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Abstract

The dynamics of an oblate capsule in general flows is studied analytically and

numerically. The capsule is modeled as a liquid-filled drop enclosed by a mem-

brane. The governing equations for the dynamics of the capsule based on the

Keller-Skalak (KS) theory and Skotheim-Secomb (SS) model are analytically

derived. It is found that the capsule dynamics in general flows is controlled by

two dimensionless parameters, the ratio of vorticity to strain rate of the flow

and the ratio of the elastic force to fluid stress. In the literature, the transition

between swinging (SW) and tumbling (TU) is always one way (TU to SW). As

far as we know, it is the first time that the TU-SW-TU transition has been

identified, i.e., the transition may also transfer from SW to TU after the tran-

sition (TU to SW) occurs under some circumstances. The possible mechanism

is that the rotation of the flow suppresses the deformation along the vorticity

direction of the capsule. The shape dynamics of a capsule and the rheology of

dilute capsule suspension are also investigated.
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1. Introduction

Soft biological particles, such as vesicles, cells and capsules, have drawn

much attention for many years and there are many theoretical, numerical, and

experimental studies [1, 2, 3, 4, 5, 6, 7, 8]. Detailed studies of a single particle

are critical for understanding the rheology of bio-fluids. However, till today even

behaviors of one single particle are not fully understood. A complete theoretical

study in this topic is not easy. For example, the shape of the particle is not

given a priori and continuously deforming. The shape evolution of the particle

is determined by the dynamic balance between the interfacial forces and fluid

stresses. To simplify the theoretical analysis, some studies [9, 10] constrained

the number of degrees of freedom and others [11, 12] applied asymptotic analyses

to investigate the dynamics. Due to the difficulties in theoretical study, there

are many experimental [5, 13] or numerical studies [2, 14, 15, 16, 17].

Capsule is a kind of unbreakable, hermetic membrane which is chemically or

physically cross-linked. The membrane provides the resistance to shear and to

change of volume. It has been shown that there is a steady tank-treading motion

in simple shear flow when the capsule is initially spherical [14]. If the capsule is

not initially spherical, a transition from tank-treading to tumbling may occur

through reducing shear rate or increasing viscosity ratio [10, 15]. The swinging

mode, which lies between tank-treading and tumbling, has been experimentally

detected for red blood cells (RBCs) [1, 9]. In this mode, the shape deformation

is periodic and the inclination oscillates around a mean angle with respect to

the direction of the flow. The swinging mode has also been found for capsule

[15]. Due to the lacking of bending effect in capsule, the wrinkles would occur

because of the compressive stress in the membrane that is imposed by the flow

[18, 19, 20].

Unlike capsules, vesicles exhibit a strong resistance to changes of volume,

total surface area, and bending. Vesicles are not sensitive to strain. Hence,

they can not show shear elasticity [15]. There are numerous theoretical and

experimental studies on vesicles. In the KS theory [10], the particle is supposed
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to be a shape-fixed ellipsoid, which is enclosed by a inextensible membrane.

And transition from tank-treading to tumbling mode is investigated. Fischer

[21] introduced a shape memory model for the RBCs, in which, the rim of a red

blood cell is always consisted of the same part of the membrane after relaxation

from deformation. A regime of intermittent dynamics, characterized by several

swinging cycles interrupt by a tumbling regularly near the transition from tank-

treading to tumbling, was first observed by experiment [1]. Benefiting from the

shape memory model [21], Abkarian et al. [1] and Skotheim et al. [9] introduced

the energy barrier for the membrane based on the KS theory, and the model is

able to predict the existence of the intermittent motion.

However, this intermittent motion is unable to be obtained in numerical

simulations [3, 16, 22, 23]. Considering the shape parameter, Noguchi [24, 25]

predicted the synchronized rotation of phase angle and inclination angle with

integer ratios of the frequencies. Vlahovska et al. [26] concluded that the

intermittent behavior is a result of the shape-fixed assumption in the reduced

models, in which only small-deformation is considered. They also pointed out

that the intermittent behavior would be suppressed if there is a deformation

along the vorticity direction. However, in the simple shear flow, the deformation

along the vorticity direction is inevitable. Hence, the intermittent motion is

difficult to be observed.

Although Abkarian et al. [1] observed the intermittent behavior, but the

mechanism is not fully understood. Now days, numerical simulations become

an important tool to study the intermittent dynamics. Cordasco et al. [27] and

Peng et al. [28] showed that there is a large deformation along the vorticity

direction during the TU-SW transition. More recently, Cordasco and Bagchi

[4] present the computational evidence for the intermittent motion, which is

characterized by an irregular sequence of TU interrupted by an SW, or vice

versa, and synchronized motion with the cell rotation and membrane rotation

with integer ratio of the rotational frequencies. The membrane in-plane elastic

energy is introduced to explain these dynamics observed in the simulations [4].

