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Universal K− matrix distribution in β = 2

Ensembles of Random Matrices

Y. V. Fyodorov, B. A. Khoruzhenko, and A. Nock

Queen Mary University of London, School of Mathematical Sciences,

London E1 4NS, United Kingdom

Abstract. The K−matrix, also known as the “Wigner reaction matrix” in nuclear

scattering or “impedance matrix” in the electromagnetic wave scattering, is given

essentially by an M ×M diagonal block of the resolvent (E −H)−1 of a Hamiltonian

H . For chaotic quantum systems the Hamiltonian H can be modelled by random

Hermitian N ×N matrices taken from invariant ensembles with the Dyson symmetry

index β = 1, 2 or 4. For β = 2 we prove by explicit calculation a universality

conjecture by P. Brouwer (Phys. Rev. B 51 (1995), 16878-84) which is equivalent

to the claim that the probability distribution of K, for a broad class of invariant

ensembles of random Hermitian matrices H , converges to a matrix Cauchy distribution

with density P(K) ∝
[

det (λ2 + (K − ǫ)2)
]

−M

in the limit N → ∞, provided the

parameter M is fixed and the spectral parameter E is taken within the support of

the eigenvalue distribution of H . In particular, we show that for a broad class of

unitary invariant ensembles of random matrices finite diagonal blocks of the resolvent

are Cauchy distributed. The cases β = 1 and β = 4 remain outstanding.

PACS numbers: 03.65.Nk, 05.45.Mt
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The phenomenon of chaotic resonance scattering of quantum waves (or their

classical analogues) has attracted considerable theoretical and experimental interest for

more than two decades, see e.g. articles in [1]. The resonances manifest themselves via

fluctuating structures in scattering or transport observables, and statistical properties

of such objects can be successfully described within the framework of the Random

Matrix Theory [2, 3]. The most important object in such an approach is the energy-

dependent M × M random unitary scattering matrix S(E), S†(E)S(E) = 1M which

relates amplitudes of incoming and outgoing waves. Here the integer M stands for the

number of open channels at given energy, the dagger denotes the Hermitian conjugation

and 1M is the M ×M identity matrix. Statistical properties of scattering observables

considered at a fixed energy E of incoming waves can be inferred from the corresponding

probability density of S = S(E) derived starting from rather general physical principles.

Those include unitarity, causality and (if relevant) the time-reversal invariance imposed

on S combined with the assumption of maximal entropy (minimum information). The

procedure yields the so-called Poisson’s kernel distribution wih density [4]:

PS(S) =
1

Cβ

∣

∣

∣

∣

∣

det[1M − S
†
S]

det[1M − S
†
S]2

∣

∣

∣

∣

∣

(βM+2−β)/2

, (1)

where S stands for the mean of the scattering matrix, β = 1, 2, 4 is the parameter

related to underlying symmetries with respect to time reversal and Cβ is a normalization

constant. The mean S is determined by the details of coupling of the systems to

continuum and thus contains all information which should be specified for a given

scattering system. In particular, for the simplest, yet most fundamentally important

“perfect coupling” case S = 0, and the density in (1) is constant, implying that the

S−matrix is uniformly distributed over the unitary matrices of given symmetry.

Although the above method has proved to be very successful in the statistical

description of scattering characteristics at fixed energy [2], it can not be used to study

statistics of fluctuations of the scattering observables over an energy interval comparable

with a typical separation between resonances. The latter task can be most successfully

achieved in an alternative powerful approach going back to the pioneering work [5] which

is based on the paradigm of random matrix properties of the underlying Hamiltonian

H describing quantum chaotic behaviour of the closed counterpart of the scattering

system. In such an approach the resonance part of the S-matrix is expressed in terms

of the resolvent of such a Hamiltonian as

S(E) =
1M − iK(E)

1M + iK(E)
, K(E) = W †(E −H)−1W , (2)

where W is an N×M matrix of energy-independent coupling amplitudes between N

energy levels of the closed system and M open scattering channels. To study quantum

chaos-induced fluctuations of S one then replaces the Hamiltonian H with a random

matrix taken from one of the standard random matrix ensembles, usually Gaussian

Unitary (GUE, β = 2) if one is interested in the systems with broken time reversal
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invariance or Gaussian orthogonal (GOE, β = 1) if such invariance is preserved, the

case β = 4 being relevant for systems with spin-orbit scattering. The approach proved

to be extremely successful, and quite a few scattering characteristics were thoroughly

investigated in that framework in the last two decades, mainly by the supersymmetry

method [5]-[7]. The results of such calculations are found in general to be in good

agreement with available experiments in chaotic electromagnetic resonators (“microwave

billiards”) or acoustic reverberation cameras, see e.g. [8, 9, 10] and most recently in

[11], as well as with numerical simulations of scattering in such paradigmatic model as

quantum chaotic graphs [12].

The two random matrix approaches described above look very different in their

formulation, yet they are meant to describe precisely the same object, the S−matrix for

a chaotic system. The consistency therefore requires that the Poisson kernel distribution

(1) for S must follow from the law of distribution of H entering the relation (2).

