
Load Management for Publish/Subscribe Message Oriented Middleware
Tao, Ran

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/xmlui/handle/123456789/13114

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/xmlui/handle/123456789/13114

Load Management for Publish/Subscribe

Message Oriented Middleware

Ran TAO

Submitted for the degree of Doctor of Philosophy

School of Electronic Engineering and Computer Science

Queen Mary, University of London

June 2015

To my beloved family

I

ACKNOWLEDGEMENT

I would like to express my deepest and sincerest gratitude to my supervisor, Dr. Stefan

Poslad for his consistent support, patient guidance, and professional supervision. His

wide knowledge and enthusiasm towards research have been of great value to me.

My heartfelt thanks go out to Dr. John Bigham for his guidance and support that have

given to me. His valuable ideas and helpful advice have helped immensely in my PhD

research. My sincere appreciation also goes to Dr. Felix Cuadrado, Dr. Laurissa

Tokarchuk, and Dr. Gareth Tyson for their help and advice.

I am extremely grateful to all my friends in the Network Research Group at QMUL, for

their sincere friendship, supportive encouragement and valuable suggestions.

Finally, I would like to thank my beloved family; my parents who raised me, who

continue to love and support me over many years, and my dear wife, Shiwen Zhou,

whose patience and faithful support is so appreciated.

II

ABSTRACT

To provide time-critical early warnings in a Tsunami Warning System (TWS), the time

delay for both the sensor data exchange process (upstream) and the warning message

dissemination processes (downstream) should be minimal, maximising the time

available for accurately analysing the situation and giving more time for people in the

affected region to react to the warnings. Publish/Subscribe Message-oriented

Middleware (PSMOM) in combination with a novel use of a federated broker (broker

overlay) can be deployed in TWS to support both time-critical and resilient

communication. PSMOM can better manage message bursts caused by a sudden

increase in sensor data exchange frequency or by additional sensors coming online.

PSMOM can better manage the decrease in available system resources (bottlenecks)

caused by a disruption in the underlying network infrastructure (limited resource case).

Otherwise, these burst and bottlenecks can cause some brokers to become overloaded,

which may in turn degrade the overall system performance and delay decision-making.

Existing PSMOM load management solutions have two key limitations when applied

to TWS. First, existing work does not consider the message delay requirements for the

redistribution and offloading phases of load management. Here, some data is only

useful or valid for a short time-span (from tens of seconds to tens of minutes); hence, it

needs to be exchanged within this maximum allowed end-to-end transmission delay.

Time critical subscribers need to be de-prioritised from being offloaded, as the

offloading processes take some time to complete, introducing unexpected delays to

message exchange. Second, existing solutions assume that there are surplus system

resources for offloading, i.e., less loaded brokers can accept loads from overloaded

brokers. However, in a TWS, the underlying network infrastructure may be disrupted

which in turn reduces the system capacity. It always takes time to recover from the

limited resources situation and during that time, brokers may not have enough system

resources to accept loads from overloaded brokers, which may result in total failure of

the overloaded brokers.

A novel load management framework called ePEER is proposed that extends an

existing messaging system, Publish/Subscribe Efficient Event Routing (PEER), with

the following main contributions. First, for the surplus resource case, the message delay

III

requirements for different subscription services are considered in the load analysis

process when offloading the load to different brokers. Second, for the limited resource

case, a feedback driven congestion control mechanism can be used when the underlay

network infrastructure is damaged, reducing the available bandwidth of PSMOM. This

mechanism limits the publication rate of messages with less value, to better maintain

the quality of experience (QoE) of subscribers for the more important messages

ePEER is validated with emulation-based experiments. The results show that ePEER

outperforms the state of the art load management solution used by PEER: through

preventing unnecessary delays introduced to time critical services, and through

ensuring important messages can be more efficiently exchanged to improve the QoE of

subscribers.

IV

TABLE OF CONTENTS

ACKNOWLEDGEMENT .. I

ABSTRACT .. II

TABLE OF CONTENTS ... IV

LIST OF FIGURES ... VII

LIST OF TABLES .. VIII

ABBREVIATIONS ... IX

1 INTRODUCTION .. 1

1.1 Application Driven Motivation ... 1

1.2 Challenges .. 6

1.3 Research Objectives ... 7

1.4 Thesis Outline ... 7

2 PRELIMINARIES .. 8

2.1 Overview ... 8

2.2 Publish/Subscribe Message Oriented Middleware ... 8

2.2.1 Topic-Based PSMOM & Content-Based PSMOM .. 9

2.2.2 Message Broker Architecture ..11

2.2.3 Broker Federation ..12

2.2.4 Comparison of Different Messaging Systems for TWS ..13

2.3 Broker Overlay ... 14

2.4 Load Management for PSMOM .. 15

2.5 Summary... 16

3 LITERATURE SURVEY .. 17

3.1 Overview ... 17

3.2 Load Detection .. 17

3.2.1 Load Metrics ...17

3.2.2 Load State & Load Thresholds ..18

3.3 Load Distribution .. 19

3.4 Offloading ... 21

3.5 Congestion Control ... 22

3.5.1 Congestion Control by Publishing Rate Control ..23

V

3.5.2 Congestion Control by Path Handling ..25

3.6 Summary... 26

4 DELAY REQUIREMENTS DRIVEN LOAD BALANCING FOR SURPLUS

RESOURCE CASE ... 28

4.1 Overview ... 28

4.2 Head-Edge Broker Overlay .. 28

4.3 Distributed Management Agent ... 31

4.3.1 Components of Management Agent ..32

4.3.2 Construction of a Head-Edge Broker Overlay...35

4.4 Design of DRD-LB... 43

4.4.1 Load Detection ...44

4.4.2 Load Distribution ...48

4.4.3 Load Analysis ...49

4.4.4 Offloading ..53

4.5 Validation ... 57

4.5.1 Experiment Configuration ..58

4.5.2 Hypothesis to Evaluate ..60

4.5.3 DRD-LB Performance Metrics ...60

4.5.4 Validation Results ..62

4.6 Summary... 68

5 FEEDBACK DRIVEN CONGESTION CONTROL FOR LIMITTED RESOURCE

CASE .. 69

5.1 Overview ... 69

5.2 FDCC Design ... 69

5.2.1 Rate Limit Filter ..71

5.2.2 Topic Selection ..73

5.3 Validation ... 74

5.3.1 Experiments Configuration ..74

5.3.2 Hypotheses to Evaluate ...76

5.3.3 FDCC Performance Measurements ...77

5.3.4 Validation Results ..79

5.4 Summary... 83

6 CONCLUSION & FUTURE WORK .. 85

6.1 Conclusions .. 85

6.2 Current Limitations and Future Work ... 86

VI

6.2.1 Limitations of the Current Approach ...86

6.2.2 Future Work ...86

REFERENCES .. 88

APPENDIX A: AUTHOR’S CONTRIBUTION .. 97

APPENDIX B: RELATION OF THIS PHD TO TRIDEC PROJECT 98

VII

LIST OF FIGURES

Figure 1-1 Established TNCs, TWFPs and CTWPs in the NEAM Region 2

Figure 1-2 Time Needed for a Tsunami Warning .. 3

Figure 2-1 Qpid Broker Architecture ... 11

Figure 2-2 Simple Broker Federation .. 12

Figure 2-3 Bi-direction Broker Federation .. 13

Figure 2-4 Mapping between Broker Overlay and Underlying Network 14

Figure 3-1 Interaction between PHB, IB and SHB .. 24

Figure 4-1 An H-E Cluster with One Head (H) and Three Edges (E1 – E3)............... 29

Figure 4-2 Inter-Cluster Communication ... 29

Figure 4-3 Clusters Organization in a TWS .. 30

Figure 4-4 Load Management Components for an HMA .. 33

Figure 4-5 Configuration File for an HMA ... 36

Figure 4-6 Configuration File for an EMA .. 37

Figure 4-7 Advertising Process .. 38

Figure 4-8 Pseudo Code of Advertising Process ... 39

Figure 4-9 PTL & ADT of Broker Overlay after Advertisement 40

Figure 4-10 Subscribing Process ... 41

Figure 4-11 Pseudo Code of Subscribing Process ... 42

Figure 4-12 Load State Transfer .. 46

Figure 4-13 Pseudo Code of Load Distribution ... 49

Figure 4-14 Pseudo Code for Locating the Load-Accepting Broker 54

Figure 4-15 Pseudo Code of Client Selection .. 55

Figure 4-16 Broker Overlay Setup ... 59

Figure 4-17 Matching Utilisation with DRD-LB ... 63

Figure 4-18 Matching Utilisation with PEER-LB ... 64

Figure 4-19 Number of Offloads Difference between PEER-LB and DRD-LB 65

Figure 4-20 Offloading Delays Difference between PEER-LB and DRD-LB 65

Figure 4-21 Average Number of Offloads between DRD-LB and PEER-LB 66

Figure 4-22 Average Offloading Delay between DRD-LB and PEER-LB 66

Figure 4-23 Comparison of Offloading Delay between PEER-LB and PEER-DRD .. 68

Figure 5-1 H-E Broker Overlay with Message Controller and Message Extractor 70

VIII

Figure 5-2 Pre-Filter Use in a Publisher .. 71

Figure 5-3 OutBW Utilisation with FDCC .. 79

Figure 5-4 Matching Utilisation with FDCC ... 80

Figure 5-5 InBW Utilisation with FDCC ... 80

Figure 5-6 Average QoE with FDCC .. 81

Figure 5-7 QoE Before & After Applying FDCC for the 500 Experiments 82

Figure 5-8 QoE Improvement Using FDCC .. 82

Figure 5-9 Comparison between Average QoE for 500 Experiments Before & After

Applying FDCC ... 83

LIST OF TABLES

Table 3-1 Relationship between Load State & Load Threshold 19

Table 4-1 HMA and EMA for Load Management in H-E Broker Overlay 32

Table 4-2 Load Metrics for Head Broker and Edge Broker .. 45

Table 4-3 Load Estimation Policy ... 50

Table 4-4 Publisher Classification ... 51

Table 4-5 Inter-Cluster Offloading Priorities for Publishers in Head Broker 51

Table 4-6 Subscriber Classification ... 52

Table 4-7 Intra-Cluster and Inter-Cluster Offloading Priorities for Subscribers in an

Edge Broker ... 52

Table 4-8 Broker Capacity Specification for an Experiment 59

Table 4-9 Performance Metrics of DRD-LB ... 62

Table 5-1 Broker Capacity Specification for an Experiment 75

IX

ABBREVIATIONS

ADT Advertisement Table

ADV Advertisement

AMQP Advanced Message Queuing Protocol

CAP Common Altering Protocol

CTWP Candidate Tsunami Watch Provider

DRD-LB Delay Requirement Driven Load Balancing

EMA Edge Management Agent

ePEER Extended Publish/Subscribe Efficient Event Routing

EWS Early Warning System

FDCC Feedback-Driven Congestion Control

FIFO First In First Out

H-E Head-Edge

HMA Head Management Agent

IB Intermediate Broker

JMS Java Messaging Service

LA Load Analyser

LAN Local Area Network

LB Load Balancer

LD Load Detector

LM Load Manager

MA Management Agent

MOM Message Oriented Middleware

MQTT Message Queuing Telemetry Transport

NEAMTIC North-Eastern Atlantic and Mediterranean Tsunami Information

Centre

NTWC National Tsunami Warning Centre

OGC O&M Open Geospatial Consortium Observations & Measurements

OM Overlay Manager

OutBW Output Bandwidth

P2P Peer to Peer

PDCC PHB Driven Congestion Control

PE Pubend (Publisher Endpoint)

PEER Publish/subscribe Efficient Event Routing

X

PHB Publisher Hosting Broker

PS Publish/Subscribe

PSMOM Publish/Subscribe Message Oriented Middleware

PTL Publication Topic List

QoE Quality of Experience

RTWC Regional Tsunami Watch Centre

SA Speed Analyser

SDCC SHB Driven Congestion Control

SHB Subscriber Hosting Broker

SLA Server Level Agreement

STOMP Streaming Text Orientated Message Protocol

TNC Tsunami National Contact

TS Topic Selector

TWFP Tsunami Warning Focal Point

TWS Tsunami Warning System

UA Utility Analyser

WAN Wide Area Network

1

1 INTRODUCTION

1.1 Application Driven Motivation

Natural environment disasters, caused by natural events such as tsunamis, or manmade

crises such as earth substrate drilling, cause widespread environment damage that may

take the affected regions years to recover after the onset of the disaster. An Early

Warning System or EWS is a core system used for environment disaster risk and effect

reduction. It helps prevent loss of lives and reduces the economic and material impacts

of disasters [1]. To be effective, a EWS needs to actively involve the communities at

risk, facilitate public education and awareness of risks, effectively disseminate

messages and warnings and ensure there is constant state of preparedness [1]. A

functional EWS can be implemented as a chain of information communication systems.

It comprises sensors, event detection, decision support, and message broker subsystems

in a given order. It can be used for forecasting and signalling disturbances that adversely

affecting the stability of that part of the physical world being monitored. It helps to give

sufficient time for the response system to prepare resources and response actions to

minimise the impact on the stability of the physical world [2]. A Tsunami Warning

System (TWS) is chosen as the motivating application of a EWS.

In a TWS, a tsunami is detected through the analysis of seismic and oceanographic data

gathered by physical sensors, e.g., seismometers, tide gauges, and coastal buoys. The

sensor data is gathered and transmitted (upstream) to remote off-site tsunami operation

centres, which run the routine operation event and special event detection processes and

generate addition data flows (downstream) to enable decision handling processes and

the command-control workflows. Tsunami operation centres are often located in

different regions (or countries). They work collaboratively to detect tsunami events,

working with government offices to disseminate tsunami warnings. Take the North-

Eastern Atlantic and Mediterranean Tsunami Information Centre (NEAMTIC) for

example, the operation centres, named Candidate Tsunami Watch Providers (CTWPs)

or Regional Tsunami Warning Centres (RTWCs), are geo distributed in different

countries such as Portugal, Italy, Greece, France, and Turkey. These centres collect,

record, and process earthquake data for the initial warning and further collect, record

and process the sea-level data for confirming or cancelling the initial warning. The

2

warnings are sent to the Tsunami Warning Focal Points (TWFPs) or National Tsunami

Warning Centres (NTWCs), which are available at the national level for issuing tsunami

event information [3]. Figure 1-1 shows the geo-distribution of Tsunami National

Contacts (TNCs)1, TWFPs and CTWPs in the NEAM region [4].

Figure 1-1 Established TNCs, TWFPs and CTWPs in the NEAM Region

In this thesis, the focus of the research is on a TWS’s communication system. This

enables the (upstream) data exchange from physical environment sensors that publish

their environment data to the corresponding operation centres; and enables the

(downstream) messages exchange for warning and alert message dissemination. The

downstream system also includes data storage and analysis processes, e.g., resilient

database design, risk assessment, and algorithms to predict the crisis, but these are

considered out of the scope of the thesis. Upstream and downstream communications

have three main requirements for time criticality, scalability and resilience.

1 TNC is a person who represents his/her country in the coordination of international tsunami warning and

mitigation activities.

3

1) Time Criticality

For an effective tsunami warning, time is of the essence [5]. The sum of the detection

time (T1), assessment time (T2), and evacuation time (T3) must be less than the tsunami

travel time (T4), i.e., T1+T2+T3 < T4. The time needed for a tsunami warning time is

illustrated in Figure 1-2.

Figure 1-2 Time Needed for a Tsunami Warning

The tsunami travel time T4 depends upon the distance between the sea or earthquake

epicentre (start point) and the shore, e.g., if the distance is less than 400 km, it takes

less than about 30 minutes for a tsunami to reach the shore [6]. In 2004, the tsunami in

Indonesia hit Aceh, a coastal city, within 15 minutes. In these cases of near field

tsunamis, there is little lead time for a tsunami warning [6]. Therefore, the upstream

and downstream message exchange times to issue a warning should be minimised.

2) Scalability and Resilience

If a region’s tsunami sensors indicate that a tsunami is likely to occur, e.g., because of

increased movement by tsunami buoys, the sensor data generation rate increases

because sensors’ sampling rates in a TWS are designed to increase automatically. This

may cause an information flood. Thus, both the upstream and downstream

communication need to be scalable, i.e., to be scaled-up using more system resources

such as memory and bandwidth, and scaled-down when fewer resources are required,

or are available. In addition, when a tsunami reaches land, the embedded upstream

network infrastructure can be disrupted in the affected area, affecting the

4

communication capacity and availability. To ensure the upstream sensor data reaches

receivers in the operation centres, the upstream communication needs to be designed to

be resilient, e.g., using guaranteed delivery, mirroring, overlay routing, and congestion

control. Note that it is presumed that the downstream communication to the operation

centre is remote to, and away from, the region of the environment disaster and thus the

data processing centre is less prone to be disrupted.

Several communication systems can support the upstream and downstream data

communication in a TWS, e.g., Remote Procedure Call (RPC), brokerless system such

as ZeroMQ2, and Publish/Subscribe Message Oriented Middleware (PSMOM). Among

these systems, PSMOM is selected as the focus in the thesis. The details of the

comparison among these systems are provided in Section 2.2.4. In a PSMOM,

publishers are clients that generate and send messages to an intermediary called a

message broker; subscribers are clients that receive and may process messages from a

broker [7]. A PSMOM supports both synchronous and asynchronous message exchange,

which is advantageous when publishers and subscribers are temporally and spatially

distributed [7, 8]. A PSMOM also supports one-to-many, many-to-one and many-to-

many communications [9-11]. This is an efficient way to exchange messages. The same

message may need to be published to multiple subscribers, e.g., a warning message is

disseminated to multiple receivers. A subscriber can combine information from

multiple publishers, e.g., a database receives both raw and processed data. Multiple

publishers may publish messages to multiple subscribers, e.g., multiple operation

centres may process data. PSMOM enables subscribers to select which messages they

receive. These functions above are based upon filtering messages that either match their

metadata descriptions which are defined as message topics (topic-based PSMOM) or

match a set of filter criteria specified for message content (content-based PSMOM).

In PSMOM, a broker decouples publishers in time and space from subscribers. It

receives messages from publishers, detects whether or not messages have any matched

subscribers, and forwards them to subscribers that have matched interests or can discard

them if no matched subscribers are found. To enable distributed message exchange

2 ZeroMQ: The Intelligent Transport Layer, from: http://www.zeromq.org/

5

across a wide area, brokers in different geo-locations can be federated, i.e., messages

are disseminated amongst multiple brokers. The federated brokers form an overlay

network, in which their published messages are always routed from the source broker

that hosts the publisher through a federation path, to the destination brokers, to which

the matched subscribers subscribe. Both topic-based and content-based PSMOM have

been widely employed to provide message exchange services for applications that

include stock market monitoring [12], business process execution [13], activity

monitoring [14], workflow management [15], Really Simple Syndication (RSS)

filtering [16, 17], and network monitoring and management [14]. In this thesis, topic-

based PSMOM is selected to provide data communication services for a TWS, as it

provides better performance than content-based PSMOM in this scenario. A

comparison between the two types of PSMOM is given in Section 2.2.1. In the

remaining parts of the thesis, PSMOM is used to refer to the topic-based PSMOM.

According to the communication requirement of a TWS system, a PSMOM needs to

provide time-critical message exchange and to be resilient and scalable. Existing work

has improved the resilience and scalability [9, 11, 18, 19] of a PSMOM and to lower

the transmission delay by using overlay routing [20]. The focus is on the concept of

load management for a PSMOM used in TWS in relation to the transmission delay

constraints and Quality of Experience (QoE) for subscribers.

In practice, individual brokers in a federated overlay of a PSMOM may become

overloaded. This has several potential causes. First, an uneven load distribution may be

caused by different capacities of brokers and inter-broker links, and by different

population densities, interests, and usage patterns of end-user subscribers [7, 21].

Second, bursts of message exchange may occur when more publishers are added or the

publishing rates for some publishers suddenly increases, and thus generates an extra

load on brokers. Third, the capacity of the PSMOM system may be reduced due to

disruptions of the network infrastructure caused by a physical environment crisis. These

broker overload problems may result in performance degradation and delay critical

decision-making. Thus, a load management solution is required to manage the broker

overlay in TWS. Two cases are considered for the communication load management:

surplus ICT resources and limited ICT resources.

6

1) Surplus Resource Case

In this case, the system has enough communication capacity to provide message

exchange services. When some brokers become overloaded, there are surplus resources

in other brokers that can accept the load from the overloaded ones. In addition, new

brokers can be created for load shifting, e.g., with support for virtual machine

management in Cloud Computing.

2) Limited Resource Case

In this case, there are insufficient system resources for all the messages to be exchanged.

This is caused by the disruption to the physical network infrastructure. For instance,

during the immediate aftermath of the March 2011 Japan Earthquake, at least four

major undersea communication cables (two-trans-Pacific and two intra-Asian cables)

were damaged [22]. Such damage may severely reduce the capacity of links from

publishers to brokers, between federated brokers, and from brokers to subscribers. In

this case, offloading through migrating subscribers or publishers from an overloaded

broker to another (less loaded) one, does not resolve the broker overload problem. This

situation is further exasperated by the exchange of a large amount of messages from

overactive publishers, i.e., publishers that have no matched subscribers, whose

information may be repetitive or of little value, and where matched subscribers find

such content exchange unimportant (Section 5.1). These overactive or non-informative

publishers can introduce unnecessary loads for the message exchange, which may

overload the computation and communication resources of the communication service

(Section 5.2.1).

1.2 Challenges

In this section, the challenges in providing efficient load management for both the

surplus resource case and the limited resource case for a PSMOM system are discussed.

1. For the surplus resource case, the key challenge for broker load management is that

different TWS message exchange services have different delay requirements.

