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ABSTRACT 

To provide time-critical early warnings in a Tsunami Warning System (TWS), the time 

delay for both the sensor data exchange process (upstream) and the warning message 

dissemination processes (downstream) should be minimal, maximising the time 

available for accurately analysing the situation and giving more time for people in the 

affected region to react to the warnings. Publish/Subscribe Message-oriented 

Middleware (PSMOM) in combination with a novel use of a federated broker (broker 

overlay) can be deployed in TWS to support both time-critical and resilient 

communication. PSMOM can better manage message bursts caused by a sudden 

increase in sensor data exchange frequency or by additional sensors coming online. 

PSMOM can better manage the decrease in available system resources (bottlenecks) 

caused by a disruption in the underlying network infrastructure (limited resource case). 

Otherwise, these burst and bottlenecks can cause some brokers to become overloaded, 

which may in turn degrade the overall system performance and delay decision-making. 

Existing PSMOM load management solutions have two key limitations when applied 

to TWS. First, existing work does not consider the message delay requirements for the 

redistribution and offloading phases of load management. Here, some data is only 

useful or valid for a short time-span (from tens of seconds to tens of minutes); hence, it 

needs to be exchanged within this maximum allowed end-to-end transmission delay. 

Time critical subscribers need to be de-prioritised from being offloaded, as the 

offloading processes take some time to complete, introducing unexpected delays to 

message exchange. Second, existing solutions assume that there are surplus system 

resources for offloading, i.e., less loaded brokers can accept loads from overloaded 

brokers. However, in a TWS, the underlying network infrastructure may be disrupted 

which in turn reduces the system capacity. It always takes time to recover from the 

limited resources situation and during that time, brokers may not have enough system 

resources to accept loads from overloaded brokers, which may result in total failure of 

the overloaded brokers. 

A novel load management framework called ePEER is proposed that extends an 

existing messaging system, Publish/Subscribe Efficient Event Routing (PEER), with 

the following main contributions. First, for the surplus resource case, the message delay 
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requirements for different subscription services are considered in the load analysis 

process when offloading the load to different brokers. Second, for the limited resource 

case, a feedback driven congestion control mechanism can be used when the underlay 

network infrastructure is damaged, reducing the available bandwidth of PSMOM. This 

mechanism limits the publication rate of messages with less value, to better maintain 

the quality of experience (QoE) of subscribers for the more important messages 

ePEER is validated with emulation-based experiments. The results show that ePEER 

outperforms the state of the art load management solution used by PEER: through 

preventing unnecessary delays introduced to time critical services, and through 

ensuring important messages can be more efficiently exchanged to improve the QoE of 

subscribers. 
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1 INTRODUCTION 

1.1 Application Driven Motivation 

Natural environment disasters, caused by natural events such as tsunamis, or manmade 

crises such as earth substrate drilling, cause widespread environment damage that may 

take the affected regions years to recover after the onset of the disaster. An Early 

Warning System or EWS is a core system used for environment disaster risk and effect 

reduction. It helps prevent loss of lives and reduces the economic and material impacts 

of disasters [1]. To be effective, a EWS needs to actively involve the communities at 

risk, facilitate public education and awareness of risks, effectively disseminate 

messages and warnings and ensure there is constant state of preparedness [1]. A 

functional EWS can be implemented as a chain of information communication systems. 

It comprises sensors, event detection, decision support, and message broker subsystems 

in a given order. It can be used for forecasting and signalling disturbances that adversely 

affecting the stability of that part of the physical world being monitored. It helps to give 

sufficient time for the response system to prepare resources and response actions to 

minimise the impact on the stability of the physical world [2]. A Tsunami Warning 

System (TWS) is chosen as the motivating application of a EWS. 

In a TWS, a tsunami is detected through the analysis of seismic and oceanographic data 

gathered by physical sensors, e.g., seismometers, tide gauges, and coastal buoys. The 

sensor data is gathered and transmitted (upstream) to remote off-site tsunami operation 

centres, which run the routine operation event and special event detection processes and 

generate addition data flows (downstream) to enable decision handling processes and 

the command-control workflows. Tsunami operation centres are often located in 

different regions (or countries). They work collaboratively to detect tsunami events, 

working with government offices to disseminate tsunami warnings. Take the North-

Eastern Atlantic and Mediterranean Tsunami Information Centre (NEAMTIC) for 

example, the operation centres, named Candidate Tsunami Watch Providers (CTWPs) 

or Regional Tsunami Warning Centres (RTWCs), are geo distributed in different 

countries such as Portugal, Italy, Greece, France, and Turkey. These centres collect, 

record, and process earthquake data for the initial warning and further collect, record 

and process the sea-level data for confirming or cancelling the initial warning. The 
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warnings are sent to the Tsunami Warning Focal Points (TWFPs) or National Tsunami 

Warning Centres (NTWCs), which are available at the national level for issuing tsunami 

event information [3]. Figure 1-1 shows the geo-distribution of Tsunami National 

Contacts (TNCs)1, TWFPs and CTWPs in the NEAM region [4].  

 

Figure 1-1 Established TNCs, TWFPs and CTWPs in the NEAM Region 

In this thesis, the focus of the research is on a TWS’s communication system. This 

enables the (upstream) data exchange from physical environment sensors that publish 

their environment data to the corresponding operation centres; and enables the 

(downstream) messages exchange for warning and alert message dissemination. The 

downstream system also includes data storage and analysis processes, e.g., resilient 

database design, risk assessment, and algorithms to predict the crisis, but these are 

considered out of the scope of the thesis. Upstream and downstream communications 

have three main requirements for time criticality, scalability and resilience.  

                                                 

1 TNC is a person who represents his/her country in the coordination of international tsunami warning and 

mitigation activities. 
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1) Time Criticality 

For an effective tsunami warning, time is of the essence [5]. The sum of the detection 

time (T1), assessment time (T2), and evacuation time (T3) must be less than the tsunami 

travel time (T4), i.e., T1+T2+T3 < T4. The time needed for a tsunami warning time is 

illustrated in Figure 1-2.  

 

Figure 1-2 Time Needed for a Tsunami Warning 

The tsunami travel time T4 depends upon the distance between the sea or earthquake 

epicentre (start point) and the shore, e.g., if the distance is less than 400 km, it takes 

less than about 30 minutes for a tsunami to reach the shore [6]. In 2004, the tsunami in 

Indonesia hit Aceh, a coastal city, within 15 minutes. In these cases of near field 

tsunamis, there is little lead time for a tsunami warning [6]. Therefore, the upstream 

and downstream message exchange times to issue a warning should be minimised. 

2) Scalability and Resilience  

If a region’s tsunami sensors indicate that a tsunami is likely to occur, e.g., because of 

increased movement by tsunami buoys, the sensor data generation rate increases 

because sensors’ sampling rates in a TWS are designed to increase automatically. This 

may cause an information flood. Thus, both the upstream and downstream 

communication need to be scalable, i.e., to be scaled-up using more system resources 

such as memory and bandwidth, and scaled-down when fewer resources are required, 

or are available. In addition, when a tsunami reaches land, the embedded upstream 

network infrastructure can be disrupted in the affected area, affecting the 
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communication capacity and availability. To ensure the upstream sensor data reaches 

receivers in the operation centres, the upstream communication needs to be designed to 

be resilient, e.g., using guaranteed delivery, mirroring, overlay routing, and congestion 

control. Note that it is presumed that the downstream communication to the operation 

centre is remote to, and away from, the region of the environment disaster and thus the 

data processing centre is less prone to be disrupted. 

Several communication systems can support the upstream and downstream data 

communication in a TWS, e.g., Remote Procedure Call (RPC), brokerless system such 

as ZeroMQ2, and Publish/Subscribe Message Oriented Middleware (PSMOM). Among 

these systems, PSMOM is selected as the focus in the thesis. The details of the 

comparison among these systems are provided in Section 2.2.4. In a PSMOM, 

publishers are clients that generate and send messages to an intermediary called a 

message broker; subscribers are clients that receive and may process messages from a 

broker [7]. A PSMOM supports both synchronous and asynchronous message exchange, 

which is advantageous when publishers and subscribers are temporally and spatially 

distributed [7, 8]. A PSMOM also supports one-to-many, many-to-one and many-to-

many communications [9-11]. This is an efficient way to exchange messages. The same 

message may need to be published to multiple subscribers, e.g., a warning message is 

disseminated to multiple receivers. A subscriber can combine information from 

multiple publishers, e.g., a database receives both raw and processed data. Multiple 

publishers may publish messages to multiple subscribers, e.g., multiple operation 

centres may process data. PSMOM enables subscribers to select which messages they 

receive. These functions above are based upon filtering messages that either match their 

metadata descriptions which are defined as message topics (topic-based PSMOM) or 

match a set of filter criteria specified for message content (content-based PSMOM).  

In PSMOM, a broker decouples publishers in time and space from subscribers. It 

receives messages from publishers, detects whether or not messages have any matched 

subscribers, and forwards them to subscribers that have matched interests or can discard 

them if no matched subscribers are found. To enable distributed message exchange 

                                                 

2 ZeroMQ: The Intelligent Transport Layer, from: http://www.zeromq.org/ 
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across a wide area, brokers in different geo-locations can be federated, i.e., messages 

are disseminated amongst multiple brokers. The federated brokers form an overlay 

network, in which their published messages are always routed from the source broker 

that hosts the publisher through a federation path, to the destination brokers, to which 

the matched subscribers subscribe. Both topic-based and content-based PSMOM have 

been widely employed to provide message exchange services for applications that 

include stock market monitoring [12], business process execution [13], activity 

monitoring [14], workflow management [15], Really Simple Syndication (RSS) 

filtering [16, 17], and network monitoring and management [14]. In this thesis, topic-

based PSMOM is selected to provide data communication services for a TWS, as it 

provides better performance than content-based PSMOM in this scenario. A 

comparison between the two types of PSMOM is given in Section 2.2.1. In the 

remaining parts of the thesis, PSMOM is used to refer to the topic-based PSMOM. 

According to the communication requirement of a TWS system, a PSMOM needs to 

provide time-critical message exchange and to be resilient and scalable. Existing work 

has improved the resilience and scalability [9, 11, 18, 19] of a PSMOM and to lower 

the transmission delay by using overlay routing [20]. The focus is on the concept of 

load management for a PSMOM used in TWS in relation to the transmission delay 

constraints and Quality of Experience (QoE) for subscribers. 

In practice, individual brokers in a federated overlay of a PSMOM may become 

overloaded. This has several potential causes. First, an uneven load distribution may be 

caused by different capacities of brokers and inter-broker links, and by different 

population densities, interests, and usage patterns of end-user subscribers [7, 21]. 

Second, bursts of message exchange may occur when more publishers are added or the 

publishing rates for some publishers suddenly increases, and thus generates an extra 

load on brokers. Third, the capacity of the PSMOM system may be reduced due to 

disruptions of the network infrastructure caused by a physical environment crisis. These 

broker overload problems may result in performance degradation and delay critical 

decision-making. Thus, a load management solution is required to manage the broker 

overlay in TWS. Two cases are considered for the communication load management: 

surplus ICT resources and limited ICT resources. 
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1) Surplus Resource Case 

In this case, the system has enough communication capacity to provide message 

exchange services. When some brokers become overloaded, there are surplus resources 

in other brokers that can accept the load from the overloaded ones. In addition, new 

brokers can be created for load shifting, e.g., with support for virtual machine 

management in Cloud Computing.  

2) Limited Resource Case 

In this case, there are insufficient system resources for all the messages to be exchanged. 

This is caused by the disruption to the physical network infrastructure. For instance, 

during the immediate aftermath of the March 2011 Japan Earthquake, at least four 

major undersea communication cables (two-trans-Pacific and two intra-Asian cables) 

were damaged [22]. Such damage may severely reduce the capacity of links from 

publishers to brokers, between federated brokers, and from brokers to subscribers. In 

this case, offloading through migrating subscribers or publishers from an overloaded 

broker to another (less loaded) one, does not resolve the broker overload problem. This 

situation is further exasperated by the exchange of a large amount of messages from 

overactive publishers, i.e., publishers that have no matched subscribers, whose 

information may be repetitive or of little value, and where matched subscribers find 

such content exchange unimportant (Section 5.1). These overactive or non-informative 

publishers can introduce unnecessary loads for the message exchange, which may 

overload the computation and communication resources of the communication service 

(Section 5.2.1). 

1.2 Challenges 

In this section, the challenges in providing efficient load management for both the 

surplus resource case and the limited resource case for a PSMOM system are discussed. 

1. For the surplus resource case, the key challenge for broker load management is that 

different TWS message exchange services have different delay requirements.   

2. In the limited resource case in TWS, due to the disruption to the underlying 

network infrastructure, the demand for message exchange by brokers exceeds the 

supply (of broker resources available). The bandwidth between publishers and 
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brokers, between federated brokers, and between brokers and subscribers may be 

used up and cannot be scaled up for a time. New brokers may not be able to be 

initialised, which means the total broker processing capacity remains limited until 

the situation recovers. In this case, brokers are temporarily not able to receive and 

process all messages from the available publishers.  

1.3 Research Objectives 

The primary research objective is to improve load management for the broker overlay 

of PSMOM used in TWS, for the surplus resource case, and for the limited resource 

case. The primary objective is broken down into the following sub-objectives. 

1) Analyse the communication requirements in TWS problem domain for different 

message exchange services. 

2) Analyse the limitations of how the state of the art load management solutions can 

satisfy the TWS communication requirements.  

3) Investigate and design a broker overlay that meets the communication 

requirements for TWS and is capable of enabling resilient information exchange 

in the face of broker failure and link failure. 

4) Investigate and propose load-balancing solutions for a TWS with delay 

requirements for the surplus resource case. 

5) Investigate and propose a feedback driven congestion control solutions for TWS 

to manage the broker load in the limited resource case.  

1.4 Thesis Outline 

The remaining of the thesis is organized as follows. Chapter 2 gives an overview of the 

core concepts needed to understand the analysis of the surveyed methods and the 

proposed method. Chapter 3 provides a critical analysis of existing load management 

methods for PSMOM for both the surplus and limited resource cases (literature survey). 

Chapter 4 describes the delay requirements driven load-balancing solution for the 

surplus resource case with a simulation-based validation. Chapter 5 proposes a 

feedback driven congestion control for the limited resource case, which is also validated 

through simulation-based experiments. Chapter 6 summarizes what has been achieved 

and proposes some future work.   
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2 PRELIMINARIES 

2.1 Overview 

This section, preliminaries, gives an overview of the core concepts needed to 

understand the analysis of the surveyed methods and the new proposed method. An 

overview of how PSMOM works and how to deploy PSMOM in TWS is provided in 

Section 2.2. In Section 2.3, the background of the broker overlay, including the 

advertising and subscribing process, is described. In Section 2.4, the load management 

life cycle for PSMOM is described, both for load balancing in the surplus resource case, 

and for congestion control in the limited resource case. 

2.2 Publish/Subscribe Message Oriented Middleware 

Message Oriented Middleware or MOM is an infrastructure that focuses on sending 

and receiving messages and allows message exchange services to be distributed over 

heterogeneous platforms [23]. It integrates independent, loosely coupled components 

to increase their interoperability, portability and flexibility, as the participants do not 

need to know what platforms or processors the others reside on [19, 24-27]. A MOM is 

typically asynchronous, but most implementations also support synchronous message 

passing as well. 

In a MOM system, there are two typical messaging models, message queuing and 

publish/subscribe (PS). Message queuing is a peer-to-peer (P2P) communication model 

where messages are addressed to specific recipients. It is suitable for the request-reply 

type message exchange. The PS model is a many-to-many model that permits the 

efficient dissemination of messages across a distributed system [25]. Clients of a 

PSMOM can be publishers, i.e., information producers that publish messages, or 

subscribers, i.e., information consumers that subscribe to information of their interest 

and receive messages [25]. Communication in PSMOM is usually asynchronous [19]; 

publishers and subscribers are decoupled in time (they do not have to be active at the 

same time) and space (they do not to be close to each other in the same network). The 

message exchange does not block the control of flow [28]. Publishers and subscribers 

do not even need to know of the existence of one other [9, 28]. A significant advantage 
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of PSMOM is that it reduces the number of point-to-point connections (active 

communication end-points) in a complex information technology (IT) system [18, 29]. 

In practice, PSMOM can be implemented in many ways. Java Messaging Service (JMS) 

is a wide-spread and frequently used middleware technology [30-32]. Several systems 

are based upon it, such as FioranMQ [33], TibcoEMS [34, 35], WebSphereMQ [36-39], 

and RabbitMQ [40]. In addition, instead of using a language specific Application 

Programmer’s Interface (API) or Library, such as JMS which only works for Java 

applications, some standard open network protocol, such as Advanced Message 

Queuing Protocol (AMQP) [41-43], Message Queuing Telemetry Transport (MQTT) 

[44] and Streaming Text Orientated Message Protocol (STOMP) [45], can also be 

adopted to build a PSMOM system. 

In PSMOM, messages exchanged consist of a message header and a message body. The 

message header records protocol metadata, e.g., protocol version. The message body or 

payload contains the actual data to be exchanged. 

Pattern matching is a key characteristic of PSMOMs. It defines the process of matching 

published messages to subscribers’ interests. With respect to matching processes, 

PSMOM systems can be classified into topic-based and content-based ones [28, 46]. 

2.2.1 Topic-Based PSMOM & Content-Based PSMOM 

In a topic-based PSMOM system, each message is classified as belonging to one of a 

fixed set of topics, also referred as groups, channels, or subjects. It is the metadata that 

describes the actual data (stored in the message body) being exchanged, e.g., the 

weather in London, BBC news. The format of the topic is specified by the message 

exchange protocol adopted by the PSMOM. For instance, for message exchange service 

using AMQP, a topic consists of a list of keywords (topic names), separated with a 

delimiter “.”, e.g., “data.sesnsor.buoy.Turkey” is a topic that is used when acquiring the 

sensor data from buoys in Turkey. In practice, topics used in a PSMOM system are pre-

defined to meet the requirements of the application scenario. A subscriber targets its 

subscription when registering a topic of interest to it in a message broker, known as the 

binding key [47]. The broker then holds a list of binding keys that refer to the 

subscribers’ interests. In addition, each publisher labels each message being published 

with a topic stored in the message header, named routing key, when sending messages 
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to a broker. When a broker receives a message, it examines the message header, 

retrieves the routing key and compares the routing key with the existing binding keys 

to decide whether some subscribers are interested in this message (matched subscribers). 