Surprisingly, a direct verification of such a correspondence turns out to be a rather

challenging task. The challenge here is that the two objects are related via the resolvent-

like K−matrix, and to convert the law of distribution of H into that of the resolvent

is not at all trivial. A very elegant indirect way round this problem was discovered

by P. Brouwer [13] who proposed to choose H from the Cauchy ensemble of random

matrices with density P (H) ∝ det [λ2 + (H − ǫ)2]
−(βN+2−β)/2

, where λ, ǫ are two real

parameters. The main advantage of such a choice is that the resolvent (E − H)−1 is

Cauchy-distributed as well albeit with modified parameters and, moreover, diagonal

blocks of Cauchy matrices have again closely related distributions. Using these facts

Brouwer indeed was able to demonstrate the validity of the Poisson kernel for such a

choice of H for all values of β = 1, 2, 4. He then showed that in the large-N limit the

eigenvalue correlation functions in the Cauchy ensemble (called “Lorentzian” ensemble

by Brouwer) have the standard Dyson form, and conjectured that such equivalence

of eigenvalue correlation functions should be enough to ensure the same S−matrix

distribution is to be shared by all representatives of the corresponding universality class.

Although such conjecture sounds very natural, the particular mechanism by which the

generic spectral properties ofH are translated into universality of the probability density

of the K−matrix and then P (S) remained unclear. To the best of our knowledge no

further attempts to verify universality of the S−matrix distribution were undertaken

in the literature apart from (i) the simplest case M = 1 and H ∈ GUE considered

in [7] and (ii) the recent work [14] which however concentrated on the universality of

two-point spectral correlations of the individual S−matrix entries rather than on the

one-point matrix distribution.

In the present work we establish the universality of the Poisson distribution for

the S-matrix under the condition of equivalent coupling to continuum in all scattering

channels. Since the K- and S-matrices are related via the Cayley transformation (2),

the claim of the Poisson kernel distribution for the S−matrix is equivalent to claiming
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that the K-matrix is Cauchy with density

Pβ(K) ∝
[

det (λ2 + (K − ǫ)2)
]− 1

2
(βM+2−β)

, (3)

where the width λ and the mean ǫ of the Cauchy distribution are determined by the

mean S̄ of the S-matrix and vice versa. Such equivalence can be verified by transforming

to the eigenvalues of the S-and K-matrices.

In the present work, under fairly generic assumptions on H , we verify that the law

of distribution of the K-matrix is indeed Cauchy and relate its parameters λ and ǫ to

the strength of the coupling amplitudes W and the density of states of the underlying

matrix H as well as details of its (invariant) distribution. We would like to note

that the statistical characteristics of the K-matrix are directly accessible in microwave

experiments [9] where it is related to the real part of the impedance in the regime

of small losses. Our paper stems from attempts to understand better the mechanism

behind universality of the probability distribution of finite blocks of random matrix

resolvents and to provide an ab initio explicit derivation of this distribution for generic

invariant ensembles of random matrices.

We will start with showing that the universality of the K-matrix in question follows

from the universal limit of a very general spectral object – the product of the ratios of

powers of characteristic polynomials det(E −H) of random matrices H .

To that end it is necessary to mention that in the literature there exist two

alternative choices of the matrix W of coupling amplitudes in (2). The standard choice

is to follow the original paper [5] and to consider the columns w1, . . .wM of W as

mutually orthogonal N−component vectors, real for β = 1 and complex for β = 2. The

case of equivalent channels then corresponds to (wa,wb) = γδab for all a, b = 1, . . .M ,

or, equivalently,

W †W = γ1M , (4)

where γ > 0 is a coupling constant. An alternative choice which was suggested originally

in [15] is to consider the columns of W to be independent Gaussian vectors with joint

probability density function

P (W ) ∝ e−
βN
2γ

TrW †W , 〈W †W 〉 = γ1M . (5)

Both choices are expected to lead to the same results in the limit N → ∞ as long as

the number of channels M remains fixed. Such an equivalence was explicitly verified

in [16] for particular scattering characteristics (Wigner delay times), but is expected to

hold generally.

We shall first consider the random amplitude case (5) and show the equivalence

to the fixed amplitude case (4) for β = 2 at the end of the paper. For notational

convenience, it is more convenient to work with the rescaled K-matrix

K̃ =
K

πρ(E)
, K = W †(E −H)−1W,
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rather than theK-matrix itself, with ρ(E) being the large-N limit of the mean eigenvalue

density of H at point E inside the support of ρ(E) (so that ρ(E) > 0).