However, the intermittent behavior research mentioned above are all based
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on the dynamics of vesicle and RBCs, in which the bending effects cannot be

ignored [29]. In present work, we focus on capsule’s intermittent dynamics

without bending stiffness. Benefiting from the conclusion that the intermittent

behavior would be suppressed by deformation along the vorticity direction [26],

we introduce an important dimensionless parameter, the ratio of the vorticity to

the strain rate [30]. The elastic energy form in the SS model [9] is based on the

shape memory model, which is derived from experiment data. Here, an concrete

energy form derived from the nonlinear membrane constitutive model is used

in both our theoretical analysis and numerical simulations. It is expected to

yield a better theoretical and numerical comparison. The capsule’s membrane

is assumed to follow the neo-Hookean (NH) law. It is found that the transition

from TU to SW is no longer one way, i.e., an initial tumbling capsule may return

to TU state after the TU-SW transition rather than eventually reach a stable

swinging state.

The present work is intended to provide a better understanding of the be-

havior of an initially nonspherical capsule in general flow. In §2, the theoretical

model and numerical method are introduced briefly. Next, in §3, our results,

such as the mode transition, shape dynamics and rheology of dilute suspension

are discussed and compared with the theoretical predictions. Finally, conclu-

sions are presented in §4.

2. Methods

2.1. Theoretical model

In this section, our derivation follows the theoretical frame in [9, 10]. The

equations for the motion of capsules based on Jeffery’s theory [31] have been

derived by Keller and Skalak [10] analytically. They also improved the results of

Roscoe [32], in which the inclination angle of the particle is assumed constant.

Here, more general flows beyond simple shear flow are considered in our deriva-

tion, and the flow is still a plane flow. The undisturbed flow with a space-fixed
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Figure 1: The schematic diagram of the model. (a) the velocity field of the flow with Ξ = 4,

(b) the membrane model of an ellipsoidal capsule in general flow.

frame shown in figure 1 is denoted by û0
i , the velocity gradient is

δiu
0
j = sij − ϵijkωk, (1)

where sij is the symmetric strain tensor, ωk is the vorticity vector. s =√
tr(s2ij)/2 and ω = |ωk| are the strain rate and the vorticity, respectively.

Here an important dimensionless parameter is defined as

Ξ ≡ ω/s, (2)

which refers to the ratio of vorticity to strain rate. Then the velocity field of

fluid is obtained as

u0
1 = (s+ ω)x̂2, u

0
2 = (s− ω)x̂1, u

0
3 = 0. (3)

Due to the moment balance of the capsule, the rate of change of the incli-

nation angle θ is obtained as[10]

∂tθ = −ω − 2a1a2
a21 + a22

∂tϕ+ s
a21 − a22
a21 + a22

cos2θ. (4)

If the velocity and stress field shown in Appendix A are known, the internal

dissipation D and the rate of work Wp done by the external fluid on the ellipsoid

can be derived (refer to [10] for more details):

D = V µ
′
f1(∂tϕ)

2, (5)
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Wp = V µ(f2(∂tϕ)
2 + 2sf3∂tϕcos2θ), (6)

the parameters are defined in Appendix A and V is the volume of the capsule.

The work done by external fluid on the capsule is not only consumed by the

internal dissipation, but also transferred to the elastic energy stored in the

membrane [1, 9]. Suppose that the membrane follows the neo-Hookean law,

which has the energy form [33]

WNH =
1

6
E(I1 − 1 +

1

I2 + 1
), (7)

where E is the Young’s modulus, and I1 = λ2
1 + λ2

2 − 2, I2 = (λ1λ2)
2 − 1 are

the first and second strain invariants, respectively. λ1 and λ2 are the principle

strains. Here the elastic energy form is

WNH = 2
3z

2
1Esin2ϕ, (8)

and the detailed derivation is shown in Appendix B.

The energy balance of the capsule is

Wp = D + ∂t

∮
Sc

WNH , (9)

this yields

V µ(f2(∂tϕ)
2 + 2sf3∂tϕcos2θ = V µ

′
f1(∂tϕ)

2 +
2

3
EScz

2
1sin2ϕ∂tϕ, (10)

where Sc is the surface area of the capsule.