2. In the limited resource case in TWS, due to the disruption to the underlying

network infrastructure, the demand for message exchange by brokers exceeds the

supply (of broker resources available). The bandwidth between publishers and

7

brokers, between federated brokers, and between brokers and subscribers may be

used up and cannot be scaled up for a time. New brokers may not be able to be

initialised, which means the total broker processing capacity remains limited until

the situation recovers. In this case, brokers are temporarily not able to receive and

process all messages from the available publishers.

1.3 Research Objectives

The primary research objective is to improve load management for the broker overlay

of PSMOM used in TWS, for the surplus resource case, and for the limited resource

case. The primary objective is broken down into the following sub-objectives.

1) Analyse the communication requirements in TWS problem domain for different

message exchange services.

2) Analyse the limitations of how the state of the art load management solutions can

satisfy the TWS communication requirements.

3) Investigate and design a broker overlay that meets the communication

requirements for TWS and is capable of enabling resilient information exchange

in the face of broker failure and link failure.

4) Investigate and propose load-balancing solutions for a TWS with delay

requirements for the surplus resource case.

5) Investigate and propose a feedback driven congestion control solutions for TWS

to manage the broker load in the limited resource case.

1.4 Thesis Outline

The remaining of the thesis is organized as follows. Chapter 2 gives an overview of the

core concepts needed to understand the analysis of the surveyed methods and the

proposed method. Chapter 3 provides a critical analysis of existing load management

methods for PSMOM for both the surplus and limited resource cases (literature survey).

Chapter 4 describes the delay requirements driven load-balancing solution for the

surplus resource case with a simulation-based validation. Chapter 5 proposes a

feedback driven congestion control for the limited resource case, which is also validated

through simulation-based experiments. Chapter 6 summarizes what has been achieved

and proposes some future work.

8

2 PRELIMINARIES

2.1 Overview

This section, preliminaries, gives an overview of the core concepts needed to

understand the analysis of the surveyed methods and the new proposed method. An

overview of how PSMOM works and how to deploy PSMOM in TWS is provided in

Section 2.2. In Section 2.3, the background of the broker overlay, including the

advertising and subscribing process, is described. In Section 2.4, the load management

life cycle for PSMOM is described, both for load balancing in the surplus resource case,

and for congestion control in the limited resource case.

2.2 Publish/Subscribe Message Oriented Middleware

Message Oriented Middleware or MOM is an infrastructure that focuses on sending

and receiving messages and allows message exchange services to be distributed over

heterogeneous platforms [23]. It integrates independent, loosely coupled components

to increase their interoperability, portability and flexibility, as the participants do not

need to know what platforms or processors the others reside on [19, 24-27]. A MOM is

typically asynchronous, but most implementations also support synchronous message

passing as well.

In a MOM system, there are two typical messaging models, message queuing and

publish/subscribe (PS). Message queuing is a peer-to-peer (P2P) communication model

where messages are addressed to specific recipients. It is suitable for the request-reply

type message exchange. The PS model is a many-to-many model that permits the

efficient dissemination of messages across a distributed system [25]. Clients of a

PSMOM can be publishers, i.e., information producers that publish messages, or

subscribers, i.e., information consumers that subscribe to information of their interest

and receive messages [25]. Communication in PSMOM is usually asynchronous [19];

publishers and subscribers are decoupled in time (they do not have to be active at the

same time) and space (they do not to be close to each other in the same network). The

message exchange does not block the control of flow [28]. Publishers and subscribers

do not even need to know of the existence of one other [9, 28]. A significant advantage

9

of PSMOM is that it reduces the number of point-to-point connections (active

communication end-points) in a complex information technology (IT) system [18, 29].

In practice, PSMOM can be implemented in many ways. Java Messaging Service (JMS)

is a wide-spread and frequently used middleware technology [30-32]. Several systems

are based upon it, such as FioranMQ [33], TibcoEMS [34, 35], WebSphereMQ [36-39],

and RabbitMQ [40]. In addition, instead of using a language specific Application

Programmer’s Interface (API) or Library, such as JMS which only works for Java

applications, some standard open network protocol, such as Advanced Message

Queuing Protocol (AMQP) [41-43], Message Queuing Telemetry Transport (MQTT)

[44] and Streaming Text Orientated Message Protocol (STOMP) [45], can also be

adopted to build a PSMOM system.

In PSMOM, messages exchanged consist of a message header and a message body. The

message header records protocol metadata, e.g., protocol version. The message body or

payload contains the actual data to be exchanged.

Pattern matching is a key characteristic of PSMOMs. It defines the process of matching

published messages to subscribers’ interests. With respect to matching processes,

PSMOM systems can be classified into topic-based and content-based ones [28, 46].

2.2.1 Topic-Based PSMOM & Content-Based PSMOM

In a topic-based PSMOM system, each message is classified as belonging to one of a

fixed set of topics, also referred as groups, channels, or subjects. It is the metadata that

describes the actual data (stored in the message body) being exchanged, e.g., the

weather in London, BBC news. The format of the topic is specified by the message

exchange protocol adopted by the PSMOM. For instance, for message exchange service

using AMQP, a topic consists of a list of keywords (topic names), separated with a

delimiter “.”, e.g., “data.sesnsor.buoy.Turkey” is a topic that is used when acquiring the

sensor data from buoys in Turkey. In practice, topics used in a PSMOM system are pre-

defined to meet the requirements of the application scenario. A subscriber targets its

subscription when registering a topic of interest to it in a message broker, known as the

binding key [47]. The broker then holds a list of binding keys that refer to the

subscribers’ interests. In addition, each publisher labels each message being published

with a topic stored in the message header, named routing key, when sending messages

10

to a broker. When a broker receives a message, it examines the message header,

retrieves the routing key and compares the routing key with the existing binding keys

to decide whether some subscribers are interested in this message (matched subscribers).

If no matched subscribers are found, messages can be discarded; otherwise, they are

forwarded to the matched subscriber(s). Note that in topic-based matching, the broker

does not work on the content of each received message. Therefore, topic-based

PSMOM has no restrict requirements for the types and the structure of the content data,

i.e., both structured (e.g., name-value pair) and unstructured (e.g., pure text string) data

of any type, e.g., Text, Byte, Image, and Video, are allowed to be exchanged through a

topic-based PSMOM.

In a content-based PSMOM system, the message body of each MOM message needs to

follow a pre-defined message schema, which is usually a set of name-value pairs, e.g.,

name = XXX, price = XXX, volume = XXX. Each subscriber targets its subscription with

a query to the broker against the message schemas. It is able to set filtering criteria

along multiple dimensions [15, 48-53], e.g., name = “IBM”, price < 20, volume > 3000.

Publishers create messages following the schema and send them to brokers. When a

broker receives a message, it retrieves the content from the message body, looks up the

subscriptions’ queries, to decide whether the content of the message satisfies the

conditions of any subscription queries. Thus, compared to a topic-based PSMOM, a

content-based PSMOM has more restricted requirements on content structure.

A topic-based PSMOM tends to use pre-defined topic names, i.e., once subscribers

express their topics of interests, they cannot receive messages for which the message

content is relevant, but the topic is different. A content-based PSMOM classifies

messages according to the properties of the message content itself. So a content-based

publisher/subscriber could be more flexible [28, 54]. However, with the support of

filters or pattern matchers, such as the message selector in JMS, a topic-based PSMOM

also allows subscribers to express queries to retrieve messages, which match user

specified properties defined in the message header. In addition, topic-based matching

offers less matching delay and a higher throughput since there is no need to read and

extract the content information for each message.

In a TWS, both topic-based and content-based PSMOMs can be adopted for message

interaction between distributed system components or processes. However, in TWSs,

11

there are multiple types of messages that need to be exchanged among different system

components, including both structured and unstructured data. For instance, warning

messages can be represented using XML extensions such as the Common Alerting

Protocol (CAP3) format, while the sensor data can be represented using other XML

extensions such as the Open Geospatial Consortium Observations & Measurements

(OGC O&M 4) standard, while evacuation advice may be represented as natural

language Text. This introduces extra computation complexity to parse heterogeneous

content structures when adopting a content-based PSMOM. Thus, the topic-based

PSMOM is the focus in this thesis.

2.2.2 Message Broker Architecture

In a PSMOM, brokers from different vendors may use different architectures and use

different names for broker components even although they support common broker

functions. A broker architecture for Apache Qpid5 is shown in Figure 2-1 with the

following main components: a shared Input Queue for all the messages from publisher,

a set of Exchanges that support different types of matching, a Message Store that

records the received messages, and a set of Output Queues.

Figure 2-1 Qpid Broker Architecture

3 CAP - http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html

4 OGC O&M - http://www.opengeospatial.org/standards/om

5 Apache Qpid - https://qpid.apache.org/components/java-broker/index.html

12

In the example shown in Figure 2-1, messages labelled with three different topics (T1,

T2 and T3) are published to a broker with three subscribers subscribing to them. Each

Output Queue is bound to a subscriber on a specific topic, i.e., subscribers S1 and S2

subscribing to the same topic T1 have different output message queues, e.g., S1:T1 and

S2:T1, while a subscriber S1 subscribing to the different topics T1 and T2 has different

output message queues, e.g., S1:T1 and S1:T2. The published messages are examined

by the exchange component to find a binding to the output queues that correspond to

the matched subscribers. The matched messages are recorded in the message store and

the pointers to the message store are sent to the matched output queues. Each output

queue follows a First-In-First-Out (FIFO) principle. It retrieves the corresponding

messages in the message store and forwards them to a subscriber.

2.2.3 Broker Federation

In practice, due to security requirements that require the use of firewalls and restricted

IP addresses, geo-distributed publishers and subscribers that exchange messages may

only be able to connect to local brokers. For instance, although a publisher in London

(PLondon) and a subscriber in Paris (SParis) may want to exchange messages with each

other, they are not able to as they can only connect to the broker with an IP address in

the same country. A single centralized broker design is not feasible in this case.

Therefore, broker federation is required, as shown in Figure 2-2.

Figure 2-2 Simple Broker Federation

Broker federation allows messaging networks to be defined by creating message routes,

in which messages via one broker (the source broker) are automatically routed to

another broker (the destination broker). Federated brokers set up federation paths

between each other, which allow messages published to the source broker to be

automatically routed to the destination broker where the matched subscribers are

connected. Normally, a federation path is unidirectional, i.e., it only allows a message

to be routed from a source broker to a destination broker. However, a source broker can

also work as a destination broker, i.e., if two brokers need to interact with each other,

13

two federation paths are set up. In the London-Paris communication example above, if

a publisher in Paris (PParis) also needs to communicate with a subscriber in London

(SLondon), an additional federation path from broker in France to Broker in UK needs to

be established, see Figure 2-3.

Figure 2-3 Bi-direction Broker Federation

In a TWS, distributed brokers are federated to enable operation centres in different geo-

locations to exchange information, e.g., live and historical sensor data and generated

workflows, between them for collaborative decision-making.

2.2.4 Comparison of Different Messaging Systems for TWS

There are several candidate messaging system that can provide upstream and

downstream communication for a TWS, e.g., RPC, brokerless messaging system, and

PSMOM. According to the communication requirements of a TWS specified in Section

1.1, a comparison of these different messaging system is analysed.

RPC is not suitable for a TWS as the data process and crisis prediction takes time, e.g.,

from a few seconds to a few minutes, which will result in a vital delay in data delivery.

A brokerless system is also not a good design choice for a TWS for the following

reasons. First, in many-to-many communication, each client in a brokerless system

needs to maintain more connections. Second, developing a resilient directory service

and queuing system significantly increases the complexity for deploying the brokerless

messaging system into a TWS. Third, in a TWS, using a brokerless system design for

message exchange is infeasible as some distributed system components cannot

communicate directly. Compared to them, a PSMOM is better for deploying in a TWS

for the following reasons. First, a PSMOM supports asynchronous information

exchange and the clients involved are loosely coupled. Second, a PSMOM reduces the

number of connections required in many-to-many communication. Third, a PSMOM

14

can provide a messaging service for clients that cannot connect directly to each other

using a broker federation.

2.3 Broker Overlay

In practice, to enable message exchange between clients in a Wide Area Network

(WAN), brokers are interconnected through transport-level links to form a broker

federation [55]. In such a multiple-broker publish/subscribe system, brokers are

connected in a peer-to-peer fashion to form an overlay network [52, 56].

Figure 2-4 Mapping between Broker Overlay and Underlying Network

Figure 2-4 shows an example of a broker overlay consisting of five brokers (B0 to B4)

mapped to the underlying network (or physical network). It is shown that the directly

connected overlay brokers (e.g., B1 and B2) may not be directly connected into the

underlying network. Much research has been done to decide where to deploy the

overlay brokers to improve their efficiency and resilience, and to minimize the

transmission delay for message dissemination.

A broker overlay network can be statically configured, in which the broker connections,

are clearly defined. Therefore, when a publisher or a subscriber joins the system, it is

assigned to a broker that exchanges messages according to its topics of interest. The

overlay can also be dynamically configured, in which message routes between brokers

are not pre-defined but are determined when a new publisher or subscriber joins the

system. This can be achieved through advertising and subscribing processes.

Advertising is the process to distribute new publishing topic from the source broker, to

15

which a new publisher connects, to other brokers in the overlay. Thus, all the brokers

involved in the overlay have knowledge of the distribution of the published topics, i.e.,

of the source broker for each topic, and how topics are propagated via the advertising

routes. Subscribing is the process initialised by a broker, to which a new subscriber

connects. It sets up a subscription route to the broker such that any matched publishers

can connect to it. In a TWS, the broker assigned to a new publisher or subscriber is

affected by several factors, such as the load status of the brokers and the existing client

distribution in the broker overlay. Thus, the static configuration method is not

applicable in this case. Therefore, a dynamic configuration is required to construct and

maintain the broker overlay in a TWS.

2.4 Load Management for PSMOM

Load management has been a widely explored research topic for the past two decades

since the introduction of parallel and distributed computing [7]. The goal of load

management is to distribute load efficiently to all the available resources in a way that

maintains the normal system operation and lowers the risk of overloading individual

processing components.

As specified in Section 1.1, brokers in a PSMOM used in a TWS may become

overloaded due to a burst of message exchange or due to a reduced system capacity.

This would delay the decision-making. Thus, the load management for a PSMOM

targets managing the processing and communication load for all the brokers involved.

This is achieved with the following processes: load detection, load distribution, load

analysis, load migration or offloading, and congestion control. Load detection is the

process of detecting the load status of a broker. It is the initial step of load management,

which obtains the load conditions for each broker involved in the broker overlay. It

always achieved by periodically retrieving a set of pre-defined load metrics, such as

CPU and bandwidth usage, which are compared using corresponding thresholds. Load

distribution is the process of assigning a broker to a new client (publisher or subscriber)

according to the load state of the broker obtained through load detection, the topic

information, and the distribution of existing clients. It is an initial attempt to balance

the load among brokers in the broker overlay. Load analysis is the process that analyses

the load influence for individual message exchange services. It aims to support the

16

offloading process for client selection and therefore it is sometimes considered as a part

of the offloading process. When a broker is detected to be overloaded, offloading is

triggered. This process selects and migrates clients from an overloaded broker to one

with less load, assuming it has sufficient system resources, i.e., the surplus resource

case. However, brokers may not always be available that have surplus resources. A

congestion control process needs to be defined to supplement the offloading process to

provide load management for the limited resource case. Message congestion occurs

when the combined system resources of brokers in a broker overlay are less than those

resources required by publishers and subscribers. Two combined pre-conditions trigger

the congestion control process. One is that the PSMOM system is in the limited resource

case and the other is that the load status of the broker overlay reaches its limit.

To provide load management support for a PSMOM, a Load Manager (LM) is used.

This can be either inbuilt into brokers or work as a separate component. LM is often

defined as a set of policies for specific load management tasks or processes, e.g., for

load detection.

2.5 Summary

PSMOM is widely used to build large-scale distributed systems. It enables messages to

be disseminated from publishers to subscribers and decouples message publishers from

subscribers in time and space. According to the different matching criteria, PSMOM

can be classified into topic-based PSMOM and content-based PSMOM. Although

content-based PSMOM offers more flexibility for message matching, it requires the

message content to be well structured in order to support content matching. The

disadvantages to use content matching for TWS are that there are multiple types of

message structure including natural language. The broker federation and the

background of the broker overlay are also presented. In practice, a broker overlay is

often used in real distributed applications to enable messages to be exchanged between

geographically distributed system components that may not be able to communicate

with each other directly due to security restrictions such as firewalls. In the next chapter,

a critical analysis of existing load management solutions for PSMOMs is presented.

17

3 LITERATURE SURVEY

3.1 Overview

This thesis focuses on load management for PSMOM used in a TWS. As stated in

Section 2.4, the load management process involves load detection, load distribution,

load analysis, offloading and congestion control. Therefore, the analysis of the existing

methods adopted in each load management process for PSMOM is the focus of this

survey. Note that, existing offloading methods take the load analysis process as a part

to support client migration, and therefore the analysis of the existing load analysis

methods are presented along with the offloading methods (Section 3.4). It assumes that

the broker overlay and overlay routing already exist. In addition, as TWS is a distributed

system that requires communication in both WAN and LAN environments, other

methods that can only apply for a LAN environment are not discussed. The analysed

methods are retrieved from either the existing publications or the existing PSMOM

systems applied in distributed systems.

3.2 Load Detection

Load detection is the process that detects the state of the broker being monitored, e.g.,

to determine whether the broker is overloaded, by periodically retrieving some load

metrics and comparing the values with corresponding thresholds. In the following

subsections, the design for load metrics, load state and load thresholds for existing load

management methods for PSMOM are described.

3.2.1 Load Metrics

Different load detection designs may have different load metrics. For a PSMOM, load

detection is achieved by retrieving either system level information, or the middleware

level information such as matching capacity utilisation.

The system level metric measures some usage of the operation system, such as CPU

[57], Memory [58] and Bandwidth [7] that reflects the operational status of the system,

on which the broker relies. Some methods have been proposed to map the system level

metric such as CPU load, Memory load, and I/O load to the parameters of the message

18

exchange services, e.g., throughput, number of publishers, and number of subscribers,

to measure the capacity of the broker through a set of factorial experiments [59, 60].

Middleware level metrics are used to measure aspects of a broker’s function such as

matching capacity utilisation, input queue utilisation, output queue utilisation, queue

depth, and replication ratio [7, 21]. These values reflect the load status of a broker more

specifically, e.g., a 100% used matching capacity means that the broker cannot match

any more publishers that join or if their publishing rates increase. Some of these metrics

cannot be directly measured in the broker, such as the matching capacity usage, as it

requires the knowledge of the maximum matching capacity, which is dynamic. It

depends upon the message exchange service and system level metrics. Metrics such as

queue depth can reflect an aspect of the broker load status, e.g., a high queue depth

value indicates that there are many messages waiting in the queue. However, this does

not clearly indicate what caused this load state, e.g., a high queue depth value has many

causes, such that the output bandwidth may be already used up or subscribers may be

too slow to download messages.

3.2.2 Load State & Load Thresholds

Thresholds are used to help manage broker loads. Each load metric has its

corresponding threshold. When the values of load metrics are determined, they are

compared to a threshold to classify the load state of the broker into normal or abnormal.

Thresholds may be static or dynamic. A static threshold has a fixed predefined value,

e.g., 90% CPU usage. Static thresholds do not change during the system operation.

They can only be modified if the system is stopped and then restarted. Static thresholds

are often used to manage load with respect to system level metrics, such as CPU and

bandwidth usage, independent of the dynamic configuration of the middleware, i.e., the

number of clients connected and the number of messages exchanged. In contrast,

dynamic thresholds can change during the system operation, e.g., a queue depth

threshold may be affected by the number of clients being served and by the exchange

rate. Dynamic thresholds are often used for the middleware level metrics, which are

affected by the operation of the broker. For example, a threshold for queue length,

which is used to limit the number of messages held in the queue, may be influenced by

the message exchange rate and thus the threshold value needs to be updated during its

19

operation. For a hybrid load metric design, both static and dynamic thresholds are used

for load management, depending on the application specific requirements.

The load state of a broker is classified according to how the values of the load metrics

measured relate to their corresponding thresholds. Cheung et. al. define two load

thresholds (a high threshold THhigh and a low threshold THlow) for each load metric and

classify the broker’s load state into LOW LOAD, HIGH LOAD and OVERLOAD [7].

The high threshold determines whether a broker becomes overloaded, while the low

threshold indicates whether the broker can receive new connections or message

exchange requests and whether it can be selected to accept loads from overloaded

brokers. The relationship between thresholds and load state for this design is shown in

Table 3-1. In addition, a temporary load state BUSY is adopted to indicate that a broker

is involved in an offloading process and its load is unstable [7].

Condition State

(𝐴𝑙𝑙 𝑡ℎ𝑒 𝑚𝑒𝑡𝑟𝑖𝑐𝑠) < 𝑇𝐻𝑙𝑜𝑤 LOW LOAD

𝑇𝐻𝑙𝑜𝑤 < (𝐴𝑛𝑦 𝑀𝑒𝑡𝑟𝑖𝑐) & (𝐴𝑙𝑙 𝑀𝑒𝑡𝑟𝑖𝑐𝑠) < 𝑇𝐻ℎ𝑖𝑔ℎ HIGH LOAD

𝑇𝐻ℎ𝑖𝑔ℎ < (𝐴𝑛𝑦 𝑀𝑒𝑡𝑟𝑖𝑐) OVERLOAD

Table 3-1 Relationship between Load State & Load Threshold

3.3 Load Distribution

Load distribution is the process to assign a broker to a new client, e.g., a publisher or a

subscriber, according to the load state of the brokers obtained through the load detection

process, the topic information, and the distribution of existing clients. This is the initial

process that affects the load status of the broker overlay.

