T )

1 p
f2(T )

f0(T )

2 ≤ np0p
f1(S)

f0(S)

1 p
f2(S)

f0(S)

2 → 0

as shown above. Hence our statement follows by invoking Theorem 1.
Given a complex Y ∈ Ω′n consider an admissible minimal cycle Z ⊂ Y with

f2(Z) ≤ C. Using Lemma 23 and Lemma 27 we may find a 2-simplex σ ⊂ Z ⊂ Y
such that removing it we do not change the fundamental group. Therefore we
may inductively obtain a sequence of subcomplexes

Y0 = Y (2) ⊃ Y1 ⊃ Y2 · · · ⊃ YN

with each complex Yi+1 obtained from the previous Yi by removing the interior
of a 2-simplex σ ⊂ Yi such that ∂σ is null-homotopic in Yi − Int(σ). Let
Y ′ = YN ⊂ Y be the final complex in this sequence.

We claim that the obtained complex Y ′ is aspherical. Let S ⊂ Y ′ be a pure
subcomplex with f2(S) ≤ C. Then b2(S) = 0 since otherwise Y ′ would contain
an admissible minimal cycle Z with f2(Z) ≤ C contradicting our construction
(here we use (a)). By (c) the complex Y ′ contains no closed admissible 2-
dimensional pure subcomplexes S ⊂ Y with f2(S) ≤ C satisfying b2(S) = 0.
Hence any subcomplex S ⊂ Y ′ with f2(S) ≤ C is collapsible to a graph. By
property (b) the complex Y ′ is aspherical.

This completes the proof.

Next we state an analogue of Theorem 49 in the special case when p2 = 1.

Theorem 50. Consider a random simplicial complex Y ∈ Ωrn with respect to
the multi-parameter probability measure Pr,p, where p = (p0, p1, . . . , pr). Assume
that np0 →∞, r ≥ 2 and p2 = 1 and besides,

np0p
30/11
1 → 0. (52)
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Then for any choice of the base point y0 ∈ Y the fundamental group π1(Y, y0)
has geometric dimension at most 2, a.a.s. In particular, the group π1(Y, y0) has
cohomological dimension at most 2 and is torsion free, a.a.s.

Proof. The proof is similar to the proof of Theorem 49. The only difference
is that in the case when p2 = 1 we have a different requirement (52) on the
absence of embeddings of clean triangulations of the real projective plane P 2

into a random 2-complex.

Figure 6: The region on the plane of α1, α2 where the geometric dimension of
the fundamental group π1(Y ) equals 2.

Theorems 49 and 50 complement Theorems 34 and 37 about the existence
of 2-torsion.

Remark 51. In the special case when pi = n−αi with αi ≥ 0 constants, where
i = 0, 1, . . . Theorem 49 states that the fundamental group of a random complex
Y has geometric dimension at most 2 assuming that α0 < 1 and either

α0 +
5

2
α1 +

5

3
α2 > 1,
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or

α0 +
30

11
α1 > 1, and α2 = 0.

See Figure 6; the corresponding set is represented by the shaded area together
with an open interval on the α1 axis.

These results were proven in [10] in the special case when α0 = α1 = 0 and
in [11] in the case when α0 = α2 = 0.

10 Appendix: Proof of Theorem 15

Definition 52. (See [10]) We say that a finite 2-complex X is tight if for any
proper subcomplex X ′ ⊂ X, X ′ 6= X, one has I(X ′) > I(X).

Clearly, one has

I(X) ≥ min{I(Y ); Y ⊂ X is a tight subcomplex}. (53)

By (53) it is obvious that it is enough to prove Theorem 15 under the additional
assumption that X is tight.

Remark 53. Suppose thatX is pure and tight and suppose that γ : S1 → X is a
simplicial loop with the ratio |γ|·AX(γ)−1 less than the minimum of the numbers
I(X ′) where X ′ ⊂ X is a proper subcomplex. Let b : D2 → X be a minimal
spanning disc for γ; then b(D2) = X, i.e. b is surjective. Indeed, if the image of b
does not contain a 2-simplex σ then removing it we obtain a subcomplex X ′ ⊂ X
with AX′(γ) = AX(γ) and hence I(X ′) ≤ I(X) ≤ |γ| · AX(γ)−1 contradicting
the assumption on γ.