Combining equations (4) and (10) and scaling time with t = T/2s, it yields

the dimensionless evolution equations for phase angle ϕ and inclination angle θ,

∂Tϕ = h1(Λsin2ϕ+ cos2θ),

∂T θ = −1
2Ξ− h2∂Tϕ+ h3cos2θ, (11)

where h1 = − f3
f2−λf1

, h2 = 2a1a2

a2
1+a2

2
, h3 =

a2
1−a2

2

2(a2
1+a2

2)
. If we defined V = 4

3πR
3
0 and

Sc = (4π +∆)R2
0, another important dimensionless parameter Λ is defined as

Λ ≡ − (4π +∆)Ez21
4πR0µf3s

. (12)
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Now the equations for the evolutions of phase angle ϕ and inclination angle

θ are derived. They are totaly characterized by three dimensionless parameters

λ, Ξ and Λ under the assumption that the capsule preserves an undeformed

shape. In present work, the main task is to study the influence of vorticity

on the dynamics of the capsule. Because the viscosity ratio effects have been

studied extensively [10, 22, 25, 34], the viscosity ratio λ is set to be unity in our

study. We focus on the effects of Ξ and Λ.

2.2. Numerical method
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Figure 2: (a) Discretization of a sphere; (b) D3Q19 model.

2.2.1. Finite element membrane model

In our study, the membrane dynamics is numerically solved by finite element

method, in which the neo-Hookean constitutive law (7) is adopted. The 3D

capsule membrane is discretized into flat triangular elements. To discretize the

unstressed interface, each triangular face of a regular octahedron is subdivided

into 4n triangular elements. These elements are then projected radically onto

a sphere. The geometry of each element is described by its three vertices. The

discretization of a sphere surface is shown in figure 2(a). For oblate spheroid, it

is necessary to make the coordinates multiply by the aspect ratio of the oblate

spheroid.
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First, the problem is reduced to a 2D(planar) deformation by transforming

the undeformed and deformed surface elements to a common plane using rigid-

body rotations, the detailed method is given in [33]. Here gives the in-plane

displacements v of the vertices and the displacement gradient tensor D. Then

the in-plane principal strains are:

λ2
i =

1

2
[G11 +G22 ±

√
(G11 −G22)2 + 4G2

12], i = 1, 2, (13)

where G = DTD. The elastic forces acting on the three vertices of a triangular

element are obtained from the strain energy function WNH using the principal

of virtual work as:

f(x′, t) = −∂WNH

∂x′ . (14)

Then, the in-plane force fp can be obtained as

fp =
∂WNH

∂λ1

∂λ1

∂v
+

∂WNH

∂λ2

∂λ2

∂v
. (15)

Because each node of the discrete membrane belongs to more than one element,

the resultant force on a node is the sum of the forces exerted by the m elements

attached to the node. So far, the force calculated is the fluid force acting on the

capsule membrane. Its equal and opposite counterpart is the force acting on

the fluid. It is distributed to the surrounding fluid by the approach described

by the immersed boundary method which will discussed below.

2.2.2. Multi-block lattice Boltzmann method

The general flow is solved by Lattice Boltzmann method (LBM), which is

an efficient solver for the Navier-Stokes (NS) equations with a low Reynolds

number. Here, the D3Q19(see fig 2(b)) model is used, in which the discrete

lattice Boltzmann equation (LBE) has the form of:

fi(x+ ei∆t, t+∆t) = fi(x, t)−
1

τ
(fi(x, t)− feq

i (x, t)), (16)

where fi(x, t) is the distribution function for particles with velocity ei at po-

sition x and time t, ∆t is the lattice time interval, feq
i (x, t) is the equilibrium

distribution function and τ is the non-dimensional relaxation time.
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In the D3Q19 model, the fluid particles have the possible discrete velocities

stated as follows[33, 35]:

[e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18] =
0 1 −1 0 0 0 0 1 1 −1 −1 1 −1 1 −1 0 0 0 0

0 0 0 1 −1 0 0 1 −1 1 −1 0 0 0 0 1 1 −1 −1

0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 −1 1 −1

 .

(17)

The equilibrium distribution function feq
i (x, t) can be calculated as:

feq
i (x, t) = ωiρ

[
1 +

ei · u
c2s

+
(ei · u)2

2c4s
− (u)2

2c2s

]
, (18)

where the weighting coefficients ωi = 1/3(i = 0), ωi = 1/18(i = 1 − 6), ωi =

1/36 (i = 7 − 18). The term cs represents the sound speed which equals

∆x/(
√
3∆t).