Round-Robin (RR) is one of the earliest algorithms proposed for process and network

load scheduling in computing based upon equal priority and a circular order [61]. In

PSMOM, RR is achieved using three steps. First, a LM generates a list of brokers

involved in the broker overlay. Second, when a new client joins the system, a LM picks

the first broker in the broker list and assigns it to the client. Third, a LM puts the broker

selected at the tail of the list. The load state of each broker and the load usage for each

client are not considered, which may cause a highly loaded broker to be overloaded if

a new client is still assigned to it. With respect to the differences of load status and

20

processing capacity for different servers, a Weighted Round-Robin (WRR) method is

proposed. With WRR, each server is assigned with a weight. The server with the largest

weight has the highest priority to be selected. In PSMOMs that use WRR, when a client

joins the system, the broker that has the highest priority is assigned to the client by the

LM. Least-N Scheduling (LnS) is one type of WRR for load distribution in PSMOM.

Here the term N is a wild card that can be replaced by any property that the system

needs to measure to help manage the load distribution. For instance, Least-Connection

Scheduling can be applied to PSMOM by assigning new subscribers to the broker that

serves the least number of subscribers [62]. Least-Delay Scheduling means that the

broker for which the transmission delay between the client and the broker is minimal,

has the highest priority to be assigned a new client, e.g., a subscriber [57].

In addition, some researchers introduce subscription based clustering techniques, where

the set of subscriptions are partitioned into a pre-defined number of servers or groups

(known as clusters) and the subscriptions for the most common topics of interest are

assigned to brokers in the same cluster, in order to minimise the total amount of network

traffic [63-66]. However, the above work takes no consideration of the load influence

of individual subscriptions, which may result in an uneven load distribution if a set of

subscriptions has much more traffic than others. What’s more, the delay requirements

for individual subscriptions have not been considered, which may bring unexpected

delays to delay sensitive messaging services.

Correlation-based load distribution is another method that has been used for load

distribution [20]. It determines the distribution according to the correlations between

different clients with the following principles. First, clients that are highly positively

correlated are assigned to different brokers. Second, the highly negatively correlated

clients are assigned to the same broker. Third, the average utilisation of broker capacity

for all the brokers in the broker overlay is maximized. With this method, the

computation of the distribution takes some time, e.g., from minutes to hours, depending

on the number of topics and the number of brokers. It works best for the case when all

the clients’ information, such as the number of publishers and subscribers, message

exchange rate have been predefined, and a correlation analysis between clients and

topics has been performed, by the LM beforehand. Any update to the broker overlay,

e.g., to add or remove a broker, and to client configurations, e.g., add a few new clients,

21

takes considerable time to re-compute the distribution. Thus, this method cannot be

applied to TWS, in which the system configuration and client exchange rate may vary

according to the situation of the environment, e.g., the message exchange rate may

increase when a tsunami event is detected and a broker’s capacity may be reduced due

to the damage caused by the aftermath of the event.

Cheung et. al. propose a method that measures the imbalance between brokers to trigger

offloading [7, 21]. In such a method, clients are allowed to connect to any brokers in

the broker overlay. LM detects the load differences between different brokers, named

the imbalance level. If the imbalance level of two brokers exceeds a threshold,

offloading is triggered to balance the load between the two brokers, i.e., to migrate some

clients in the broker with a higher load to another less loaded one. This type of method

increases the flexibility for the load balancing but introduces delays to any client’s

message exchange that is being selected to move to another broker. Thus, this type of

method is not applicable in TWS, in which the delay introduced to time-critical

subscription services should be minimal.

In TWS, a hybrid method is required to distribute load in the broker overlay. This needs

to be aware of the load status of all the brokers and the delay requirements for different

subscription services, and be able to minimise the time delay for time-critical message

exchange.

3.4 Offloading

Offloading is the process used to migrate load from an overloaded broker to one with

less load. It is triggered when a broker becomes overloaded or when a broker imbalance

is detected.

Random offloading is the basic offloading method. As the name suggests, when

offloading is required, LM randomly chooses and migrates a client to another randomly

chosen broker called the load-accepting broker. This process continues until all the

brokers are not overloaded any more. This method takes some time to balance the load

in all brokers, as it does not consider the load influence for both the offloading broker

and the load-accepting broker. Thus, it may overload the load-accepting broker and

requires another offloading process to rebalance the load [7, 21]. Prioritised random

22

offloading is an improved method in compared with the conventional random one.

Instead of randomly choosing a load-accepting broker, LM prioritises such brokers so

that a broker with the maximum capacity has the highest priority to be selected as the

load-accepting broker. This method therefore reduces the chance that the load-

accepting broker becomes overloaded.

Cheung et. al. introduce a load analysis (LA) mechanism to improve the existing

offloading methods [7]. The authors state that this is the first load balancing method for

PSMOM that adopts load analysis to avoid load-accepting brokers from being

overloaded during the offloading process. This LA mechanism prioritises offloading

clients and estimates the load influence to both offloading broker and load-accepting

broker for each client. Based upon this analysis procedure, LM ensures that the extra

load introduced to the load-accepting broker does not exceed its load capacity. The

offloading progress is completed as follows. First, the offloading broker locates a load-

accepting broker of which the broker’s load state is LOW. Second, both the offloading

broker and load accepting broker change their state to “BUSY” which indicates they

are currently involved in an offloading process, i.e., they will not accept any more work.

Third, for each subscription, the offloading broker evaluates the influence to both load-

accepting broker and offloading broker based upon the message input rate. Fourth, the

system lists all the subscriptions that can reduce the load of the offloading broker and

have the least side effects for the load-accepting broker. Fifth, the subscriptions in the

list are migrated to the load-accepting broker. Sixth, steps one to five are repeated until

the offloading broker is no longer overloaded. However, this method does not consider

the different transmission delay requirements for different subscriptions services and

this therefore may introduce unnecessary delays to delay sensitive services.

3.5 Congestion Control

Congestion control is a widely explored topic in Internet Protocols [8, 67], Wireless

Sensor Networks [68, 69], Interconnection Networks [70], Opportunistic Networks [71],

and Multimedia Streaming Networks [72]. In general, congestion occurs when the

traffic load exceeds the network capacity. This may result in packet loss and increase

queuing delays, and lead to retransmission that consumes extra energy. This especially

affects bandwidth intensive and delay sensitive applications, and applications affected

23

by message loss. Much work has been proposed to resolve the problems, such as

priority based congestion control [73], topology-aware resource adaptation [74],

predictive congestion control [75], and receiver assisted congestion control [76].

Different congestion control mechanisms have two similar phases: congestion detection

and congestion handling. In the congestion detection phase, the load states of brokers

are periodically detected to determine whether congestion occurs. In the congestion-

handling phase, congestion-handling policies are applied to maintain the overall system

performance and QoE for subscribers. For a PSMOM, congestion occurs when the

processing and transmission capacity of brokers or links to brokers are used up. Existing

solutions that handle congestion in the broker overlay can be categorised into two

approaches: publishing rate control [8, 56] and path handling [77, 78].

3.5.1 Congestion Control by Publishing Rate Control

A congestion control mechanism, which handles congestion for a PSMOM by

controlling the publishing rate, is described in [8]. The authors specify three types of

brokers: publisher hosting brokers (PHB), intermediate brokers (IB), and subscriber

hosting brokers (SHB). Each PHB hosts one or more publishing endpoints, referred to

as pubends (PE). Each pubend represents an ordered stream of messages published by

one or more publishers, and maintains this stream in persistent storage. Messages

published from different publishers may be assigned to the same pubend. This pubend

decides on a position for the message in the persistent stream and logs the message to

a persistent store. After that, the pubend sends the message towards SHBs through IBs.

The IBs forward data and control messages to the SHBs. Figure 3-1 shows the

connection between PHB, IB and SHB.

24

Figure 3-1 Interaction between PHB, IB and SHB

Based upon the above model, the authors propose two congestion control protocols, a

PHB-driven congestion control (PDCC) protocol and a SHB-driven congestion control

(SDCC) protocol. PDCC regulates the rate at which new messages are published by a

pubend. The publication rate is adjusted depending on the observed throughput at the

SHBs. It is the responsibility of the SHBs to calculate their own congestion metric based

on throughput and notify the pubends whenever there is a risk of congestion. In this

design, SHB use the ratio of pubend to SHB message rate as a metric for detecting

congestion, i.e., rpubend / rSHB. SDCC manages the rate at which an SHB requests missed

data by sending NACKs upstream. These protocols are implemented into gryphon6

brokers and the experiment results show that the proposed PDCC and SDCC protocols

can maintain the system performance by preventing the system from becoming

congested.

The proposed congestion control mechanism has some limitations. First, it is not

designed for fully loaded brokers but is designed to provide an acceptable level of

performance for slow subscribers and for the situation when the system is recovering

from link failures. Both PDCC and SDCC actually increase the load of PHB and IB, as

they need to hold more messages in the message queue before sending them along the

next hop. This introduces unexpected delays to delay sensitive messages. Second, the

proposed methods ignore the importance of the messages to the matched subscribers in

terms of controlling publishing rate. Therefore, these methods may reduce the QoE for

6 Gryphon - http://www.research.ibm.com/distributedmessaging/papers/ext-abstract.htm

25

subscribers that exchange the more important messages. Third, the proposed solution

makes modifications to the broker internals. This increases the maintenance and update

complexity when new versions of brokers are released by vendors as their congestion

control mechanisms need to be re-integrated and rebuilt.

3.5.2 Congestion Control by Path Handling

A congestion control mechanism that handles congestion using path handling is

described in [77]. For this proposed algorithm, the base assumption is that in a

congested PS system, it is not possible to provide unaffected services for everyone all

the time. Therefore, in this approach, a priority-based method is integrated seamlessly

with the PS system, without violating the PS decoupling. In this design, the authors

consider two congestion situations, i.e., a broker is congested, or the links to the broker

are congested. To handle both congestion situations, brokers are modified. Thus, they

can skip links when a broker itself is congested or drop less profitable messages for the

system when links to a broker become congested. To detect the profitability of

subscriptions, each subscription message in this system uses a maximum price and

coverage metric. Maximum price shows the value that this message has for a subscriber.

Coverage is used to determine how many subscribers receive a publication message on

a given link. The profit of a message is proportional to the value of the maximum price

and coverage metric. Whenever a broker is congested, it skips any message queues that

contain the least profitable subscriptions. Whenever the situation returns to normal,

only then will it process these queues. If the broker becomes too congested, queues

build up and the broker runs out of memory and eventually crashes. For the case when

one or more links to a broker are congested, the broker drops the messages with the less

profitable information; it only disseminates messages through congested link(s) that

have a higher profit.

Another congestion control mechanism for path handling in a PSMOM can be found in

[78]. This focuses on a scenario where only some specific brokers and links are

congested in the broker overlay. The congestion handling is achieved by distributing

the higher traffic of congested brokers and links to other parts of the broker overlay that

are not congested. In this design, each congested broker or link has a list of alternative

brokers and links. When a broker or link becomes congested, the immediate senders,

26

e.g., publishers or brokers that connect to the congested broker, connect to an alternative

broker through an alternative link.

The proposed path-handling congestion control methods have some common

limitations. First, these methods target handling congestion when only some of the

brokers and links are congested, i.e., they are not designed for the case when all the

available communication and computation resources are used up. Second, for path

handling, the load influence on the alternative broker and link is not considered, hence,

the selected alternative broker and link may become congested. Third, the proposed

solutions make modifications to brokers to enable path handling, and thus increase the

complexity in maintaining and updating the system.

3.6 Summary

In this chapter, a comparative analysis of existing methods for load detection, load

distribution, offloading and congestion control is given. The load analysis process is

considered as part of the offloading process to support client selection for migration.

According to the communication requirements specified for TWS in Section 1.1,

existing methods need to be improved in the following ways in order to be applied for

TWS. First, to detect load status of broker in TWS, hybrid load metrics including both

system level metrics such as Bandwidth and middleware level metric such as capacity

utilisation need to be adopted. Second, the load distribution process should not only be

aware of the load status of the broker, but should also aim to reduce the network traffic

and to minimize the transmission delays. Third, the load analysis and offloading process

should take the delay requirements for different subscription services into consideration

in the client selection process in order to avoid introducing unexpected delays to delay

sensitive services. Fourth, the congestion control methods used need to be aware of the

importance of messages when discarding messages to reduce load to brokers for the

limited resource case.

In the following chapter, Chapter 4, a load management framework that extends the

PEER framework, named ePEER, is proposed to manage broker load for PSMOMs in

TWS. The construction of the broker overlay for TWS, and the processes for load

management for surplus resource case, including load detection, load distribution, load

analysis, and offloading, are described. Then, chapter 5 provides a feedback driven

27

congestion control model as a supplementary load management method for the limited

resource case.

28

4 DELAY REQUIREMENTS DRIVEN LOAD

BALANCING FOR SURPLUS RESOURCE

CASE

4.1 Overview

In this chapter, an overview of the load management framework, ePEER, is presented.

This includes a detailed description of a head-edge (H-E) broker overlay design that

supports the message dissemination requirements for TWS and the design of the LM,

or Management Agent, used to manage the workload of the H-E broker overlay in both

the surplus and limited resource case. In addition, the delay requirement driven load

balancing (DRD-LB) method for ePEER is proposed. DRD-LB manages the load

among the H-E broker overlay for the surplus resource case in order to reduce

unexpected delays introduced to time-critical subscription services. A comparison

between DRD-LB with the state of the art load balancing method adopted by PEER [7],

denoted as PEER-LB, is also described to emphasise the benefits of ePEER.

4.2 Head-Edge Broker Overlay

The H-E broker overlay is partitioned into several local domains, named clusters. In

each cluster, there is one head broker and several edge brokers to form a tree hierarchy.

In each cluster, the cluster-head (head) broker can have more than one neighbour while

a cluster-edge (edge) broker has only one neighbour broker. In addition, in each cluster,

all the publishers connect to the head broker while all the subscribers connect to the

edge broker. Thus, all the messages are routed from the head broker to the edge broker.

Figure 4-1 shows an example of an H-E cluster with one head broker (H) and three edge

brokers (E1, E2 and E3). In this example, three matched publisher-subscriber pairs, i.e.,

P and S, P’ and S’, and P’’ and S’’, exchange messages within the cluster, i.e., use intra-

cluster communication.

29

Figure 4-1 An H-E Cluster with One Head (H) and Three Edges (E1 – E3)

In addition, cluster-to-cluster (inter-cluster) communication occurs via federation paths

created between different head brokers. Figure 4-2 shows an example of inter-cluster

communication between two H-E clusters. In this example, the publisher P’’ in cluster

1 has a matched subscriber S’’ remotely hosted in cluster 2. After the advertising and

subscribing processes (Section 2.3), the messages published in cluster 1 are then routed

to head broker H’ of cluster 2 and then forwarded to edge broker E2’, to which S’’ is

connected. This also applies to matched publisher P’ and subscriber S’.

Figure 4-2 Inter-Cluster Communication

The benefits of adopting such an H-E broker overlay design to support message

dissemination for TWS are as follows. First, H-E broker overlay design allows all the

brokers in a cluster to be deployed in a LAN environment, e.g., in a warning centre. It

then enables messages to be disseminated within one warning/data centre (intra-cluster)

for processing and among multiple warning/data centres (inter-cluster) for collaborative

decision-making. Second, the H-E broker overlay also allows brokers in a cluster to be

deployed in a WAN environment, e.g., in the offshore area that is potentially affected

by Tsunami. This can also be used to disseminate information from warning centres to

registered stakeholders in such an area. Third, since a head broker only serves the

publishers, and an edge broker only serves the subscribers, the client selection process

30

for offloading is simplified, i.e., when a head broker becomes overloaded, only

publishers are required to be analysed and migrated; when an edge broker becomes

overloaded, only subscribers are offloaded. Fourth, the federation setup process is

simplified, as all the messages being disseminated within a cluster are always routed

from head broker to edge broker, which means that the federation path within one

cluster is unidirectional. Fifth, regarding the scalability and resilience requirements of

a TWS, the H-E broker overlay can be extended to add fault tolerance, e.g., mirroring

can be used to ensure published messages to be received by matched subscribers in the

case of a broker or link failure [9, 18, 19, 79].

As specified in Section 1.1, to detect a tsunami for a particular region, several national

warning centres and one regional warning centre work collaboratively to detect

tsunamis and disseminate warning messages to the affected region. In each warning

centre, an H-E broker overlay is deployed. A federation path between two head brokers

is established only when communication occurs between two centres. Figure 4-3 shows

an example of how clusters are organised in a TWS. NTWC and RTWC refer to the

cluster deployed in a national tsunami warning centre and regional tsunami warning

centre respectively. Loc. refers to the cluster deployed in a region monitored by a

warning centre. The region could be one country or several countries in practice.

Figure 4-3 Clusters Organization in a TWS

As shown in the diagram, the broker overlay for this TWS is designed as follows:

1. Each cluster follows the H-E broker overlay design, i.e., there are one head and

several edges. The head and edge brokers are federated unidirectionally, i.e.,

messages are only routed from head to edges.

31

2. Different clusters are federated through head brokers.

3. Each cluster has a set of pre-defined neighbour clusters that are directly connected:

a) Between national tsunami warning centre and the regional tsunami warning

centre, e.g., between NTWC1 and RTWC1;

b) Between national tsunami warning centre and its observation region, e.g.,

between NTWC1 and Loc.1a;

c) Between national warning centres that need to share information for decision-

making, e.g., between NTWC1 and NTWC2.

4. When messages needs to be disseminated between clusters that are not directly

connected, another message dissemination route needs to be determined according

to the advertising and subscribing process described in Section 2.3.

4.3 Distributed Management Agent

As specified in Section 2.4, a LM is required to provide load management for PSMOM.

LMs can be classified into internal and external to the broker. An internal LM requires

modifying brokers to support load detection, analysis, and offloading functions; an

external LM is an extra component, which is not part of a broker but able to monitor

and analyse the load state of broker via a message-based network link. The former

method requires a modification to the brokers and therefore is harder to maintain than

the latter one. In the thesis, an external LM to the broker named a management agent

(MA) is used. For the H-E broker overlay, each broker is managed via an MA. The MA

that manages a head broker is named a Head MA (HMA), while the MA that manages

an edge broker is named an Edge MA (EMA). It is the same as for the H-E broker

overlay: an EMA is only allowed to communicate with HMA of its cluster, while an

HMA is able to communicate with all EMAs in its cluster and with the HMAs of other

clusters. Communication between MAs is accomplished using MOM messages,

exchanged through the management brokers. The management brokers that manage the

message exchange run aside from their corresponding head or edge brokers. For

example, the management broker used by the EMA of an edge broker E1, e.g., E1m,

runs on the node that hosts E1. In this thesis, the basic broker used is an open source

release of Qpid (version 0.18) that speaks AMQP. Therefore, in this design, all the

message exchange processes through a broker follow a subset of AMQP, as some of

32

AMQP functions such as type-based matching and subject-based matching are

considered irrelevant. The broker architecture is described in Section 2.2.2.

4.3.1 Components of Management Agent

Table 4-1 shows a summary of how HMA and EMA perform in the load management

life cycle, i.e., load detection, load distribution, load analysis, and offloading.

 HMA EMA

Load

Detection

Periodically detects the load status of head

Broker

Periodically detects

load status of the

corresponding edge

broker

Collects and records the load status of all

edge brokers in the same cluster

Calculates the cluster-level load status and

shares it among neighbour clusters

Records the load status of the load in

neighbouring clusters

Load

Distribution

When it receives a client registration request,

it assigns a head broker to a publisher and an

edge broker to a subscriber following a

distribution policy (Section 4.4.1)

N/A

Load

Analysis
Estimates the load influence of publishers

Estimates the load

effects of subscribers

Offloading

When head broker becomes overloaded, it

locates the load-accepting broker and then

selects and migrates publishers to it

When an edge broker

becomes overloaded,

it locates the load-

accepting broker,

selects clients for

migration and sends a

request to its HMA

When offloading request is received from an

EMA, it updates the load state of both

overloaded and load-accepting edge brokers

Notifies a selected subscriber to migrate to

the load-accepting edge broker

Table 4-1 HMA and EMA for Load Management in H-E Broker Overlay

As is specified in Table 4-1, HMA performs additional functions compared to EMA.

However, in practice, each edge broker and EMA are designed to be able to become a

33

head broker and HMA respectively when the original head becomes unavailable7 .

Therefore, HMA and EMA have the same load management components but these

components perform different functions with respect to the types of the MA. Figure 4-4

shows an example of the load management components for HMA and their interaction.

The functions of each component for both HMA and EMA are described in details as

follows.

Figure 4-4 Load Management Components for an HMA

The Overlay Manager (OM) has two modules, named MA module and client module.

The MA module is used for both EMA and HMA, which is used to exchange

information between MAs. It provides the following functions. First, it is used for

EMAs of the same cluster to update the load status of corresponding edge brokers to

the HMA, so that the HMA obtains the load status of all the edge brokers in the cluster.

Second, it is used by a HMA to forward the load status update from an EMA to the

other EMAs in the same cluster, so that all the EMAs in the same cluster have the load

status of all the edge brokers. Third, it is used by a HMA to receive load status update

7 The switchover function is considered out of the scope for load management and thus the detail is not described.

34

from HMA of neighbor clusters and to notify the HMAs of other neighbor clusters. The

client module is only used by HMA, which is used to communicate with publishers and

subscribers. Through the client module, HMA receives registration request from both

publishers and subscribers, assigns brokers to them, receives feedbacks from

subscribers, notifies them to migrate from one broker to another, and informs the

publishers to publish less messages.