If no matched subscribers are found, messages can be discarded; otherwise, they are 

forwarded to the matched subscriber(s). Note that in topic-based matching, the broker 

does not work on the content of each received message. Therefore, topic-based 

PSMOM has no restrict requirements for the types and the structure of the content data, 

i.e., both structured (e.g., name-value pair) and unstructured (e.g., pure text string) data 

of any type, e.g., Text, Byte, Image, and Video, are allowed to be exchanged through a 

topic-based PSMOM. 

In a content-based PSMOM system, the message body of each MOM message needs to 

follow a pre-defined message schema, which is usually a set of name-value pairs, e.g., 

name = XXX, price = XXX, volume = XXX. Each subscriber targets its subscription with 

a query to the broker against the message schemas. It is able to set filtering criteria 

along multiple dimensions [15, 48-53], e.g., name = “IBM”, price < 20, volume > 3000. 

Publishers create messages following the schema and send them to brokers. When a 

broker receives a message, it retrieves the content from the message body, looks up the 

subscriptions’ queries, to decide whether the content of the message satisfies the 

conditions of any subscription queries. Thus, compared to a topic-based PSMOM, a 

content-based PSMOM has more restricted requirements on content structure. 

A topic-based PSMOM tends to use pre-defined topic names, i.e., once subscribers 

express their topics of interests, they cannot receive messages for which the message 

content is relevant, but the topic is different. A content-based PSMOM classifies 

messages according to the properties of the message content itself. So a content-based 

publisher/subscriber could be more flexible [28, 54]. However, with the support of 

filters or pattern matchers, such as the message selector in JMS, a topic-based PSMOM 

also allows subscribers to express queries to retrieve messages, which match user 

specified properties defined in the message header. In addition, topic-based matching 

offers less matching delay and a higher throughput since there is no need to read and 

extract the content information for each message.  

In a TWS, both topic-based and content-based PSMOMs can be adopted for message 

interaction between distributed system components or processes. However, in TWSs, 
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there are multiple types of messages that need to be exchanged among different system 

components, including both structured and unstructured data. For instance, warning 

messages can be represented using XML extensions such as the Common Alerting 

Protocol (CAP3) format, while the sensor data can be represented using other XML 

extensions such as the Open Geospatial Consortium Observations & Measurements 

(OGC O&M 4 ) standard, while evacuation advice may be represented as natural 

language Text. This introduces extra computation complexity to parse heterogeneous 

content structures when adopting a content-based PSMOM. Thus, the topic-based 

PSMOM is the focus in this thesis. 

2.2.2 Message Broker Architecture 

In a PSMOM, brokers from different vendors may use different architectures and use 

different names for broker components even although they support common broker 

functions. A broker architecture for Apache Qpid5 is shown in Figure 2-1 with the 

following main components: a shared Input Queue for all the messages from publisher, 

a set of Exchanges that support different types of matching, a Message Store that 

records the received messages, and a set of Output Queues.  

 

Figure 2-1 Qpid Broker Architecture 

                                                 

3 CAP - http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html 

4 OGC O&M -  http://www.opengeospatial.org/standards/om 

5 Apache Qpid - https://qpid.apache.org/components/java-broker/index.html 
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In the example shown in Figure 2-1, messages labelled with three different topics (T1, 

T2 and T3) are published to a broker with three subscribers subscribing to them. Each 

Output Queue is bound to a subscriber on a specific topic, i.e., subscribers S1 and S2 

subscribing to the same topic T1 have different output message queues, e.g., S1:T1 and 

S2:T1, while a subscriber S1 subscribing to the different topics T1 and T2 has different 

output message queues, e.g., S1:T1 and S1:T2. The published messages are examined 

by the exchange component to find a binding to the output queues that correspond to 

the matched subscribers. The matched messages are recorded in the message store and 

the pointers to the message store are sent to the matched output queues. Each output 

queue follows a First-In-First-Out (FIFO) principle. It retrieves the corresponding 

messages in the message store and forwards them to a subscriber. 

2.2.3 Broker Federation 

In practice, due to security requirements that require the use of firewalls and restricted 

IP addresses, geo-distributed publishers and subscribers that exchange messages may 

only be able to connect to local brokers. For instance, although a publisher in London 

(PLondon) and a subscriber in Paris (SParis) may want to exchange messages with each 

other, they are not able to as they can only connect to the broker with an IP address in 

the same country. A single centralized broker design is not feasible in this case. 

Therefore, broker federation is required, as shown in Figure 2-2.  

 

Figure 2-2 Simple Broker Federation 

Broker federation allows messaging networks to be defined by creating message routes, 

in which messages via one broker (the source broker) are automatically routed to 

another broker (the destination broker). Federated brokers set up federation paths 

between each other, which allow messages published to the source broker to be 

automatically routed to the destination broker where the matched subscribers are 

connected. Normally, a federation path is unidirectional, i.e., it only allows a message 

to be routed from a source broker to a destination broker. However, a source broker can 

also work as a destination broker, i.e., if two brokers need to interact with each other, 
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two federation paths are set up. In the London-Paris communication example above, if 

a publisher in Paris (PParis) also needs to communicate with a subscriber in London 

(SLondon), an additional federation path from broker in France to Broker in UK needs to 

be established, see Figure 2-3. 

 

Figure 2-3 Bi-direction Broker Federation 

In a TWS, distributed brokers are federated to enable operation centres in different geo-

locations to exchange information, e.g., live and historical sensor data and generated 

workflows, between them for collaborative decision-making. 

2.2.4 Comparison of Different Messaging Systems for TWS 

There are several candidate messaging system that can provide upstream and 

downstream communication for a TWS, e.g., RPC, brokerless messaging system, and 

PSMOM. According to the communication requirements of a TWS specified in Section 

1.1, a comparison of these different messaging system is analysed. 

RPC is not suitable for a TWS as the data process and crisis prediction takes time, e.g., 

from a few seconds to a few minutes, which will result in a vital delay in data delivery. 

A brokerless system is also not a good design choice for a TWS for the following 

reasons. First, in many-to-many communication, each client in a brokerless system 

needs to maintain more connections. Second, developing a resilient directory service 

and queuing system significantly increases the complexity for deploying the brokerless 

messaging system into a TWS. Third, in a TWS, using a brokerless system design for 

message exchange is infeasible as some distributed system components cannot 

communicate directly. Compared to them, a PSMOM is better for deploying in a TWS 

for the following reasons. First, a PSMOM supports asynchronous information 

exchange and the clients involved are loosely coupled. Second, a PSMOM reduces the 

number of connections required in many-to-many communication. Third, a PSMOM 
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can provide a messaging service for clients that cannot connect directly to each other 

using a broker federation. 

2.3 Broker Overlay 

In practice, to enable message exchange between clients in a Wide Area Network 

(WAN), brokers are interconnected through transport-level links to form a broker 

federation [55]. In such a multiple-broker publish/subscribe system, brokers are 

connected in a peer-to-peer fashion to form an overlay network [52, 56]. 

 

Figure 2-4 Mapping between Broker Overlay and Underlying Network 

Figure 2-4 shows an example of a broker overlay consisting of five brokers (B0 to B4) 

mapped to the underlying network (or physical network). It is shown that the directly 

connected overlay brokers (e.g., B1 and B2) may not be directly connected into the 

underlying network. Much research has been done to decide where to deploy the 

overlay brokers to improve their efficiency and resilience, and to minimize the 

transmission delay for message dissemination.  

A broker overlay network can be statically configured, in which the broker connections, 

are clearly defined. Therefore, when a publisher or a subscriber joins the system, it is 

assigned to a broker that exchanges messages according to its topics of interest. The 

overlay can also be dynamically configured, in which message routes between brokers 

are not pre-defined but are determined when a new publisher or subscriber joins the 

system. This can be achieved through advertising and subscribing processes. 

Advertising is the process to distribute new publishing topic from the source broker, to 
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which a new publisher connects, to other brokers in the overlay. Thus, all the brokers 

involved in the overlay have knowledge of the distribution of the published topics, i.e., 

of the source broker for each topic, and how topics are propagated via the advertising 

routes. Subscribing is the process initialised by a broker, to which a new subscriber 

connects. It sets up a subscription route to the broker such that any matched publishers 

can connect to it. In a TWS, the broker assigned to a new publisher or subscriber is 

affected by several factors, such as the load status of the brokers and the existing client 

distribution in the broker overlay. Thus, the static configuration method is not 

applicable in this case. Therefore, a dynamic configuration is required to construct and 

maintain the broker overlay in a TWS. 

2.4 Load Management for PSMOM 

Load management has been a widely explored research topic for the past two decades 

since the introduction of parallel and distributed computing [7]. The goal of load 

management is to distribute load efficiently to all the available resources in a way that 

maintains the normal system operation and lowers the risk of overloading individual 

processing components.  

As specified in Section 1.1, brokers in a PSMOM used in a TWS may become 

overloaded due to a burst of message exchange or due to a reduced system capacity. 

This would delay the decision-making. Thus, the load management for a PSMOM 

targets managing the processing and communication load for all the brokers involved. 

This is achieved with the following processes: load detection, load distribution, load 

analysis, load migration or offloading, and congestion control. Load detection is the 

process of detecting the load status of a broker. It is the initial step of load management, 

which obtains the load conditions for each broker involved in the broker overlay. It 

always achieved by periodically retrieving a set of pre-defined load metrics, such as 

CPU and bandwidth usage, which are compared using corresponding thresholds. Load 

distribution is the process of assigning a broker to a new client (publisher or subscriber) 

according to the load state of the broker obtained through load detection, the topic 

information, and the distribution of existing clients. It is an initial attempt to balance 

the load among brokers in the broker overlay. Load analysis is the process that analyses 

the load influence for individual message exchange services. It aims to support the 
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offloading process for client selection and therefore it is sometimes considered as a part 

of the offloading process. When a broker is detected to be overloaded, offloading is 

triggered. This process selects and migrates clients from an overloaded broker to one 

with less load, assuming it has sufficient system resources, i.e., the surplus resource 

case. However, brokers may not always be available that have surplus resources. A 

congestion control process needs to be defined to supplement the offloading process to 

provide load management for the limited resource case. Message congestion occurs 

when the combined system resources of brokers in a broker overlay are less than those 

resources required by publishers and subscribers. Two combined pre-conditions trigger 

the congestion control process. One is that the PSMOM system is in the limited resource 

case and the other is that the load status of the broker overlay reaches its limit.  

To provide load management support for a PSMOM, a Load Manager (LM) is used. 

This can be either inbuilt into brokers or work as a separate component. LM is often 

defined as a set of policies for specific load management tasks or processes, e.g., for 

load detection.  

2.5 Summary 

PSMOM is widely used to build large-scale distributed systems. It enables messages to 

be disseminated from publishers to subscribers and decouples message publishers from 

subscribers in time and space. According to the different matching criteria, PSMOM 

can be classified into topic-based PSMOM and content-based PSMOM. Although 

content-based PSMOM offers more flexibility for message matching, it requires the 

message content to be well structured in order to support content matching. The 

disadvantages to use content matching for TWS are that there are multiple types of 

message structure including natural language. The broker federation and the 

background of the broker overlay are also presented. In practice, a broker overlay is 

often used in real distributed applications to enable messages to be exchanged between 

geographically distributed system components that may not be able to communicate 

with each other directly due to security restrictions such as firewalls. In the next chapter, 

a critical analysis of existing load management solutions for PSMOMs is presented.  
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3 LITERATURE SURVEY 

3.1 Overview 

This thesis focuses on load management for PSMOM used in a TWS. As stated in 

Section 2.4, the load management process involves load detection, load distribution, 

load analysis, offloading and congestion control. Therefore, the analysis of the existing 

methods adopted in each load management process for PSMOM is the focus of this 

survey. Note that, existing offloading methods take the load analysis process as a part 

to support client migration, and therefore the analysis of the existing load analysis 

methods are presented along with the offloading methods (Section 3.4). It assumes that 

the broker overlay and overlay routing already exist. In addition, as TWS is a distributed 

system that requires communication in both WAN and LAN environments, other 

methods that can only apply for a LAN environment are not discussed. The analysed 

methods are retrieved from either the existing publications or the existing PSMOM 

systems applied in distributed systems.  

3.2 Load Detection 

Load detection is the process that detects the state of the broker being monitored, e.g., 

to determine whether the broker is overloaded, by periodically retrieving some load 

metrics and comparing the values with corresponding thresholds. In the following 

subsections, the design for load metrics, load state and load thresholds for existing load 

management methods for PSMOM are described. 

3.2.1 Load Metrics 

Different load detection designs may have different load metrics. For a PSMOM, load 

detection is achieved by retrieving either system level information, or the middleware 

level information such as matching capacity utilisation. 

The system level metric measures some usage of the operation system, such as CPU 

[57], Memory [58] and Bandwidth [7] that reflects the operational status of the system, 

on which the broker relies. Some methods have been proposed to map the system level 

metric such as CPU load, Memory load, and I/O load to the parameters of the message 
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exchange services, e.g., throughput, number of publishers, and number of subscribers, 

to measure the capacity of the broker through a set of factorial experiments [59, 60]. 

Middleware level metrics are used to measure aspects of a broker’s function such as 

matching capacity utilisation, input queue utilisation, output queue utilisation, queue 

depth, and replication ratio [7, 21]. These values reflect the load status of a broker more 

specifically, e.g., a 100% used matching capacity means that the broker cannot match 

any more publishers that join or if their publishing rates increase. Some of these metrics 

cannot be directly measured in the broker, such as the matching capacity usage, as it 

requires the knowledge of the maximum matching capacity, which is dynamic. It 

depends upon the message exchange service and system level metrics. Metrics such as 

queue depth can reflect an aspect of the broker load status, e.g., a high queue depth 

value indicates that there are many messages waiting in the queue. However, this does 

not clearly indicate what caused this load state, e.g., a high queue depth value has many 

causes, such that the output bandwidth may be already used up or subscribers may be 

too slow to download messages. 

3.2.2 Load State & Load Thresholds 

Thresholds are used to help manage broker loads. Each load metric has its 

corresponding threshold. When the values of load metrics are determined, they are 

compared to a threshold to classify the load state of the broker into normal or abnormal. 

Thresholds may be static or dynamic. A static threshold has a fixed predefined value, 

e.g., 90% CPU usage. Static thresholds do not change during the system operation. 

They can only be modified if the system is stopped and then restarted. Static thresholds 

are often used to manage load with respect to system level metrics, such as CPU and 

bandwidth usage, independent of the dynamic configuration of the middleware, i.e., the 

number of clients connected and the number of messages exchanged. In contrast, 

dynamic thresholds can change during the system operation, e.g., a queue depth 

threshold may be affected by the number of clients being served and by the exchange 

rate. Dynamic thresholds are often used for the middleware level metrics, which are 

affected by the operation of the broker. For example, a threshold for queue length, 

which is used to limit the number of messages held in the queue, may be influenced by 

the message exchange rate and thus the threshold value needs to be updated during its 
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operation. For a hybrid load metric design, both static and dynamic thresholds are used 

for load management, depending on the application specific requirements. 

The load state of a broker is classified according to how the values of the load metrics 

measured relate to their corresponding thresholds. Cheung et. al. define two load 

thresholds (a high threshold THhigh and a low threshold THlow) for each load metric and 

classify the broker’s load state into LOW LOAD, HIGH LOAD and OVERLOAD [7]. 

The high threshold determines whether a broker becomes overloaded, while the low 

threshold indicates whether the broker can receive new connections or message 

exchange requests and whether it can be selected to accept loads from overloaded 

brokers. The relationship between thresholds and load state for this design is shown in 

Table 3-1. In addition, a temporary load state BUSY is adopted to indicate that a broker 

is involved in an offloading process and its load is unstable [7]. 

Condition State 

(𝐴𝑙𝑙 𝑡ℎ𝑒 𝑚𝑒𝑡𝑟𝑖𝑐𝑠) < 𝑇𝐻𝑙𝑜𝑤 LOW LOAD 

𝑇𝐻𝑙𝑜𝑤 < (𝐴𝑛𝑦 𝑀𝑒𝑡𝑟𝑖𝑐) & (𝐴𝑙𝑙 𝑀𝑒𝑡𝑟𝑖𝑐𝑠) < 𝑇𝐻ℎ𝑖𝑔ℎ HIGH LOAD 

𝑇𝐻ℎ𝑖𝑔ℎ < (𝐴𝑛𝑦 𝑀𝑒𝑡𝑟𝑖𝑐) OVERLOAD 

Table 3-1 Relationship between Load State & Load Threshold 

3.3 Load Distribution 

Load distribution is the process to assign a broker to a new client, e.g., a publisher or a 

subscriber, according to the load state of the brokers obtained through the load detection 

process, the topic information, and the distribution of existing clients. This is the initial 

process that affects the load status of the broker overlay. 

Round-Robin (RR) is one of the earliest algorithms proposed for process and network 

load scheduling in computing based upon equal priority and a circular order [61]. In 

PSMOM, RR is achieved using three steps. First, a LM generates a list of brokers 

involved in the broker overlay. Second, when a new client joins the system, a LM picks 

the first broker in the broker list and assigns it to the client. Third, a LM puts the broker 

selected at the tail of the list. The load state of each broker and the load usage for each 

client are not considered, which may cause a highly loaded broker to be overloaded if 

a new client is still assigned to it. With respect to the differences of load status and 
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processing capacity for different servers, a Weighted Round-Robin (WRR) method is 

proposed. With WRR, each server is assigned with a weight. The server with the largest 

weight has the highest priority to be selected. In PSMOMs that use WRR, when a client 

joins the system, the broker that has the highest priority is assigned to the client by the 

LM. Least-N Scheduling (LnS) is one type of WRR for load distribution in PSMOM. 

Here the term N is a wild card that can be replaced by any property that the system 

needs to measure to help manage the load distribution. For instance, Least-Connection 

Scheduling can be applied to PSMOM by assigning new subscribers to the broker that 

serves the least number of subscribers [62]. Least-Delay Scheduling means that the 

broker for which the transmission delay between the client and the broker is minimal, 

has the highest priority to be assigned a new client, e.g., a subscriber [57].  