The relaxation time is related to the kinematic viscosity ν in Navier-Stokes

equation in the form of

ν = (τ − 1

2
)c2s∆t. (19)

Once the particle density distribution is known, the fluid density and momentum

are calculated as

ρ =
∑
i

fi, ρu =
∑
i

fiei. (20)

Here the multi-block lattice Boltzmann method proposed by Yu and Girimaji

is employed [36]. We consider a two-block system, the computational domain is

divided into two blocks which are connected through the interface. The lattice

space ratio between coarse and fine grids equals two. The capsule is immersed

in the fine mesh block. On the interface between the two blocks, the exchange

of variables follows a certain relation so that the mass and momentum are

conserved and the stress is continuous across the interface. Detailed method is

explained in [33].
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2.2.3. Immersed boundary method

In our study, the immersed boundary method is adopted to couple the finite

element model with lattice Boltzmann method, in which a force density is dis-

tributed to the Cartesian mesh in the vicinity of the moving boundary in order

to account for the effect of the boundary. The fluid domain is represented by

Eulerian coordinates x, while the boundary of the capsule is represented by La-

grangian coordinates s. Any position on the capsule membrane can be written

as X(s, t). The term F(s, t) represents the membrane force density induced by

capsule deformation, and the term f(x, t) represents the fluid body force density.

In order to satisfy the no-slip boundary condition, the flexible membrane

should move at the same velocity as the fluid around it. That is

∂X(s, t)

∂t
= u(X(s, t)). (21)

This condition will cause the capsule to deform. The membrane force density

F(s, t) is obtained by the finite element membrane model discussed in 2.2.1, and

is distributed to the fluid mesh points near it by

f(x, t) =

∫
F(s, t)δ(x−X(s, t))ds (22)

where δ is a smoothed approximation of the Dirac Delta function. In the present

3D study, it is chosen to be:

δ(x−X(s, t)) = δ(x−X(s, t))δ(y − Y (s, t))δ(z − Z(s, t)), (23)

where

δ(r) =

 1
4 (1 + cos(π|r|2 )), r ≤ 2

0, r > 2
(24)

and the position of a Lagrangian node in the Eulerian coordinates is X =

(X,Y, Z).

The same approximation function is used to obtain the velocities of the

Lagrangian nodes on the moving boundary. The mathematical form can be

written as follows:
∂X

∂t
=

∫
u(x, t)δ(x−X(s, t))dx. (25)
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To take into account the fluid body force density f(x, t), an extra term Fi∆t

should be added into the right hand side of the LBE (Eq.(16)) [37], i.e.,

Fi∆t = (1− 1

2τ
)∆tωi

[
ei − u

c2s
+

(ei · u)
c4s

ei

]
· f. (26)

Correspondingly, the equation for momentum of the fluid i.e., Eq.(20) should

be replaced by

ρu =
∑
i

fiei +
1

2
f∆t. (27)

The validations of this method, such as the grid-independence and time step-

independence studies, and deformation of capsule in simple shear flow, have been

presented in details in [16, 33]. Here, the computational domain is a cubic box

with side 10R0 which is large enough to neglect the boundary effect. The grid

resolutions in the fine and coarse blocks are ∆xf = ∆yf = ∆zf = R0/12 and

∆xc = ∆yc = ∆zc = R0/6, respectively. The capsule is discretized into 8192

triangular elements connecting 4098 nodes. The capsule is initially oblate with

shape parameter r2 = 10
11 unless it is specially stated, the initial inclination angle

is π
4 . The Taylor deformation parameter Dxy is

Dxy =
L−B

L+B
, (28)

where L and B are semi-major and semi-minor axes, respectively. The time is

nondimensionalized by 1
2s .

3. Results and discussion

3.1. Shape dynamics of a capsule in general flow

It is noted that in our derivation, i.e., Eq. (11), the shape of the capsule

is supposed to be fixed. However, the shape will change continuously in the

numerical simulation. Hence, the numerical results will be slightly different

from the theoretical results. In the follows, effects of the two dimensionless

parameters Ξ and Λ on the deformation of the capsule are discussed in detail.

From figure 3 (a) and (b), it is seen that for a fixed Λ, the deformation of

capsule decreases with the increase of Ξ. The effect of Ξ is similar to the effect
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Figure 3: The evolution of the capsule: (a) Λ = 0.2 and (b) Λ = 0.4 with different Ξ, (c)

Ξ = 2 and (d) Ξ = 4 with different Λ

.

of viscosity ratio λ [10]. It is also found that a larger Ξ results in a shorter

period of the deformation. Because Λ is the ratio of elastic stress to viscous

force of the fluid exerting on the capsule, it dominates the deformation of the

capsule.

The effect of Ξ is similar to that of λ but with some differences. In the effect

of λ, increasing λ makes the capsule more viscous and the dynamic force in the

membrane increases even the strain rate s is fixed. However, the increasing of

Ξ results in the acceleration of the rotation of the flow and it can not change

the dynamic force if the strain rate s is fixed [23]. Because the deformation of

the capsule would need time to evolve, when Ξ is larger, the evolution period is

reduced and the deformation magnitude is suppressed. That is shown in figure 3

(a) and (b).
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The period of the deformation is mainly determined by Ξ. Through many

tests with different Λ and Ξ, it is found that the period of deformation TD times

Ξ is a constant, i.e.,

TDΞ = 1/C0, (29)

where C0 = 0.15625. Hence, 2π/(ΞTD) = 2πC0 = 1. This is also supported by

cases of Ξ = 4 and Ξ = 8 in figure 3 (a) and (b). It is seen that the period in

the case of Ξ = 4 is two times of that in the case Ξ = 8.