Load Detector (LD), Load Analyser (LA), and Load Balancer (LB) work together to

detect and balance the load between brokers, i.e., to provide DRD-LB for H-E broker

overlay. For both HMA and EMA, LD periodically retrieves the broker’s load

information to detect the load state and reports this to its LA (Section 4.4.1). In addition,

for LD in EMA, it notifies OM to update the monitored load state to an HMA. HMA

then obtains the load status of all the edge brokers, which is the basis of the load

distribution process (Section 4.4.2). A LA of a HMA profiles the load distribution for

publishers. A LA of an EMA profiles the load distribution for subscribers (Section

4.4.3). Whenever an overload is detected, a LD invokes the LB to start to balance the

load, via offloading (Section 4.4.4). The main difference between LB in a HMA and an

EMA is that the latter one does not notify the OM to migrate selected subscribers but

to update the offloading clients’ information to the HMA to let HMA starts the

migration. The main reason for this design is to make the client-MA interaction simpler,

i.e., both publishers and subscribers only interact with HMA. The details of the load

detection, load distribution, load analysis and offloading processes are described in

Section 4.4.

Utility Analyser (UA), Speed Analyser (SA), and Topic Selector (TS) are only used by

HMA to supplement the DRD-LB method by providing a FDCC support to manage

load in the limited resource case. UA analyses the utility of publishers, utility of topics,

and importance of topics based upon the utility of messages measured by the matched

subscribers. SA computes the max publishing rate for each publisher according to its

utility value. TS is invoked when there is no available capacity to balance load for the

overloaded broker in the entire PSMOM system. This congestion situation is detected

via the LD component. TS then limits the publishing rate to any publisher for any

publishing topic according to its importance value. The rate limit information is sent

35

through the OM to the corresponding publishers. The details of this FDCC model are

described in Chapter 5.

4.3.2 Construction of a Head-Edge Broker Overlay

Another important function of an MA is to construct the H-E broker overlay. An OM

is able to receive client registrations and communicates these with an OM in another

MA. The H-E broker overlay is then constructed based upon this.

Each MA is designed to manage the life cycle of its corresponding brokers, i.e., the

management broker used to exchange control messages between MAs and the data

broker used to exchange data messages. The reason to introduce an extra management

broker is to reduce the load caused by exchanging control messages, such as client

migration notification and offloading request, to the data broker. Each MA starts and

can restart the brokers using command scripts. In addition, as MAs have the same

interaction restriction as the H-E broker overlay, an EMA needs to know the

information of the management broker of the HMA, while a HMA needs to know the

information of the management broker of HMA in neighbouring clusters. Such

information is pre-defined in an MA configuration file and is retrieved by MA when it

is initialised.

The role of broker and the interlinked state are specified in a configuration file. The

“brokerType” property defines the type of a broker, e.g., a head broker or an edge broker,

as well as the type of the MA, i.e., HMA for head broker and EMA for edge broker.

For example, in a configuration file, if the value of “brokerType” property is head, it

means that when any MA initiated using this configuration file, it behaves as an HMA.

The HMA then starts the head broker and head management broker using the broker

information list in the configuration file. Similarly, if the value of the “brokerType”

property is edge, it means that the related MA and broker are EMA and edge broker

respectively. In an EMA configuration file, it is also necessary to specify the IP address

and port of its corresponding management broker for HMA. In an HMA configuration

file, the HMA management broker information regarding neighbouring clusters is also

included. In order to understand the configuration file better, and how to update it, an

example file for an HMA is given in Figure 4-5.

36

Figure 4-5 Configuration File for an HMA

As shown in Figure 4-5, there are two brokers running in the node with IP 138.37.94.94:

a head broker and a head management broker. The management broker is used to

exchange control messages between the HMA and EMAs in the same cluster, between

HMA and publishers and subscribers in the same cluster, and between HMA and HMAs

in neighbour clusters. When an HMA, denoted as HMAs, is initialised with this

configuration file, it first loads the broker information from its configuration file and

starts the corresponding head broker and head management broker. It then retrieves the

information of management head broker for any neighbouring cluster and publishes a

registration MOM message, which is used to notify a neighbouring HMA, denoted as

HMAn that it has gone online. This registration process follows a request/reply

interaction pattern, which means that HMAs waits for a confirmation messages from

HMAn within a given time period. If the confirmation message is received within this

period, HMAs records the state of the neighbour cluster as online; otherwise, the state

is recorded as offline. Alternatively, when a HMAn receives a registration message, it

records the state of the cluster where HMAs belongs to, as online, and publishes a

registration confirmation message back to the HMAs to indicate that the registration

message is received and the state is updated. With this step, both HMAs and HMAn

obtain the information that the neighbour cluster has gone online. It is then able to

exchange messages such as publishing advertisement messages.

Figure 4-6 gives an example of an EMA configuration file in the same cluster. The

configuration file shows that the management broker of HMA locates in the same

cluster as the EMA, i.e., it runs in a server with an IP address of 138.37.94.94. The port

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">

<properties>

<comment>This file contains the data that allows elements in the system to

know where to find other elements in the system.</comment>

 <entry key="clusterID">WP7_dataCenter</entry>

 <entry key="mode">H-E</entry>

 <entry key="brokerType">head</entry>

 <entry key="brokerIP">138.37.94.94</entry>

 <entry key="brokerPort">5672</entry>

 <entry key="brokerJMX">8999</entry>

 <entry key="brokerMgrPort">5673</entry>

 <entry key="numOfNeighbours">1</entry>

 <entry key="neighbourDomain1ID">WP7_drillingSite</entry>

 <entry key="neighbourDomain1HeadBrokerIP">138.37.94.93</entry>

 <entry key="neighbourDomain1HeadBrokerMgrPort">5673</entry>

</properties>

37

used by the management broker of HMA is 5673. Meanwhile, an edge broker and an

edge management broker are running with an IP address of 138.37.94.90. The edge

management broker is used for message exchange between EMA and HMA. After the

EMA is started, it first sends a registration message to the HMA of its cluster following

a similar request/reply approach as described above for HMAs.

Figure 4-6 Configuration File for an EMA

After all the MAs have started, each MA has the knowledge of their neighbouring MAs,

based upon these configuration files. It is assumed that the broker overlay remains

stable using standard fault-tolerance techniques such as broker mirroring and link

replication.

When a new client joins the system, i.e., it registers with the OM of HMA. OM then

follows the advertising and subscribing processes described in Section 2.3 to set up any

federations as required. For example (Figure 4-3), when a publisher in RTWC1 needs

to publish warning messages and there are subscribers in Loc. 1a that subscribe to the

same topic, the message dissemination route is established as follows.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">

<properties>

<comment>This file contains the data that allows elements in the system to

know where to find other elements in the system.</comment>

 <entry key="clusterID">WP7_dataCenter</entry>

 <entry key="mode">H-E</entry>

 <entry key="brokerType">edge</entry>

 <entry key="headBrokerIP">138.37.94.94</entry>

 <entry key="headBrokerMgrPort">5673</entry>

 <entry key="brokerIP">138.37.94.90</entry>

 <entry key="brokerPort">5675</entry>

 <entry key="brokerJMX">9002</entry>

 <entry key="brokerMgrPort">5676</entry>

</properties>

38

Figure 4-7 Advertising Process

Figure 4-7 shows an example of the advertisement process. After all the clusters have

been initialised, when publisher p with unique ID p1 and topic t1 registers with the

HMA of RTWC1, the HMA checks its local publishing topic list (PTL) to detect

whether the topic has been advertised. If the topic is a new one, the HMA then records

the topic into the PTL and starts to advertise the topic information to all its neighbours

(HMAs of NTWC1, NTWC2, and NTWC3) with an advertisement message (ADV).

The ADV includes the topic information, the ID of the head broker HMA that starts the

advertisement (e.g., HNTWC3, called the bypass broker), and the source broker, to which

the publisher connect (e.g., HRTWC1). When an HMA, e.g., HMA of NTWC3, receives

the advertisement, it checks the topic and source broker information in its local

advertisement table (ADT), to determine whether this ADV has been received. If such

information for the received ADV is the same as that recorded, this ADV is marked as

an “old” one and discarded. If this ADV is a new one, the HMA then records the advised

information into the ADT. It further generates a new ADV that replaces the bypass

broker information with the local head broker, e.g., it updates the ADV(t1, HRTWC1,

HRTWC1) to ADV(t1, HNTWC3, HRTWC1), and sends this new ADV to the HMAs of their

neighbours, except to the HMA, from which the original ADV is received, e.g., HMA

of RTWC1. Each HMA involved in the advertising process follows the above step to

spread the ADV to its neighbours. For any HMA that receives an ADV more than once,

39

(e.g., HMA of NTWC2 in the above example), they ignore the duplicate one because it

has a higher transmission delay. Figure 4-8 presents pseudo code of how an HMA

performs when an advertisement message is received.

Figure 4-8 Pseudo Code of Advertising Process

After this advertising process, the ADT of each HMA has been updated. It means that

the neighbour clusters involved in the broker overlay is able to route messages under

the advertisement topic t1. In addition, the PTL of HMA in RTWC1 has recorded the

-------- HMA that receives registration from a new publisher -------------

BEGIN

Let “t” = the publication topic of the new registered publisher

Let “hp” = the head broker assigned to the publisher

If “t” is a new topic

Then

 Set ADV message with topic = “t”, brokerbypass = “hp”, brokersrc = “hp”

For each HMA of neighbour cluster (nHMA)

 HMA publishes the ADV message to nHMA

End Loop

Endif

END

----------- HMA that receives ADV messages from neighbour HMA ------------

BEGIN

Let “ADVrecv” = ADV message received

Let “t” = topic recorded in “ADVrecv”, “bbypass” = brokerbypass recorded in “ADVrecv”, “bsrc”

= brokersrc recorded in “ADVrecv”

Let “h” = the head broker of this cluster

If the advertisement table “ADT” contains “t”

Then

 Retrieves existing source broker from the records (bsrc’)

 If “bsrc” is different from Bsrc
’

 Then

 ADT updates the existing record with “t” by adding “bbypass” and “bsrc”

 Else

 Goto END

 Endif

Else

 ADT adds a new record with “t”, “bbypass, and “bsrc”

Endif

Set “ADVout” = “ADVrecv(t,h,bsrc)”

For each nHMA

 Let “head” = the head broker of the nHMA

 If “head” is different from any Bbypss in the ADT records for topic “t”

 Then

 Publishes “ADVout” to nHMA

 Else

 Continue

 Endif

End Loop

End

40

topic t1 that has been advertised, while the PTLs of the remaining brokers are empty.

The PTL and ADT information of the broker overlay is shown in Figure 4-9.

Figure 4-9 PTL & ADT of Broker Overlay after Advertisement

When a subscriber s that subscribes to topic t1 joins the system, e.g., it registers with

HMA belonging to Loc. 1a, the HMA checks its ADT and notifies the head broker

Hloc.1a to set up a subscription to its neighbour head broker that advertises topic t1 to

this cluster, e.g., HNTWC1. This subscription is set along the reverse advertisement path

and reaches HRTWC1, to which the matched publisher is connected.

41

Figure 4-10 Subscribing Process

Figure 4-10 shows an example of subscribing process. In this figure, the solid arrows

indicate the subscription flows, i.e., from s to the edge broker in cluster Loc. 1a, denoted

as Eloc.1a, from ELoc.1a to HLoc.1a, from HLoc.1a to HNTWC1, and from HNTWC1 to HRTWC1.

The subscribing process takes place for two difference cases. First, an advertisement

message is received, in which the topic has been subscribed by some local subscribers.

Second, a new subscriber joins the system and subscribes to a topic that has already

been advertised by other HMAs. The procedure for both cases are the same. The

following pseudo code describes the new subscriber case as an example to illustrate

how the subscribing process works, as shown in Figure 4-11.

42

Figure 4-11 Pseudo Code of Subscribing Process

Other message dissemination routes are also established by following the above steps.

The messages exchanged between MAs for advertising and subscribing processes use

the standard broker publish/subscribe paradigm, i.e., an MA acts as a publisher when it

advertises new topics to any neighbour MAs and acts as a subscriber when it receives

advertisements from any neighbour MAs. Similarly, when a new subscription needs to

be propagated through the overlay, the source MA acts as a publisher to update the

----- HMA receives a registration from a new subscriber -----

BEGIN

Let Mr = registration message received by an HMA

Let t = the topic of the registered subscriber retrieved from Mr

Let E = the edge broker assigned to the subscriber

Let H = the head broker of the cluster

Let T<topic,Edge> = a map that records the topic to Edge information

Update T with a new record <t,E>

Set a new federation F<H,E,t>

If ADT contains “t”

Then

 Let Sbypss = the set of Bbypass for topic “t”

 For each Bbypass in Sbypass

 Let nHMAb = the corresponding HMA for Bbypsss

Let Mreq<Breq,Bsrc,topic> = the subscription request including the request

broker, source broker and topic

Sends Mreq<H,Bbypass,t> to nHMAb

 End Loop

Endif

End

---- HMA that receives subscription request from neighbour HMA----

BEGIN

Let Mreq = the subscription request message

Let treq = topic retrieved from Mreq

Let Breq = request broker retrieved from Mreq

Let Bsrc = source broker retrieved from Mreq

Let H = the head broker of the cluster

If Bsrc == H

Then

 Set a new federation F<H,Breq,treq)

Else

 Set a new federation F<H,Breq,treq)

 If ADT contains “treq”

 Then

 Let Sbypss = the set of Bbypass for topic “treq”

 For each Bbypass in Sbypass

 Let nHMAb = the corresponding HMA for Bbypsss

Let Mreq’<Breq,Bsrc,topic> = the subscription request including the request broker,

source broker and topic

Sends Mreq’<H,Bbypass,t> to nHMAb

 End Loop

 Endif

Endif

End

43

subscription information to the neighbour MA that has advertised the corresponding

topic. By following the above steps, the broker overlay and all its federation paths are

set up.

This H-E broker overlay construction method also provides the opportunity for adding

a new edge broker or cluster after the overlay has been constructed. EMA of the new

edge broker or HMA of the new cluster only needs to send registration information to

the corresponding HMAs. The limitation of this method is that it requires the broker

connection information stored in the configuration file to be valid. Any update to the

configuration file requires a restart for the corresponding MA and its brokers. Therefore,

to ensure the broker overlay construction are valid, some overlay model checking

algorithms or tools [80-82] can be applied.

4.4 Design of DRD-LB

A DRD-LB tends to balance the load for the H-E broker overlay in the surplus resource

case. It takes the end-to-end transmission delay requirement for different subscription

services into consideration, with an aim to reduce unexpected delays to the time-critical

message exchange services. DRD-LB follows the same load management procedure

specified in Section 2.4, which involves the processes of detecting the load states of

brokers (load detection), distributing the load among available brokers (load

distribution), analysing the load influence for each subscription service (load analysis),

and migrating loads from overloaded brokers to the ones with less loads (offloading).

The following is an overview of each process in DRD-LB.

 Load detection detects the load states of brokers. The load state of a broker is

determined via periodically measuring the predefined load metrics of the broker and

comparing them to corresponding thresholds. The details of the load detection

design can be found in Section 4.4.1.

 Load distribution works when a subscriber registers with an HMA. HMA then uses

an algorithm to select an edge broker and allocates it to the subscriber. This load

distribution process aims to prevent a broker from becoming overloaded to avoid

unnecessary load balancing by optimising the distribution of subscribers. The

details of the load distribution design can be found in Section 4.4.2.

44

 Load analysis is part of the offloading process. It is the process of analysing the

load influence of individual publishers and subscribers, e.g., it analyses the

influence of each subscriber for each load metric specified for each edge broker. In

addition, it generates a prioritised offloading list for each load metric when an

overload is detected. The details of the load analysis design are presented in Section

4.4.3.

 Offloading happens when a broker becomes overloaded. It is accomplished by three

steps: locating load-accepting broker(s), selecting clients to offload, and notifying

the selected clients to migrate from the overloaded broker to load-accepting

broker(s). Assuming that for the surplus resource case, brokers within each cluster

can be added or removed automatically, on demand, the offloading process initially

tends to be accomplished within the same cluster (named intra-cluster offloading).

Only if all the available resources within a cluster are fully used, does offloading

between clusters, named inter-cluster offloading, take place. The details of the

offloading design are presented in Section 4.4.4.

In DRD-LB, it is further assumed that all the subscriptions belong to the same topic

have the same delay requirement. In addition, in order to satisfy the end-to-end delay

requirements specified by subscribers, subscribers are assumed to have enough network

bandwidth capacity to receive all the matched publication messages. Thus, the

corresponding queues in edge broker will be built up only when the network bandwidth

of the broker is already fully used up.

4.4.1 Load Detection

Broker overload needs to be defined. Here, an Apache Qpid broker (see Figure 2-1) is

used as an example. It is assumed that when a broker meets any of the following

conditions, the broker is overloaded.

1) When the messages published exceed the total available download bandwidth (or

input bandwidth) capacity of the broker, the throughput of the broker reaches its

limit.

2) When messages received exceed the total matching capacity that the broker

provides, i.e., input queue is built up to temporarily to host the messages that have

been received but not processed.

45

3) When messages sent to subscribers exceed the total available upload bandwidth

(or output bandwidth) capacity of the broker, the message output queue is built

up temporarily to host the messages for the matched subscribers.

In order to detect accurately the load state of a broker, the load metrics and

corresponding thresholds are specified for the head broker and edge broker respectively.

4.4.1.1 Load Detection Metrics

The main tasks of a head broker are defined as follows. First, it routes messages from

head brokers of neighbour clusters and from local publishers to edge brokers within the

same cluster that serve any matched subscribers. Second, it routes messages from local

publishers to head brokers of neighbour clusters that have set up related federation paths.

A head broker is less likely to be overloaded for doing the matching work as no

subscribers connect to it [7]. Therefore, the load state of a head broker is mainly affected

by the network bandwidth utilisation. An edge broker does much more matching work

as it serves all the subscribers. Therefore, the load introduced by the matching process

needs to be monitored.

Load Metric Description Head Broker Edge Broker

Ui

Input bandwidth

Utilisation
∑ 𝜆𝑡

𝑡∈𝑇
𝐶𝑖⁄

Uo

Output bandwidth

Utilisation
∑ 𝜇𝑡

𝑡∈𝑇
𝐶𝑜⁄

Um Matching Utilisation N/A ∑ 𝜎𝑡
𝑡∈𝑇

𝐶𝑚⁄

Table 4-2 Load Metrics for Head Broker and Edge Broker

Table 4-3 lists the load metrics used for head broker and edge broker. Ui, Uo and Um

are the utilisations for the input bandwidth, output bandwidth and matching capacity

respectively. In addition, λt is the message-received rate in bytes/s for topic t. μt is the

message output rate in bytes/s for topic t. T is the topic set for which the broker serves.

σT specifies the number of message being exchanged for on topic t. The capacity for

input bandwidth, output bandwidth and matching are denoted as Ci, Co, and Cm

respectively. Among these parameters, 𝜆𝑡 , 𝜇𝑡 , and 𝜎𝑡 are measured during the

46

operation time, i.e., the load detector periodically retrieved the value of these three

parameters from the monitored broker. Cm is computed before the broker through

factorial experiments and is assumed static. Ci and Co are periodically measured using

the Ping command. The detection period can be set from seconds to minutes. A shorter

load detection period leads to a better in-time load detection but also introduces more

communication overhead to the system. In a TWS, it is required that there is a fast

system response to an overload. Therefore, detection occurs every second. In addition,

in order to avoid unexpected jitter in the underlay network, which may cause a sudden

increase and decrease in load, a weighted average method is introduced to get an

average measurement to replace the instant measurements, i.e., ∑ 𝑤𝑖 ∗ 𝑣𝑖
𝑁
𝑖=1 𝑁⁄ . N is

the window that defines how many measurements are used, vi is the instant

measurement for each time, and wi is the weight set for each measurement. As TWS

requires in-time load detection, N is set to two; the weights for the two measurements

are set to 0.3 and 0.7 respectively. These values are modified to adapt to the network

state, e.g., when the network becomes very unstable, the window size is set to a larger

number such as 5 or 10.

4.4.1.2 Load State Determination

In this design, three different load states, LOW LOAD, HIGH LOAD, and

OVERLOAD are introduced with two threshold values. The lower threshold indicates

whether the broker has the ability to accept more subscriptions while the higher one is

used to determine whether the broker is overloaded or not. This design is based upon

[7]. LOW LOAD means that the broker’s load is low and able to accept extra load, e.g.

more subscriptions, as a load acceptor. HIGH LOAD means that the broker has enough

work and is no longer available to accept more subscriptions until it goes back to LOW

LOAD. OVERLOAD means that the broker is overloaded and needs to transfer load to

another broker(s) with a LOW LOAD.

Figure 4-12 Load State Transfer

47

Figure 4-12 shows how the three load states relate to each other. The dashed arrow

pointing right indicates an increase in load in the broker caused by an increase of

publishing rate, or an increase of number of subscribers, etc. The solid arrow pointing

left shows a load decrease inside the broker. Load balancing decreases the load of a

broker with state OVERLOAD. In addition, a BUSY load state is used to label the

brokers that are involved in the offloading process, which means a broker’s load state

is unstable at that moment.

The higher the value, the HIGH LOAD threshold (lower threshold) is set to, e.g., 99%

Matching Utilisation, the more system resources that can be used. However, a broker

may become overloaded before it can do any offloading. The magnitude of the

difference between the lower and higher threshold controls the efficiency of load

balancing and the level of the load imbalance between brokers. For example, a small

difference, e.g., 1%, reduces the load imbalance between brokers but makes brokers

more likely to enter OVERLOAD from HIGH LOAD, which may result in endless

offloading cycles [7]. Thus, static thresholds are adopted and the value of higher and

lower threshold are set as THlow = 0.9 and THhigh = 0.95 respectively.