In addition, some researchers introduce subscription based clustering techniques, where 

the set of subscriptions are partitioned into a pre-defined number of servers or groups 

(known as clusters) and the subscriptions for the most common topics of interest are 

assigned to brokers in the same cluster, in order to minimise the total amount of network 

traffic [63-66]. However, the above work takes no consideration of the load influence 

of individual subscriptions, which may result in an uneven load distribution if a set of 

subscriptions has much more traffic than others. What’s more, the delay requirements 

for individual subscriptions have not been considered, which may bring unexpected 

delays to delay sensitive messaging services. 

Correlation-based load distribution is another method that has been used for load 

distribution [20]. It determines the distribution according to the correlations between 

different clients with the following principles. First, clients that are highly positively 

correlated are assigned to different brokers. Second, the highly negatively correlated 

clients are assigned to the same broker. Third, the average utilisation of broker capacity 

for all the brokers in the broker overlay is maximized. With this method, the 

computation of the distribution takes some time, e.g., from minutes to hours, depending 

on the number of topics and the number of brokers. It works best for the case when all 

the clients’ information, such as the number of publishers and subscribers, message 

exchange rate have been predefined, and a correlation analysis between clients and 

topics has been performed, by the LM beforehand. Any update to the broker overlay, 

e.g., to add or remove a broker, and to client configurations, e.g., add a few new clients, 
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takes considerable time to re-compute the distribution. Thus, this method cannot be 

applied to TWS, in which the system configuration and client exchange rate may vary 

according to the situation of the environment, e.g., the message exchange rate may 

increase when a tsunami event is detected and a broker’s capacity may be reduced due 

to the damage caused by the aftermath of the event. 

Cheung et. al. propose a method that measures the imbalance between brokers to trigger 

offloading [7, 21]. In such a method, clients are allowed to connect to any brokers in 

the broker overlay. LM detects the load differences between different brokers, named 

the imbalance level. If the imbalance level of two brokers exceeds a threshold, 

offloading is triggered to balance the load between the two brokers, i.e., to migrate some 

clients in the broker with a higher load to another less loaded one. This type of method 

increases the flexibility for the load balancing but introduces delays to any client’s 

message exchange that is being selected to move to another broker. Thus, this type of 

method is not applicable in TWS, in which the delay introduced to time-critical 

subscription services should be minimal. 

In TWS, a hybrid method is required to distribute load in the broker overlay. This needs 

to be aware of the load status of all the brokers and the delay requirements for different 

subscription services, and be able to minimise the time delay for time-critical message 

exchange. 

3.4 Offloading 

Offloading is the process used to migrate load from an overloaded broker to one with 

less load. It is triggered when a broker becomes overloaded or when a broker imbalance 

is detected.  

Random offloading is the basic offloading method. As the name suggests, when 

offloading is required, LM randomly chooses and migrates a client to another randomly 

chosen broker called the load-accepting broker. This process continues until all the 

brokers are not overloaded any more. This method takes some time to balance the load 

in all brokers, as it does not consider the load influence for both the offloading broker 

and the load-accepting broker. Thus, it may overload the load-accepting broker and 

requires another offloading process to rebalance the load [7, 21]. Prioritised random 
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offloading is an improved method in compared with the conventional random one. 

Instead of randomly choosing a load-accepting broker, LM prioritises such brokers so 

that a broker with the maximum capacity has the highest priority to be selected as the 

load-accepting broker. This method therefore reduces the chance that the load-

accepting broker becomes overloaded.  

Cheung et. al. introduce a load analysis (LA) mechanism to improve the existing 

offloading methods [7]. The authors state that this is the first load balancing method for 

PSMOM that adopts load analysis to avoid load-accepting brokers from being 

overloaded during the offloading process. This LA mechanism prioritises offloading 

clients and estimates the load influence to both offloading broker and load-accepting 

broker for each client. Based upon this analysis procedure, LM ensures that the extra 

load introduced to the load-accepting broker does not exceed its load capacity. The 

offloading progress is completed as follows. First, the offloading broker locates a load-

accepting broker of which the broker’s load state is LOW. Second, both the offloading 

broker and load accepting broker change their state to “BUSY” which indicates they 

are currently involved in an offloading process, i.e., they will not accept any more work. 

Third, for each subscription, the offloading broker evaluates the influence to both load-

accepting broker and offloading broker based upon the message input rate. Fourth, the 

system lists all the subscriptions that can reduce the load of the offloading broker and 

have the least side effects for the load-accepting broker. Fifth, the subscriptions in the 

list are migrated to the load-accepting broker. Sixth, steps one to five are repeated until 

the offloading broker is no longer overloaded. However, this method does not consider 

the different transmission delay requirements for different subscriptions services and 

this therefore may introduce unnecessary delays to delay sensitive services. 

3.5 Congestion Control 

Congestion control is a widely explored topic in Internet Protocols [8, 67], Wireless 

Sensor Networks [68, 69], Interconnection Networks [70], Opportunistic Networks [71], 

and Multimedia Streaming Networks [72]. In general, congestion occurs when the 

traffic load exceeds the network capacity. This may result in packet loss and increase 

queuing delays, and lead to retransmission that consumes extra energy. This especially 

affects bandwidth intensive and delay sensitive applications, and applications affected 
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by message loss. Much work has been proposed to resolve the problems, such as 

priority based congestion control [73], topology-aware resource adaptation [74], 

predictive congestion control [75], and receiver assisted congestion control [76]. 

Different congestion control mechanisms have two similar phases: congestion detection 

and congestion handling. In the congestion detection phase, the load states of brokers 

are periodically detected to determine whether congestion occurs. In the congestion-

handling phase, congestion-handling policies are applied to maintain the overall system 

performance and QoE for subscribers. For a PSMOM, congestion occurs when the 

processing and transmission capacity of brokers or links to brokers are used up. Existing 

solutions that handle congestion in the broker overlay can be categorised into two 

approaches: publishing rate control [8, 56] and path handling [77, 78]. 

3.5.1 Congestion Control by Publishing Rate Control 

A congestion control mechanism, which handles congestion for a PSMOM by 

controlling the publishing rate, is described in [8]. The authors specify three types of 

brokers: publisher hosting brokers (PHB), intermediate brokers (IB), and subscriber 

hosting brokers (SHB). Each PHB hosts one or more publishing endpoints, referred to 

as pubends (PE). Each pubend represents an ordered stream of messages published by 

one or more publishers, and maintains this stream in persistent storage. Messages 

published from different publishers may be assigned to the same pubend. This pubend 

decides on a position for the message in the persistent stream and logs the message to 

a persistent store. After that, the pubend sends the message towards SHBs through IBs. 

The IBs forward data and control messages to the SHBs. Figure 3-1 shows the 

connection between PHB, IB and SHB. 
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Figure 3-1 Interaction between PHB, IB and SHB 

Based upon the above model, the authors propose two congestion control protocols, a 

PHB-driven congestion control (PDCC) protocol and a SHB-driven congestion control 

(SDCC) protocol. PDCC regulates the rate at which new messages are published by a 

pubend. The publication rate is adjusted depending on the observed throughput at the 

SHBs. It is the responsibility of the SHBs to calculate their own congestion metric based 

on throughput and notify the pubends whenever there is a risk of congestion. In this 

design, SHB use the ratio of pubend to SHB message rate as a metric for detecting 

congestion, i.e., rpubend / rSHB. SDCC manages the rate at which an SHB requests missed 

data by sending NACKs upstream. These protocols are implemented into gryphon6 

brokers and the experiment results show that the proposed PDCC and SDCC protocols 

can maintain the system performance by preventing the system from becoming 

congested. 

The proposed congestion control mechanism has some limitations. First, it is not 

designed for fully loaded brokers but is designed to provide an acceptable level of 

performance for slow subscribers and for the situation when the system is recovering 

from link failures. Both PDCC and SDCC actually increase the load of PHB and IB, as 

they need to hold more messages in the message queue before sending them along the 

next hop. This introduces unexpected delays to delay sensitive messages. Second, the 

proposed methods ignore the importance of the messages to the matched subscribers in 

terms of controlling publishing rate. Therefore, these methods may reduce the QoE for 

                                                 

6 Gryphon - http://www.research.ibm.com/distributedmessaging/papers/ext-abstract.htm 
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subscribers that exchange the more important messages. Third, the proposed solution 

makes modifications to the broker internals. This increases the maintenance and update 

complexity when new versions of brokers are released by vendors as their congestion 

control mechanisms need to be re-integrated and rebuilt. 

3.5.2 Congestion Control by Path Handling 

A congestion control mechanism that handles congestion using path handling is 

described in [77]. For this proposed algorithm, the base assumption is that in a 

congested PS system, it is not possible to provide unaffected services for everyone all 

the time. Therefore, in this approach, a priority-based method is integrated seamlessly 

with the PS system, without violating the PS decoupling. In this design, the authors 

consider two congestion situations, i.e., a broker is congested, or the links to the broker 

are congested. To handle both congestion situations, brokers are modified. Thus, they 

can skip links when a broker itself is congested or drop less profitable messages for the 

system when links to a broker become congested. To detect the profitability of 

subscriptions, each subscription message in this system uses a maximum price and 

coverage metric. Maximum price shows the value that this message has for a subscriber. 

Coverage is used to determine how many subscribers receive a publication message on 

a given link. The profit of a message is proportional to the value of the maximum price 

and coverage metric. Whenever a broker is congested, it skips any message queues that 

contain the least profitable subscriptions. Whenever the situation returns to normal, 

only then will it process these queues. If the broker becomes too congested, queues 

build up and the broker runs out of memory and eventually crashes. For the case when 

one or more links to a broker are congested, the broker drops the messages with the less 

profitable information; it only disseminates messages through congested link(s) that 

have a higher profit. 

Another congestion control mechanism for path handling in a PSMOM can be found in 

[78]. This focuses on a scenario where only some specific brokers and links are 

congested in the broker overlay. The congestion handling is achieved by distributing 

the higher traffic of congested brokers and links to other parts of the broker overlay that 

are not congested. In this design, each congested broker or link has a list of alternative 

brokers and links. When a broker or link becomes congested, the immediate senders, 
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e.g., publishers or brokers that connect to the congested broker, connect to an alternative 

broker through an alternative link.  

The proposed path-handling congestion control methods have some common 

limitations. First, these methods target handling congestion when only some of the 

brokers and links are congested, i.e., they are not designed for the case when all the 

available communication and computation resources are used up. Second, for path 

handling, the load influence on the alternative broker and link is not considered, hence, 

the selected alternative broker and link may become congested. Third, the proposed 

solutions make modifications to brokers to enable path handling, and thus increase the 

complexity in maintaining and updating the system. 

3.6 Summary  

In this chapter, a comparative analysis of existing methods for load detection, load 

distribution, offloading and congestion control is given. The load analysis process is 

considered as part of the offloading process to support client selection for migration. 

According to the communication requirements specified for TWS in Section 1.1, 

existing methods need to be improved in the following ways in order to be applied for 

TWS. First, to detect load status of broker in TWS, hybrid load metrics including both 

system level metrics such as Bandwidth and middleware level metric such as capacity 

utilisation need to be adopted. Second, the load distribution process should not only be 

aware of the load status of the broker, but should also aim to reduce the network traffic 

and to minimize the transmission delays. Third, the load analysis and offloading process 

should take the delay requirements for different subscription services into consideration 

in the client selection process in order to avoid introducing unexpected delays to delay 

sensitive services. Fourth, the congestion control methods used need to be aware of the 

importance of messages when discarding messages to reduce load to brokers for the 

limited resource case.  

In the following chapter, Chapter 4, a load management framework that extends the 

PEER framework, named ePEER, is proposed to manage broker load for PSMOMs in 

TWS. The construction of the broker overlay for TWS, and the processes for load 

management for surplus resource case, including load detection, load distribution, load 

analysis, and offloading, are described. Then, chapter 5 provides a feedback driven 
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congestion control model as a supplementary load management method for the limited 

resource case.  
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4 DELAY REQUIREMENTS DRIVEN LOAD 

BALANCING FOR SURPLUS RESOURCE 

CASE 

4.1 Overview 

In this chapter, an overview of the load management framework, ePEER, is presented. 

This includes a detailed description of a head-edge (H-E) broker overlay design that 

supports the message dissemination requirements for TWS and the design of the LM, 

or Management Agent, used to manage the workload of the H-E broker overlay in both 

the surplus and limited resource case. In addition, the delay requirement driven load 

balancing (DRD-LB) method for ePEER is proposed. DRD-LB manages the load 

among the H-E broker overlay for the surplus resource case in order to reduce 

unexpected delays introduced to time-critical subscription services. A comparison 

between DRD-LB with the state of the art load balancing method adopted by PEER [7], 

denoted as PEER-LB, is also described to emphasise the benefits of ePEER. 

4.2 Head-Edge Broker Overlay 

The H-E broker overlay is partitioned into several local domains, named clusters. In 

each cluster, there is one head broker and several edge brokers to form a tree hierarchy. 

In each cluster, the cluster-head (head) broker can have more than one neighbour while 

a cluster-edge (edge) broker has only one neighbour broker. In addition, in each cluster, 

all the publishers connect to the head broker while all the subscribers connect to the 

edge broker. Thus, all the messages are routed from the head broker to the edge broker. 

Figure 4-1 shows an example of an H-E cluster with one head broker (H) and three edge 

brokers (E1, E2 and E3). In this example, three matched publisher-subscriber pairs, i.e., 

P and S, P’ and S’, and P’’ and S’’, exchange messages within the cluster, i.e., use intra-

cluster communication.  
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Figure 4-1 An H-E Cluster with One Head (H) and Three Edges (E1 – E3) 

In addition, cluster-to-cluster (inter-cluster) communication occurs via federation paths 

created between different head brokers. Figure 4-2 shows an example of inter-cluster 

communication between two H-E clusters. In this example, the publisher P’’ in cluster 

1 has a matched subscriber S’’ remotely hosted in cluster 2. After the advertising and 

subscribing processes (Section 2.3), the messages published in cluster 1 are then routed 

to head broker H’ of cluster 2 and then forwarded to edge broker E2’, to which S’’ is 

connected. This also applies to matched publisher P’ and subscriber S’.  

 

Figure 4-2 Inter-Cluster Communication 

The benefits of adopting such an H-E broker overlay design to support message 

dissemination for TWS are as follows. First, H-E broker overlay design allows all the 

brokers in a cluster to be deployed in a LAN environment, e.g., in a warning centre. It 

then enables messages to be disseminated within one warning/data centre (intra-cluster) 

for processing and among multiple warning/data centres (inter-cluster) for collaborative 

decision-making. Second, the H-E broker overlay also allows brokers in a cluster to be 

deployed in a WAN environment, e.g., in the offshore area that is potentially affected 

by Tsunami. This can also be used to disseminate information from warning centres to 

registered stakeholders in such an area. Third, since a head broker only serves the 

publishers, and an edge broker only serves the subscribers, the client selection process 
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for offloading is simplified, i.e., when a head broker becomes overloaded, only 

publishers are required to be analysed and migrated; when an edge broker becomes 

overloaded, only subscribers are offloaded. Fourth, the federation setup process is 

simplified, as all the messages being disseminated within a cluster are always routed 

from head broker to edge broker, which means that the federation path within one 

cluster is unidirectional. Fifth, regarding the scalability and resilience requirements of 

a TWS, the H-E broker overlay can be extended to add fault tolerance, e.g., mirroring 

can be used to ensure published messages to be received by matched subscribers in the 

case of a broker or link failure [9, 18, 19, 79].  

As specified in Section 1.1, to detect a tsunami for a particular region, several national 

warning centres and one regional warning centre work collaboratively to detect 

tsunamis and disseminate warning messages to the affected region. In each warning 

centre, an H-E broker overlay is deployed. A federation path between two head brokers 

is established only when communication occurs between two centres. Figure 4-3 shows 

an example of how clusters are organised in a TWS. NTWC and RTWC refer to the 

cluster deployed in a national tsunami warning centre and regional tsunami warning 

centre respectively. Loc. refers to the cluster deployed in a region monitored by a 

warning centre. The region could be one country or several countries in practice.  

 

Figure 4-3 Clusters Organization in a TWS 

As shown in the diagram, the broker overlay for this TWS is designed as follows: 

1. Each cluster follows the H-E broker overlay design, i.e., there are one head and 

several edges. The head and edge brokers are federated unidirectionally, i.e., 

messages are only routed from head to edges. 
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2. Different clusters are federated through head brokers.  

3. Each cluster has a set of pre-defined neighbour clusters that are directly connected: 

a) Between national tsunami warning centre and the regional tsunami warning 

centre, e.g., between NTWC1 and RTWC1; 

b) Between national tsunami warning centre and its observation region, e.g., 

between NTWC1 and Loc.1a; 

c) Between national warning centres that need to share information for decision-

making, e.g., between NTWC1 and NTWC2. 

4. When messages needs to be disseminated between clusters that are not directly 

connected, another message dissemination route needs to be determined according 

to the advertising and subscribing process described in Section 2.3. 

4.3 Distributed Management Agent 

As specified in Section 2.4, a LM is required to provide load management for PSMOM. 

LMs can be classified into internal and external to the broker. An internal LM requires 

modifying brokers to support load detection, analysis, and offloading functions; an 

external LM is an extra component, which is not part of a broker but able to monitor 

and analyse the load state of broker via a message-based network link. The former 

method requires a modification to the brokers and therefore is harder to maintain than 

the latter one. In the thesis, an external LM to the broker named a management agent 

(MA) is used. For the H-E broker overlay, each broker is managed via an MA. The MA 

that manages a head broker is named a Head MA (HMA), while the MA that manages 

an edge broker is named an Edge MA (EMA). It is the same as for the H-E broker 

overlay: an EMA is only allowed to communicate with HMA of its cluster, while an 

HMA is able to communicate with all EMAs in its cluster and with the HMAs of other 

clusters. Communication between MAs is accomplished using MOM messages, 

exchanged through the management brokers. The management brokers that manage the 

message exchange run aside from their corresponding head or edge brokers. For 

example, the management broker used by the EMA of an edge broker E1, e.g., E1m, 

runs on the node that hosts E1. In this thesis, the basic broker used is an open source 

release of Qpid (version 0.18) that speaks AMQP. Therefore, in this design, all the 

message exchange processes through a broker follow a subset of AMQP, as some of 
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AMQP functions such as type-based matching and subject-based matching are 

considered irrelevant. The broker architecture is described in Section 2.2.2. 

4.3.1 Components of Management Agent 

Table 4-1 shows a summary of how HMA and EMA perform in the load management 

life cycle, i.e., load detection, load distribution, load analysis, and offloading. 