Lemma 54. If X is a admissible tight complex then b2(X) = 0.

Proof. Assume that b2(X) 6= 0. Then there exists a admissible minimal cycle
Z ⊂ X. Hence, by Lemmas 23 and 27 we may find a 2-simplex σ ⊂ Z ⊂ X
such that ∂σ is null-homotopic in Z −σ ⊂ X −σ = X ′. Note that X ′(1) = X(1)

and a simplicial curve γ : S1 → X ′ is null-homotopic in X ′ if and only if it is
null-homotopic in X. Besides, AX(γ) ≤ AX′(γ) and hence

|γ|
AX(γ)

≥ |γ|
AX′(γ)

,

which implies that I(X) ≥ I(X ′). We obtained a contradiction since X is
tight.

Lemma 55. Given ε > 0 there exists a constant C ′ε > 0 such that for every
finite pure tight connected ε-admissible complex X satisfying L(X) ≤ 0 one has
I(X) ≥ C ′ε.
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This lemma is similar to Theorem 15 but it has an additional assumption
that L(X) ≤ 0. The assumption L(X) ≤ 0 can be replaced, without altering
the proof, by any assumption of the type L(X) ≤ 1000, i.e. by any specific
upper bound.

Proof of Lemma 55. We show that the number of isomorphism types of com-
plexes X satisfying the conditions of the lemma is finite; hence the proof follows
by setting C ′ε = min I(X) and using Theorem 28 which gives I(X) > 0 (since
π1(X) is hyperbolic) and hence C ′ε > 0.

By Lemma 16 we obtain

µ1(X ′) ≥ 1 + ε

3
or µ2(X′) ≥ 1 + ε

2
.

The inequality

µ1(X) =
1

3
+

3χ(X) + L(X)

3f1(X)
≥ 1 + ε

3

is equivalent to
f1(X) ≤ ε−1 · (3χ(X) + L(X)),

where f1(X) denotes the number of 1-simplexes in X. By Lemma 54 we have
χ(X) = 1− b1(X) ≤ 1 and using the assumption L(X) ≤ 0 we obtain f1(X) ≤
3ε−1. This implies the finiteness of the set of possible isomorphism types of X
and the result follows.

The case µ2(X) ≥ (1 + ε)/2 is analogous.

We will use a relative isoperimetric constant I(X,X ′) ∈ R for a pair con-
sisting of a finite 2-complex X and its subcomplex X ′ ⊂ X; it is defined as
the infimum of all ratios |γ| · AX(γ)

−1
where γ : S1 → X ′ runs over simpli-

cial loops in X ′ which are null-homotopic in X. Clearly, I(X,X ′) ≥ I(X) and
I(X,X ′) = I(X) if X ′ = X. Below is a useful strengthening of Lemma 55.

Lemma 56. Given ε > 0, let C ′ε > 0 be the constant given by Lemma 55. Then
for any finite pure, tight, ε-admissible and connected 2-complex X and for a
connected subcomplex X ′ ⊂ X satisfying L(X ′) ≤ 0 one has I(X,X ′) ≥ C ′ε.

Proof. We show below that under the assumptions on X, X ′ one has

I(X,X ′) ≥ min
Y

I(Y ) (54)