4.4.1.3 Load State Update

The LD periodically detects the load state of its broker. When the load state is detected,

EMA sends a load state update to HMA, which contains the current load state of the

broker and the estimated remaining capacity for each load metric. The remaining

capacity is estimated as (THhigh – corresponding utilisation) * corresponding capacity.

For instance, if the inBW utilisation Ui = 40%, input bandwidth of the broker is

5000KB/s, THhigh = 90%, the remaining capacity for inBW is estimated to be (0.9 – 0.4)

* 5000 = 2500KB/s. This means the broker cannot accept message exchange above

2500KB/s according to the inBW Utilisation metric. EMA further compares the

remaining capacity estimated for inBW utilisation, matching capacity utilisation, and

outBW utilisation, the smallest one is used as the available remaining capacity and is

reported to HMA.

When a HMA receives such information, it records the load state of the broker, the

corresponding remaining capacity for each load metric and the estimated available

remaining capacity. In addition, HMA prioritises the edge brokers according to the

48

available remaining capacity. The edge broker that has the maximum available

remaining capacity has the highest priority to be allocated to a new subscriber client

(the second load distribution principle defined in Section 4.4.2). In addition, when there

are edge brokers that are in LOW LOAD state within the cluster, the load status of the

cluster is set to be LOW LOAD. The total available remaining capacity of the cluster

is also estimated for the edge and head brokers respectively. For the head broker, it is

the available remaining capacity, while for edge brokers, it is estimated as the sum of

the available remaining capacity for all the edge brokers in the cluster.

4.4.2 Load Distribution

In practice, it is necessary to avoid the overload problem by optimising the load

distribution. With an H-E broker overlay, as all the publishers are assigned a head

broker, load distribution focuses on how to assign brokers to subscribers.

In DRD-LB, the load distribution process is designed to address the following concerns.

First, unnecessary network utilisation should be avoided in order to reduce the load of

the cluster. Second, the broker that has the lowest chance to be overloaded should be

assigned to a new subscriber. Third, regarding the delay requirements, the broker that

has the lowest transmission delay to the subscriber should be assigned a new subscriber.

Based upon these, the load distribution is designed according to the following principles:

1) Subscribers to the same topic are allocated to the same broker to avoid unnecessary

network bandwidth utilisation, as the same message needs no longer to be routed

to different edge brokers [7], which occupies N (the number of brokers that host

subscribers with the same topic) times the bandwidth required.

2) Least-Capacity Utilisation Scheduling: if the cluster is deployed in a LAN

environment, it is assumed the broker that has the most remaining capacity is

considered with the least chance to be overloaded and thus, subscribers with new

topics are allocated to those brokers whose capacity is least utilised.

3) Least-Distance Scheduling: if the cluster is deployed in a WAN environment,

subscribers with new topics are allocated to brokers that are available to accept

load (LOW Load state) and have the lowest transmission delay for message

exchange with subscribers. In general, the brokers are the ones situated closest to

a subscriber. This algorithm ensures that the subscriber has the lowest transmission

49

delay to the broker it initially connects to. It is used when brokers in a WAN

environment are distributed across a large physical area, e.g., across different

countries, covering the region being monitored (see Section 4.2).

The pseudo code of the load distribution principles is shown in Figure 4-13:

Figure 4-13 Pseudo Code of Load Distribution

4.4.3 Load Analysis

Load analysis is achieved with the LA component. An LA aims to estimate and profile

the load distribution for individual clients served by a broker, and to prioritise

offloading clients according to the load metrics that cause the overload problem.

BEGIN

Let Mr = the registered message

Let Ctype = the type of the client retrieved from Mr, e.g., a sub or a pub

Let Mres = the response message sent to the subscriber with assigned broker

If Ctype == “sub”

Then

 Let t = the topic of the subscriber from Mr

Let St = the set of topics that are subscribed by current subscribers

If St contains t

Then

Let E = the edge broker information assigned for the existing subscribers

subscribing to t

Update Mres with E

Send Mres back to subscriber

 Else

 Let Sb = the set of edge brokers in LOW LOAD state

 If the cluster is in LAN

 Then

Let E = the edge broker that has the most remaining capacity

Update Mres with E

Send Mres to client registered

 Else

Let E = the edge broker that is closest to the subscriber

Update Mres with E

Send Mres to client registered

 Endif

 Endif

Else

 Let H = the head broker of the cluster

 Update Mres with H

 Send Mres to client registered

Endif

END

50

4.4.3.1 Load Distribution Estimation

Load distribution estimation aims to generate load distribution profiles. Here the load

utilisation for each load metric for each topic and each client served by the monitored

broker, e.g., publishers for head broker and subscribers for edge broker, are estimated

and recorded.

Term Description Expression

𝑈𝑖
𝑡

 inBW Utilisation for topic t 𝜆𝑡 𝐶𝑖⁄

𝑈𝑜
𝑡 outBW Utilisation for topic t 𝜇𝑡 𝐶𝑜⁄

𝑈𝑚
𝑡 Matching Utilisation for topic t 𝜎𝑡 𝐶𝑚⁄

𝑈𝑖
𝑝

 inBW Utilisation for publisher p on topic t
𝜆𝑝

𝜆𝑡
𝑈𝑖

𝑡 or 𝜆𝑝 𝐶𝑖⁄

𝑈𝑜
𝑝
 outBW Utilisation for publisher p on topic t 0

𝑈𝑚
𝑝

 Matching Utilisation for publisher p on topic t N/A

𝑈𝑖
𝑠

 inBW Utilisation for subscriber s on topic t 0

𝑈𝑜
𝑠

 outBW Utilisation for subscriber s on topic t
𝜇𝑠

𝜇𝑡
𝑈𝑜

𝑡 or 𝜇𝑠 𝐶𝑜⁄

𝑈𝑚
𝑠

 Matching Utilisation for subscriber s on topic t 0

Table 4-3 Load Estimation Policy

Table 4-3 shows the load estimation policies. 𝑈𝑖
𝑡, 𝑈𝑜

𝑡, and 𝑈𝑚
𝑡 stand for the estimated

utilisation for input bandwidth, output bandwidth, and matching capacity for topic t

respectively. In addition, the inBW Utilisation, outBW Utilisation, and matching

Utilisation for publisher p and subscriber s are estimated. The reason why 𝑈𝑜
𝑝
, 𝑈𝑖

𝑠, and

𝑈𝑚
𝑠

 are set to zero is that only when all the clients (both publisher and subscriber)

belonging to topic t have been migrated to another broker, is the utilisation for that

broker’s load metric updated. As specified, matching utilisation is not considered in

head broker and thus 𝑈𝑚
𝑝

 is not measured. LA repeats the above processes for all the

topics and the clients to generate load distribution profiles.

4.4.3.2 Offloading Clients Prioritization

In this design, clients for the same topic are treated as a (client) bundle in the offloading

process, i.e., they are either migrated together to the load-accepting broker or kept

together in the overloaded broker. Only if the load-accepting broker cannot accept any

51

bundle of clients, are these clients dealt with separately. Different clients are prioritised

according to the load metric that causes the broker to be overloaded. This is used in the

client selection process in the offloading phase, i.e., when LB selects client for

offloading, the ones with higher priority are first considered. The principles to prioritise

publishers and subscribers are described as follows, according to the load metrics in

head broker and edge broker respectively.

 Prioritise Publishers for Head Broker

In a head broker, according to where the matched subscribers are located, publishers of

different topics can be categorised into four groups, Pr, Pl, Pr-l, and Pn, as shown in Table

4-4.

Type Description

Pr

The topics published are only subscribed to by remote subscribers, which are

served by other (or remote) clusters.

Pl

The topics published are only subscribed to by local subscribers, which are

served by the same cluster as that for the publishers.

Pr-l The topics published are subscribed to by both local and remote subscribers.

Pn The topics published have no subscriptions.

Table 4-4 Publisher Classification

Table 4-5 shows the different offloading priorities for publishers in a head broker. If

the head broker becomes overloaded due to a high inBW utilisation, the priority of all

publishers is Pn > Pr > Pr-l > Pl. If the overload problem is caused by a high outBW

utilisation, the priority relationship becomes Pr > Pr-l > Pl > Pn. The difference between

the two is affected by the location of Pn, as migrating publishers with no subscribers

cannot reduce the outBW utilisation but can only reduce the inBW utilisation.

Overload Metric Priority

Ui Pn > Pr > Pr-l > Pl

Uo Pr > Pr-l > Pl > Pn

Table 4-5 Inter-Cluster Offloading Priorities for Publishers in Head Broker

In addition, for each type of publisher, the publishers for different topics have different

priority depending on the delay requirements. Since the offloading process introduces

52

delays to the topic being exchanged, publishers with a more delay sensitive topic have

a lower priority to be selected for offloading, i.e., they are less likely to exceed the delay

requirements.

 Prioritises Subscribers for Edge Broker

In each edge broker, similar to that in head broker, subscribers to different topics are

categorised into groups Sr, Sr-l, Sl and Sn, as shown in Table 4-6.

Type Description

Sr

The topics subscribed to are only published by remote publishers, which are

served by other (or remote) clusters.

Sl

The topics subscribed to are only published by local publishers, which are

served by the same cluster as that for the subscribers.

Sr-l The topics subscribed are published by both local and remote publishers.

Sn The topics subscribed have no publishers

Table 4-6 Subscriber Classification

In contrast to the publishers in a head broker, a subscriber may encounter two different

types of offloading, intra-cluster and inter-cluster. Table 4-7 shows the different

offloading priorities for subscribers in an edge broker for both intra-cluster offloading

and inter-cluster offloading.

Overload Metric
Priority

Intra-Cluster Inter-Cluster

Ui

Sl = Sr = Sr-l > Sn Sr > Sr-l > Sl > Sn Uo

Um

Table 4-7 Intra-Cluster and Inter-Cluster Offloading Priorities for Subscribers

in an Edge Broker

In intra-cluster offloading, the subscribers of type Sl, Sr and Sr-l have the same priority

to be selected. The reason is that, for these three types of subscribers, no matter what

subscribed topic is published by local publishers or remote publishers, the messages are

always routed from head broker to the edge broker, to which the subscribers connect.

Thus, migrating any of these subscribers reduces the utilisation value for the

53

corresponding overload metric. In contrast, migrating subscribers that have no matched

publisher does not reduce the utilisation of the overload metric. Thus, Sn has the lowest

priority to be selected for offloading. For inter-cluster offloading, which is similar to

the offloading of head brokers, the priority follows Sr > Sr-l > Sl > Sn for all the metrics.

For each type of subscriber, different topics are also prioritised depending on the delay

requirements. A higher delay tolerant topic has a higher priority to be selected for

offloading.

4.4.4 Offloading

When an overload is detected, offloading takes place. If a head broker becomes

overloaded, offloading occurs amongst head brokers in different clusters by migrating

publishers from an overloaded head broker to head brokers with less load. If an edge

broker becomes overloaded, offloading first takes place within the same cluster, named

intra-cluster offloading. Only if there is no available load-accepting broker in this

cluster is inter-cluster offloading triggered, i.e., no brokers are in a LOW LOAD state,

or the available load-accepting brokers have insufficient capacity to aid an overloaded

broker to recover while in its OVERLOAD state. Both offloading processes follow a

similar three-step offloading strategy, i.e., load-accepting broker locating, client

selection, and client migration.

4.4.4.1 Intra-Cluster Offloading

The intra-cluster offloading only occurs amongst edge brokers. A three-step offloading

strategy is described in the following sub-sections.

 Locating the Load-Accepting Broker

As is specified in Section 4.4.1.3, the load state is periodically updated in EMAs and

propagated to their HMA. Therefore, when a HMA receives an OVERLOAD state

update, it updates the record for the corresponding edge broker and starts to locate the

available edge broker within the cluster according to their load state. HMA selects edge

brokers that have a LOW LOAD state and sends their corresponding IDs along with

their remaining capacities for all the load metrics to the EMA of the overloaded broker.

In case there is no available edge broker in the same cluster to offload to, HMA starts

inter-cluster offloading. The detail of the inter-cluster offloading can be found in section

54

4.4.4.2. The pseudo code of the load accepting broker location process for HMA is

shown in Figure 4-14:

Figure 4-14 Pseudo Code for Locating the Load-Accepting Broker

 Client Selection

Based on the results of step 1, the EMA of an overloaded broker prioritises the candidate

brokers based on the remaining capacity of the load metrics of the brokers, i.e., the

broker with the higher remaining capacity has a higher priority to accept the load. In

addition, from the prioritised client list generated by the LA during the load analysis

process, the EMA of the overloaded broker retrieves the load influence of each

subscriber on each metric profiled by LA and estimates the load increase for the load-

accepting broker for each load metric. For example, for Ui, the influence is estimated

as the ratio of input rate of the client to input bandwidth of the load-accepting broker,

which means that if clients are migrated to the load-accepting broker, Ui of the load-

accepting broker will be increased by this amount. For the case that a client does not

overload the load-accepting broker, it is selected and put in an offloading list. The

selection process continues until the estimated load state of the overloaded broker is not

OVERLOAD any more. The offloading list is then sent to the HMA. The HMA notifies

BEGIN

Let LE = the load state of an edge broker E

Let S = an empty list

If LE == OVERLOAD

Then

 For each edge broker i

 Let Li = the load state of the edge broker i

 If Li == LOW LOAD

 Then

 Add i to S

 Endif

 End Loop

Endif

If S is NOT empty

Then

Let Mcan = the offload response message that contains the candidate load-accepting

brokers

 For each edge broker j in S

 Let Cj = the remaining capacity of j

 Add Cj to Mres

 End loop

 Send Mres to E

Else

 Inter-cluster offloading is triggered

Endif

END

55

the EMAs of the selected edge brokers to be in a load-balancing phase and updates their

states to “BUSY”. Note that, for the case that there is not enough capacity left in the

cluster for the load shifting, the EMA of the overloaded edge broker sends a request to

HMA for inter-cluster offloading. The pseudo-code for this client selection process of

an EMA is described in Figure 4-15.

Figure 4-15 Pseudo Code of Client Selection

 Client Migration

HMA sends migration notifications to all the clients that are in the offloading list,

asking them to set up a connection to the load-accepting broker(s). All the clients then

BEGIN

Let E = the edge broker under monitored

Let Mcan = the message that contains the information of candidate load-accepting

brokers

Let Creq = the required capacity for offloading

Let Scan = a set of candidate edge brokers retrieved from Mres

Let Ssub = an empty list that is used to record the information of selected subscribers

Let F = false

Sort Scan according to the remaining capacity from max to min

For each edge i in Scan

 Let Ci = the remaining capacity of i

 Let ST = the topic list in the load distribution profile provided by LA

 For each topic t in ST

 Let Lt = the load influence to i

 If Ci >= Lt

 Then

 Ci = Ci - Lt

 Creq = Creq - Lt

 Let Subt = the list of subscribers subscribing on topic t

 Add Subt to Ssub

 Endif

 If Creq <= 0

 Then

 F = true

 Break loop

 Endif

 End loop

 If F == true

 Then

 Break loop

 Endif

End loop

If F == true

Then

Let Msub = the message that contains the information selected subscribers,

retrieved from Ssub

Send Msub to HMA

Else

 EMA sends request for Inter-Cluster Offloading

Endif

End

56

set up connection(s) to the load-accepting broker(s) and drop the connection to the

offloading broker, except for subscribers that have messages waiting in the queue in the

overloaded broker. In this case, the subscribers drop the connections only when all the

messages waiting in the overloaded broker are received. In addition, a message is sent

by each client to HMA to confirm the completion of the migration process. The HMA

counts the number of clients that have completed the migration away from the

overloaded broker. There is also a default timeout for the migration so that the load-

balancing phase can stop even if some clients close the connection during the migration.

When all the clients complete the migration or the waiting time has timed out, the HMA

notifies all the EMAs involved in the offloading phase that the offloading is complete

and updates the states of edge brokers from “BUSY” to the actual load states, e.g., LOW

LOAD and HIGH LOAD.

4.4.4.2 Inter-Cluster Offloading

Inter-cluster offloading is initiated by HMA when a head broker becomes overloaded

or HMA receives a request from EMA of the overloaded edge broker, as intra-cluster

offloading cannot resolve the problem of overloaded edge brokers by itself. The general

process of inter-cluster offloading is roughly the same as that for intra-cluster

offloading. The following sections give a description of these three steps.

 Load-Accepting Broker Locating

When EMA initialises an inter-cluster offloading request or the head broker becomes

overloaded, the HMA checks the recorded load state for neighbour clusters and locates

the ones for which the load state is LOW LOAD. HMA sends an offloading request to

the neighbour clusters to ask for the latest information about the remaining capacity.

HMAs of neighbour clusters then check their local load states and report these to the

HMA to initialise an offloading request. These HMAs state their remaining capacity

for all the load metrics in their reports.

 Client Selection

If the inter-cluster offloading is initialised by an EMA, HMA sends the remaining

capacity for all the load metrics of neighbour clusters to EMA. EMA follows the same

step in 4.4.4.1.2 to select clients from the prioritised subscriber list and to put the

57

selected ones in an offloading list with the corresponding load-accepting cluster. The

offloading list is sent to the HMA and HMA forwards this to the corresponding HMA

of the load-accepting broker. HMA of the load-accepting broker then changes the load

state of the cluster and the edge brokers required to accept the load to “BUSY” state.

If the inter-cluster offloading is initialised by an HMA, HMA follows a similar strategy

as that specified for the intra-cluster offloading, selects publishers from the prioritised

publisher list and puts them in an offloading list. The offloading list is then sent to the

HMAs of the selected load-accepting clusters. The load state of all the load-accepting

clusters are then updated to “BUSY”.

 Client Migration

When the selection process is complete, the HMA of the overloaded cluster sends

notifications to the client with the HMA information of the load-accepting cluster. It

also sends a notification to the HMA of the selected cluster with the client information.

When clients register with a new HMA, the HMA checks the client information and

allocates it to a selected broker. When all the clients in the offloading list have been

migrated or the timeout set for the offloading is reached, HMAs of both offloading

cluster and load-accepting brokers update the load state of the cluster to its actually

measured load state.

4.5 Validation

In this thesis, simulation-based experiments are undertaken to evaluate DRD-LB

method for the surplus resource case by comparing it with PEER-LB. As specified in

section 4.4.4, the offloading process for intra-cluster and inter-cluster are similar, thus,

intra-cluster offloading is used as an example. In the following sub-sections, the

experiment configuration and setup, the hypotheses, and the measurements are

described. It is shown that DRD-LB outperforms the PEER-LB, whilst introducing less

unexpected delay to subscription services. Therefore, DRD-LB seems much more

suitable to be applied to time critical systems, such as for a TWS.

58

4.5.1 Experiment Configuration

4.5.1.1 Simulations and Assumptions

To compare DRD-LB with PEER-LB, the experiments focus on the overload problem

and are designed using the following assumptions.

1. To simulate an intra-cluster overload problem, all the brokers involved are

allocated within the same LAN and therefore the bandwidth is assumed constant

during the experiments.

2. The matching capacity of each broker in each experiment is predefined and is

assumed constant during the experiments.

3. The average publishing rate for each publisher is predefined and is constant during

the experiments. A burst is simulated by increasing the publishing rate.

4. Published messages are generated based upon real sensor data and tsunami warning

messages.

5. The transmission delay between publishers to brokers, between brokers, and

between brokers to subscribers is pre-defined and is assumed constant for the

surplus resource case.

6. Each subscriber has enough bandwidth to receive messages from a broker, and

therefore this omits the slow subscriber problem.

7. Each subscriber has a pre-defined maximum transmission delay requirement that

is assumed constant during the experiments.

8. Subscribers for the same topic have the same delay requirement while subscribers

for different topics may have different delay requirements.

4.5.1.2 Experiments Setup

In this thesis, an intra-cluster offloading is chosen as an example. The setup used for

the experiments involves four edge brokers (B0, B1, B2, and B3) connected to one head

broker (Bh) to form a star topology. This experiment setup is used by the PEER

framework [7]. Figure 4-16 shows an example of the broker overlay with four sets of

matched publishers and subscribers. This intra-cluster simulates the broker deployment

in a data centre.

59

Figure 4-16 Broker Overlay Setup

Each broker has a predefined bandwidth and matching capacity. The bandwidth

between all brokers is assumed constant at 1000Mb/s. The matching capacity for edge

broker is randomly generated varying between 20000 to 30000 msg/s in each

experiment. Based upon [7], the head broker does less matching work than edge brokers

that serve subscribers. It is assumed that the head broker can process millions of

messages each second in the experiments. Table 4-8 gives an example specification

used for brokers in one experiment.

Broker ID

Specifications

Matching Capacity

(msg/s)

Bandwidth Capacity

(Mbps)

Bh 1,000,000 1000

B0 27570 1000

B1 25067 1000

B2 24725 1000

B3 22303 1000

Table 4-8 Broker Capacity Specification for an Experiment

The client information is designed as follows. In each experiment, one hundred topics

tend to cover the range of topics used in TWS. These topics including topics for sensor

data, workflow service, warning messages, user-generated data, and social network data

such as Twitter. For each topic, the corresponding number of publishers, number of

subscribers, publishing rate, and delay requirements are randomly generated. For

example, delay requirements for different topics range from 1s to 50s. The size of each

message is determined according to the topic it belongs to, e.g., for messages that

contain sensor data, the size ranges from 200 bytes to 1 kilobyte.

60

Each experiment consists of four phases. First, clients of each topic are registered to the

system each second and are allocated to a broker based upon the load distribution

process (Section 4.4.2). This phase lasts until all clients are added to the system, i.e., 1s

to 100s. Second, when publishers and subscribers operate normally, i.e., there is no

reduction in bandwidth, nor any burst of message exchange. This phase lasts for 200s

in each experiment, i.e., 101s to 300s. Third, the publishing rate for a range of topics

(randomly chosen ranging from 10 to 15) is increased to 1.5 of its normal speed at 301s.