 HMA EMA 

Load 

Detection 

Periodically detects the load status of head 

Broker 

Periodically detects 

load status of the 

corresponding edge 

broker 

Collects and records the load status of all 

edge brokers in the same cluster 

Calculates the cluster-level load status and 

shares it among neighbour clusters 

Records the load status of the load in 

neighbouring clusters 

Load 

Distribution 

When it receives a client registration request, 

it assigns a head broker to a publisher and an 

edge broker to a subscriber following a 

distribution policy (Section 4.4.1) 

N/A 

Load 

Analysis 
Estimates the load influence of publishers 

Estimates the load 

effects of subscribers 

Offloading 

When head broker becomes overloaded, it 

locates the load-accepting broker and then 

selects and migrates publishers to it 

When an edge broker 

becomes overloaded, 

it locates the load-

accepting broker, 

selects clients for 

migration and sends a 

request to its HMA 

When offloading request is received from an 

EMA, it updates the load state of both 

overloaded and load-accepting edge brokers  

Notifies a selected subscriber to migrate to 

the load-accepting edge broker 

Table 4-1 HMA and EMA for Load Management in H-E Broker Overlay 

As is specified in Table 4-1, HMA performs additional functions compared to EMA. 

However, in practice, each edge broker and EMA are designed to be able to become a 
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head broker and HMA respectively when the original head becomes unavailable7 . 

Therefore, HMA and EMA have the same load management components but these 

components perform different functions with respect to the types of the MA. Figure 4-4 

shows an example of the load management components for HMA and their interaction. 

The functions of each component for both HMA and EMA are described in details as 

follows. 

 

Figure 4-4 Load Management Components for an HMA 

The Overlay Manager (OM) has two modules, named MA module and client module. 

The MA module is used for both EMA and HMA, which is used to exchange 

information between MAs. It provides the following functions. First, it is used for 

EMAs of the same cluster to update the load status of corresponding edge brokers to 

the HMA, so that the HMA obtains the load status of all the edge brokers in the cluster. 

Second, it is used by a HMA to forward the load status update from an EMA to the 

other EMAs in the same cluster, so that all the EMAs in the same cluster have the load 

status of all the edge brokers. Third, it is used by a HMA to receive load status update 

                                                 

7 The switchover function is considered out of the scope for load management and thus the detail is not described. 
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from HMA of neighbor clusters and to notify the HMAs of other neighbor clusters. The 

client module is only used by HMA, which is used to communicate with publishers and 

subscribers. Through the client module, HMA receives registration request from both 

publishers and subscribers, assigns brokers to them, receives feedbacks from 

subscribers, notifies them to migrate from one broker to another, and informs the 

publishers to publish less messages.  

Load Detector (LD), Load Analyser (LA), and Load Balancer (LB) work together to 

detect and balance the load between brokers, i.e., to provide DRD-LB for H-E broker 

overlay. For both HMA and EMA, LD periodically retrieves the broker’s load 

information to detect the load state and reports this to its LA (Section 4.4.1). In addition, 

for LD in EMA, it notifies OM to update the monitored load state to an HMA. HMA 

then obtains the load status of all the edge brokers, which is the basis of the load 

distribution process (Section 4.4.2). A LA of a HMA profiles the load distribution for 

publishers. A LA of an EMA profiles the load distribution for subscribers (Section 

4.4.3). Whenever an overload is detected, a LD invokes the LB to start to balance the 

load, via offloading (Section 4.4.4). The main difference between LB in a HMA and an 

EMA is that the latter one does not notify the OM to migrate selected subscribers but 

to update the offloading clients’ information to the HMA to let HMA starts the 

migration. The main reason for this design is to make the client-MA interaction simpler, 

i.e., both publishers and subscribers only interact with HMA. The details of the load 

detection, load distribution, load analysis and offloading processes are described in 

Section 4.4. 

Utility Analyser (UA), Speed Analyser (SA), and Topic Selector (TS) are only used by 

HMA to supplement the DRD-LB method by providing a FDCC support to manage 

load in the limited resource case. UA analyses the utility of publishers, utility of topics, 

and importance of topics based upon the utility of messages measured by the matched 

subscribers. SA computes the max publishing rate for each publisher according to its 

utility value. TS is invoked when there is no available capacity to balance load for the 

overloaded broker in the entire PSMOM system. This congestion situation is detected 

via the LD component. TS then limits the publishing rate to any publisher for any 

publishing topic according to its importance value. The rate limit information is sent 
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through the OM to the corresponding publishers. The details of this FDCC model are 

described in Chapter 5. 

4.3.2 Construction of a Head-Edge Broker Overlay 

Another important function of an MA is to construct the H-E broker overlay. An OM 

is able to receive client registrations and communicates these with an OM in another 

MA. The H-E broker overlay is then constructed based upon this.  

Each MA is designed to manage the life cycle of its corresponding brokers, i.e., the 

management broker used to exchange control messages between MAs and the data 

broker used to exchange data messages. The reason to introduce an extra management 

broker is to reduce the load caused by exchanging control messages, such as client 

migration notification and offloading request, to the data broker. Each MA starts and 

can restart the brokers using command scripts. In addition, as MAs have the same 

interaction restriction as the H-E broker overlay, an EMA needs to know the 

information of the management broker of the HMA, while a HMA needs to know the 

information of the management broker of HMA in neighbouring clusters. Such 

information is pre-defined in an MA configuration file and is retrieved by MA when it 

is initialised.  

The role of broker and the interlinked state are specified in a configuration file. The 

“brokerType” property defines the type of a broker, e.g., a head broker or an edge broker, 

as well as the type of the MA, i.e., HMA for head broker and EMA for edge broker. 

For example, in a configuration file, if the value of “brokerType” property is head, it 

means that when any MA initiated using this configuration file, it behaves as an HMA. 

The HMA then starts the head broker and head management broker using the broker 

information list in the configuration file. Similarly, if the value of the “brokerType” 

property is edge, it means that the related MA and broker are EMA and edge broker 

respectively. In an EMA configuration file, it is also necessary to specify the IP address 

and port of its corresponding management broker for HMA. In an HMA configuration 

file, the HMA management broker information regarding neighbouring clusters is also 

included. In order to understand the configuration file better, and how to update it, an 

example file for an HMA is given in Figure 4-5. 



36 

 

Figure 4-5 Configuration File for an HMA 

As shown in Figure 4-5, there are two brokers running in the node with IP 138.37.94.94: 

a head broker and a head management broker. The management broker is used to 

exchange control messages between the HMA and EMAs in the same cluster, between 

HMA and publishers and subscribers in the same cluster, and between HMA and HMAs 

in neighbour clusters. When an HMA, denoted as HMAs, is initialised with this 

configuration file, it first loads the broker information from its configuration file and 

starts the corresponding head broker and head management broker. It then retrieves the 

information of management head broker for any neighbouring cluster and publishes a 

registration MOM message, which is used to notify a neighbouring HMA, denoted as 

HMAn that it has gone online. This registration process follows a request/reply 

interaction pattern, which means that HMAs waits for a confirmation messages from 

HMAn within a given time period. If the confirmation message is received within this 

period, HMAs records the state of the neighbour cluster as online; otherwise, the state 

is recorded as offline. Alternatively, when a HMAn receives a registration message, it 

records the state of the cluster where HMAs belongs to, as online, and publishes a 

registration confirmation message back to the HMAs to indicate that the registration 

message is received and the state is updated. With this step, both HMAs and HMAn 

obtain the information that the neighbour cluster has gone online. It is then able to 

exchange messages such as publishing advertisement messages. 

Figure 4-6 gives an example of an EMA configuration file in the same cluster. The 

configuration file shows that the management broker of HMA locates in the same 

cluster as the EMA, i.e., it runs in a server with an IP address of 138.37.94.94. The port 

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"> 

<properties> 

<comment>This file contains the data that allows elements in the system to 

know where to find other elements in the system.</comment> 

 <entry key="clusterID">WP7_dataCenter</entry>  

 <entry key="mode">H-E</entry>  

 <entry key="brokerType">head</entry>  

 <entry key="brokerIP">138.37.94.94</entry> 

 <entry key="brokerPort">5672</entry>    

 <entry key="brokerJMX">8999</entry>  

 <entry key="brokerMgrPort">5673</entry>  

 <entry key="numOfNeighbours">1</entry> 

 <entry key="neighbourDomain1ID">WP7_drillingSite</entry> 

 <entry key="neighbourDomain1HeadBrokerIP">138.37.94.93</entry> 

 <entry key="neighbourDomain1HeadBrokerMgrPort">5673</entry> 

</properties> 
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used by the management broker of HMA is 5673. Meanwhile, an edge broker and an 

edge management broker are running with an IP address of 138.37.94.90. The edge 

management broker is used for message exchange between EMA and HMA. After the 

EMA is started, it first sends a registration message to the HMA of its cluster following 

a similar request/reply approach as described above for HMAs.  

 

Figure 4-6 Configuration File for an EMA 

After all the MAs have started, each MA has the knowledge of their neighbouring MAs, 

based upon these configuration files. It is assumed that the broker overlay remains 

stable using standard fault-tolerance techniques such as broker mirroring and link 

replication.  

When a new client joins the system, i.e., it registers with the OM of HMA. OM then 

follows the advertising and subscribing processes described in Section 2.3 to set up any 

federations as required. For example (Figure 4-3), when a publisher in RTWC1 needs 

to publish warning messages and there are subscribers in Loc. 1a that subscribe to the 

same topic, the message dissemination route is established as follows. 

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"> 

<properties> 

<comment>This file contains the data that allows elements in the system to 

know where to find other elements in the system.</comment> 

 <entry key="clusterID">WP7_dataCenter</entry>  

 <entry key="mode">H-E</entry>  

 <entry key="brokerType">edge</entry>  

 <entry key="headBrokerIP">138.37.94.94</entry> 

 <entry key="headBrokerMgrPort">5673</entry>  

 <entry key="brokerIP">138.37.94.90</entry> 

 <entry key="brokerPort">5675</entry>    

 <entry key="brokerJMX">9002</entry>  

 <entry key="brokerMgrPort">5676</entry>   

</properties> 
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Figure 4-7 Advertising Process 

Figure 4-7 shows an example of the advertisement process. After all the clusters have 

been initialised, when publisher p with unique ID p1 and topic t1 registers with the 

HMA of RTWC1, the HMA checks its local publishing topic list (PTL) to detect 

whether the topic has been advertised. If the topic is a new one, the HMA then records 

the topic into the PTL and starts to advertise the topic information to all its neighbours 

(HMAs of NTWC1, NTWC2, and NTWC3) with an advertisement message (ADV). 

The ADV includes the topic information, the ID of the head broker HMA that starts the 

advertisement (e.g., HNTWC3, called the bypass broker), and the source broker, to which 

the publisher connect (e.g., HRTWC1). When an HMA, e.g., HMA of NTWC3, receives 

the advertisement, it checks the topic and source broker information in its local 

advertisement table (ADT), to determine whether this ADV has been received. If such 

information for the received ADV is the same as that recorded, this ADV is marked as 

an “old” one and discarded. If this ADV is a new one, the HMA then records the advised 

information into the ADT. It further generates a new ADV that replaces the bypass 

broker information with the local head broker, e.g., it updates the ADV(t1, HRTWC1, 

HRTWC1) to ADV(t1, HNTWC3, HRTWC1), and sends this new ADV to the HMAs of their 

neighbours, except to the HMA, from which the original ADV is received, e.g., HMA 

of RTWC1. Each HMA involved in the advertising process follows the above step to 

spread the ADV to its neighbours. For any HMA that receives an ADV more than once, 



39 

(e.g., HMA of NTWC2 in the above example), they ignore the duplicate one because it 

has a higher transmission delay. Figure 4-8 presents pseudo code of how an HMA 

performs when an advertisement message is received. 

 

Figure 4-8 Pseudo Code of Advertising Process 

After this advertising process, the ADT of each HMA has been updated. It means that 

the neighbour clusters involved in the broker overlay is able to route messages under 

the advertisement topic t1. In addition, the PTL of HMA in RTWC1 has recorded the 

-------- HMA that receives registration from a new publisher ------------- 

BEGIN 

Let “t” = the publication topic of the new registered publisher 

Let “hp” = the head broker assigned to the publisher 

If “t” is a new topic 

Then 

 Set ADV message with topic = “t”, brokerbypass = “hp”, brokersrc = “hp”  

For each HMA of neighbour cluster (nHMA) 

  HMA publishes the ADV message to nHMA 

End Loop 

Endif 

END 

 

----------- HMA that receives ADV messages from neighbour HMA ------------ 

BEGIN 

Let “ADVrecv” = ADV message received 

Let “t” = topic recorded in “ADVrecv”, “bbypass” = brokerbypass recorded in “ADVrecv”, “bsrc” 

= brokersrc recorded in “ADVrecv” 

Let “h” = the head broker of this cluster 

If the advertisement table “ADT” contains “t” 

Then 

 Retrieves existing source broker from the records (bsrc’) 

 If “bsrc” is different from Bsrc
’ 

 Then 

  ADT updates the existing record with “t” by adding “bbypass” and “bsrc” 

 Else 

  Goto END 

 Endif 

Else 

 ADT adds a new record with “t”, “bbypass, and “bsrc” 

Endif 

Set “ADVout” = “ADVrecv(t,h,bsrc)” 

For each nHMA 

 Let “head” = the head broker of the nHMA 

 If “head” is different from any Bbypss in the ADT records for topic “t” 

 Then 

  Publishes “ADVout” to nHMA 

 Else 

  Continue 

 Endif 

End Loop 

End 
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topic t1 that has been advertised, while the PTLs of the remaining brokers are empty. 

The PTL and ADT information of the broker overlay is shown in Figure 4-9. 

 

Figure 4-9 PTL & ADT of Broker Overlay after Advertisement 

When a subscriber s that subscribes to topic t1 joins the system, e.g., it registers with 

HMA belonging to Loc. 1a, the HMA checks its ADT and notifies the head broker 

Hloc.1a to set up a subscription to its neighbour head broker that advertises topic t1 to 

this cluster, e.g., HNTWC1. This subscription is set along the reverse advertisement path 

and reaches HRTWC1, to which the matched publisher is connected.  
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Figure 4-10 Subscribing Process 

Figure 4-10 shows an example of subscribing process. In this figure, the solid arrows 

indicate the subscription flows, i.e., from s to the edge broker in cluster Loc. 1a, denoted 

as Eloc.1a, from ELoc.1a to HLoc.1a, from HLoc.1a to HNTWC1, and from HNTWC1 to HRTWC1. 

The subscribing process takes place for two difference cases. First, an advertisement 

message is received, in which the topic has been subscribed by some local subscribers. 

Second, a new subscriber joins the system and subscribes to a topic that has already 

been advertised by other HMAs. The procedure for both cases are the same. The 

following pseudo code describes the new subscriber case as an example to illustrate 

how the subscribing process works, as shown in Figure 4-11. 
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Figure 4-11 Pseudo Code of Subscribing Process 

Other message dissemination routes are also established by following the above steps. 

The messages exchanged between MAs for advertising and subscribing processes use 

the standard broker publish/subscribe paradigm, i.e., an MA acts as a publisher when it 

advertises new topics to any neighbour MAs and acts as a subscriber when it receives 

advertisements from any neighbour MAs. Similarly, when a new subscription needs to 

be propagated through the overlay, the source MA acts as a publisher to update the 

----- HMA receives a registration from a new subscriber ----- 

BEGIN 

Let Mr  = registration message received by an HMA 

Let t = the topic of the registered subscriber retrieved from Mr 

Let E = the edge broker assigned to the subscriber 

Let H = the head broker of the cluster 

Let T<topic,Edge> = a map that records the topic to Edge information 

Update T with a new record <t,E> 

Set a new federation F<H,E,t> 

If ADT contains “t” 

Then 

 Let Sbypss = the set of Bbypass for topic “t” 

 For each Bbypass in Sbypass 

  Let nHMAb = the corresponding HMA for Bbypsss 

Let Mreq<Breq,Bsrc,topic> = the subscription request including the request 

broker, source broker and topic 

Sends Mreq<H,Bbypass,t> to nHMAb 

 End Loop 

Endif 

End 

 

---- HMA that receives subscription request from neighbour HMA---- 

BEGIN 

Let Mreq = the subscription request message 

Let treq = topic retrieved from Mreq 

Let Breq = request broker retrieved from Mreq 

Let Bsrc = source broker retrieved from Mreq 

Let H = the head broker of the cluster 

If Bsrc == H 

Then 

 Set a new federation F<H,Breq,treq) 

Else 

 Set a new federation F<H,Breq,treq) 

 If ADT contains “treq” 

 Then 

  Let Sbypss = the set of Bbypass for topic “treq” 

  For each Bbypass in Sbypass 

   Let nHMAb = the corresponding HMA for Bbypsss 

Let Mreq’<Breq,Bsrc,topic> = the subscription request including the request broker, 

source broker and topic 

Sends Mreq’<H,Bbypass,t> to nHMAb 

  End Loop 

 Endif 

Endif 

End 
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subscription information to the neighbour MA that has advertised the corresponding 

topic. By following the above steps, the broker overlay and all its federation paths are 

set up.  

This H-E broker overlay construction method also provides the opportunity for adding 

a new edge broker or cluster after the overlay has been constructed. EMA of the new 

edge broker or HMA of the new cluster only needs to send registration information to 

the corresponding HMAs. The limitation of this method is that it requires the broker 

connection information stored in the configuration file to be valid. Any update to the 

configuration file requires a restart for the corresponding MA and its brokers. Therefore, 

to ensure the broker overlay construction are valid, some overlay model checking 

algorithms or tools [80-82] can be applied.  

4.4 Design of DRD-LB 

A DRD-LB tends to balance the load for the H-E broker overlay in the surplus resource 

case. It takes the end-to-end transmission delay requirement for different subscription 

services into consideration, with an aim to reduce unexpected delays to the time-critical 

message exchange services. DRD-LB follows the same load management procedure 

specified in Section 2.4, which involves the processes of detecting the load states of 

brokers (load detection), distributing the load among available brokers (load 

distribution), analysing the load influence for each subscription service (load analysis), 

and migrating loads from overloaded brokers to the ones with less loads (offloading). 

The following is an overview of each process in DRD-LB. 

 Load detection detects the load states of brokers. The load state of a broker is 

determined via periodically measuring the predefined load metrics of the broker and 

comparing them to corresponding thresholds. The details of the load detection 

design can be found in Section 4.4.1. 