From figure 3 (c), it is seen that when Ξ is relatively small, the deformation

magnitude decreases with the increase of Λ. However, from figure 3 (d), we can

see that when Ξ is large, the deformation is almost independent of Λ. As the

explanation mentioned above, if Ξ is large enough, capsule would experience

the same deforming procedure no matter what Λ is. In other words, as TD is

inversely proportional to Ξ, if Ξ is large enough to suppress the deformation

procedure of the case with the largest Λ, then all of the cases with different Λ

would undergo the same suppressed procedure.

We give a brief theoretical explanation to the influence of Ξ on the defor-

mation of the capsule. Here, following [26], we only consider a nearly spherical

capsule, the radial position rs of the surface of the capsule membrane can be

expressed by

rs = 1 + εf(ϑ, φ, t), (30)

where f is the deviation of the capsule shape from a spherical shape. f is

expanded into series of scalar spherical harmonics Yjm,

f =
∞∑
j=2

j∑
m=−j

fjmYjm. (31)

We add the rotational part of the flow to the governing equation (3.16) in [26],

then it can be written as

∂f22
∂T

= iΞf22 − iΓ−Π(f22 − g22), (32)

where Γ = 8
√
30π

(23λ+32)
√
∆
,Π = 16E

6(23λ+32)µsR0
and g22 is the initial shape function
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with the same definition of f22. If we set

f22 = Rexp(−2iθ), (33)

we can obtain the shape evolution equation

∂R

∂T
= Γsin2θ −ΠR+

1

2
Π
√
∆cos(2ϕ− 2θ). (34)

We use the result of equation (11) to obtain the value of θ and ϕ, then the shape

equation is solved by numerical method. The result of R as a function of Ξ is

shown in figure 4 with Λ = 0.2.

The Taylor deformation parameter can also been written as a function of R

[38]

Dxy ≈ R

8

√
15∆

π
. (35)

From figure4, we can see R decreases with the increase of Ξ when Ξ is not large,

which means that increasing Ξ suppresses the deformation of the capsule.
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3.2. Intermittent dynamics

The normalized mean tumbling rate is defined as [23, 38]

⟨θ̇⟩ ≡ ⟨∂T θ⟩
⟨∂T θ⟩+ ⟨∂Tϕ⟩

, (36)

where

⟨∂T θ⟩ ≡ lim
t→∞

1
t

∫ t

0
∂T θ(T )dT,

⟨∂Tϕ⟩ ≡ lim
t→∞

1
t

∫ t

0
∂Tϕ(T )dT.

(37)

In a pure tumbling motion, the inclination angle θ grows continuously while

the phase angle ϕ oscillates, which implies the mean tumbling rate ⟨θ̇⟩ = 1 for

a large time t. On the contrary, in a pure swinging motion, the phase angle

ϕ grows without bounds while the inclination angle θ oscillates, which implies

⟨θ̇⟩ = 0 for a large t. Obviously, the intermittent regime corresponds to a mean

tumbling rate between 0 and 1.

Here, different dynamic modes are identified. The phase diagram of differ-

ent regimes spanning on the (Ξ,Λ) plane is shown in figure 5. Three grey scale

regimes represent SW, Intermittent, TU modes, which are obtained through

solving Eq.(11) by fourth order Runge-Kutta scheme. The lines represent

boundaries between different regimes.

The numerical simulation results are also shown in figure 5. The symbols and

the dashed lines are the modes and boundaries of different modes, respectively.

Blue filled circles, green filled squares, and red filled triangles represent SW, TU,

and TU-SW transition modes, respectively. Pink filled diamonds denote the new

mode that we find: TU-SW-TU mode. It is seen that the boundaries predicted

theoretically are not consistent with those obtained from the numerical results.

However, it is not surprise because in the present theoretical predictions the

capsule shape is initially fixed. The theoretical predictions will be close to the

numerical results if the initial shape is replaced by the deformed shape in the

theoretical model [23, 38]. Because the shape deformation as a function of time

depends on not only Λ but also Ξ, it is still difficult to theoretically analyse the

deformation [24, 25].
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Figure 5: Phase diagram of the capsule dynamical states in general flow. The grey scales repre-

sent the three regimes obtained by theoretical model, the solid lines indicate their boundaries.