This aims to simulate a tsunami scenario, so that the data acquisition rate from sensors

and the corresponding workflow services are increased. After a few seconds, e.g., 100s,

a burst for another range of publishing topics is simulated by increasing the rate to 1.5

times of their normal rate. When any of the brokers is determined to be overloaded,

offloading is triggered. The time cost for offloading is recorded. Fourth, after another

duration, e.g., at 900s, the message dissemination rate and data generation rate for all

the topics returns to their normal rate and the system returns to equilibrium.

4.5.2 Hypothesis to Evaluate

To evaluate the performance of DRD-LB with comparison to the baseline method

PEER-LB, the following hypothesis is proposed.

Hypothesis 1 (H1): Compared to the state of the art load balancing method proposed

for PEER framework, DRD-LB for ePEER introduces fewer unexpected delays to delay

sensitive subscriptions.

In contrast to conventional load balancing methods, during the load analysis phase,

DRD-LB takes the delay requirements for different subscription services into

consideration. Hence, a subscriber that is delay sensitive has a lower priority to be

selected for migration when a broker to which it is attached, becomes overloaded.

Therefore, delays caused by migration to time-critical services are reduced.

4.5.3 DRD-LB Performance Metrics

To evaluate the hypothesis, the following metrics are determined during the

experiments.

61

1) Communication Overhead

Load detection utilises system processing and communication capacity to retrieve and

analyse the load metrics to determine the load state. The communication overhead is

expressed as the ratio of message exchange rate of load detection messages to overall

message exchange rate. For example, if one load detection message is sent every second

to retrieve the load status of the broker, and the messages being exchanged through the

broker for each second are 50000, the communication overhead is then computed as

1/50000.

2) Number of Offloads

Since offloading requires system resources to select clients and notify them for

migration, it introduces processing and communication overhead to the system. A more

efficient load balancing solution requires less offloading to balance the load among

brokers. Thus, this parameter represents the efficiency of the offloading algorithm for

different load balancing methods.

3) Offloading Delay

This metric is used to represent the unexpected delays introduced to different

subscription services. For each subscriber, the offloading delay, OD, is measured as the

ratio of unexpected delay to delay constraint. For each offload event, the sum of the

individual offloading delays is computed. A lower value indicates that the offloading

method is less likely to violate the delay requirements.

Table 4-9 gives a summary of how to measure the above performance metrics in each

experiment.

62

Metrics Measurement

Communication

Overhead
Load Detection Rate / Matching Capacity

Number of

Offloads

The number of offloads triggered to balance the broker when

an overload is detected.

Offloading Delay

In each experiment, for each subscriber, the offloading delay

is measured as the unexpected delay / delay constraint,

i.e., 𝑂𝑑(𝑠) = 𝑇𝑢𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑇𝑆𝐿𝐴⁄ , where TSLA is the delay

requirement; and for each experiment, the overall offloading

delay is 𝑂𝑑 = ∑ 𝑂𝑑(𝑠)𝑠∈𝑆𝑜
, where So means the set of

subscribers that are notified to offload. Thus, the overall

average offloading delay for all the experiments is O𝑑
̅̅̅̅ =

∑ 𝑂𝑑 𝑁⁄ , where N is the number of experiments carried out.

Table 4-9 Performance Metrics of DRD-LB

4.5.4 Validation Results

The experiments are repeated 500 times. As specified in Section 4.5.1, in each

experiment, the configuration of the experiment varies, e.g., the publishing rate and the

capacity of the brokers are randomly generated. In each experiment, the load metrics

for each broker is measured periodically, i.e., the load detection period is set to one

second. The lower threshold is set to 90% and the higher threshold is set to 95%. The

threshold values vary with respect to the system resources and the requirements of the

application scenario. In addition, to evaluate the hypothesis, the metrics specified in

4.5.2 are also measured.

63

Figure 4-17 Matching Utilisation with DRD-LB

Figure 4-17 shows an example of capacity matching utilisation measured for one

experiment with DRD-LB, in which two offloads are triggered after the 2nd burst. For

each simulated burst (for the 500 experiments), the message rate increases randomly,

some of these may require more than one offload to balance the load, e.g., 4 offloads to

balance the broker. In addition, as one load detection message is sent each second to

detect the load status of the broker, the communication overhead introduced by the load

detection is measured as 1/matching capacity, e.g., for broker B0, the communication

overhead is computed as 1/25887 in this experiment. The number of offloads triggered

is two. The offloading delay for this experiment Od is computed as 3.92%. After the

500 experiments, the offloading delay O𝑑
̅̅̅̅ , which is measured as the average offloading

delay for each experiment, is computed as (24.918/500)*100% = 4.98%. This means

that on average, DRD-LB introduces a 5% offloading delay to all the message exchange

services.

Similar experiments to these have been carried out for the baseline method PEER-LB.

With PEER-LB, publishers connect to head brokers while subscribers connect to edge

brokers. However, in contrast to the design of DRD-LB, subscribers are randomly

assigned to an edge broker. PEER-LB measures the load difference between any edge

brokers. Once the difference between two edge brokers exceeds a threshold, e.g., 10%

[7], load balancing is triggered to balance the load between these two.

64

Figure 4-18 Matching Utilisation with PEER-LB

Figure 4-18 illustrates an example of the capacity matching utilisation for one of the

500 experiments using the PEER-LB as a baseline. In this experiment, during the load

distribution phase, a significant amount of offloading is triggered to balance the load

between brokers. After the first burst, since the rate increase is randomly chosen, the

load difference between brokers may exceed its threshold, and may require offloading.

This works similarly when the second burst is simulated. As specified in Table 4-9, the

communication overhead is measured as the ratio of the detection rate to the matching

capacity, e.g., for B0, the communication overhead by load detection is computed as

1/24031 in this experiment. During the 500 experiments, the number of offloads

triggered is 220 including the distribution phase, and 18 excluding the distribution

phase. The offloading delay for this experiment is measured as 2319% (including the

load distribution phase) and 122% (excluding the load distribution phase). The

performance is similar to other experiments, and after 500 experiments, the average

offloading delay is then computed as 1894% and 274% with and without the load

distribution process respectively.

Figure 4-19 illustrates the number of offloads difference between PEER-LB and DRD-

LB. Note that the result presented for PEER-LB excludes the offloading that happens

during the load distribution phase. In the diagram, a positive value indicates that PEER-

LB adopts more offloads while a negative value indicates that DRD-LB adopts more

offloads. It is clearly shown that for the 500 experiments, only 7 of them, i.e., 1.4%,

does the DRD-LB require more offloads; in 5 of them, i.e., 1%, DRD-LB and PEER-

LB adopt the same number of offloads. In the remaining 97.6% of experiments, DRD-

LB requires less offloads to balance the load between brokers.

65

Figure 4-19 Number of Offloads Difference between PEER-LB and DRD-LB

Figure 4-20 illustrates the offloading delay difference between PEER-LB and DRD-

LB. Similarly, a positive value indicates that PEER-LB introduces more offloading

delays, while a negative value means DRD-LB introduces more offloading delays. As

is shown in Figure 4-20, only in three of the 500 experiments, DRD-LB introduces

more offloading delays. The offloading delay is influenced by the delay requirements

of the subscriber selected, as described in Table 4-9. Thus, since DRD-LB is aware of

the delay requirements of different subscribers, even if in some cases DRD-LB adopts

more offloads, less offloading delay is introduced to the system.

Figure 4-20 Offloading Delays Difference between PEER-LB and DRD-LB

The average number of offloads and average offloading delays between PEER-LB and

DRD-LB are also computed. The results are illustrated in Figure 4-21 and Figure 4-22.

66

Note that the result presented for PEER-LB excludes the offloading that happens during

the load distribution phase. According to the results, it is clearly shown that DRD-LB

outperforms PEER-LB while requiring less offloading and introducing less delay for

time-critical subscription messages.

Figure 4-21 Average Number of Offloads between DRD-LB and PEER-LB

Figure 4-22 Average Offloading Delay between DRD-LB and PEER-LB

To prove Hypothesis 1, a null hypothesis (Hnull) and its alternative hypothesis (Halt) are

introduced. Hnull assumes that DRD-LB for ePEER introduces a similar offloading

delay as PEER-LB, while Halt assumes that DRD-LB for ePEER introduces less

offloading delay than PEER-LB. To check whether Hnull is true, the offloading delays

of all the 500 experiments for DRD-LB for ePEER and PEER-LB are retrieved to form

two samples (SePEER and SPEER). To assess whether the offloading delay between DRD-

LB and PEER-LB is significant, a Wilcoxon signed-rank (non-parametric statistical

67

hypothesis) test is used to compare these two samples. The following assumptions need

to be satisfied for the test to be valid. First, the data in two different samples are paired

and come from the same population. Second, each pair is chosen randomly and

independently. Third, the data is measured at least on an ordinal scale. In this case, both

SePEER and SPEER contain 500 offloading delays measured for each experiment. All the

data in a sample are indexed, e.g., the offloading delays in sample SePEER are marked

from SePEER(1) to SePEER(500). Each data in one sample is paired with data in another

sample with the same index, e.g., SePEER(1) is paired with SPEER(1). After applying these

two samples as input parameters into a Wilcoxon test, which is achieved using R’s

“wilcox.test()” function, a p value that reflects the chance that Hnull happens is

computed. In this case, the p value is computed as p<2.2e-16, which is close to 0. This

means that Hnull rarely happens and the alternative hypothesis Halt is shown to be valid,

i.e., DRD-LB for ePEER introduces less offloading delays than PEER-LB. Hence,

Hypothesis 1 is true.

To demonstrate that the load analysis methods adopted in DRD-LB can also improve

the performance of PEER-LB, 500 more experiments are carried out. In these

experiments, the load analysis methods used in DRD-LB are applied into PEER-LB,

i.e., the subscribers are prioritised following the same principles specified in Section

4.4.3.2. This new LB method is denoted as PEER-DRD. The same performance metrics

are measured for each experiment. Considering these three performance metrics, since

the load distribution and load detection algorithms adopted in PEER-LB have not been

changed, the communication overhead metric and the number of offloads metric are not

improved, the offloading delay metric improves markedly. The average offloading

delay metric for these 500 experiments is measured as 1022% and 137%, with and

without the load distribution process, respectively. Compared to 1894% and 274% for

the experiment with the pure PEER-LB method, the average offloading delay is reduced

by a third. Figure 4-23 shows the comparison of offloading delay between original

PEER-LB, and PEER-DRD that adopts the load analysis method for DRD-LB. The

result clearly shows that by applying the load analysis method adopted in DRD-LB,

PEER-DRD introduce less delays to time-critical messaging services.

68

Figure 4-23 Comparison of Offloading Delay between PEER-LB and PEER-

DRD

4.6 Summary

This chapter describes a load management framework, ePEER, which extends the

existing PEER framework. This describes the design of the broker overlay, the

management agent, and the load-balancing life cycle for the surplus resource case. The

H-E broker overlay is constructed based upon management agents, which communicate

using pub-sub type standardised AMQP message exchange. For a TWS application,

MAs are used for load management of the sensor data, workflow services, and warning

message exchange. In such a H-E broker overlay, when some brokers become

overloaded due to information bursts and when there are surplus system resources, a

delay requirement driven load balancing method, DRD-LB, is invoked to balance the

load between overloaded brokers and lightly loaded ones to minimise the delay for

different topics. A comparison between DRD-LB and the baseline load-balancing

method proposed in PEER, named PEER-LB, is presented based upon realistic TWS

simulation-based experiments. Each experiment is repeated 500 times and the average

performance value is obtained. The validation results show that for the time-critical

systems, such as TWS, DRD-LB outperforms the baseline PEER-LB method to ensure

that fewer delays are introduced to time-critical messaging services. In the next chapter,

the load management method of ePEER for the limited resource case is described.

69

5 FEEDBACK DRIVEN CONGESTION

CONTROL FOR LIMITTED RESOURCE

CASE

5.1 Overview

In Chapter 4, a load-balancing method of ePEER framework, DRD-LB, which balances

the load amongst brokers in an H-E overlay has been discussed and validated. However,

this load balancing solution cannot solve the broker overload problem for the situation

where a system’s resource limits are reached and cannot be scaled up. Such a situation

occurs when a physical environment crisis, e.g., an earthquake happens, as it may

disrupt the underlying network infrastructure and hence decrease the available system

resources (see Section 1.1 for an example). Such damage severely reduces the capacity

of links from publishers to brokers, between federated brokers, and from brokers to

subscribers. In this case, load balancing through migrating subscribers or publishers

from an overloaded broker to another (less loaded) broker, may not resolve the broker

overload problem. The available system resource limits are not only over-stretched by

broken links but also by an increased rate of exchange of information from human

sources and sensors as publishers at the onset of crises. Published information from

some of these publishers may have no matched subscribers, and may be repetitive or of

little value; matched subscribers may not find such content exchange that important.

These overactive publishers introduce an unnecessary load on brokers and on the broker

links. This may result in an over-demand to utilise the processing and communication

resources of the PSMOM system. To supplement the DRD-LB load balancing method,

a congestion control model, the Feedback Driven Congestion Control (FDCC) model,

is introduced.

5.2 FDCC Design

FDCC is designed to limit the message-publishing rate of overactive publishers by

applying a filter at the publisher. The publishing rate limit is determined based upon

the utility of the messages to subscribers, the utility of publishers, and the utility of

70

topics computed by the UA and SA components in HMA. HMA sends notifications to

publishers when it is necessary to limit the publishing rates. In contrast to the existing

congestion control methods discussed in Section 3.5, FDCC is designed for the situation

when the system resources are already fully used. In addition, FDCC limits the

publishing rate of overactive publishers based upon the utility of the published

messages and the importance of the publishing topics to maintain the QoE for

subscribers. These make FDCC a better choice to manage broker load for PSMOMs in

a TWS when the system resources are already fully used.

A message controller component that sends messages to a broker is introduced. It is

used to convert the raw data, e.g., sensor data, into MOM messages. Similarly, a

message extractor is used by subscribers to receive messages and to extract their

message content. In practice, the data sources that provide the raw data and message

controllers can be deployed in different types of system and connected via wireless or

wired connection. This also applies to the message extractor and data consumer. Figure

5-1 shows an example of H-E broker overlay with message controller and message

extractor. In this example, one head broker and three edge brokers with their

corresponding management agents form an H-E broker overlay. HMA can send

management messages to publishers and subscribers to alter the behaviour of the

associated clients through the OM component specified in Section 4.3.1.

Figure 5-1 H-E Broker Overlay with Message Controller and Message Extractor

Messages published to the head broker are generated by the message controller in the

publisher (see Figure 5-1). This generates PSMOM messages using the raw data from

the data source, e.g., database or user inputs. The message controller acts as a filter

71

between the data source and the H-E broker overlay. Alternatively, when a message is

received by a subscriber, the message extractor retrieves the message content and passes

the content information to the data consumer. Figure 5-2 shows an example of how to

apply a message controller at a publisher that uses a filter to limit the rate of publishing

to facilitate the limited resource case.

Figure 5-2 Pre-Filter Use in a Publisher

As shown in Figure 5-2, a rate limit filter sits between the data source and message

generator. The reason to put the filter before the message generator is to save the system

resources by avoiding generating messages that may be discarded, i.e., messages are

generated using raw data from data sources only when the data satisfies the filtering

criteria. In the following sub-sections, the details of the FDCC design are described.

Note that it is assumed that the PSMOM system does not queue publishers’ messages

that have no matched subscribers.

5.2.1 Rate Limit Filter

A rate limit filter limits the publishing rate of a publisher. It receives the data for which

the publishing topic has matched subscribers. The filter then compares the current

publishing rate with the maximum allowed publishing rate set by HMA. If the current

rate is less than the rate limit, the data is forwarded to the message generator; otherwise,

the data is discarded.

72

The maximum allowed publishing rate is determined based upon the utility of publisher,

denoted as Up, which is computed by HMA based upon the feedback of the utilities of

the published messages provided by the matched subscribers. The following

assumptions are made in the design. First, each subscriber only subscribes to one topic.

Second, each subscriber has the knowledge of where the received message is from, e.g.,

from which publisher. This is achieved by retrieving the pubID that is added by the

publisher and stored as a property of each received message. Third, all the subscribers

compute the utility of messages for each publisher that are of most interest to them and

update the values to HMA every unit time, e.g., every second. A high feedback

frequency provides a more accurate determination of the utility of the publisher but

there is a trade-off in that this adds a communication and processing overhead as each

feedback consumes system resources to receive and process messages. In this design,

the feedback frequency is set to 1Hz, which means in each second, there is only one

feedback. The following gives more detail of how to limit the rate of a publisher with

respect to the utility of the published messages.

Based upon these assumptions, a subscriber s assesses the utility of each received

message. Specifically for subscriber s, and message i from publisher p, the utility of

this message, denoted as Um(s,i,p), is decided by the subscriber. However, to reduce the

communication load in exchanging the utility values, a subscriber does not send each

Um to the HMA. Instead, the subscriber computes the average value of the utility of

messages from the same publisher and only sends this average value to HMA each

second. That is, if it is assumed that there are Nm(s,p) messages received by subscriber

s from publisher p, in a second, the average utility from subscriber s, for publisher p,

denoted as 𝑈𝑚(𝑠, 𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is computed using Equation (1).

 𝑈𝑚(𝑠, 𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
∑ 𝑈𝑚(𝑠, 𝑖. 𝑝)𝑁𝑚(𝑠,𝑝)

𝑖=1

𝑁𝑚(𝑠, 𝑝)
 (1)

When HMA receives the average utility value of each publisher from each matched

subscriber, it computes the utility of the publisher. Equation (2) defines the utility of

publisher for publisher p, Up(p) , where: W(s) is the weight assigned to the subscriber

s; S(p) is the set of subscribers that provide the average utility value and subscribe on

the matched topics of publisher p; |S(p)| is the number of the matched subscribers of

publisher p that provide feedback.

73

 𝑈𝑝(𝑝) =
∑ 𝑊(𝑠)𝑈𝑚(𝑠, 𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑠∈𝑆(𝑝)

|𝑆(𝑝)|
 (2)

For each publisher p, the publisher’s rate is limited based upon the utility value. The

range of Up is normalised to be the range of Um, i.e., [0, 1]. For a simple control

mechanism, the range of Up is divided into 5 regions, i.e., [0-0.2), [0.2-0.4), [0.4-0.6),

[0.6-0.8), [0.8-1]. Here each region has a corresponding publishing rate limit that is

defined according to the resources of the broker, e.g., 10 msg/s (messages per second),

200 msg/s, 500 msg/s, 900 msg/s, and 2000 msg/s. This means that, for example, if a

publisher has an Up value of less than 0.2, it is allocated a maximum publishing rate of

10 msg/s. When the utility of a publisher is changed, HMA updates the publishing rate

limit by sending a notification to the corresponding publisher.

5.2.2 Topic Selection

When the system resources are fully utilised, to avoid broker performance degradation,

HMA starts to select publishers to continue publishing messages according to the

importance of each publishing topic. This selection process is called topic selection.

The first step of determining the importance of a topic is to determine the utility of a

topic. This is computed by HMA based upon the utility of the publishers for the same

topic. If Ut(t) is used as the utility of the topic t, P(t) as the set of publishers that publish

messages under topic t, Up(p) as the utility of a publisher p, Ut(t) is calculated using

Equation (3), where |𝑃(𝑡)| stands for the number of publishers in the set.

 𝑈𝑡(𝑡) =
∑ 𝑈𝑝(𝑝)𝑝∈𝑃(𝑡)

|𝑃(𝑡)|
 (3)

HMA then computes the importance of each topic t, denoted as It(t), which is

proportional to the utility of the topic, Ut(t), the number of subscribers that subscribe to

the topic, S(t), and inversely proportional to the system resource (such as matching

capacity) required, Rt(t), as shown in Equation (4).

 𝐼𝑡(𝑡) =
𝑈𝑡(𝑡)𝑆(𝑡)

𝑅𝑡(𝑡)
 (4)

74

Once the importance of each topic is computed, the topics are recorded in a topic list,

T, in which the topics are ordered by its importance. When system resource limits are

reached, HMA starts to select the publishers that can continue publishing, i.e., the topics

that are considered more important. The constraint on the selection process is that the

sum of the required bandwidths for the selected topics should not exceed the total

outBW, i.e.,𝑜𝑢𝑡𝐵𝑊 ≥ ∑ 𝑟𝑒𝑞𝐵𝑊𝑖𝑖∈𝑇 where T is the topic list in a descending order by

the importance. Whenever the required bandwidth for all the publishers publishing on

a topic exceeds the remaining output bandwidth, not all publishers for that topic are

selected to publish it as follows. To achieve this, the HMA starts to check the publisher

lists. In those publisher lists, publishers for the same topic are ordered by their

corresponding utility values in descending order. Publishers with higher utility values

are selected such that the accumulated required bandwidth does not exceed the total

outBW.

For the topics not selected to continue being published, a rate update notification is sent

to all the publishers that publish messages for the topic. When a rate update notification

is received by a publisher, indicating that a topic can no longer be published or be

published at its full speed, the rate limit filter limits the publishing rate accordingly. For

instance, if the publisher is notified to stop publishing during the limited resource case,

the rate limit filter discards all the data sent to the filter, in order to provide more system

resources for message exchange on more important topics.

5.3 Validation

In this thesis, simulation-based experiments are carried out to evaluate FDCC method

for the limited resource case.

5.3.1 Experiments Configuration

5.3.1.1 Simulation and Assumptions

The experiments follow the same simulation and assumptions as that specified in

4.5.1.1 with the following additional ones.