where Y runs over all subcomplexes X ′ ⊂ Y ⊂ X satisfying L(Y ) ≤ 0. Clearly,
any such Y is ε-admissible (as a subcomplex of ε-admissible complex X). By
Lemma 54 we have that b2(X) = 0 which implies that b2(Y ) = 0. Besides,
without loss of generality we may assume that Y is connected. The arguments
of the proof of Lemma 55 now apply (i.e. Y may have finitely many isomor-
phism types, each having a hyperbolic fundamental group) and it follows that
minY I(Y ) ≥ C ′ε where C ′ε > 0 is a constant that only depends on ε. Hence if
(54) holds we have I(X,X ′) ≥ minY I(Y ) ≥ C ′ε and the result follows.
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Suppose that inequality (54) is false, i.e. I(X,X ′) < minY I(Y ), and con-
sider a simplicial loop γ : S1 → X ′ satisfying γ ∼ 1 in X and |γ| · AX(γ)−1 <
minY I(Y ). Let ψ : D2 → X be a simplicial spanning disc of minimal area.
It follows from the arguments of Ronan [25], that ψ is non-degenerate in the
following sense: for any 2-simplex σ of D2 the image ψ(σ) is a 2-simplex and for
two distinct 2-simplexes σ1, σ2 of D2 with ψ(σ1) = ψ(σ2) the intersection σ1∩σ2

is either ∅ or a vertex of D2. In other words, we exclude foldings, i.e. situations
such that ψ(σ1) = ψ(σ2) and σ1 ∩ σ2 is an edge. Consider Z = X ′ ∪ ψ(D2).
Note that L(Z) ≤ 0. Indeed, since

L(Z) =
∑
e

(2− degZ(e)),

where e runs over the edges of Z, we see that for e ⊂ X ′, degX′(e) ≤ degZ(e)
and for a newly created edge e ⊂ ψ(D2), clearly degZ(e) ≥ 2. Hence, L(Z) ≤
L(X ′) ≤ 0. On the other hand, AX(γ) = AZ(γ) and hence I(Z) ≤ |γ| ·
AX(γ)−1 < minY I(Y ), a contradiction.

The main idea of the proof of Theorem 15 in the general case is to find a
planar complex (a “singular surface”) Σ, with one boundary component ∂+Σ
being the initial loop and such that “the rest of the boundary” ∂−Σ is a “product
of negative loops” (i.e. loops satisfying Lemma 56). The essential part of the
proof is in estimating the area (the number of 2-simplexes) of such Σ.

Proof of Theorem 15. Consider a connected tight pure ε-admissible 2-complex
X and a simplicial prime loop γ : S1 → X such that the ratio |γ| · AX(γ)−1

is less than the minimum of the numbers I(X ′) for all proper subcomplexes
X ′ ⊂ X. Consider a minimal spanning disc b : D2 → X for γ = b|∂D2 ; here D2

is a triangulated disc and b is a simplicial map. As we showed in Remark 53, the
map b is surjective. As explained in the proof of Lemma 56, due to arguments
of Ronan [25], we may assume that b has no foldings.

For any integer i ≥ 1 we denote by Xi ⊂ X the pure subcomplex generated
by all 2-simplexes σ of X such that the preimage b−1(σ) ⊂ D2 contains ≥ i two-
dimensional simplexes. One has X = X1 ⊃ X2 ⊃ X3 ⊃ . . . . Each Xi may have
several connected components and we will denote by Λ the set labelling all the
connected components of the disjoint union ti≥1Xi. For λ ∈ Λ the symbol Xλ

will denote the corresponding connected component of ti≥1Xi and the symbol
i = i(λ) ∈ {1, 2, . . . } will denote the index i ≥ 1 such that Xλ is a connected
component of Xi, viewed as a subset of ti≥1Xi. We endow Λ with the following
partial order: λ1 ≤ λ2 iff Xλ1 ⊃ Xλ2 (where Xλ1 and Xλ2 are viewed as subsets
of X) and i(λ1) ≤ i(λ2).

Next we define the sets

Λ− = {λ ∈ Λ;L(Xλ) ≤ 0}

and
Λ+ = {λ ∈ Λ; for any µ ∈ Λ with µ ≤ λ, L(Xµ) > 0}.
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Finally we consider the following subcomplex of the disk D2:

Σ′ = D2 −
⋃
λ∈Λ−

Int(b−1(Xλ)) (55)

and we shall denote by Σ the connected component of Σ′ containing the bound-
ary circle ∂D2.