The symbols and the dashed lines represent numerical results. They are the modes and bound-

aries of different modes, respectively. Blue filled circles, green filled squares, and red filled

triangles represent SW, TU, and TU-SW transition modes, respectively. Pink filled diamonds

denote TU-SW-TU mode.

From the figure 5 we see the profile of the distribution of the modes is similar

to the results of [38], in which the horizontal axis is the viscosity ratio. Here

we present some connections between the viscosity ratio λ and dimensionless

parameter Ξ. If Equation (11) is divided by −h1, it yields

∂τϕ = −(Λsin2ϕ+ cos2θ),

∂τθ = −1
2Ξλ

∗ − h2∂τϕ+ h3λ
∗cos2θ, (38)

where h1 = − 1
λ∗ , τ = T/λ∗. if we set Ξ = 1, it would reduce to the expression

in [38]. From Equation (38), it is seen that there are two terms in the evolution

equation of θ containing λ∗. However, there is only one term including the
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parameter Ξ. To analyze contributions of these two terms, first we assumed

that Ξλ∗ is a constant. If λ∗ is small and Ξ is large, then contribution of the

third term in the RHS of the second equation in Eq.(38) is minor compared

to the first term. Under this circumstance, the two cases that only changing

λ∗ and only changing Ξ contribute equivalently to the equation. Hence, in the

region of large Ξ, the phase (mode) distributions in the phase diagram that we

obtained (see figure 5) is consistent with those in the literature [3, 22, 23].

If λ∗ is large (Ξλ∗ = const), then contribution of the last term in the RHS

of Eq.(38) is comparable to the first term. The two cases that only changing λ∗

and only changing Ξ are different, then it would lead to different results for the

evolution of θ. In this situation, Ξ is not large enough, the phase distribution in

the phase diagram is different from those in previous studies, which is discussed

following.

T

θ/
π

5 10 15 20 25

-0.4

-0.2

0

0.2

0.4

Figure 6: The evolution of inclination angle with Ξ = 5,Λ = 0.1

Here we focus on the new transition mode of TU-SW-TU, which is shown

in figure 6 with the parameters Ξ = 5,Λ = 0.1. In the transition mode, an

initially tumbling mode transfers to swinging mode, and then it would return

to a tumbling mode, and within our simulation time (T = 40) it will maintain

this steady tumbling mode. In [3] and [22], the transition is always one way,

in which the capsule would maintain a stable swinging mode after transition

from tumbling, and this cannot reverse. Recently, Cordasco et al. [4] proposed
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a mechanism that the membrane in-plane elastic energy is relevant to the in-

termittent motion of RBC. However, here the capsule is an ellipsoid particle

which is different from the RBC with circular biconcave discoid shape, such

mechanism does not work.

Now we provide an explanation for the observed dynamics in numerical

simulations. As shown in figure 5, the region of the TU-SW-TU transition is

constricted to a range with a moderate Ξ and low Λ. The energy barrier theory

reveals that the capsule with lower Λ would be more likely to overcome the

energy barrier due to large hydrodynamic shear force. However, the conclusion

is based on the assumption that the deformation is large when the capsule has

a lower Λ. Here, the deformation is small at a lower Λ. As discussed in Sec. 3.1,

large Ξ would confine the deformation, which implies that the deformation along

vorticity direction is constant or changing little due to volume preservation.

That is consistent with the explanation of [26]. In other words, at this range,

the effect of constraint on the deformation along vorticity direction is dominated,

which is totally different from the energy barrier mechanism.

When Ξ is moderate (approximately Ξ ≈ 6), the capsule with smaller Λ

deforms less than that in the cases of Ξ = 1, which is a purely shear flow. In

the cases of smaller Λ, the suppression to the deformation is stronger. So, the

capsule with small Λ is more likely to transit to tumbling mode comparing to

the capsules with large Λ. While when Ξ becomes larger, the deformations are

almost identical and independent of Λ. Under this circumstance, the deforma-

tion would not affect the transition. On the condition, the energy barrier theory

is valid, in which when Λ is low, the fluid shear stress acting on the capsule is

sufficient to force the membrane to tank tread [9].

3.3. Effect of initial aspect ratio

In simple shear flow, the effect of initial aspect ratio has been studied in

[10, 15] and it has been found that a capsule deviating largely from spherical

profile is more likely to transit to tumbling mode. Figure 7 shows the aspect

ratio effect on the transition dynamics in our study. From figure 7, it is seen that
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Figure 7: Phase diagrams for capsule dynamic states with different initial aspect ratio. (a)

r2 = 0.5 and (b) r2 = 0.7

in the simple shear flow (Ξ = 1), capsules with small initial aspect ratio could

transit to tumbling motion with softer membrane (lower Λ), which is consistent

with that observed in [15, 10]. Actually not only Ξ = 1 but also the other Ξ > 1,

the similar situation can be observed, i.e., for cases with smaller initial aspect

ratio, transition to tumbling motion becomes easier (with lower Λ) (see figure

7).