 Load distribution works when a subscriber registers with an HMA. HMA then uses 

an algorithm to select an edge broker and allocates it to the subscriber. This load 

distribution process aims to prevent a broker from becoming overloaded to avoid 

unnecessary load balancing by optimising the distribution of subscribers. The 

details of the load distribution design can be found in Section 4.4.2. 
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 Load analysis is part of the offloading process. It is the process of analysing the 

load influence of individual publishers and subscribers, e.g., it analyses the 

influence of each subscriber for each load metric specified for each edge broker. In 

addition, it generates a prioritised offloading list for each load metric when an 

overload is detected. The details of the load analysis design are presented in Section 

4.4.3. 

 Offloading happens when a broker becomes overloaded. It is accomplished by three 

steps: locating load-accepting broker(s), selecting clients to offload, and notifying 

the selected clients to migrate from the overloaded broker to load-accepting 

broker(s). Assuming that for the surplus resource case, brokers within each cluster 

can be added or removed automatically, on demand, the offloading process initially 

tends to be accomplished within the same cluster (named intra-cluster offloading). 

Only if all the available resources within a cluster are fully used, does offloading 

between clusters, named inter-cluster offloading, take place. The details of the 

offloading design are presented in Section 4.4.4.  

In DRD-LB, it is further assumed that all the subscriptions belong to the same topic 

have the same delay requirement. In addition, in order to satisfy the end-to-end delay 

requirements specified by subscribers, subscribers are assumed to have enough network 

bandwidth capacity to receive all the matched publication messages. Thus, the 

corresponding queues in edge broker will be built up only when the network bandwidth 

of the broker is already fully used up. 

4.4.1 Load Detection 

Broker overload needs to be defined. Here, an Apache Qpid broker (see Figure 2-1) is 

used as an example. It is assumed that when a broker meets any of the following 

conditions, the broker is overloaded.  

1) When the messages published exceed the total available download bandwidth (or 

input bandwidth) capacity of the broker, the throughput of the broker reaches its 

limit. 

2) When messages received exceed the total matching capacity that the broker 

provides, i.e., input queue is built up to temporarily to host the messages that have 

been received but not processed. 
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3) When messages sent to subscribers exceed the total available upload bandwidth 

(or output bandwidth) capacity of the broker, the message output queue is built 

up temporarily to host the messages for the matched subscribers. 

In order to detect accurately the load state of a broker, the load metrics and 

corresponding thresholds are specified for the head broker and edge broker respectively. 

4.4.1.1 Load Detection Metrics 

The main tasks of a head broker are defined as follows. First, it routes messages from 

head brokers of neighbour clusters and from local publishers to edge brokers within the 

same cluster that serve any matched subscribers. Second, it routes messages from local 

publishers to head brokers of neighbour clusters that have set up related federation paths. 

A head broker is less likely to be overloaded for doing the matching work as no 

subscribers connect to it [7]. Therefore, the load state of a head broker is mainly affected 

by the network bandwidth utilisation. An edge broker does much more matching work 

as it serves all the subscribers. Therefore, the load introduced by the matching process 

needs to be monitored.  

Load Metric Description Head Broker Edge Broker 

Ui 

Input bandwidth 

Utilisation 
∑ 𝜆𝑡

𝑡∈𝑇
𝐶𝑖⁄  

Uo 

Output bandwidth 

Utilisation 
∑ 𝜇𝑡

𝑡∈𝑇
𝐶𝑜⁄  

Um Matching Utilisation N/A ∑ 𝜎𝑡
𝑡∈𝑇

𝐶𝑚⁄  

Table 4-2 Load Metrics for Head Broker and Edge Broker 

Table 4-3 lists the load metrics used for head broker and edge broker. Ui, Uo and Um 

are the utilisations for the input bandwidth, output bandwidth and matching capacity 

respectively. In addition, λt is the message-received rate in bytes/s for topic t. μt is the 

message output rate in bytes/s for topic t. T is the topic set for which the broker serves. 

σT specifies the number of message being exchanged for on topic t. The capacity for 

input bandwidth, output bandwidth and matching are denoted as Ci, Co, and Cm 

respectively. Among these parameters, 𝜆𝑡 , 𝜇𝑡 , and 𝜎𝑡  are measured during the 
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operation time, i.e., the load detector periodically retrieved the value of these three 

parameters from the monitored broker. Cm is computed before the broker through 

factorial experiments and is assumed static. Ci and Co are periodically measured using 

the Ping command. The detection period can be set from seconds to minutes. A shorter 

load detection period leads to a better in-time load detection but also introduces more 

communication overhead to the system. In a TWS, it is required that there is a fast 

system response to an overload. Therefore, detection occurs every second. In addition, 

in order to avoid unexpected jitter in the underlay network, which may cause a sudden 

increase and decrease in load, a weighted average method is introduced to get an 

average measurement to replace the instant measurements, i.e., ∑ 𝑤𝑖 ∗ 𝑣𝑖
𝑁
𝑖=1 𝑁⁄ . N is 

the window that defines how many measurements are used, vi is the instant 

measurement for each time, and wi is the weight set for each measurement. As TWS 

requires in-time load detection, N is set to two; the weights for the two measurements 

are set to 0.3 and 0.7 respectively. These values are modified to adapt to the network 

state, e.g., when the network becomes very unstable, the window size is set to a larger 

number such as 5 or 10. 

4.4.1.2 Load State Determination 

In this design, three different load states, LOW LOAD, HIGH LOAD, and 

OVERLOAD are introduced with two threshold values. The lower threshold indicates 

whether the broker has the ability to accept more subscriptions while the higher one is 

used to determine whether the broker is overloaded or not. This design is based upon 

[7]. LOW LOAD means that the broker’s load is low and able to accept extra load, e.g. 

more subscriptions, as a load acceptor. HIGH LOAD means that the broker has enough 

work and is no longer available to accept more subscriptions until it goes back to LOW 

LOAD. OVERLOAD means that the broker is overloaded and needs to transfer load to 

another broker(s) with a LOW LOAD.  

 

Figure 4-12 Load State Transfer 
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Figure 4-12 shows how the three load states relate to each other. The dashed arrow 

pointing right indicates an increase in load in the broker caused by an increase of 

publishing rate, or an increase of number of subscribers, etc. The solid arrow pointing 

left shows a load decrease inside the broker. Load balancing decreases the load of a 

broker with state OVERLOAD. In addition, a BUSY load state is used to label the 

brokers that are involved in the offloading process, which means a broker’s load state 

is unstable at that moment. 

The higher the value, the HIGH LOAD threshold (lower threshold) is set to, e.g., 99% 

Matching Utilisation, the more system resources that can be used. However, a broker 

may become overloaded before it can do any offloading. The magnitude of the 

difference between the lower and higher threshold controls the efficiency of load 

balancing and the level of the load imbalance between brokers. For example, a small 

difference, e.g., 1%, reduces the load imbalance between brokers but makes brokers 

more likely to enter OVERLOAD from HIGH LOAD, which may result in endless 

offloading cycles [7]. Thus, static thresholds are adopted and the value of higher and 

lower threshold are set as THlow = 0.9 and THhigh = 0.95 respectively. 

4.4.1.3 Load State Update 

The LD periodically detects the load state of its broker. When the load state is detected, 

EMA sends a load state update to HMA, which contains the current load state of the 

broker and the estimated remaining capacity for each load metric. The remaining 

capacity is estimated as (THhigh – corresponding utilisation) * corresponding capacity. 

For instance, if the inBW utilisation Ui = 40%, input bandwidth of the broker is 

5000KB/s, THhigh = 90%, the remaining capacity for inBW is estimated to be (0.9 – 0.4) 

* 5000 = 2500KB/s. This means the broker cannot accept message exchange above 

2500KB/s according to the inBW Utilisation metric. EMA further compares the 

remaining capacity estimated for inBW utilisation, matching capacity utilisation, and 

outBW utilisation, the smallest one is used as the available remaining capacity and is 

reported to HMA. 

When a HMA receives such information, it records the load state of the broker, the 

corresponding remaining capacity for each load metric and the estimated available 

remaining capacity. In addition, HMA prioritises the edge brokers according to the 



48 

available remaining capacity. The edge broker that has the maximum available 

remaining capacity has the highest priority to be allocated to a new subscriber client 

(the second load distribution principle defined in Section 4.4.2). In addition, when there 

are edge brokers that are in LOW LOAD state within the cluster, the load status of the 

cluster is set to be LOW LOAD. The total available remaining capacity of the cluster 

is also estimated for the edge and head brokers respectively. For the head broker, it is 

the available remaining capacity, while for edge brokers, it is estimated as the sum of 

the available remaining capacity for all the edge brokers in the cluster.  

4.4.2 Load Distribution 

In practice, it is necessary to avoid the overload problem by optimising the load 

distribution. With an H-E broker overlay, as all the publishers are assigned a head 

broker, load distribution focuses on how to assign brokers to subscribers.  

In DRD-LB, the load distribution process is designed to address the following concerns. 

First, unnecessary network utilisation should be avoided in order to reduce the load of 

the cluster. Second, the broker that has the lowest chance to be overloaded should be 

assigned to a new subscriber. Third, regarding the delay requirements, the broker that 

has the lowest transmission delay to the subscriber should be assigned a new subscriber. 

Based upon these, the load distribution is designed according to the following principles: 

1) Subscribers to the same topic are allocated to the same broker to avoid unnecessary 

network bandwidth utilisation, as the same message needs no longer to be routed 

to different edge brokers [7], which occupies N (the number of brokers that host 

subscribers with the same topic) times the bandwidth required.  

2) Least-Capacity Utilisation Scheduling: if the cluster is deployed in a LAN 

environment, it is assumed the broker that has the most remaining capacity is 

considered with the least chance to be overloaded and thus, subscribers with new 

topics are allocated to those brokers whose capacity is least utilised. 

3) Least-Distance Scheduling: if the cluster is deployed in a WAN environment, 

subscribers with new topics are allocated to brokers that are available to accept 

load (LOW Load state) and have the lowest transmission delay for message 

exchange with subscribers. In general, the brokers are the ones situated closest to 

a subscriber. This algorithm ensures that the subscriber has the lowest transmission 
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delay to the broker it initially connects to. It is used when brokers in a WAN 

environment are distributed across a large physical area, e.g., across different 

countries, covering the region being monitored (see Section 4.2).  

The pseudo code of the load distribution principles is shown in Figure 4-13:  

 

Figure 4-13 Pseudo Code of Load Distribution 

4.4.3 Load Analysis 

Load analysis is achieved with the LA component. An LA aims to estimate and profile 

the load distribution for individual clients served by a broker, and to prioritise 

offloading clients according to the load metrics that cause the overload problem. 

BEGIN 

Let Mr = the registered message 

Let Ctype = the type of the client retrieved from Mr, e.g., a sub or a pub 

Let Mres = the response message sent to the subscriber with assigned broker 

If Ctype == “sub” 

Then 

 Let t = the topic of the subscriber from Mr 

Let St = the set of topics that are subscribed by current subscribers 

If St contains t 

Then 

Let E = the edge broker information assigned for the existing subscribers 

subscribing to t 

Update Mres with E 

Send Mres back to subscriber 

 Else 

  Let Sb = the set of edge brokers in LOW LOAD state 

  If the cluster is in LAN 

  Then 

Let E = the edge broker that has the most remaining capacity 

Update Mres with E 

Send Mres to client registered 

  Else 

Let E = the edge broker that is closest to the subscriber 

Update Mres with E 

Send Mres to client registered 

  Endif 

 Endif 

Else 

 Let H = the head broker of the cluster 

 Update Mres with H 

 Send Mres to client registered 

Endif 

END 
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4.4.3.1 Load Distribution Estimation 

Load distribution estimation aims to generate load distribution profiles. Here the load 

utilisation for each load metric for each topic and each client served by the monitored 

broker, e.g., publishers for head broker and subscribers for edge broker, are estimated 

and recorded.  

Term Description Expression 

𝑈𝑖
𝑡

 inBW Utilisation for topic t 𝜆𝑡 𝐶𝑖⁄  

𝑈𝑜
𝑡 outBW Utilisation for topic t 𝜇𝑡 𝐶𝑜⁄  

𝑈𝑚
𝑡  Matching Utilisation for topic t 𝜎𝑡 𝐶𝑚⁄  

𝑈𝑖
𝑝

 inBW Utilisation for publisher p on topic t 
𝜆𝑝

𝜆𝑡
𝑈𝑖

𝑡 or 𝜆𝑝 𝐶𝑖⁄  

𝑈𝑜
𝑝
 outBW Utilisation for publisher p on topic t 0 

𝑈𝑚
𝑝

 Matching Utilisation for publisher p on topic t N/A 

𝑈𝑖
𝑠

 inBW Utilisation for subscriber s on topic t 0 

𝑈𝑜
𝑠

 outBW Utilisation for subscriber s on topic t 
𝜇𝑠

𝜇𝑡
𝑈𝑜

𝑡   or 𝜇𝑠 𝐶𝑜⁄  

𝑈𝑚
𝑠

 Matching Utilisation for subscriber s on topic t 0 

Table 4-3 Load Estimation Policy 

Table 4-3 shows the load estimation policies. 𝑈𝑖
𝑡, 𝑈𝑜

𝑡, and 𝑈𝑚
𝑡  stand for the estimated 

utilisation for input bandwidth, output bandwidth, and matching capacity for topic t 

respectively. In addition, the inBW Utilisation, outBW Utilisation, and matching 

Utilisation for publisher p and subscriber s are estimated. The reason why 𝑈𝑜
𝑝
, 𝑈𝑖

𝑠, and 

𝑈𝑚
𝑠

 are set to zero is that only when all the clients (both publisher and subscriber) 

belonging to topic t have been migrated to another broker, is the utilisation for that 

broker’s load metric updated. As specified, matching utilisation is not considered in 

head broker and thus 𝑈𝑚
𝑝

 is not measured. LA repeats the above processes for all the 

topics and the clients to generate load distribution profiles. 

4.4.3.2 Offloading Clients Prioritization 

In this design, clients for the same topic are treated as a (client) bundle in the offloading 

process, i.e., they are either migrated together to the load-accepting broker or kept 

together in the overloaded broker. Only if the load-accepting broker cannot accept any 
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bundle of clients, are these clients dealt with separately. Different clients are prioritised 

according to the load metric that causes the broker to be overloaded. This is used in the 

client selection process in the offloading phase, i.e., when LB selects client for 

offloading, the ones with higher priority are first considered. The principles to prioritise 

publishers and subscribers are described as follows, according to the load metrics in 

head broker and edge broker respectively. 

 Prioritise Publishers for Head Broker 

In a head broker, according to where the matched subscribers are located, publishers of 

different topics can be categorised into four groups, Pr, Pl, Pr-l, and Pn, as shown in Table 

4-4. 

Type Description 

Pr 

The topics published are only subscribed to by remote subscribers, which are 

served by other (or remote) clusters. 

Pl 

The topics published are only subscribed to by local subscribers, which are 

served by the same cluster as that for the publishers. 

Pr-l The topics published are subscribed to by both local and remote subscribers. 

Pn The topics published have no subscriptions. 

Table 4-4 Publisher Classification 

Table 4-5 shows the different offloading priorities for publishers in a head broker. If 

the head broker becomes overloaded due to a high inBW utilisation, the priority of all 

publishers is Pn > Pr > Pr-l > Pl. If the overload problem is caused by a high outBW 

utilisation, the priority relationship becomes Pr > Pr-l > Pl > Pn. The difference between 

the two is affected by the location of Pn, as migrating publishers with no subscribers 

cannot reduce the outBW utilisation but can only reduce the inBW utilisation.  

Overload Metric Priority 

Ui Pn > Pr > Pr-l > Pl 

Uo Pr > Pr-l > Pl > Pn 

Table 4-5 Inter-Cluster Offloading Priorities for Publishers in Head Broker 

In addition, for each type of publisher, the publishers for different topics have different 

priority depending on the delay requirements. Since the offloading process introduces 
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delays to the topic being exchanged, publishers with a more delay sensitive topic have 

a lower priority to be selected for offloading, i.e., they are less likely to exceed the delay 

requirements. 

 Prioritises Subscribers for Edge Broker 

In each edge broker, similar to that in head broker, subscribers to different topics are 

categorised into groups Sr, Sr-l, Sl and Sn, as shown in Table 4-6. 

Type Description 

Sr 

The topics subscribed to are only published by remote publishers, which are 

served by other (or remote) clusters. 

Sl 

The topics subscribed to are only published by local publishers, which are 

served by the same cluster as that for the subscribers. 

Sr-l The topics subscribed are published by both local and remote publishers. 

Sn The topics subscribed have no publishers 

Table 4-6 Subscriber Classification 

In contrast to the publishers in a head broker, a subscriber may encounter two different 

types of offloading, intra-cluster and inter-cluster. Table 4-7 shows the different 

offloading priorities for subscribers in an edge broker for both intra-cluster offloading 

and inter-cluster offloading.  

Overload Metric 
Priority 

Intra-Cluster Inter-Cluster 

Ui 

Sl = Sr = Sr-l > Sn Sr > Sr-l > Sl > Sn Uo 

Um 

Table 4-7 Intra-Cluster and Inter-Cluster Offloading Priorities for Subscribers 

in an Edge Broker 

In intra-cluster offloading, the subscribers of type Sl, Sr and Sr-l have the same priority 

to be selected. The reason is that, for these three types of subscribers, no matter what 

subscribed topic is published by local publishers or remote publishers, the messages are 

always routed from head broker to the edge broker, to which the subscribers connect. 

Thus, migrating any of these subscribers reduces the utilisation value for the 
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corresponding overload metric. In contrast, migrating subscribers that have no matched 

publisher does not reduce the utilisation of the overload metric. Thus, Sn has the lowest 

priority to be selected for offloading. For inter-cluster offloading, which is similar to 

the offloading of head brokers, the priority follows Sr > Sr-l > Sl > Sn for all the metrics. 

For each type of subscriber, different topics are also prioritised depending on the delay 

requirements. A higher delay tolerant topic has a higher priority to be selected for 

offloading.  

4.4.4 Offloading 

When an overload is detected, offloading takes place. If a head broker becomes 

overloaded, offloading occurs amongst head brokers in different clusters by migrating 

publishers from an overloaded head broker to head brokers with less load. If an edge 

broker becomes overloaded, offloading first takes place within the same cluster, named 

intra-cluster offloading. Only if there is no available load-accepting broker in this 

cluster is inter-cluster offloading triggered, i.e., no brokers are in a LOW LOAD state, 

or the available load-accepting brokers have insufficient capacity to aid an overloaded 

broker to recover while in its OVERLOAD state. Both offloading processes follow a 

similar three-step offloading strategy, i.e., load-accepting broker locating, client 

selection, and client migration.  