Recall that for a 2-complex X the symbol f2(X) denotes the number of
2-simplexes in X. We have

f2(D2) =
∑
λ∈Λ

f2(Xλ), (56)

and

f2(Σ) ≤ f2(Σ′) =
∑
λ∈Λ+

f2(Xλ). (57)

Formula (56) follows from the observation that any 2-simplex of X = b(D2)
contributes to the RHS of (56) as many units as its multiplicity (the number of
its preimages under b). Formula (57) follows from (56) and from the fact that
for a 2-simplex σ of Σ′ the image b(σ) lies always in the complexes Xλ with
L(Xλ) > 0.

Lemma 57. One has the following inequality∑
λ∈Λ+

L(Xλ) ≤ |∂D2|. (58)

See [10], Lemma 6.8 for the proof.
Now we continue with the proof of Theorem 15. Consider a tight ε-admissible

pure 2-complex X and a simplicial loop γ : S1 → X as above. We will use the
notation introduced earlier. The complex Σ is a connected subcomplex of the
disk D2; it contains the boundary circle ∂D2 which we will denote also by ∂+Σ.
The closure of the complement of Σ,

N = D2 − Σ ⊂ D2

is a pure 2-complex. Let N = ∪j∈JNj be the strongly connected components
of N . Each Nj is PL-homeomorphic to a disc and we define

∂−Σ = ∪j∈J∂Nj ,

the union of the circles ∂Nj which are the boundaries of the strongly connected
components of N . It may happen that ∂+Σ and ∂−Σ have nonempty intersec-
tion. Also, the circles forming ∂−Σ may not be disjoint.

We claim that for any j ∈ J there exists λ ∈ Λ− such that b(∂Nj) ⊂ Xλ.
Indeed, let λ1, . . . , λr ∈ Λ− be the minimal elements of Λ− with respect to the
partial order introduced earlier. The complexes Xλ1

, . . . , Xλr are connected and
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pairwise disjoint and for any λ ∈ Λ− the complex Xλ is a subcomplex of one
of the sets Xλi , where i = 1, . . . , i. From our definition (55) it follows that the
image of the circle b(∂Nj) is contained in the union ∪ri=1Xλi but since b(∂Nj)
is connected it must lie in one of the sets Xλi .

We may apply Lemma 56 to each of the circles ∂Nj . We obtain that each
of the circles ∂Nj admits a spanning discs of area ≤ Kε|∂Nj |, where Kε = C ′−1

ε

is the inverse of the constant given by Lemma 56. Using the minimality of the
disc D2 we obtain that the circles ∂N bound in D2 several discs with the total
area A ≤ Kε · |∂−Σ|.

For λ ∈ Λ+ one has L(Xλ) ≥ 1 and χ(Xλ) ≤ 1 (since b2(Xλ) = 0); in
particular, f1(Xλ) ≥ f2(Xλ). By Lemma 16 either

3χ(Xλ) + L(Xλ) ≥ εf1(Xλ), or 2χ(Xλ) + L(Xλ) ≥ εf2(Xλ).

Hence we have either

4L(Xλ) ≥ 3χ(Xλ) + L(Xλ) ≥ εf1(Xλ) ≥ εf2(Xλ)

or
3L(Xλ) ≥ 2χ(Xλ) + L(Xλ) ≥ εf2(Xλ).

Since L(Xλ) ≥ 1 both cases imply

f2(Xλ) ≤ 3

ε
L(Xλ).

Summing up we get

f2(Σ) ≤
∑
λ∈Λ+

f2(Xλ) ≤ 3

ε

∑
λ∈Λ+

L(Xλ) ≤ 3

ε
|∂D2|.

The rightmost inequality is given by Lemma 57.
Next we observe, that

|∂−Σ| ≤ 2f2(Σ) + |∂+Σ|. (59)

Therefore, we obtain

f2(D2) ≤ f2(Σ) +A ≤ 3

ε
|γ|+Kε · 2 · f2(Σ) +Kε|γ|

≤
(

3

ε
(1 + 2Kε) +Kε

)
· |γ|,

implying

I(X) ≥ ε

3 + 6Kε + εKε
. (60)

This completes the proof of Theorem 15.
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