From figure 7, it is also seen that for the same Λ, a capsule with smaller

initial aspect ratio would transit to tumbling motion with a lower Ξ. Here Ξ

represents the rotational strength of the fluid. Hence, the capsule needs less

rotation effect of the fluid to transit to tumbling mode. For the TU-SW and

TU-SW-TU transition modes, the situation is similar, i.e., less rotation effect

is required for cases with smaller initial aspect ratio. Hence, the boundaries

between different modes are all shifted to lower Ξ and Λ regime for the capsule

with smaller initial aspect ratio.

3.4. Rheology of dilute suspension

Instead of the dimensionless particle stress tensor [2, 39], here the intrinsic

viscosity [34, 40] is used to evaluate the contribution of the capsules on the bulk
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rheology.

[η] =
ηeff − 1

Ω
, (39)

where ηeff is the dimensionless effective viscosity defined as ηeff = σ̄12

2e012
, and Ω

is the concentration. Substituting Eq.(A.2) into Eq.(39), the intrinsic viscosity

can be calculated as

[η] =
µA∗

12

2e012Ω
= 4µ

Ω

g1e
∗
12−α2

2g
′
3(ζ

∗
12−ε12k θ̇)

g
′
3(α2

1g1+α2
2g2)

1
2scos(2θ)

= 4µ
Ω

1
J {M −N (Λsin2ϕ+ cos2θ)} , (40)

where J = g
′

3

(
α2
1g1 + α2

2g2
)
,M = 1

2g1 + α2
2g

′

3h3 and if we set tanα =
a2
1−a2

2

2a1a2
,

then N = h1

(
g1tanα+

α2
2g

′
3

cosα − h2α
2
2g

′

3

)
. It seems that equation (8) doesn’t

contain the parameter Ξ, which indicates that the rotation of the fluid flow

has no contribution to the bulk rheology of the flow. It can be understood as

follows. The hydrodynamic stress of a purely rotating fluid vanishes, and it

cannot induce forces at the membrane. Then according to the definition of the

bulk rheology [39, 2], the rotation has no contribution to the bulk rheology.

However, Ξ still plays an important role in the rheology of the suspension

through the shape dynamics effect because J,M and N are all functions of

shape parameters. Hence, they should be functions of Ξ. This result of a dilute

suspension (Ω ≪ 1) is shown in figure 8. The mean value of intrinsic viscosity,

[η̄], is computed by averaging [η] over one period. It is seen that for a specific Ξ,

[η̄] increases with Λ. Hence, the suspension with deformable capsules exhibits

shear thinning behavior, which is consistent with [34].

It is also found that [η̄] decreases with Ξ for the same Λ. Here, for a given

Λ, a larger Ξ could shorten the period of the disturbance of the capsule on the

flow, i.e., the Ξ suppresses the disturbance. Gao et al. [34] proposed that if

the particles in the suspension disturb the flow less, the intrinsic viscosity may

decrease. Hence, [η̄] would become smaller. It is also seen from figure 8 that [η̄]

may be less than 0, which indicates that the capsule is softer than the fluid in
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Figure 8: The mean intrinsic viscosity [η̄] as a function of Λ for cases Ξ = 2, 4, 6, 8.

some special conditions [34].

4. Conclusion

We have investigated the dynamics of a nonspherical capsule in general flow

using theoretical and numerical analyses. The numerical results have discrep-

ancies with the theoretical results due to the fixed shape assumption in the

theoretical analysis. On the other hand, we focus on analyzing the transition

dynamics. Two transition behaviors (the TU-SW transition and TU-SW-TU

transition ) are found in the intermittent regime, which is different from the in-

termittent behavior predicted by theoretical models. To the best of our knowl-

edge, the TU-SW-TU transition has not been observed in capsule dynamics up

to now and it is the first time that we obtained this transition in general flow.

The mechanism for the TU-SW-TU transition may be associated with the de-

formation along the vorticity direction. The effects of Ξ (the ratio of vorticity
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to the strain rate) on the deformation of capsule is demonstrated. It seems

that Ξ suppresses the deformation in the vorticity direction, which triggers the

TU-SW-TU transition. Also, the effect of initially aspect ratio of the capsule

is investigated. The result shows that a capsule deviating largely from spher-

ical profile is more likely to transit to tumbling mode, which is similar to the

situation of a capsule in simple shear flow. Finally, the intrinsic viscosity as

functions of the two dimensionless parameters Λ and Ξ is studied by theoretical

and numerical analyses. A deformable capsule would display a shear thinning

behavior, and the vorticity of the flow would strengthen this shear thinning

effect.
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Appendix A. Stress field of the system