4.4.4.1 Intra-Cluster Offloading 

The intra-cluster offloading only occurs amongst edge brokers. A three-step offloading 

strategy is described in the following sub-sections. 

 Locating the Load-Accepting Broker  

As is specified in Section 4.4.1.3, the load state is periodically updated in EMAs and 

propagated to their HMA. Therefore, when a HMA receives an OVERLOAD state 

update, it updates the record for the corresponding edge broker and starts to locate the 

available edge broker within the cluster according to their load state. HMA selects edge 

brokers that have a LOW LOAD state and sends their corresponding IDs along with 

their remaining capacities for all the load metrics to the EMA of the overloaded broker. 

In case there is no available edge broker in the same cluster to offload to, HMA starts 

inter-cluster offloading. The detail of the inter-cluster offloading can be found in section 
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4.4.4.2. The pseudo code of the load accepting broker location process for HMA is 

shown in Figure 4-14: 

 

Figure 4-14 Pseudo Code for Locating the Load-Accepting Broker  

 Client Selection 

Based on the results of step 1, the EMA of an overloaded broker prioritises the candidate 

brokers based on the remaining capacity of the load metrics of the brokers, i.e., the 

broker with the higher remaining capacity has a higher priority to accept the load. In 

addition, from the prioritised client list generated by the LA during the load analysis 

process, the EMA of the overloaded broker retrieves the load influence of each 

subscriber on each metric profiled by LA and estimates the load increase for the load-

accepting broker for each load metric. For example, for Ui, the influence is estimated 

as the ratio of input rate of the client to input bandwidth of the load-accepting broker, 

which means that if clients are migrated to the load-accepting broker, Ui of the load-

accepting broker will be increased by this amount. For the case that a client does not 

overload the load-accepting broker, it is selected and put in an offloading list. The 

selection process continues until the estimated load state of the overloaded broker is not 

OVERLOAD any more. The offloading list is then sent to the HMA. The HMA notifies 

BEGIN 

Let LE = the load state of an edge broker E 

Let S = an empty list 

If LE == OVERLOAD 

Then 

 For each edge broker i 

  Let Li = the load state of the edge broker i 

  If Li == LOW LOAD 

  Then  

   Add i to S 

  Endif 

 End Loop 

Endif 

If S is NOT empty 

Then 

Let Mcan = the offload response message that contains the candidate load-accepting 

brokers 

 For each edge broker j in S 

  Let Cj = the remaining capacity of j 

  Add Cj to Mres 

 End loop 

 Send Mres to E 

Else 

 Inter-cluster offloading is triggered 

Endif 

END 
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the EMAs of the selected edge brokers to be in a load-balancing phase and updates their 

states to “BUSY”. Note that, for the case that there is not enough capacity left in the 

cluster for the load shifting, the EMA of the overloaded edge broker sends a request to 

HMA for inter-cluster offloading. The pseudo-code for this client selection process of 

an EMA is described in Figure 4-15. 

 

Figure 4-15 Pseudo Code of Client Selection 

 Client Migration 

HMA sends migration notifications to all the clients that are in the offloading list, 

asking them to set up a connection to the load-accepting broker(s). All the clients then 

BEGIN 

Let E = the edge broker under monitored 

Let Mcan = the message that contains the information of candidate load-accepting 

brokers 

Let Creq = the required capacity for offloading 

Let Scan = a set of candidate edge brokers retrieved from Mres 

Let Ssub = an empty list that is used to record the information of selected subscribers 

Let F = false 

Sort Scan according to the remaining capacity from max to min 

For each edge i in Scan 

 Let Ci = the remaining capacity of i 

 Let ST = the topic list in the load distribution profile provided by LA 

 For each topic t in ST 

  Let Lt = the load  influence to i 

  If Ci >= Lt 

  Then 

   Ci = Ci - Lt 

   Creq = Creq - Lt 

   Let Subt = the list of subscribers subscribing on topic t 

   Add Subt to Ssub 

  Endif 

  If Creq <= 0 

  Then 

   F = true 

   Break loop 

  Endif 

 End loop 

 If F == true 

 Then 

  Break loop 

 Endif 

End loop 

If F == true 

Then 

Let Msub = the message that contains the information selected subscribers, 

retrieved from Ssub 

Send Msub to HMA 

Else 

 EMA sends request for Inter-Cluster Offloading 

Endif 

End 
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set up connection(s) to the load-accepting broker(s) and drop the connection to the 

offloading broker, except for subscribers that have messages waiting in the queue in the 

overloaded broker. In this case, the subscribers drop the connections only when all the 

messages waiting in the overloaded broker are received. In addition, a message is sent 

by each client to HMA to confirm the completion of the migration process. The HMA 

counts the number of clients that have completed the migration away from the 

overloaded broker. There is also a default timeout for the migration so that the load-

balancing phase can stop even if some clients close the connection during the migration. 

When all the clients complete the migration or the waiting time has timed out, the HMA 

notifies all the EMAs involved in the offloading phase that the offloading is complete 

and updates the states of edge brokers from “BUSY” to the actual load states, e.g., LOW 

LOAD and HIGH LOAD. 

4.4.4.2 Inter-Cluster Offloading 

Inter-cluster offloading is initiated by HMA when a head broker becomes overloaded 

or HMA receives a request from EMA of the overloaded edge broker, as intra-cluster 

offloading cannot resolve the problem of overloaded edge brokers by itself. The general 

process of inter-cluster offloading is roughly the same as that for intra-cluster 

offloading. The following sections give a description of these three steps. 

 Load-Accepting Broker Locating 

When EMA initialises an inter-cluster offloading request or the head broker becomes 

overloaded, the HMA checks the recorded load state for neighbour clusters and locates 

the ones for which the load state is LOW LOAD. HMA sends an offloading request to 

the neighbour clusters to ask for the latest information about the remaining capacity. 

HMAs of neighbour clusters then check their local load states and report these to the 

HMA to initialise an offloading request. These HMAs state their remaining capacity 

for all the load metrics in their reports. 

 Client Selection 

If the inter-cluster offloading is initialised by an EMA, HMA sends the remaining 

capacity for all the load metrics of neighbour clusters to EMA. EMA follows the same 

step in 4.4.4.1.2 to select clients from the prioritised subscriber list and to put the 
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selected ones in an offloading list with the corresponding load-accepting cluster. The 

offloading list is sent to the HMA and HMA forwards this to the corresponding HMA 

of the load-accepting broker. HMA of the load-accepting broker then changes the load 

state of the cluster and the edge brokers required to accept the load to “BUSY” state. 

If the inter-cluster offloading is initialised by an HMA, HMA follows a similar strategy 

as that specified for the intra-cluster offloading, selects publishers from the prioritised 

publisher list and puts them in an offloading list. The offloading list is then sent to the 

HMAs of the selected load-accepting clusters. The load state of all the load-accepting 

clusters are then updated to “BUSY”.  

 Client Migration 

When the selection process is complete, the HMA of the overloaded cluster sends 

notifications to the client with the HMA information of the load-accepting cluster. It 

also sends a notification to the HMA of the selected cluster with the client information. 

When clients register with a new HMA, the HMA checks the client information and 

allocates it to a selected broker. When all the clients in the offloading list have been 

migrated or the timeout set for the offloading is reached, HMAs of both offloading 

cluster and load-accepting brokers update the load state of the cluster to its actually 

measured load state. 

4.5 Validation 

In this thesis, simulation-based experiments are undertaken to evaluate DRD-LB 

method for the surplus resource case by comparing it with PEER-LB. As specified in 

section 4.4.4, the offloading process for intra-cluster and inter-cluster are similar, thus, 

intra-cluster offloading is used as an example. In the following sub-sections, the 

experiment configuration and setup, the hypotheses, and the measurements are 

described. It is shown that DRD-LB outperforms the PEER-LB, whilst introducing less 

unexpected delay to subscription services. Therefore, DRD-LB seems much more 

suitable to be applied to time critical systems, such as for a TWS. 
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4.5.1 Experiment Configuration 

4.5.1.1 Simulations and Assumptions 

To compare DRD-LB with PEER-LB, the experiments focus on the overload problem 

and are designed using the following assumptions. 

1. To simulate an intra-cluster overload problem, all the brokers involved are 

allocated within the same LAN and therefore the bandwidth is assumed constant 

during the experiments. 

2. The matching capacity of each broker in each experiment is predefined and is 

assumed constant during the experiments. 

3. The average publishing rate for each publisher is predefined and is constant during 

the experiments. A burst is simulated by increasing the publishing rate. 

4. Published messages are generated based upon real sensor data and tsunami warning 

messages. 

5. The transmission delay between publishers to brokers, between brokers, and 

between brokers to subscribers is pre-defined and is assumed constant for the 

surplus resource case. 

6. Each subscriber has enough bandwidth to receive messages from a broker, and 

therefore this omits the slow subscriber problem. 

7. Each subscriber has a pre-defined maximum transmission delay requirement that 

is assumed constant during the experiments. 

8. Subscribers for the same topic have the same delay requirement while subscribers 

for different topics may have different delay requirements. 

4.5.1.2 Experiments Setup 

In this thesis, an intra-cluster offloading is chosen as an example. The setup used for 

the experiments involves four edge brokers (B0, B1, B2, and B3) connected to one head 

broker (Bh) to form a star topology. This experiment setup is used by the PEER 

framework [7]. Figure 4-16 shows an example of the broker overlay with four sets of 

matched publishers and subscribers. This intra-cluster simulates the broker deployment 

in a data centre. 
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Figure 4-16 Broker Overlay Setup 

Each broker has a predefined bandwidth and matching capacity. The bandwidth 

between all brokers is assumed constant at 1000Mb/s. The matching capacity for edge 

broker is randomly generated varying between 20000 to 30000 msg/s in each 

experiment. Based upon [7], the head broker does less matching work than edge brokers 

that serve subscribers. It is assumed that the head broker can process millions of 

messages each second in the experiments. Table 4-8 gives an example specification 

used for brokers in one experiment. 

Broker ID 

Specifications 

Matching Capacity 

(msg/s) 

Bandwidth Capacity 

(Mbps) 

Bh 1,000,000 1000 

B0 27570 1000 

B1 25067 1000 

B2 24725 1000 

B3 22303 1000 

Table 4-8 Broker Capacity Specification for an Experiment 

The client information is designed as follows. In each experiment, one hundred topics 

tend to cover the range of topics used in TWS. These topics including topics for sensor 

data, workflow service, warning messages, user-generated data, and social network data 

such as Twitter. For each topic, the corresponding number of publishers, number of 

subscribers, publishing rate, and delay requirements are randomly generated. For 

example, delay requirements for different topics range from 1s to 50s. The size of each 

message is determined according to the topic it belongs to, e.g., for messages that 

contain sensor data, the size ranges from 200 bytes to 1 kilobyte.  
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Each experiment consists of four phases. First, clients of each topic are registered to the 

system each second and are allocated to a broker based upon the load distribution 

process (Section 4.4.2). This phase lasts until all clients are added to the system, i.e., 1s 

to 100s. Second, when publishers and subscribers operate normally, i.e., there is no 

reduction in bandwidth, nor any burst of message exchange. This phase lasts for 200s 

in each experiment, i.e., 101s to 300s. Third, the publishing rate for a range of topics 

(randomly chosen ranging from 10 to 15) is increased to 1.5 of its normal speed at 301s. 

This aims to simulate a tsunami scenario, so that the data acquisition rate from sensors 

and the corresponding workflow services are increased. After a few seconds, e.g., 100s, 

a burst for another range of publishing topics is simulated by increasing the rate to 1.5 

times of their normal rate. When any of the brokers is determined to be overloaded, 

offloading is triggered. The time cost for offloading is recorded. Fourth, after another 

duration, e.g., at 900s, the message dissemination rate and data generation rate for all 

the topics returns to their normal rate and the system returns to equilibrium. 

4.5.2 Hypothesis to Evaluate 

To evaluate the performance of DRD-LB with comparison to the baseline method 

PEER-LB, the following hypothesis is proposed. 

Hypothesis 1 (H1): Compared to the state of the art load balancing method proposed 

for PEER framework, DRD-LB for ePEER introduces fewer unexpected delays to delay 

sensitive subscriptions. 

In contrast to conventional load balancing methods, during the load analysis phase, 

DRD-LB takes the delay requirements for different subscription services into 

consideration. Hence, a subscriber that is delay sensitive has a lower priority to be 

selected for migration when a broker to which it is attached, becomes overloaded. 

Therefore, delays caused by migration to time-critical services are reduced. 

4.5.3 DRD-LB Performance Metrics 

To evaluate the hypothesis, the following metrics are determined during the 

experiments. 
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1) Communication Overhead 

Load detection utilises system processing and communication capacity to retrieve and 

analyse the load metrics to determine the load state. The communication overhead is 

expressed as the ratio of message exchange rate of load detection messages to overall 

message exchange rate. For example, if one load detection message is sent every second 

to retrieve the load status of the broker, and the messages being exchanged through the 

broker for each second are 50000, the communication overhead is then computed as 

1/50000. 

2) Number of Offloads 

Since offloading requires system resources to select clients and notify them for 

migration, it introduces processing and communication overhead to the system. A more 

efficient load balancing solution requires less offloading to balance the load among 

brokers. Thus, this parameter represents the efficiency of the offloading algorithm for 

different load balancing methods. 

3) Offloading Delay  

This metric is used to represent the unexpected delays introduced to different 

subscription services. For each subscriber, the offloading delay, OD, is measured as the 

ratio of unexpected delay to delay constraint. For each offload event, the sum of the 

individual offloading delays is computed. A lower value indicates that the offloading 

method is less likely to violate the delay requirements.  

Table 4-9 gives a summary of how to measure the above performance metrics in each 

experiment. 
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Metrics Measurement 

Communication 

Overhead 
Load Detection Rate / Matching Capacity 

Number of 

Offloads 

The number of offloads triggered to balance the broker when 

an overload is detected. 

Offloading Delay 

In each experiment, for each subscriber, the offloading delay 

is measured as the unexpected delay / delay constraint, 

i.e., 𝑂𝑑(𝑠) = 𝑇𝑢𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑇𝑆𝐿𝐴⁄ , where TSLA is the delay 

requirement; and for each experiment, the overall offloading 

delay is 𝑂𝑑 = ∑ 𝑂𝑑(𝑠)𝑠∈𝑆𝑜
, where So means the set of 

subscribers that are notified to offload. Thus, the overall 

average offloading delay for all the experiments is O𝑑
̅̅̅̅ =

∑ 𝑂𝑑 𝑁⁄ , where N is the number of experiments carried out. 

Table 4-9 Performance Metrics of DRD-LB 

4.5.4 Validation Results 

The experiments are repeated 500 times. As specified in Section 4.5.1, in each 

experiment, the configuration of the experiment varies, e.g., the publishing rate and the 

capacity of the brokers are randomly generated. In each experiment, the load metrics 

for each broker is measured periodically, i.e., the load detection period is set to one 

second. The lower threshold is set to 90% and the higher threshold is set to 95%. The 

threshold values vary with respect to the system resources and the requirements of the 

application scenario. In addition, to evaluate the hypothesis, the metrics specified in 

4.5.2 are also measured. 
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Figure 4-17 Matching Utilisation with DRD-LB 

Figure 4-17 shows an example of capacity matching utilisation measured for one 

experiment with DRD-LB, in which two offloads are triggered after the 2nd burst. For 

each simulated burst (for the 500 experiments), the message rate increases randomly, 

some of these may require more than one offload to balance the load, e.g., 4 offloads to 

balance the broker. In addition, as one load detection message is sent each second to 

detect the load status of the broker, the communication overhead introduced by the load 

detection is measured as 1/matching capacity, e.g., for broker B0, the communication 

overhead is computed as 1/25887 in this experiment. The number of offloads triggered 

is two. The offloading delay for this experiment Od is computed as 3.92%. After the 

500 experiments, the offloading delay O𝑑
̅̅̅̅ , which is measured as the average offloading 

delay for each experiment, is computed as (24.918/500)*100% = 4.98%. This means 

that on average, DRD-LB introduces a 5% offloading delay to all the message exchange 

services. 

Similar experiments to these have been carried out for the baseline method PEER-LB. 

With PEER-LB, publishers connect to head brokers while subscribers connect to edge 

brokers. However, in contrast to the design of DRD-LB, subscribers are randomly 

assigned to an edge broker. PEER-LB measures the load difference between any edge 

brokers. Once the difference between two edge brokers exceeds a threshold, e.g., 10% 

[7], load balancing is triggered to balance the load between these two. 
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Figure 4-18 Matching Utilisation with PEER-LB 

Figure 4-18 illustrates an example of the capacity matching utilisation for one of the 

500 experiments using the PEER-LB as a baseline. In this experiment, during the load 

distribution phase, a significant amount of offloading is triggered to balance the load 

between brokers. After the first burst, since the rate increase is randomly chosen, the 

load difference between brokers may exceed its threshold, and may require offloading. 

This works similarly when the second burst is simulated. As specified in Table 4-9, the 

communication overhead is measured as the ratio of the detection rate to the matching 

capacity, e.g., for B0, the communication overhead by load detection is computed as 

1/24031 in this experiment. During the 500 experiments, the number of offloads 

triggered is 220 including the distribution phase, and 18 excluding the distribution 

phase. The offloading delay for this experiment is measured as 2319% (including the 

load distribution phase) and 122% (excluding the load distribution phase). The 

performance is similar to other experiments, and after 500 experiments, the average 

offloading delay is then computed as 1894% and 274% with and without the load 

distribution process respectively.  