75

1. The infrastructure damage caused by the crisis is simulated by reducing the

bandwidth of all the brokers by half. These values are assumed to remain constant

and cannot be scaled up.

2. Each subscriber is required to provide feedback to HMA each second. The

feedback consists of the utility value measured by a utility function according to

the interested content and the content being received.

3. Each publisher is designed with a rate limit filter, as specified in 5.2, which is under

control of HMA to limit the publishing rate.

5.3.1.2 Experiment Setup

As specified, the limited resource case can happen when the physical network

infrastructure has been damaged. To validate the proposed FDCC method, an intra-

cluster H-E broker overlay that simulates the broker overlay in a Tsunami affected area

is adopted. The setup used for the experiments involves four edge brokers (B0, B1, B2,

and B3) connected to one head broker (Bh) to form a star topology. The setup is the

same as that adopted for the experiments described in Section 4.5, i.e., the capacity and

bandwidth of each broker is randomly generated ranging from 20000 msg/s to 30000

msg/s and 300Mbps to 500Mbps respectively. An example specification for the broker

capacity is described in Table 5-1.

Broker ID

Specifications

Matching Capacity

(msg/s)

Bandwidth Capacity

(Mbps)

Bh 1,000,000 1000

B0 26015 368

B1 24112 448

B2 22104 384

B3 20912 464

Table 5-1 Broker Capacity Specification for an Experiment

The client information is designed as follows. In each experiment, 100 topics are used

in a TWS for the affected area. This includes topics for warning message dissemination,

evacuation advice from public agents, and human generated help and advice messages

that are exchanged with people in an affected area. For each topic, the corresponding

number of publishers, number of subscribers, publishing rate, and delay requirements

are randomly generated. The size of each message is randomly generated ranging from

200 byte to 2 kilobyte. In each experiment, each subscriber has a random number of

76

keywords and each message published contains a set of keywords that are randomly

generated. These are used to compare with the keywords specified for the

corresponding subscriber to compute the utility of the publisher. The content of each

message is retrieved from twitter with initial keyword “Tsunami” using Twitter Crawler

[83]. It is assumed that 50% of the publishers are good publishers that publish

information that are satisfied by the subscribers; 25% of the publishers are medium

publishers that publish part of information required by the subscribers; the rest are bad

publishers or overactive publishers that publish information that is of no use. In each

experiment, subscribers provide one feedback message each second. Although

providing thousands of feedback messages per second can improve the accuracy of the

measurement, this volume of feedback introduces a larger communication and

processing overhead to the system, as it has to deal with receiving and processing each

feedback message.

Each experiment lasts 1000 seconds and consists of four phases. The first two phases

are the same as that specified for the DRD-LB experiments. At the beginning of the

third phase, e.g., at 301s, a disruption to the physical network is simulated by reducing

the bandwidth of each broker to 0.1 to 0.4 of its original amount, e.g., if a broker is set

with a bandwidth 1000 Mbps originally, it becomes 100 to 400 Mbps after this

simulation. The amount reduced is randomly generated. After the simulated damage

happens, the system resources become limited and FDCC is triggered when some

brokers become overloaded. This phase lasts until 900s, when the final phase starts. In

the final phase, the bandwidth of all the brokers recovers to the original amount and the

publishers whose publishing rates were limited are notified, so that the system can

recover to its original state.

5.3.2 Hypotheses to Evaluate

To evaluate the performance of FDCC, two further hypotheses are proposed.

Hypothesis 2 (H2)：FDCC limits the publishing rate of overactive publishers, which

reduces the load to brokers.

FDCC measures the utility of publishers based upon the feedback from matched

subscribers. According to this utility value, the publishing rates by publishers are

77

limited if the utility value is low. This reduces the message rate to brokers and therefore,

reduces the load to brokers.

Hypothesis 3 (H3)：FDCC allows messages with a high utility value, i.e., messages

with important information, to continue being published and therefore improves the

QoE of subscribers.

FDCC limits the publishing rate according to the utility of publishers and importance

of topic. Therefore, when the resources are limited, only the publishers that publish

messages for a relatively more important topic continue publishing. This design ensures

that subscribers to have more chance to receive the more important messages rather

than to receive the messages with little value. Thus, it is possible that the average QoE

for subscribers is improved.

5.3.3 FDCC Performance Measurements

To measure the performance of FDCC, the following parameters are selected.

1) Average QoE for All the Subscribers

The average value of QoE of all the subscribers, denoted as 𝐸𝑠
̅̅ ̅, which is the output of

a utility function, is used as the controlling parameter. A higher utility function value

indicates a higher QoE for all the subscribers to the PSMOM system. If Es(s) is the QoE

for subscriber s, W(s) is the weight assigned to subscriber s, and S stands for the set of

all the subscribers, 𝐸𝑠
̅̅ ̅ is computed using Equation (5), where |𝑆| stands for the

number of subscribers in set S.

 𝐸𝑠
̅̅ ̅ =

∑ 𝑊(𝑠)𝐸𝑠(𝑠)𝑠𝜖𝑆

|𝑆|
 (5)

For the QoE of subscriber s, Es(s), if P(s) is used as a set of publishers that publish

messages for the same topic subscribed to by subscriber s, 𝑈𝑚(𝑠, 𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average

utility value for publisher p from subscriber s, Es(s) is computed using Equation (6),

where |𝑃(𝑠)| is the number of publishers in the set.

78

 𝐸𝑠(𝑠) =
∑ 𝑈𝑚(𝑠, 𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑝∈𝑃(𝑠)

|𝑃(𝑠)|
 (6)

Applying Equation (1) and (6) into (5), the average experience for all the subscribers is

expressed as shown in Equation (7).

𝐸𝑠
̅̅ ̅ =

∑
𝑊(𝑠) ∑

∑ 𝑈𝑚(𝑠, 𝑖. 𝑝)𝑁𝑚(𝑠,𝑝)
𝑖=1

𝑁𝑚(𝑠, 𝑝)𝑝∈𝑃(𝑠)

|𝑃(𝑠)|𝑠𝜖𝑆

|𝑆|

(7)

In practice, the utility value for each message is subjective to each subscriber. In this

design, a simple model is built to generate the utility for individual messages. In this

model, each subscriber s defines a set of interest keywords NK(s) that can be a sub-set

of the keywords defined for the subscribed topic. These interest keywords are used to

filter received message content to select which messages are of the most interest to

subscribers and used to generate a utility value for each message. It does this by

measuring how many keywords are matched in the content of each received message.

The key interest key words can be tailored to each s. These keywords can be pre-set or

specified dynamically. If MK(s,i) is the set of matched keywords for message i, in which

the keywords is denoted as NK(i), the utility for each message i published by publisher

p and received by subscriber s, denoted as 𝑈𝑚(𝑠, 𝑖, 𝑝), is computed using Equation (8),

where |𝑀𝐾(𝑠, 𝑖)| , |𝑁𝐾(𝑠)| and |𝑁𝐾(𝑖)| means the number of items in the

corresponding sets.

 𝑈𝑚(𝑠, 𝑖, 𝑝) =
|𝑀𝐾(𝑠, 𝑖)|

|𝑁𝐾(𝑠)|
∗

|𝑀𝐾(𝑠, 𝑖)|

|𝑁𝐾(𝑖)|
 (8)

2) Load Reduced

FDCC is designed to reduce the load to message brokers. To determine the load

reduction through using FDCC, the input bandwidth utilisation, output bandwidth

utilisation, and matching utilisation are measured for the cases with and without

applying FDCC, respectively.

3) Communication Overhead

79

In addition to the communication overhead introduced by load detection described in

Section 4.5.3, FDCC introduces an extra communication overhead. This is due to the

message exchanges as part of the feedback from each subscriber. This is represented as

the number of feedback messages received per second over the matching capacity of

the broker.

5.3.4 Validation Results

Similar to the experiment for DRD-LB, the experiments to evaluate the performance of

FDCC in the limited resource case were repeated 500 times. For each experiment, the

experiment setup, including the broker capacity, the message dissemination rate,

message size, number of publishers and subscribers vary randomly within a given range,

e.g., for the matching capacity of a broker, this ranges from 20000 msg/s to 30000 msg/s,

the same value adopted for the DRD-LB experiments (see Section 4.5.1). To evaluate

the hypotheses proposed in Section 5.3.2, the performance measurements specified in

Section 5.3.3 are measured in each experiment.

Figure 5-3 OutBW Utilisation with FDCC

80

Figure 5-4 Matching Utilisation with FDCC

Figure 5-5 InBW Utilisation with FDCC

Figure 5-3, Figure 5-4 and Figure 5-5 show results of outBW utilisation, matching

utilisation, and inBW utilisation measured in one experiment. Following a bandwidth

reduction, all the brokers become overloaded, and therefore the conventional load

balancing method can no longer work effectively. FDCC is then triggered to limit the

rate of some overactive publishers to reduce the load to brokers. In this experiment,

each subscriber sends a feedback message every second to compute the utility of the

publisher, the utility of the topic and the quality of the experience for the subscribers.

The total feedback message exchange rate equals to the number of subscribers.

Therefore, the communication overhead caused by feedback message exchange can be

obtained as the ratio of the number of subscribers to the capacity of the broker. For

example, in this experiment, the communication overhead for feedback message

exchange of broker B0 is 435/26015. The load reduction is also measured. In this

experiment, the average load reduction for outBW utilisation, inBW utilisation, and

81

matching utilisation is 17.5%, 13.3% and 16.2% respectively. For the total 500

experiments, the average load reduced for the three load metrics are 19.2%, 15.7% and

16.1% respectively.

To prove Hypothesis 2, a null hypothesis Hnull2 and its alternative hypothesis Halt2 are

introduced. Hnull2 assumes that no matter if FDCC is adopted or not, the load on brokers

is similar; while Halt2 assumes that FDCC reduces load to brokers. In this case, the

outBW utilisation, measured before and after applying FDCC, is retrieved for each

experiment to form two samples. Sout_before and Sout_after. The data in each sample are

indexed and paired. Similar to the Wilcoxon signed-rank test designed to prove

Hypothesis 1 (Section 4.5.4), Sout_before and Sout_after are taken as the input parameters

into a Wilcoxon signed-rank test, achieved using R’s “wilcox.test()” function. The p

value is then computed to be p<2.2e-16, which is close to zero. This means that Hnull2

rarely happens and Halt2 is shown to be true, i.e., FDCC reduces load to brokers.

Figure 5-6 Average QoE with FDCC

Figure 5-6 shows the average QoE measured for one experiment with FDCC. The QoE

is measured using the formula specified in Section 5.3.3. As shown in Figure 5-6, the

average QoE varies significantly during the load distribution phase. This is because any

new client that starts a new message dissemination process may influence the QoE, e.g,

QoE increases if the new publishers publish messages that are more important, or QoE

decreases if less important messages are published by a new publisher. In the

equilibrium phase, the QoE becomes stable. After FDCC is triggered to limit the rate

of overactive publishers, the average QoE for brokers is improved, as the publishing

rate for messages with less important information is set with a lower value, or set to be

82

zero. Here, the difference between the QoE for the equilibrium phase, denoted as

QoE_Before, and the QoE after FDCC triggered, denoted as QoE_After, is determined

to demonstrate the improvement using FDCC, as shown in Figure 5-7.

Figure 5-7 QoE Before & After Applying FDCC for the 500 Experiments

The QoE Improved, which is computed as (QoE_After – QoE_Before) / Qoe_Before is

also measured, as shown in Figure 5-8. The results show that the QoE is improved after

applying FDCC.

Figure 5-8 QoE Improvement Using FDCC

The overall average QoE before and after FDCC is also measured, and the values are

0.2671 and 0.3348 respectively. The QoE is improved by 25.4% in average, as shown

in Figure 5-9.

83

Figure 5-9 Comparison between Average QoE for 500 Experiments Before &

After Applying FDCC

To prove Hypothesis 3, a null hypothesis Hnull3 and an alternative hypothesis Halt3 are

introduced. Hnull3 assumes that the QoE after applying FDCC is similar to that before

applying FDCC, while Halt3 assumes that the QoE after applying FDCC is greater than

that before applying FDCC. In this case, the QoE that is measured before and after

applying FDCC for each experiment is retrieved to form two samples, SQoE-before and

SQoE-after. The data in each sample are indexed and paired. Similar to the Wilcoxon

signed-rank test designed to prove Hypothesis 1 (Section 4.5.4) and Hypothesis 2, SQoE-

before and SQoE-after are taken as the input parameters into a Wilcoxon signed-rank test,

achieved using R’s “wilcox.test()” function. The p value is then computed to be p<2.2e-

16, which is close to 0. This means that Hnull3 rarely happens and Halt3 is then proved,

i.e., the QoE after applying FDCC is greater than that before applying FDCC. Hence,

Hypothesis 3 is true.

5.4 Summary

In this chapter, a feedback driven congestion control method, named FDCC is described,

which is proposed to supplement the load balancing method DRD-LB to manage the

load of the H-E broker overlay for the limited resource case. FDCC limits the publishing

rate of overactive publishers, thus reducing the load to brokers and improve the average

QoE for subscribers. Five hundred simulation-based experiments were carried out to

84

evaluate the performance of FDCC. The results show that FDCC is able to reduce load

to brokers by 15% and improve the QoE by 25% on average.

85

6 CONCLUSION & FUTURE WORK

6.1 Conclusions

This thesis selects a TWS as the target application domain of interest. Here, PSMOMs

are used for the dissemination of sensor data, warning messages and evacuation signals.

When a crisis happens, e.g., earthquake, the physical or underlying network may be

damaged, which can result in broken network links or a decrease in network bandwidth

capacity. In addition, more messages are generated and published by several sources:

increased sampling rate of sensors to monitor the physical environment; increased

message exchange by human beings in the affected area; increased notifications and

alerts from authorities. Therefore, brokers that serve the publishers and subscribers may

become overloaded and suffer performance degradation.

Existing load management solutions need to be improved when they are applied to TWS,

as they tend to focus on the surplus resource case but ignore the case that there are not

enough system resources to support offloading, in which the load to the broker needs

to be reduced. In addition, existing solutions do not consider the delay of time-sensitive

subscriptions, which needs to be minimised to ensure important messages to be

delivered in time. To overcome these limitations, based upon the PEER framework, an

enhanced load management framework, named ePEER is proposed to provide load

management for TWS. In ePEER, brokers are organised in an H-E broker overlay,

which satisfies the communication requirements in TWS and reduces the load to head

brokers. Distributed MAs are adopted to construct and maintain the broker overlay and

support load management. A delay-sensitive load balancing method, named DRD-LB,

and a feedback-driven congestion control model, named FDCC are introduced to

manage the load of PSMOM for the surplus resource and the limited resource case

respectively. FDCC is considered as a supplementary method to DRD-LB when the

system resource limits are reached and cannot be scaled up for a certain time. Based

upon simulation-based experiments, DRD-LB is shown to outperform the state of the

art load balancing method proposed for PEER framework and is accompanied by far

less delay-influence on the TWS. In addition, FDCC also demonstrates its ability to

reduce the load to brokers and maintain the QoE for subscribers in the limited resource

case.

86

6.2 Current Limitations and Future Work

6.2.1 Limitations of the Current Approach

The proposed load management framework has some limitations that can be improved

as follows.

 When a load management framework is deployed in a large-scale federated

overlay, e.g., with hundreds of clusters, as there is no cluster-level load

distribution technique, matched publishers and subscribers may be deployed in

many different clusters and therefore an additional network load for message

dissemination needs to be introduced.

 In this design, with respect to [7, 21], it is assumed that every component works

in an ideal situation, e.g., all the subscribers have enough bandwidth capacity to

receive messages and provide an instantaneous ranking feedback for each

received message. However, in practice, subscribers that subscribe to particular

topics may have a low bandwidth capacity to receive all the published messages

with the same topic. This is referred to as the “slow subscriber” problem, which

builds the message queue up.

 The proposed work targets managing the load for federated brokers in PSMOM,

but does not consider the integration with other platforms, e.g., use of a Cloud,

to manage the load by adding and removing brokers on demand.

6.2.2 Future Work

According to the research objectives, the current limitations, and requirements of a

TWS system, the following work is proposed as future work.

 A cluster-level load distribution method can be investigated, which aims to reduce

the network load by aggregating clusters that are located near to each other to form

an aggregated cluster that serves clients with similar interests. Matched publishers

and subscribers are assigned to the same cluster when they register with the system.

 A more practical utility ranking process can be developed, which measures the

utility of each message based upon the semantic relationships between the interests

of subscribers and the message content.

87

 An enhanced time control mechanism can be investigated, which is designed to

manage slow subscribers by periodically dropping publications with less important

information from the corresponding message queues to reduce the load of brokers.

 The integration with a Cloud computing cluster can be investigated to improve the

elasticity of PSMOM, e.g., the creation and removal of brokers on demand. A

broker-creation on demand facility helps maintain the system performance, e.g.,

throughput and delay, when further system capacity is required for the case when

some nodes that host brokers fail. In practice, a system node, e.g., a virtual machine

that hosts broker(s) can crash due to a failure of the operating system or due to a

hardware failure. The time costs to fix a node crash problem may last from minutes

to days and during this time, brokers running on the failure node do not work. This

may cause other brokers to become overloaded, as the load on brokers running on

a failed node needs to be distributed to other brokers. In this case, if a PSMOM is

integrated as part of a Cloud computing system, new brokers running in another

Cloud node can be automatically restarted to replace the failed ones to help maintain

the performance of message exchange services. The broker-removal on demand

facility saves system resources when fewer brokers are required to provide message

exchange services.

 Regarding the resilience requirements of a TWS, fault tolerance techniques such as

topic mirroring and geo-resilient routing, can be investigated to extend the load

management framework. These techniques can be used to improve further the

resilience of the PSMOM system to enable messages to be received by matched

subscribers even if brokers or links to brokers fail.

 Regarding the requirements of using a mobile device to capture the live information

within an environment crisis area to improve the ground truth information, a QoS

adapted multimedia messaging service can be investigated. This messaging service

tends to enable human beings within the disaster area to publish messages

containing live video and audio information to the warning centre using mobile

phones. The quality of the video and audio should be adapted to the available

bandwidth capacity. In addition, content caching and delayed publication could be

supported for the situation when a network segment or link becomes unavailable at

specific times but recovers after a while.

88

REFERENCES

1. Wiltshire, A., Developing Early Warning Systems: A Checklist, in Third

International Conference on Early Warning. 2006: Bonn, Germany. p. 27-29

2. Waidyanatha, N., Towards a Typology of Integrated Functional Early Warning

Systems. International Journal of Critical Infrastructures, 2010. 6(1): p. 31-51.

3. Intergovernmental Oceanographic Commission, Interim Operational Users

Guide for the Tsunami Early Warning and Mitigation System in the North-

eastern Atlantic, the Mediterranean and Connected Seas (NEAMTWS). 2011.

4. Intergovernmental Oceanographic Commission. NEAMTWS - Structural

Elements of the TWS. Available from: http://www.ioc-

tsunami.org/index.php?option=com_content&view=article&id=17&Itemid=17

&lang=en.

5. Braddock, R., Sensitivity analysis of the tsunami warning potential. Reliability

Engineering & System Safety, 2003. 79: p. 225-228.

6. Jin, D. and Lin, J., Managing Tsunamis through Early Warning Systems : a

Multidisciplinary Approach. Ocean & Coastal Management, 2011. 54: p. 189-

199.

7. Cheung, A.K.Y. and Jacobsen, H.-A., Load Balancing Content-Based

Publish/Subscribe Systems. ACM Transactions on Computer Systems, 2010.

28(4): p. 1-55.

8. Pietzuch, P.R. and Bhola, S. Congestion control in a reliable scalable message-

oriented middleware. in Proc. of the ACM/IFIP/USENIX 2003 International

Conference on Middleware. 2003. Rio de Janeiro, Brazil: p. 202-221.

9. Wang, J., Jiang, P., Bigham, J., Chew, B., Novkovic, M., and Dattani, I. Adding

resilience to message oriented middleware. in Proceedings of the 2nd

International Workshop on Software Engineering for Resilient Systems. 2010.

London, United Kingdom: p. 89-94.

10. Wang, J., Bigham, J., and Murciano, B. Towards a Resilient Message Oriented

Middleware for Mission Critical Applications. in ADAPTIVE 2010, The Second

http://www.ioc-tsunami.org/index.php?option=com_content&view=article&id=17&Itemid=17&lang=en
http://www.ioc-tsunami.org/index.php?option=com_content&view=article&id=17&Itemid=17&lang=en
http://www.ioc-tsunami.org/index.php?option=com_content&view=article&id=17&Itemid=17&lang=en

89

International Conference on Adaptive and Self-Adaptive Systems and

Applications. 2010. Lisbon, Portugal: p. 46-51.

11. Bigham, J. and Novkovic, M. Adding Resilience to Message Oriented

Middleware: The GEMOM Approach. in Distributed Computing Systems

Workshops (ICDCSW), 2010 IEEE 30th International Conference on. 2010.

Genoa, Italy: p. 292-293.

12. Tock, Y., Naaman, N., Harpas, A., and Gershinsky, G. Hierarchical Clustering

of Message Flows in a Multicast Data Dissemination System. in Proceedings of

International Conference Parallel and Distributed Computing and Systems.

2005. Phoenix, AZ, USA: p. 320-326.

13. Schuler, C., Schuldt, H., and Schek, H.-J., Supporting Reliable Transactional

Business Processes by Publish/Subscribe Techniques, in Technologies for E-

Services. 2001, Springer Berlin Heidelberg. p. 118-131.

14. Fawcett, T. and Provost, F. Activity monitoring: noticing interesting changes in

behavior. in Proceedings of the fifth ACM SIGKDD international conference

on Knowledge discovery and data mining. 1999. San Diego, California, USA:

p. 53-62.