The velocity field of the membrane in the body-fixed frame is assumed to be

um
1 = ν(−a1/a2)x2, u

m
2 = ν(a2/a1)x1, u

m
3 = 0, (A.1)

where ν is defined as ν = ∂ϕ/∂t. ϕ is phase angle shown in figure 1. Then the

stress tensor can be written as

σij = −pδij + µ(A∗
ij + 2emij ), (A.2)

where p is an arbitrary constant pressure and emij is defined as

emij =
1

2
(um

j,i + um
i,j). (A.3)

The tensor A∗
ij are independent of xi, two elements of A∗

ij are A∗
11 = 4

3
2g1e

∗
11−g2e

∗
22−g3e

∗
33

g
′′
2 g

′′
3 +g

′′
3 g

′′
1 +g

′′
1 g

′′
2

,

A∗
12 = 4

g1e
∗
12−α2

2g
′
3(ζ

∗
12−ϵ123θ̇)

g
′
3(α

2
1g1+α2

2g2)
,

(A.4)
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where

e∗ij = e0ij − emij , (A.5)

e0ij =
1

2
(u0

j,i + u0
i,j), (A.6)

and 
ζ∗ij = ζ0ij − ζmij ,

ζ0ij =
1
2 (u

0
j,i − u0

i,j),

ζmij = 1
2 (u

m
j,i − um

i,j).

(A.7)

The other parameters are

g1 =
∫∞
0

ds
(α2

1+s)∆
,

g
′

1 =
∫∞
0

ds
(α2

2+s)(α2
3+s)∆

,

g
′′

1 =
∫∞
0

sds
(α2

2+s)(α2
3+s)∆

,

∆2 = (α2
1 + s)(α2

2 + s)(α2
3 + s),

(A.8)

where αi denotes the dimensionless axes

αi = ai/a0, (A.9)

and a0 = (a1a2a3)
1
3 . θ̇ is the angular velocity of the ellipsoid in the space-fixed

frame. The other elements of A∗
ij and the integrals g2, g

′

2... could be obtained

by the permutation of the subscripts.

The parameters in (5) and (6) are defined as:

r2 = a2/a1, r3 = a3/a1,

z1 = 1
2 (r

−1
2 − r2), z2 = g

′

3(α
2
1 + α2

2),

f1 = (r2 − r−1
2 )2, f2 = 4z21(1− 2/z2), f3 = −4z1/z2,

(A.10)

Appendix B. The elastic energy form for capsule

According to the theoretical model, the element on the membrane is assumed

to move along a ellipsoidal shape, then the kinematic equation of membrane can
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be described by [10]

x1 = x0
1cosϕ− 1

r2
x0
2sinϕ,

x2 = x0
2cosϕ+ r2x

0
1sinϕ,

x3 = x0
3,

(B.1)

where x0
i defines the initial position of a material point in the membrane at time

t = 0. Hence the deformation gradient tensor is

Fij =


cosϕ − sinϕ

r2
0

r2sinϕ cosϕ 0

0 0 1

 . (B.2)

The left Cauchy-Green tensor is

V 2 = F · FT =


cos2ϕ+ sin2ϕ

r22
r2sinϕcosϕ− 1

r2
sinϕcosϕ 0

r2sinϕcosϕ− 1
r2
sinϕcosϕ r22sin

2ϕ+ cos2ϕ 0

0 0 1

 .

(B.3)

Then we set det
∣∣V 2

∣∣ = 0,

λ2 − (2cos2ϕ+
sin2ϕ

r22
+ r22sin

2ϕ)λ+ (cos2ϕ+
sin2ϕ

r22
)(r22sin

2ϕ+ cos2ϕ)

− 4z1sin
2ϕcos2ϕ = 0.

(B.4)

It yields

λ2
1 + λ2

2 = r22sin
2ϕ+

sin2ϕ

r22
+ 2cos2ϕ

= (r22 +
1

r22
− 2)sin2ϕ+ 2

= 4z21sin
2ϕ+ 2,

(B.5)
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λ2
1λ

2
2 = (cos2ϕ+

sin2ϕ

r22
)(r22sin

2ϕ+ cos2ϕ)− 4z1sin
2ϕ

= 1.

(B.6)

The first and second strain invariants I1 and I2 are

I1 = λ2
1 + λ2

2 − 2 = 4z21sin
2ϕ,

I2 = λ2λ2 − 1 = 0.
(B.7)

For the neo-Hookean Law [17, 33], we have

WNH =
1

6
E(I1 − 1 +

1

I2 + 1
)

=
1

6
EI1

=
2

3
z21Esin2ϕ.

(B.8)
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