Figure 4-19 illustrates the number of offloads difference between PEER-LB and DRD-

LB. Note that the result presented for PEER-LB excludes the offloading that happens 

during the load distribution phase. In the diagram, a positive value indicates that PEER-

LB adopts more offloads while a negative value indicates that DRD-LB adopts more 

offloads. It is clearly shown that for the 500 experiments, only 7 of them, i.e., 1.4%, 

does the DRD-LB require more offloads; in 5 of them, i.e., 1%, DRD-LB and PEER-

LB adopt the same number of offloads. In the remaining 97.6% of experiments, DRD-

LB requires less offloads to balance the load between brokers. 
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Figure 4-19 Number of Offloads Difference between PEER-LB and DRD-LB 

Figure 4-20 illustrates the offloading delay difference between PEER-LB and DRD-

LB. Similarly, a positive value indicates that PEER-LB introduces more offloading 

delays, while a negative value means DRD-LB introduces more offloading delays. As 

is shown in Figure 4-20, only in three of the 500 experiments, DRD-LB introduces 

more offloading delays. The offloading delay is influenced by the delay requirements 

of the subscriber selected, as described in Table 4-9. Thus, since DRD-LB is aware of 

the delay requirements of different subscribers, even if in some cases DRD-LB adopts 

more offloads, less offloading delay is introduced to the system. 

 

Figure 4-20 Offloading Delays Difference between PEER-LB and DRD-LB 

The average number of offloads and average offloading delays between PEER-LB and 

DRD-LB are also computed. The results are illustrated in Figure 4-21 and Figure 4-22. 
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Note that the result presented for PEER-LB excludes the offloading that happens during 

the load distribution phase. According to the results, it is clearly shown that DRD-LB 

outperforms PEER-LB while requiring less offloading and introducing less delay for 

time-critical subscription messages.  

 

Figure 4-21 Average Number of Offloads between DRD-LB and PEER-LB 

 

Figure 4-22 Average Offloading Delay between DRD-LB and PEER-LB 

To prove Hypothesis 1, a null hypothesis (Hnull) and its alternative hypothesis (Halt) are 

introduced. Hnull assumes that DRD-LB for ePEER introduces a similar offloading 

delay as PEER-LB, while Halt assumes that DRD-LB for ePEER introduces less 

offloading delay than PEER-LB. To check whether Hnull is true, the offloading delays 

of all the 500 experiments for DRD-LB for ePEER and PEER-LB are retrieved to form 

two samples (SePEER and SPEER). To assess whether the offloading delay between DRD-

LB and PEER-LB is significant, a Wilcoxon signed-rank (non-parametric statistical 
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hypothesis) test is used to compare these two samples. The following assumptions need 

to be satisfied for the test to be valid. First, the data in two different samples are paired 

and come from the same population. Second, each pair is chosen randomly and 

independently. Third, the data is measured at least on an ordinal scale. In this case, both 

SePEER and SPEER contain 500 offloading delays measured for each experiment. All the 

data in a sample are indexed, e.g., the offloading delays in sample SePEER are marked 

from SePEER(1) to SePEER(500). Each data in one sample is paired with data in another 

sample with the same index, e.g., SePEER(1) is paired with SPEER(1). After applying these 

two samples as input parameters into a Wilcoxon test, which is achieved using R’s 

“wilcox.test()” function, a p value that reflects the chance that Hnull happens is 

computed. In this case, the p value is computed as p<2.2e-16, which is close to 0. This 

means that Hnull rarely happens and the alternative hypothesis Halt is shown to be valid, 

i.e., DRD-LB for ePEER introduces less offloading delays than PEER-LB. Hence, 

Hypothesis 1 is true. 

To demonstrate that the load analysis methods adopted in DRD-LB can also improve 

the performance of PEER-LB, 500 more experiments are carried out. In these 

experiments, the load analysis methods used in DRD-LB are applied into PEER-LB, 

i.e., the subscribers are prioritised following the same principles specified in Section 

4.4.3.2. This new LB method is denoted as PEER-DRD. The same performance metrics 

are measured for each experiment. Considering these three performance metrics, since 

the load distribution and load detection algorithms adopted in PEER-LB have not been 

changed, the communication overhead metric and the number of offloads metric are not 

improved, the offloading delay metric improves markedly. The average offloading 

delay metric for these 500 experiments is measured as 1022% and 137%, with and 

without the load distribution process, respectively. Compared to 1894% and 274% for 

the experiment with the pure PEER-LB method, the average offloading delay is reduced 

by a third. Figure 4-23 shows the comparison of offloading delay between original 

PEER-LB, and PEER-DRD that adopts the load analysis method for DRD-LB. The 

result clearly shows that by applying the load analysis method adopted in DRD-LB, 

PEER-DRD introduce less delays to time-critical messaging services. 
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Figure 4-23 Comparison of Offloading Delay between PEER-LB and PEER-

DRD 

4.6 Summary 

This chapter describes a load management framework, ePEER, which extends the 

existing PEER framework. This describes the design of the broker overlay, the 

management agent, and the load-balancing life cycle for the surplus resource case. The 

H-E broker overlay is constructed based upon management agents, which communicate 

using pub-sub type standardised AMQP message exchange. For a TWS application, 

MAs are used for load management of the sensor data, workflow services, and warning 

message exchange. In such a H-E broker overlay, when some brokers become 

overloaded due to information bursts and when there are surplus system resources, a 

delay requirement driven load balancing method, DRD-LB, is invoked to balance the 

load between overloaded brokers and lightly loaded ones to minimise the delay for 

different topics. A comparison between DRD-LB and the baseline load-balancing 

method proposed in PEER, named PEER-LB, is presented based upon realistic TWS 

simulation-based experiments. Each experiment is repeated 500 times and the average 

performance value is obtained. The validation results show that for the time-critical 

systems, such as TWS, DRD-LB outperforms the baseline PEER-LB method to ensure 

that fewer delays are introduced to time-critical messaging services. In the next chapter, 

the load management method of ePEER for the limited resource case is described. 
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5 FEEDBACK DRIVEN CONGESTION 

CONTROL FOR LIMITTED RESOURCE 

CASE 

5.1 Overview 

In Chapter 4, a load-balancing method of ePEER framework, DRD-LB, which balances 

the load amongst brokers in an H-E overlay has been discussed and validated. However, 

this load balancing solution cannot solve the broker overload problem for the situation 

where a system’s resource limits are reached and cannot be scaled up. Such a situation 

occurs when a physical environment crisis, e.g., an earthquake happens, as it may 

disrupt the underlying network infrastructure and hence decrease the available system 

resources (see Section 1.1 for an example). Such damage severely reduces the capacity 

of links from publishers to brokers, between federated brokers, and from brokers to 

subscribers. In this case, load balancing through migrating subscribers or publishers 

from an overloaded broker to another (less loaded) broker, may not resolve the broker 

overload problem. The available system resource limits are not only over-stretched by 

broken links but also by an increased rate of exchange of information from human 

sources and sensors as publishers at the onset of crises. Published information from 

some of these publishers may have no matched subscribers, and may be repetitive or of 

little value; matched subscribers may not find such content exchange that important. 

These overactive publishers introduce an unnecessary load on brokers and on the broker 

links. This may result in an over-demand to utilise the processing and communication 

resources of the PSMOM system. To supplement the DRD-LB load balancing method, 

a congestion control model, the Feedback Driven Congestion Control (FDCC) model, 

is introduced.  

5.2 FDCC Design 

FDCC is designed to limit the message-publishing rate of overactive publishers by 

applying a filter at the publisher. The publishing rate limit is determined based upon 

the utility of the messages to subscribers, the utility of publishers, and the utility of 



70 

topics computed by the UA and SA components in HMA. HMA sends notifications to 

publishers when it is necessary to limit the publishing rates. In contrast to the existing 

congestion control methods discussed in Section 3.5, FDCC is designed for the situation 

when the system resources are already fully used. In addition, FDCC limits the 

publishing rate of overactive publishers based upon the utility of the published 

messages and the importance of the publishing topics to maintain the QoE for 

subscribers. These make FDCC a better choice to manage broker load for PSMOMs in 

a TWS when the system resources are already fully used. 

A message controller component that sends messages to a broker is introduced. It is 

used to convert the raw data, e.g., sensor data, into MOM messages. Similarly, a 

message extractor is used by subscribers to receive messages and to extract their 

message content. In practice, the data sources that provide the raw data and message 

controllers can be deployed in different types of system and connected via wireless or 

wired connection. This also applies to the message extractor and data consumer. Figure 

5-1 shows an example of H-E broker overlay with message controller and message 

extractor. In this example, one head broker and three edge brokers with their 

corresponding management agents form an H-E broker overlay. HMA can send 

management messages to publishers and subscribers to alter the behaviour of the 

associated clients through the OM component specified in Section 4.3.1.  

 

Figure 5-1 H-E Broker Overlay with Message Controller and Message Extractor 

Messages published to the head broker are generated by the message controller in the 

publisher (see Figure 5-1). This generates PSMOM messages using the raw data from 

the data source, e.g., database or user inputs. The message controller acts as a filter 
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between the data source and the H-E broker overlay. Alternatively, when a message is 

received by a subscriber, the message extractor retrieves the message content and passes 

the content information to the data consumer. Figure 5-2 shows an example of how to 

apply a message controller at a publisher that uses a filter to limit the rate of publishing 

to facilitate the limited resource case. 

 

Figure 5-2 Pre-Filter Use in a Publisher 

As shown in Figure 5-2, a rate limit filter sits between the data source and message 

generator. The reason to put the filter before the message generator is to save the system 

resources by avoiding generating messages that may be discarded, i.e., messages are 

generated using raw data from data sources only when the data satisfies the filtering 

criteria. In the following sub-sections, the details of the FDCC design are described. 

Note that it is assumed that the PSMOM system does not queue publishers’ messages 

that have no matched subscribers.  

5.2.1 Rate Limit Filter 

A rate limit filter limits the publishing rate of a publisher. It receives the data for which 

the publishing topic has matched subscribers. The filter then compares the current 

publishing rate with the maximum allowed publishing rate set by HMA. If the current 

rate is less than the rate limit, the data is forwarded to the message generator; otherwise, 

the data is discarded. 
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The maximum allowed publishing rate is determined based upon the utility of publisher, 

denoted as Up, which is computed by HMA based upon the feedback of the utilities of 

the published messages provided by the matched subscribers. The following 

assumptions are made in the design. First, each subscriber only subscribes to one topic. 

Second, each subscriber has the knowledge of where the received message is from, e.g., 

from which publisher. This is achieved by retrieving the pubID that is added by the 

publisher and stored as a property of each received message. Third, all the subscribers 

compute the utility of messages for each publisher that are of most interest to them and 

update the values to HMA every unit time, e.g., every second. A high feedback 

frequency provides a more accurate determination of the utility of the publisher but 

there is a trade-off in that this adds a communication and processing overhead as each 

feedback consumes system resources to receive and process messages. In this design, 

the feedback frequency is set to 1Hz, which means in each second, there is only one 

feedback. The following gives more detail of how to limit the rate of a publisher with 

respect to the utility of the published messages. 

Based upon these assumptions, a subscriber s assesses the utility of each received 

message. Specifically for subscriber s, and message i from publisher p, the utility of 

this message, denoted as Um(s,i,p), is decided by the subscriber. However, to reduce the 

communication load in exchanging the utility values, a subscriber does not send each 

Um to the HMA. Instead, the subscriber computes the average value of the utility of 

messages from the same publisher and only sends this average value to HMA each 

second. That is, if it is assumed that there are Nm(s,p) messages received by subscriber 

s from publisher p, in a second, the average utility from subscriber s, for publisher p, 

denoted as 𝑈𝑚(𝑠, 𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is computed using Equation (1). 

 𝑈𝑚(𝑠, 𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
∑ 𝑈𝑚(𝑠, 𝑖. 𝑝)𝑁𝑚(𝑠,𝑝)

𝑖=1

𝑁𝑚(𝑠, 𝑝)
 (1) 

When HMA receives the average utility value of each publisher from each matched 

subscriber, it computes the utility of the publisher. Equation (2) defines the utility of 

publisher for publisher p, Up(p) , where: W(s) is the weight assigned to the subscriber 

s; S(p) is the set of subscribers that provide the average utility value and subscribe on 

the matched topics of publisher p; |S(p)| is the number of the matched subscribers of 

publisher p that provide feedback.  
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 𝑈𝑝(𝑝) =
∑ 𝑊(𝑠)𝑈𝑚(𝑠, 𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑠∈𝑆(𝑝)

|𝑆(𝑝)|
 (2) 

For each publisher p, the publisher’s rate is limited based upon the utility value. The 

range of Up is normalised to be the range of Um, i.e., [0, 1]. For a simple control 

mechanism, the range of Up is divided into 5 regions, i.e., [0-0.2), [0.2-0.4), [0.4-0.6), 

[0.6-0.8), [0.8-1]. Here each region has a corresponding publishing rate limit that is 

defined according to the resources of the broker, e.g., 10 msg/s (messages per second), 

200 msg/s, 500 msg/s, 900 msg/s, and 2000 msg/s. This means that, for example, if a 

publisher has an Up value of less than 0.2, it is allocated a maximum publishing rate of 

10 msg/s. When the utility of a publisher is changed, HMA updates the publishing rate 

limit by sending a notification to the corresponding publisher. 

5.2.2 Topic Selection 

When the system resources are fully utilised, to avoid broker performance degradation, 

HMA starts to select publishers to continue publishing messages according to the 

importance of each publishing topic. This selection process is called topic selection.  

The first step of determining the importance of a topic is to determine the utility of a 

topic. This is computed by HMA based upon the utility of the publishers for the same 

topic. If Ut(t) is used as the utility of the topic t, P(t) as the set of publishers that publish 

messages under topic t, Up(p) as the utility of a publisher p, Ut(t) is calculated using 

Equation (3), where |𝑃(𝑡)| stands for the number of publishers in the set. 

 𝑈𝑡(𝑡) =
∑ 𝑈𝑝(𝑝)𝑝∈𝑃(𝑡)

|𝑃(𝑡)|
 (3) 

HMA then computes the importance of each topic t, denoted as It(t), which is 

proportional to the utility of the topic, Ut(t), the number of subscribers that subscribe to 

the topic, S(t), and inversely proportional to the system resource (such as matching 

capacity) required, Rt(t), as shown in Equation (4). 

 𝐼𝑡(𝑡) =
𝑈𝑡(𝑡)𝑆(𝑡)

𝑅𝑡(𝑡)
 (4) 
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Once the importance of each topic is computed, the topics are recorded in a topic list, 

T, in which the topics are ordered by its importance. When system resource limits are 

reached, HMA starts to select the publishers that can continue publishing, i.e., the topics 

that are considered more important. The constraint on the selection process is that the 

sum of the required bandwidths for the selected topics should not exceed the total 

outBW, i.e.,𝑜𝑢𝑡𝐵𝑊 ≥ ∑ 𝑟𝑒𝑞𝐵𝑊𝑖𝑖∈𝑇  where T is the topic list in a descending order by 

the importance. Whenever the required bandwidth for all the publishers publishing on 

a topic exceeds the remaining output bandwidth, not all publishers for that topic are 

selected to publish it as follows. To achieve this, the HMA starts to check the publisher 

lists. In those publisher lists, publishers for the same topic are ordered by their 

corresponding utility values in descending order. Publishers with higher utility values 

are selected such that the accumulated required bandwidth does not exceed the total 

outBW. 

For the topics not selected to continue being published, a rate update notification is sent 

to all the publishers that publish messages for the topic. When a rate update notification 

is received by a publisher, indicating that a topic can no longer be published or be 

published at its full speed, the rate limit filter limits the publishing rate accordingly. For 

instance, if the publisher is notified to stop publishing during the limited resource case, 

the rate limit filter discards all the data sent to the filter, in order to provide more system 

resources for message exchange on more important topics. 

5.3 Validation 

In this thesis, simulation-based experiments are carried out to evaluate FDCC method 

for the limited resource case. 

5.3.1 Experiments Configuration 

5.3.1.1 Simulation and Assumptions 

The experiments follow the same simulation and assumptions as that specified in 

4.5.1.1 with the following additional ones. 
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1. The infrastructure damage caused by the crisis is simulated by reducing the 

bandwidth of all the brokers by half. These values are assumed to remain constant 

and cannot be scaled up. 

2. Each subscriber is required to provide feedback to HMA each second. The 

feedback consists of the utility value measured by a utility function according to 

the interested content and the content being received. 

3. Each publisher is designed with a rate limit filter, as specified in 5.2, which is under 

control of HMA to limit the publishing rate. 

5.3.1.2 Experiment Setup  

As specified, the limited resource case can happen when the physical network 

infrastructure has been damaged. To validate the proposed FDCC method, an intra-

cluster H-E broker overlay that simulates the broker overlay in a Tsunami affected area 

is adopted. The setup used for the experiments involves four edge brokers (B0, B1, B2, 

and B3) connected to one head broker (Bh) to form a star topology. The setup is the 

same as that adopted for the experiments described in Section 4.5, i.e., the capacity and 

bandwidth of each broker is randomly generated ranging from 20000 msg/s to 30000 

msg/s and 300Mbps to 500Mbps respectively. An example specification for the broker 

capacity is described in Table 5-1. 

Broker ID 

Specifications 

Matching Capacity 

(msg/s) 

Bandwidth Capacity 

(Mbps) 

Bh 1,000,000 1000 

B0 26015 368 

B1 24112 448 

B2 22104 384 

B3 20912 464 

Table 5-1 Broker Capacity Specification for an Experiment 

The client information is designed as follows. In each experiment, 100 topics are used 

in a TWS for the affected area. This includes topics for warning message dissemination, 

evacuation advice from public agents, and human generated help and advice messages 

that are exchanged with people in an affected area. For each topic, the corresponding 

number of publishers, number of subscribers, publishing rate, and delay requirements 

are randomly generated. The size of each message is randomly generated ranging from 

200 byte to 2 kilobyte. In each experiment, each subscriber has a random number of 
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keywords and each message published contains a set of keywords that are randomly 

generated. These are used to compare with the keywords specified for the 

corresponding subscriber to compute the utility of the publisher. The content of each 

message is retrieved from twitter with initial keyword “Tsunami” using Twitter Crawler 

[83]. It is assumed that 50% of the publishers are good publishers that publish 

information that are satisfied by the subscribers; 25% of the publishers are medium 

publishers that publish part of information required by the subscribers; the rest are bad 

publishers or overactive publishers that publish information that is of no use. In each 

experiment, subscribers provide one feedback message each second. Although 

providing thousands of feedback messages per second can improve the accuracy of the 

measurement, this volume of feedback introduces a larger communication and 

processing overhead to the system, as it has to deal with receiving and processing each 

feedback message. 