15. Cugola, G., Di Nitto, E., and Fuggetta, A., The JEDI event-based infrastructure

and its application to the development of the OPSS WFMS. Software

Engineering, IEEE Transactions on, 2001. 27(9): p. 827-850.

16. Rose, I., Murty, R., Pietzuch, P., Ledlie, J., Roussopoulos, M., and Welsh, M.

Cobra: contentbased filtering and aggregation of blogs and RSS feeds. in Proc.

of the 4th USENIX conference on Networked systems design & implementation.

2007. Cambridge, MA: p. 3-3.

17. Liu, H., Ramasubramanian, V., and Sirer, E.G. Client behavior and feed

characteristics of RSS, a publish-subscribe system for web micronews. in

Proceedings of the 5th ACM SIGCOMM conference on Internet Measurement.

2005. Berkeley, CA: p. 3-3.

18. Abie, H., Dattani, I., Novkovic, M., Bigham, J., Topham, S., and Savola, R.

GEMOM - Significant and Measurable Progress beyond the State of the Art. in

90

Systems and Networks Communications, 2008. ICSNC '08. 3rd International

Conference on. 2008. Sliema: p. 191-196.

19. Abie, H., Savola, R.M., and Dattani, I. Robust, Secure, Self-Adaptive and

Resilient Messaging Middleware for Business Critical Systems. in Future

Computing, Service Computation, Cognitive, Adaptive, Content, Patterns, 2009.

COMPUTATIONWORLD '09. Computation World:. 2009. Athens: p. 153-160.

20. Wang, J., Bigham, J., and Wu, J. Enhance Resilience and QoS Awareness in

Message Oriented Middleware for Mission Critical Applications. in

Information Technology: New Generations (ITNG), 2011 Eighth International

Conference on. 2011. Las Vegas, USA: p. 677-682.

21. Cheung, A.K.Y. and Jacobsen, H.-A., Dynamic load balancing in distributed

content-based publish/subscribe, in Proceedings of the ACM/IFIP/USENIX

2006 International Conference on Middleware. 2006: Melbourne, Australia. p.

141-161.

22. Collins, L. Redundancy lesson for Japan's comms infrastructure. 2011;

Available from: http://eandt.theiet.org/magazine/2011/04/japans-

infrastructure.cfm.

23. An, X.-F. and Bian, L.-Y. Design of Message-Oriented Middleware of Distance

Teaching Platform Based on Distributed Message Control. in Computational

Aspects of Social Networks (CASoN), 2010 International Conference on. 2010.

Tiyuan, China: p. 141-143.

24. Lewis, D., Keeney, J., O’Sullivan, D., and Guo, S., Towards a Managed

Extensible Control Plane for Knowledge-Based Networking, in Large Scale

Management of Distributed Systems. 2006, Springer Berlin Heidelberg. p. 98-

111.

25. Li, H. and Jiang, G. Semantic message oriented middleware for

publish/subscribe networks. in SPIE - The International Society for Optical

Engineering. 2004. USA: p. 124-133.

26. Parkin, S., Ingham, D., and Morgan, G., A message oriented middleware

solution enabling non-repudiation evidence generation for reliable web

http://eandt.theiet.org/magazine/2011/04/japans-infrastructure.cfm
http://eandt.theiet.org/magazine/2011/04/japans-infrastructure.cfm

91

services, in 4th International Service Availability Symposium, ISAS 2007:

Durham, NH, USA. p. 98-111.

27. Kim, M., Karenos, K., Ye, F., Reason, J., Lei, H., and Shagin, K. Efficacy of

techniques for responsiveness in a wide-area publish/subscribe system. in 11th

International Middleware Conference Industrial track. 2010. Bengaluru, India.

28. Baldoni, R., Contenti, M., and Virgillito, A., The evolution of publish/subscribe

communication systems, in Future directions in distributed computing. 2003,

Springer-Verlag. p. 137-141.

29. Venkatesh, V., Morris, M.G., Davis, G.B., and Davis, F.D., User acceptance of

information technology: Toward a unified view. MIS Quarterly, 2003. 27(3): p.

425-478.

30. Corporation, O. Java Message Service API Rev. 1.1. 2002; Available from:

http://java.sun.com/products/jms/.

31. Terry, S. and Shawn, T., Enterprise JMS programming. 2002: John Wiley &

Sons, Inc.

32. Hapner, M., Burridge, R., Sharma, R., Fialli, J., and Haase, K., Java Message

Service API Tutorial and Reference: Messaging for the J2EE Platform. 2002:

Addison-Wesley.

33. Fiorano Software, I. FioranoMQTM: Meeting the Needs of Technology and

Business. Available from: http://www.fiorano.com/whitepapers/

34. Tibco Software, I. TIBCO Enterprise Message Service. 2004; Available from:

http://www.tibco.com/products/automation/enterprise-messaging/enterprise-

message-service.

35. TIBCO Software Inc. TIBCO Rendezvous Messaging Middleware. Available

from: http://www.tibco.com/products/soa/messaging/rendezvous/.

36. IBM Corporation. IBM WebSphere MQ 6.0. 2005; Available from: http://www-

01.ibm.com/software/integration/wmq/.

37. IBM WebSphere MQ Homepage. Available from: http://www-

306.ibm.com/software/integration/wmq/.

http://java.sun.com/products/jms/
http://www.fiorano.com/whitepapers/
http://www.tibco.com/products/automation/enterprise-messaging/enterprise-message-service
http://www.tibco.com/products/automation/enterprise-messaging/enterprise-message-service
http://www.tibco.com/products/soa/messaging/rendezvous/
http://www-01.ibm.com/software/integration/wmq/
http://www-01.ibm.com/software/integration/wmq/
http://www-306.ibm.com/software/integration/wmq/
http://www-306.ibm.com/software/integration/wmq/

92

38. IBM MQ Fundamentals. Available from:

http://www.redbooks.ibm.com/abstracts/sg247128.html.

39. IBM WebSphere MQ Information Centre. Available from:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp.

40. Rabbit Technologies Ltd. RabbitMQ – Messaging that just works. Available

from: http://www.rabbitmq.com/.

41. AMQP Working Group. AMQP: Advanced Message Queuing Protocol.

Available from: http://www.amqp.org/.

42. Vinoski, S., Advanced Message Queuing Protocol. Internet Computing, IEEE,

2006. 10(6): p. 87-89.

43. Kramer, J., Advanced message queuing protocol (AMQP). Linux J., 2009.

2009(187): p. 3.

44. MQTT Version 3.1.1. Available from: http://docs.oasis-

open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html.

45. The Simple Text Oriented Messaging Protocol. Available from:

http://stomp.github.io.

46. Chockler, G., Melamed, R., Tock, Y., and Vitenberg, R. Constructing Scalable

Overlays for Pub-Sub with Many Topics Problems, Algorithms, and Evaluation.

in the 26th Annual ACM Symposium on Principles of Distributed Computing.

2007. Portland: p. 109-118.

47. Chen, C., Jacobsen, H.A., and Vitenberg, R. Divide and Conquer Algorithms

for Publish/Subscribe Overlay Design. in Distributed Computing Systems

(ICDCS), 2010 IEEE 30th International Conference on. 2010. Genoa, Italy: p.

622-633.

48. Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R.E., and

Sturman, D.C. An efficient multicast protocol for content-based publish-

subscribe systems. in Distributed Computing Systems, 1999. Proceedings. 19th

IEEE International Conference on. 1999. Austin, TX: p. 262-272.

http://www.redbooks.ibm.com/abstracts/sg247128.html
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.rabbitmq.com/
http://www.amqp.org/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://stomp.github.io/

93

49. Carzaniga, A., Rosenblum, D.S., and Wolf, A.L., Design and evaluation of a

wide-area event notification service. ACM Trans. Comput. Syst., 2001. 19(3):

p. 332-383.

50. Fabret, F., Jacobsen, H.A., Llirbat, F., Pereira, J., Ross, K.A., and Shasha, D.,

Filtering algorithms and implementation for very fast publish/subscribe systems,

in Proceedings of the 2001 ACM SIGMOD international conference on

Management of data. 2001: Santa Barbara, California, USA. p. 115-126.

51. Li, G., Hou, S., and Jacobsen, H.A. Routing of XML and XPath Queries in Data

Dissemination Networks. in Distributed Computing Systems, 2008. ICDCS '08.

The 28th International Conference on. 2008. Beijing, China: p. 627-638.

52. Pietzuch, P.R. and Bacon, J.M. Hermes: a distributed event-based middleware

architecture. in Distributed Computing Systems Workshops, 2002. Proceedings.

22nd International Conference on. 2002. Viena, Austria: p. 611-618.

53. Li, G. and Jacobsen, H.A., Composite subscriptions in content-based

publish/subscribe systems, in Proceedings of the ACM/IFIP/USENIX 2005

International Conference on Middleware. 2005: Grenoble, France. p. 249-269.

54. Eugster, P., Felber, P., Guerraoui, R., and Kermarrec, A.M., The many faces of

publish/subscribe. ACM Computing Surveys, 2003. 35(2): p. 114-131.

55. Baldoni, R., Beraldi, R., Querzoni, L., and Virgillito, A., Efficient

Publish/Subscribe Through a Self-Organizing Broker Overlay and its

Application to SIENA. Comput. J., 2007. 50(4): p. 444-459.

56. Pietzuch, P.R., Hermes: A scalable event-based middleware. 2004. Doctor of

Philosophy: p. 180.

57. Chen, Y. and Schwan, K. Opportunistic overlays: efficient content delivery in

mobile ad hoc networks. in Proceedings of the ACM/IFIP/USENIX 2005

International Conference on Middleware. 2005. Grenoble, France: p. 354-374.

58. Chew, B. and Bigham, J. Bottleneck detection and forecasting in Message-

Oriented-Middleware. in European Safety and Reliabitily Conference. 2011.

Troyes, France.

59. Tran, P., Greenfield, P., and Gorton, I. Behavior and performance of message-

oriented middleware systems. in Distributed Computing Systems Workshops,

94

2002. Proceedings. 22nd International Conference on. 2002. Viena, Austria: p.

645-650.

60. Henjes, R. Performance Evaluation of Publish/Subscribe Middleware

Architectures. 2010; Available from: http://www3.informatik.uni-

wuerzburg.de/diss/diss_28.pdf.

61. Remzi, H.A.-D. and A.-D., A.C. Operating Systems: Three Easy Pieces

Available from: http://pages.cs.wisc.edu/~remzi/OSTEP/.

62. Thingom, C. and Suma, V. Ensured availability of resources in a highly reliable

mode through enhanced approaches for effective disaster management in cloud.

in Electronics and Communication Systems (ICECS), 2014 International

Conference on. 2014. Marseille, France: p. 1-6.

63. Casalicchio, E. and Morabito, F. Distributed subscriptions clustering with

limited knowledge sharing for content-based publish/subscribe systems. in

Network Computing and Applications, 2007. NCA 2007. Sixth IEEE

International Symposium on. 2007. Cambridge, MA, USA: p. 105-112.

64. Riabov, A., Zhen, L., Wolf, J.L., Yu, P.S., and Li, Z. Clustering algorithms for

content-based publication-subscription systems. in Distributed Computing

Systems, 2002. Proceedings. 22nd International Conference on. 2002. Viena,

Austria: p. 133-142.

65. Riabov, A., Zhen, L., Wolf, J.L., Yu, P.S., and Li, Z. New algorithms for

content-based publication-subscription systems. in Distributed Computing

Systems, 2003. Proceedings. 23rd International Conference on. 2003. Viena,

Austria: p. 678-686.

66. Wong, T., Katz, R., and McCanne, S. An evaluation of preference clustering in

large-scale multicast applications. in INFOCOM 2000. Nineteenth Annual

Joint Conference of the IEEE Computer and Communications Societies.

Proceedings. IEEE. 2000. Tel Aviv: p. 451-460 vol.2.

67. Amol, D. and Rajesh, P. A Review on Active Queue Management Techniques of

Congestion Control. in Electronic Systems, Signal Processing and Computing

Technologies (ICESC), 2014 International Conference on. 2014. Marseille,

France: p. 166-169.

http://www3.informatik.uni-wuerzburg.de/diss/diss_28.pdf
http://www3.informatik.uni-wuerzburg.de/diss/diss_28.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/

95

68. Kafi, M., Djenouri, D., Ben-Othman, J., and Badache, N., Congestion Control

Protocols in Wireless Sensor Networks: A Survey. Communications Surveys &

Tutorials, IEEE, 2014. PP(99): p. 1-22.

69. Jenolin Flora, D.F., Kavitha, V., and Muthuselvi, M. A survey on congestion

control techniques in Wireless Sensor Networks. in Emerging Trends in

Electrical and Computer Technology (ICETECT), 2011 International

Conference on. 2011. India: p. 1146-1149.

70. Escudero-Sahuquillo, J., Gran, E.G., Garcia-Garcia, P.J., Flich, J., Skeie, T.,

Lysne, O., Quiles, F.J., and Duato, J., Efficient and Cost-Effective Hybrid

Congestion Control for HPC Interconnection Networks. Parallel and

Distributed Systems, IEEE Transactions on, 2014. PP(99): p. 1-1.

71. Soelistijanto, B. and Howarth, M.P., Transfer Reliability and Congestion

Control Strategies in Opportunistic Networks: A Survey. Communications

Surveys & Tutorials, IEEE, 2014. 16(1): p. 538-555.

72. Shiang, H.-P. and van der Schaar, M., A Quality-Centric TCP-Friendly

Congestion Control for Multimedia Transmission. Multimedia, IEEE

Transactions on, 2012. 14(3): p. 896-909.

73. Wang, C., Li, B., Sohraby, K., Daneshmand, M., and Hu, Y., Upstream

congestion control in wireless sensor networks through cross-layer

optimization. Selected Areas in Communications, IEEE Journal on, 2007. 25(4):

p. 786-795.

74. Kang, J., Zhang, Y., and Nath, B., TARA: Topology-Aware Resource

Adaptation to Alleviate Congestion in Sensor Networks. Parallel and Distributed

Systems, IEEE Transactions on, 2007. 18(7): p. 919-931.

75. Zawodniok, M. and Jagannathan, S., Predictive Congestion Control Protocol

for Wireless Sensor Networks. Wireless Communications, IEEE Transactions

on, 2007. 6(11): p. 3955-3963.

76. Shi, K., Shu, Y., Yang, O., and Luo, J., Receiver-Assisted Congestion Control

to Achieve High Throughput in Lossy Wireless Networks. Nuclear Science,

IEEE Transactions on, 2010. 57(2): p. 491-496.

96

77. Jerzak, Z. and Fetzer, C. Handling Overload in Publish/Subscribe Systems. in

Distributed Computing Systems Workshops, 2006. ICDCS Workshops 2006.

26th IEEE International Conference on. 2006. Lisboa, Portugal: p. 32-32.

78. Afrianfar, S., Optimizing Publish/Subscribe Systems with Congestion Handling.

Department of Computer Science and Engineering, 2008. Master of Science:

p. 72.

79. Abie, H., Savola, R.M., Bigham, J., Dattani, I., Rotondi, D., and Bormida, G.D.,

Self-Healing and Secure Adaptive Messaging Middleware for Business-Critical

Systems. International Journal on Advances in Security, 2010. 3(1 & 2): p. 34-

51.

80. Jia, Y., Bodanese, E., and Bigham, J., Model Checking of the Reliability of

Publish/Subscribe Structure Based System, in IEEE International Conference

on Communications in China. 2012: Beijing, China. p. 173-178.

81. Jia, Y., Bodanese, E., and Bigham, J., Checking the Robustness of a

Publish/Subscribe Based Message Oriented System, in International Congress

on Ultra Modern Telecommunications and Control Systems. 2012: St.

Petersburg, Russia. p. 280 - 285.

82. Jia, Y., Bodanese, E., Phillips, C., Bigham, J., and Tao, R., Improved Reliability

of Large Scale Publish/Subscribe based MOMs using Model Checking, in

IEEE/IFIP Network Operations and Management Symposium. 2014: Krakow,

Poland. p. 1 - 8.

83. Wang, X., Tokarchuk, L., Cuadrado, F., and Poslad, S. Exploiting hashtags for

adaptive microblog crawling. in Advances in Social Networks Analysis and

Mining (ASONAM), 2013 IEEE/ACM International Conference on. 2013.

Niagara Falls, Canada: p. 311-315.

84. TRIDEC. TRIDEC: Collaborative, Complex and Critical Decision Support in

Evolving Crises. Available from: http://www.tridec-online.eu/.

http://www.tridec-online.eu/

97

APPENDIX A: AUTHOR’S CONTRIBUTION

 Tao, R., Poslad, S., MoBgraber, J., Middleton, S.E., and Hammitzsch, M. Scalable

and Resilient Middleware to Handle Information Exchange during Environment

Crisis, in European Geosciences Union General Assembly (EGU 2012), Austria,

2012.

 Tao, R., and Poslad, S. Delay Sensitive Distributed Sensor Data Exchange for an

IoT, in Proc. of Int. Workshop on Adaptive Security (ASPI ’13), Switzerland, 2013.

 Tao, R., Poslad, S., and Bigham, J. Resilient Delay Sensitive Load Management in

Environment Crisis Messaging System, in Proc. of the Eighth Int. Conf. on System

and Networks Communications (ICSNC’13), Italy, 2013.

 Tavakoli, S., Poslad, S., Dattani, I., Tao, R., and Haner, R. A System Infrastructure

to Handle Large Data Stream Exchange and Collaboration during Evolving

Environment Crises, in 18th Annual Conference of Int. Emergency Management

Society (TIEMS’11), Romania, 2011.

 MoBgraber, J., Middleton, S.E., and Tao, R. A Geo-Distributed System

Architecture for Different Domains, in European Geosciences Union General

Assembly (EGU 2013), Austria, 2013.

 MoBgraber, J., Chaves, F., Middleton, S.E., Zlatev, Z., and Tao, R. The Seven Main

Challenges of an Early Warning System Architecture, in Proc. Of the 10th Int.

ISCRAM Conf., Germany, 2013.

 Jia, Y., Bodanese, E., Phillips, C., Bigham, J., and Tao, R. Improved Reliability of

Large Scale Publish/Subscribe based MOMs using Model Checking, in Proc. of

IEEE/IFIP Network Operations and Management Symposium (NOMS’14), Poland,

2014.

 Poslad, S., Middleton, S. E., Chaves, F., Tao, R., Necmioglu, O., Bügel, U. A

Semantic IoT Early Warning System for Natural Environment Crisis Management.

IEEE Transaction on Emerging Topics in Computing (TETC) Special Issue on

Advances in Semantic Computing, 3(2), 246 – 257, 2015

The author has also contributed to nine TRIDEC WP3 deliverables and three project

review demos.

98

APPENDIX B: RELATION OF THIS PHD TO

TRIDEC PROJECT

This PhD was co-funded 8 by the EU FP7 project TRIDEC that focused on new

approaches and technologies for intelligent geo-information management in complex

and critical decision making processes in Earth sciences [84]. In TRIDEC, QMUL was

the leader for Work Package 3 that focused on Resilience, Performance and Scalability

Modelling, architectural and component design, implementation and integration. This

PhD contributed the core resilient and scalable messaging middleware model based

upon a PSMOM design for use in the TRIDEC System to support two applications,

Tsunami and subsurface drilling for oil and geothermal energy. The research and

development of this middleware is solely the result of this PhD.

The proposed PSMOM framework from the PhD, including the broker overlay,

management component and message exchange interface, has been developed and

deployed to provide message exchange services for two real EWS applications

developed in project TRIDEC for two scenarios:

 The first scenario concerns a large group of experts working collaboratively in

crisis centres and government agencies monitoring the physical environment using

networked sensors. The goal is to make critical decisions and to save lives as well

as infrastructural and industrial facilities in evolving tsunami crises.

 The second scenario concerns a large group of consulting engineers and financial

analysts from energy companies working collaboratively in sub-surface drilling

operations. Their common objective is to monitor drilling operations in real-time

using sensor networks, optimising drilling processes and critically detecting

unusual trends of drilling systems functions. This prevents operational delays,

financial losses, and environmental accidents.

In both scenarios, the broker overlay consists of three broker clusters, located in

different geo-locations and each cluster following the head-edge cluster design

8 It is also funded by a QMUL PhD Scholarship

99

described in Section 4.2. Fig B.1 shows generic system architecture for the two

TRIDEC applications with the proposed PSMOM framework.

Fig. B.1 Generic TRIDEC Architecture

To give a better understanding of how the proposed framework is used to enable

communication for the system of system architecture in TRIDEC, Fig. B.2 shows an

example of using a broker overlay to enable communication in a Tsunami early warning

system.

Fig. B.2 Communication in a TWS through Broker Overlay

100

Both applications have been demonstrated with live demos in the TRIDEC project third

year review meeting in Lisbon, 28th Nov. 2013. Fig B.3 and Fig. B.4 show the user

interface for live demos for drilling and Tsunami scenarios respectively. In both demos,

all the data exchanged are through the proposed PSMOM framework.

Fig. B.3 Live Demo User Interface for Drilling Scenario

In the drilling demo, live sensor data from onsite sensors are transmitted to the remote

data processing centre through brokers, and the data is analysed together with the

historical data. The diagram shows the drilling history of a rig named Rig2.

Fig. B.4 Live Demo User Interface for Tsunami Scenario

101

In the tsunami scenario, seismic data and sea level data is transmitted through brokers

to the data processing system. The data processing system analyses the received data

together with the historical data and predicts the affected areas and the height of the

wave. In addition, data from social network, e.g., tweets, which is relevant to the

tsunami, is gathered to analyse the behaviour of people in the affected areas. The

diagram shows where the earthquake happens, the distribution of the sea level sensors

and the geo-locations of the tweets relevant to the events.