Each experiment lasts 1000 seconds and consists of four phases. The first two phases 

are the same as that specified for the DRD-LB experiments. At the beginning of the 

third phase, e.g., at 301s, a disruption to the physical network is simulated by reducing 

the bandwidth of each broker to 0.1 to 0.4 of its original amount, e.g., if a broker is set 

with a bandwidth 1000 Mbps originally, it becomes 100 to 400 Mbps after this 

simulation. The amount reduced is randomly generated. After the simulated damage 

happens, the system resources become limited and FDCC is triggered when some 

brokers become overloaded. This phase lasts until 900s, when the final phase starts. In 

the final phase, the bandwidth of all the brokers recovers to the original amount and the 

publishers whose publishing rates were limited are notified, so that the system can 

recover to its original state. 

5.3.2 Hypotheses to Evaluate 

To evaluate the performance of FDCC, two further hypotheses are proposed.  

Hypothesis 2 (H2)：FDCC limits the publishing rate of overactive publishers, which 

reduces the load to brokers. 

FDCC measures the utility of publishers based upon the feedback from matched 

subscribers. According to this utility value, the publishing rates by publishers are 
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limited if the utility value is low. This reduces the message rate to brokers and therefore, 

reduces the load to brokers. 

Hypothesis 3 (H3)：FDCC allows messages with a high utility value, i.e., messages 

with important information, to continue being published and therefore improves the 

QoE of subscribers. 

FDCC limits the publishing rate according to the utility of publishers and importance 

of topic. Therefore, when the resources are limited, only the publishers that publish 

messages for a relatively more important topic continue publishing. This design ensures 

that subscribers to have more chance to receive the more important messages rather 

than to receive the messages with little value. Thus, it is possible that the average QoE 

for subscribers is improved. 

5.3.3 FDCC Performance Measurements 

To measure the performance of FDCC, the following parameters are selected. 

1) Average QoE for All the Subscribers 

The average value of QoE of all the subscribers, denoted as 𝐸𝑠
̅̅ ̅, which is the output of 

a utility function, is used as the controlling parameter. A higher utility function value 

indicates a higher QoE for all the subscribers to the PSMOM system. If Es(s) is the QoE 

for subscriber s, W(s) is the weight assigned to subscriber s, and S stands for the set of 

all the subscribers, 𝐸𝑠
̅̅ ̅  is computed using Equation (5), where |𝑆|  stands for the 

number of subscribers in set S. 

 𝐸𝑠
̅̅ ̅ =

∑ 𝑊(𝑠)𝐸𝑠(𝑠)𝑠𝜖𝑆

|𝑆|
 (5) 

For the QoE of subscriber s, Es(s), if P(s) is used as a set of publishers that publish 

messages for the same topic subscribed to by subscriber s, 𝑈𝑚(𝑠, 𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average 

utility value for publisher p from subscriber s, Es(s) is computed using Equation (6), 

where |𝑃(𝑠)| is the number of publishers in the set. 
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 𝐸𝑠(𝑠) =
∑ 𝑈𝑚(𝑠, 𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑝∈𝑃(𝑠)

|𝑃(𝑠)|
 (6) 

Applying Equation (1) and (6) into (5), the average experience for all the subscribers is 

expressed as shown in Equation (7). 

 

𝐸𝑠
̅̅ ̅ =

∑
𝑊(𝑠) ∑

∑ 𝑈𝑚(𝑠, 𝑖. 𝑝)𝑁𝑚(𝑠,𝑝)
𝑖=1

𝑁𝑚(𝑠, 𝑝)𝑝∈𝑃(𝑠)

|𝑃(𝑠)|𝑠𝜖𝑆

|𝑆|
 

(7) 

In practice, the utility value for each message is subjective to each subscriber. In this 

design, a simple model is built to generate the utility for individual messages. In this 

model, each subscriber s defines a set of interest keywords NK(s) that can be a sub-set 

of the keywords defined for the subscribed topic. These interest keywords are used to 

filter received message content to select which messages are of the most interest to 

subscribers and used to generate a utility value for each message. It does this by 

measuring how many keywords are matched in the content of each received message. 

The key interest key words can be tailored to each s. These keywords can be pre-set or 

specified dynamically. If MK(s,i) is the set of matched keywords for message i, in which 

the keywords is denoted as NK(i), the utility for each message i published by publisher 

p and received by subscriber s, denoted as 𝑈𝑚(𝑠, 𝑖, 𝑝), is computed using Equation (8), 

where |𝑀𝐾(𝑠, 𝑖)| , |𝑁𝐾(𝑠)|  and |𝑁𝐾(𝑖)|  means the number of items in the 

corresponding sets. 

 𝑈𝑚(𝑠, 𝑖, 𝑝) =
|𝑀𝐾(𝑠, 𝑖)|

|𝑁𝐾(𝑠)|
∗

|𝑀𝐾(𝑠, 𝑖)|

|𝑁𝐾(𝑖)|
 (8) 

2) Load Reduced 

FDCC is designed to reduce the load to message brokers. To determine the load 

reduction through using FDCC, the input bandwidth utilisation, output bandwidth 

utilisation, and matching utilisation are measured for the cases with and without 

applying FDCC, respectively. 

3) Communication Overhead 



79 

In addition to the communication overhead introduced by load detection described in 

Section 4.5.3, FDCC introduces an extra communication overhead. This is due to the 

message exchanges as part of the feedback from each subscriber. This is represented as 

the number of feedback messages received per second over the matching capacity of 

the broker. 

5.3.4 Validation Results 

Similar to the experiment for DRD-LB, the experiments to evaluate the performance of 

FDCC in the limited resource case were repeated 500 times. For each experiment, the 

experiment setup, including the broker capacity, the message dissemination rate, 

message size, number of publishers and subscribers vary randomly within a given range, 

e.g., for the matching capacity of a broker, this ranges from 20000 msg/s to 30000 msg/s, 

the same value adopted for the DRD-LB experiments (see Section 4.5.1). To evaluate 

the hypotheses proposed in Section 5.3.2, the performance measurements specified in 

Section 5.3.3 are measured in each experiment.  

 

Figure 5-3 OutBW Utilisation with FDCC 
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Figure 5-4 Matching Utilisation with FDCC 

 

Figure 5-5 InBW Utilisation with FDCC 

Figure 5-3, Figure 5-4 and Figure 5-5 show results of outBW utilisation, matching 

utilisation, and inBW utilisation measured in one experiment. Following a bandwidth 

reduction, all the brokers become overloaded, and therefore the conventional load 

balancing method can no longer work effectively. FDCC is then triggered to limit the 

rate of some overactive publishers to reduce the load to brokers. In this experiment, 

each subscriber sends a feedback message every second to compute the utility of the 

publisher, the utility of the topic and the quality of the experience for the subscribers. 

The total feedback message exchange rate equals to the number of subscribers. 

Therefore, the communication overhead caused by feedback message exchange can be 

obtained as the ratio of the number of subscribers to the capacity of the broker. For 

example, in this experiment, the communication overhead for feedback message 

exchange of broker B0 is 435/26015. The load reduction is also measured. In this 

experiment, the average load reduction for outBW utilisation, inBW utilisation, and 
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matching utilisation is 17.5%, 13.3% and 16.2% respectively. For the total 500 

experiments, the average load reduced for the three load metrics are 19.2%, 15.7% and 

16.1% respectively. 

To prove Hypothesis 2, a null hypothesis Hnull2 and its alternative hypothesis Halt2 are 

introduced. Hnull2 assumes that no matter if FDCC is adopted or not, the load on brokers 

is similar; while Halt2 assumes that FDCC reduces load to brokers. In this case, the 

outBW utilisation, measured before and after applying FDCC, is retrieved for each 

experiment to form two samples. Sout_before and Sout_after. The data in each sample are 

indexed and paired. Similar to the Wilcoxon signed-rank test designed to prove 

Hypothesis 1 (Section 4.5.4), Sout_before and Sout_after are taken as the input parameters 

into a Wilcoxon signed-rank test, achieved using R’s “wilcox.test()” function. The p 

value is then computed to be p<2.2e-16, which is close to zero. This means that Hnull2 

rarely happens and Halt2 is shown to be true, i.e., FDCC reduces load to brokers.  

 

Figure 5-6 Average QoE with FDCC 

Figure 5-6 shows the average QoE measured for one experiment with FDCC. The QoE 

is measured using the formula specified in Section 5.3.3. As shown in Figure 5-6, the 

average QoE varies significantly during the load distribution phase. This is because any 

new client that starts a new message dissemination process may influence the QoE, e.g, 

QoE increases if the new publishers publish messages that are more important, or QoE 

decreases if less important messages are published by a new publisher. In the 

equilibrium phase, the QoE becomes stable. After FDCC is triggered to limit the rate 

of overactive publishers, the average QoE for brokers is improved, as the publishing 

rate for messages with less important information is set with a lower value, or set to be 
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zero. Here, the difference between the QoE for the equilibrium phase, denoted as 

QoE_Before, and the QoE after FDCC triggered, denoted as QoE_After, is determined 

to demonstrate the improvement using FDCC, as shown in Figure 5-7. 

 

Figure 5-7 QoE Before & After Applying FDCC for the 500 Experiments 

The QoE Improved, which is computed as (QoE_After – QoE_Before) / Qoe_Before is 

also measured, as shown in Figure 5-8. The results show that the QoE is improved after 

applying FDCC. 

 

Figure 5-8 QoE Improvement Using FDCC 

The overall average QoE before and after FDCC is also measured, and the values are 

0.2671 and 0.3348 respectively. The QoE is improved by 25.4% in average, as shown 

in Figure 5-9.  
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Figure 5-9 Comparison between Average QoE for 500 Experiments Before & 

After Applying FDCC 

To prove Hypothesis 3, a null hypothesis Hnull3 and an alternative hypothesis Halt3 are 

introduced. Hnull3 assumes that the QoE after applying FDCC is similar to that before 

applying FDCC, while Halt3 assumes that the QoE after applying FDCC is greater than 

that before applying FDCC. In this case, the QoE that is measured before and after 

applying FDCC for each experiment is retrieved to form two samples, SQoE-before and 

SQoE-after. The data in each sample are indexed and paired. Similar to the Wilcoxon 

signed-rank test designed to prove Hypothesis 1 (Section 4.5.4) and Hypothesis 2, SQoE-

before and SQoE-after are taken as the input parameters into a Wilcoxon signed-rank test, 

achieved using R’s “wilcox.test()” function. The p value is then computed to be p<2.2e-

16, which is close to 0. This means that Hnull3 rarely happens and Halt3 is then proved, 

i.e., the QoE after applying FDCC is greater than that before applying FDCC. Hence, 

Hypothesis 3 is true. 

5.4 Summary 

In this chapter, a feedback driven congestion control method, named FDCC is described, 

which is proposed to supplement the load balancing method DRD-LB to manage the 

load of the H-E broker overlay for the limited resource case. FDCC limits the publishing 

rate of overactive publishers, thus reducing the load to brokers and improve the average 

QoE for subscribers. Five hundred simulation-based experiments were carried out to 
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evaluate the performance of FDCC. The results show that FDCC is able to reduce load 

to brokers by 15% and improve the QoE by 25% on average.  
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6 CONCLUSION & FUTURE WORK 

6.1 Conclusions 

This thesis selects a TWS as the target application domain of interest. Here, PSMOMs 

are used for the dissemination of sensor data, warning messages and evacuation signals. 

When a crisis happens, e.g., earthquake, the physical or underlying network may be 

damaged, which can result in broken network links or a decrease in network bandwidth 

capacity. In addition, more messages are generated and published by several sources: 

increased sampling rate of sensors to monitor the physical environment; increased 

message exchange by human beings in the affected area; increased notifications and 

alerts from authorities. Therefore, brokers that serve the publishers and subscribers may 

become overloaded and suffer performance degradation.  

Existing load management solutions need to be improved when they are applied to TWS, 

as they tend to focus on the surplus resource case but ignore the case that there are not 

enough system resources to support offloading, in which the load to the broker needs 

to be reduced. In addition, existing solutions do not consider the delay of time-sensitive 

subscriptions, which needs to be minimised to ensure important messages to be 

delivered in time. To overcome these limitations, based upon the PEER framework, an 

enhanced load management framework, named ePEER is proposed to provide load 

management for TWS. In ePEER, brokers are organised in an H-E broker overlay, 

which satisfies the communication requirements in TWS and reduces the load to head 

brokers. Distributed MAs are adopted to construct and maintain the broker overlay and 

support load management. A delay-sensitive load balancing method, named DRD-LB, 

and a feedback-driven congestion control model, named FDCC are introduced to 

manage the load of PSMOM for the surplus resource and the limited resource case 

respectively. FDCC is considered as a supplementary method to DRD-LB when the 

system resource limits are reached and cannot be scaled up for a certain time. Based 

upon simulation-based experiments, DRD-LB is shown to outperform the state of the 

art load balancing method proposed for PEER framework and is accompanied by far 

less delay-influence on the TWS. In addition, FDCC also demonstrates its ability to 

reduce the load to brokers and maintain the QoE for subscribers in the limited resource 

case. 



86 

6.2 Current Limitations and Future Work 

6.2.1 Limitations of the Current Approach 

The proposed load management framework has some limitations that can be improved 

as follows. 

 When a load management framework is deployed in a large-scale federated 

overlay, e.g., with hundreds of clusters, as there is no cluster-level load 

distribution technique, matched publishers and subscribers may be deployed in 

many different clusters and therefore an additional network load for message 

dissemination needs to be introduced.   

 In this design, with respect to [7, 21], it is assumed that every component works 

in an ideal situation, e.g., all the subscribers have enough bandwidth capacity to 

receive messages and provide an instantaneous ranking feedback for each 

received message. However, in practice, subscribers that subscribe to particular 

topics may have a low bandwidth capacity to receive all the published messages 

with the same topic. This is referred to as the “slow subscriber” problem, which 

builds the message queue up.  

 The proposed work targets managing the load for federated brokers in PSMOM, 

but does not consider the integration with other platforms, e.g., use of a Cloud, 

to manage the load by adding and removing brokers on demand.  

6.2.2 Future Work 

According to the research objectives, the current limitations, and requirements of a 

TWS system, the following work is proposed as future work. 

 A cluster-level load distribution method can be investigated, which aims to reduce 

the network load by aggregating clusters that are located near to each other to form 

an aggregated cluster that serves clients with similar interests. Matched publishers 

and subscribers are assigned to the same cluster when they register with the system. 

 A more practical utility ranking process can be developed, which measures the 

utility of each message based upon the semantic relationships between the interests 

of subscribers and the message content.  
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 An enhanced time control mechanism can be investigated, which is designed to 

manage slow subscribers by periodically dropping publications with less important 

information from the corresponding message queues to reduce the load of brokers. 

 The integration with a Cloud computing cluster can be investigated to improve the 

elasticity of PSMOM, e.g., the creation and removal of brokers on demand. A 

broker-creation on demand facility helps maintain the system performance, e.g., 

throughput and delay, when further system capacity is required for the case when 

some nodes that host brokers fail. In practice, a system node, e.g., a virtual machine 

that hosts broker(s) can crash due to a failure of the operating system or due to a 

hardware failure. The time costs to fix a node crash problem may last from minutes 

to days and during this time, brokers running on the failure node do not work. This 

may cause other brokers to become overloaded, as the load on brokers running on 

a failed node needs to be distributed to other brokers. In this case, if a PSMOM is 

integrated as part of a Cloud computing system, new brokers running in another 

Cloud node can be automatically restarted to replace the failed ones to help maintain 

the performance of message exchange services. The broker-removal on demand 

facility saves system resources when fewer brokers are required to provide message 

exchange services. 

 Regarding the resilience requirements of a TWS, fault tolerance techniques such as 

topic mirroring and geo-resilient routing, can be investigated to extend the load 

management framework. These techniques can be used to improve further the 

resilience of the PSMOM system to enable messages to be received by matched 

subscribers even if brokers or links to brokers fail. 

 Regarding the requirements of using a mobile device to capture the live information 

within an environment crisis area to improve the ground truth information, a QoS 

adapted multimedia messaging service can be investigated. This messaging service 

tends to enable human beings within the disaster area to publish messages 

containing live video and audio information to the warning centre using mobile 

phones. The quality of the video and audio should be adapted to the available 

bandwidth capacity. In addition, content caching and delayed publication could be 

supported for the situation when a network segment or link becomes unavailable at 

specific times but recovers after a while.  
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deployed to provide message exchange services for two real EWS applications 

developed in project TRIDEC for two scenarios: 

 The first scenario concerns a large group of experts working collaboratively in 

crisis centres and government agencies monitoring the physical environment using 

networked sensors. The goal is to make critical decisions and to save lives as well 

as infrastructural and industrial facilities in evolving tsunami crises.  

 The second scenario concerns a large group of consulting engineers and financial 

analysts from energy companies working collaboratively in sub-surface drilling 

operations. Their common objective is to monitor drilling operations in real-time 

using sensor networks, optimising drilling processes and critically detecting 

unusual trends of drilling systems functions. This prevents operational delays, 
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In both scenarios, the broker overlay consists of three broker clusters, located in 

different geo-locations and each cluster following the head-edge cluster design 
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described in Section 4.2. Fig B.1 shows generic system architecture for the two 

TRIDEC applications with the proposed PSMOM framework.  

 

Fig. B.1 Generic TRIDEC Architecture 

To give a better understanding of how the proposed framework is used to enable 

communication for the system of system architecture in TRIDEC, Fig. B.2 shows an 

example of using a broker overlay to enable communication in a Tsunami early warning 

system. 

 

Fig. B.2 Communication in a TWS through Broker Overlay 
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Both applications have been demonstrated with live demos in the TRIDEC project third 

year review meeting in Lisbon, 28th Nov. 2013. Fig B.3 and Fig. B.4 show the user 

interface for live demos for drilling and Tsunami scenarios respectively. In both demos, 

all the data exchanged are through the proposed PSMOM framework. 

 

Fig. B.3 Live Demo User Interface for Drilling Scenario 

In the drilling demo, live sensor data from onsite sensors are transmitted to the remote 

data processing centre through brokers, and the data is analysed together with the 

historical data. The diagram shows the drilling history of a rig named Rig2.  

 

Fig. B.4 Live Demo User Interface for Tsunami Scenario 
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In the tsunami scenario, seismic data and sea level data is transmitted through brokers 

to the data processing system. The data processing system analyses the received data 

together with the historical data and predicts the affected areas and the height of the 

wave. In addition, data from social network, e.g., tweets, which is relevant to the 

tsunami, is gathered to analyse the behaviour of people in the affected areas. The 

diagram shows where the earthquake happens, the distribution of the sea level sensors 

and the geo-locations of the tweets relevant to the events. 

 