We start with the representation P (K̃) =
∫

Fβ,N(X) exp(iβ
2
TrXK̃) dX of the

probability density function of K̃ in terms of the characteristic function

Fβ,N(X) =

〈

exp

(

−i
β

2
TrXK̃

)〉

, (6)

where the matrix X has the same dimensions and symmetries as the matrix K̃ and

the angular brackets stand for the averaging over all random variables the matrix K̃

depends on. Writing K̃ = 1
πρ(E)

W †RW, R = (E −H)−1, we first perform the averaging

over the coupling matrix W in (6) which amounts to performing a Gaussian integral

over the vectors wc:

∫

P (W ) exp

(

−
iβ

2πρ(E)
TrXW †RW

)

dW =
M
∏

c=1

[

det

(

1N +
iγxc

πNρ(E)
R

)]−β
2

. (7)

Here x1, . . . , xM are the eigenvalues of the Hermitian M × M matrix X and dW

stands for the appropriately normalized Lebesgue measure on the space of complex

or real N × M matrices W . The easiest way to verify (7) is by diagonalizing

X = T diag(x1, . . . , xM) T−1 where T is orthogonal for β = 1 and unitary for β = 2.

Then one changes (TW ) → W and exploits the invariance of W †W and the measure

dW with respect of such a transformation. At the next step we bring the characteristic

function Fβ,N(X) to the following form:

Fβ,N(X) =

〈

M
∏

c=1

[det (E −H)]
β
2

[det (E + iγxc

πNρ(E)
−H)]

β
2

〉

H

, (8)

where the angular brackets now stand for the averaging over the N × N matrices H .

The above relation is exact in the random amplitude model (5) for any choice of N

and M . We will show at the end of the paper that for β = 2 the same equation (8) is

valid asymptotically in the fixed amplitude model (4) in the limit N ≫ M provided the

probability density of H is rotationally invariant.

For β = 2 and β = 4 the object in the right-hand side of (8) is well-studied in the

RandomMatrix Theory [17, 18, 19]. In particular, in the simplest case β = 2 the formula

(2.14) from [18] appears to be most useful for our goals. Namely, for N × N matrices

H distributed according to an invariant ensemble density with polynomial potential V ,

P (H) ∝ exp [−N Tr V (H)] , V (H) =

p
∑

l=0

clH
2l, cp > 0, (9)



Universal K− matrix distribution in β = 2 Ensembles of Random Matrices 6

the following universal relation holds asymptotically‡:

lim
N→∞

〈

M
∏

c=1

det(E + ηc/(Nρ(E))−H)

det(E + ζc/(Nρ(E))−H)

〉

H

= (−)M(M−1)/2 exp

(

−παE

M
∑

c=1

(ζc − ηc)

)

∆{ζ, η}

∆2{ζ}∆2{η}
det(S(ζi − ηj)),

(10)

where ∆{η} =
∏

i<j(ηi − ηj) is the Vandermonde determinant, and

S(ζ − η) =
exp(iπ sgn(Im ζ)(ζ − η))

ζ − η
, αE =

V ′(E)

2πρ(E)
. (11)

An analogous result for averaged products of ratios of characteristic polynomials with

β = 4 is also known [19], but has a more complex structure, with Pfaffians replacing

determinants. Unfortunately, for β = 1 no result of comparable generality seems to be

known for the products of square roots of the characteristic polynomials , though for

M = 1, 2 it can be in fact evaluated in closed form, see e.g. [21] and references therein.

Below we consider in full generality only the case of Hermitian ensembles with β = 2,

whereas the cases β = 4 and especially β = 1 remain a challenge to us and are currently

under investigation.

With the asymptotic relation (10) in hand, one can evaluate the characteristic

function (8) of the rescaled K-matrix in the limit N → ∞ and M fixed.

Proposition 1 Assume that the N ×N matrix H has invariant distribution (9). Then

in the random amplitude model (5) we have limN→∞Fβ=2,N(X) = Fβ=2(X), where

Fβ=2(X) = (−)M(M−1)/2 exp[−iγαE TrX ]

∆{X}
det







gM−1(x1) . . . gM−1(xM )
...

. . .
...

g0(x1) . . . g0(xM)






, (12)

with

gM−n(x) = exp (−γ|x|) xn−1

M−n
∑

l=0

1

l!
|γx|l. (13)

Proof. To adjust equation (10) to our goals we first set η1 = η2 = . . . = ηM = 0 there.

In this limit ∆{ζ, η}/(∆{ζ}∆{η}) → (ζ1 × . . .× ζM)M and equation (10) becomes

lim
N→∞

〈

M
∏

c=1

det(E −H)

det(E + ζc
Nρ(E)

−H)

〉

H

= exp

(

M
∑

c=1

πζc
(

i sgn(Im ζc)− αE

)

)

× (−)M(M−1)/2 (ζ1 × . . .× ζM)M

∆{ζ}
lim

η1...ηM→0

1

∆{η}
det







g̃(ζ1, η1) . . . g̃(ζ1, ηM)
...

. . .
...

g̃(ζM , η1) . . . g̃(ζM , ηM)







(14)

‡ We restrict ourselves to the polynomial potentials in (9) for the notational convenience. The

asymptotic relation (10), and as a consequence our Proposition 1 hold for invariant ensembles of random

matrices under fairly general conditions on the matrix measure, see the recent paper [20]
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where

g̃(ζ, η) =
exp[−iπ sgn(Im ζ)η]

ζ − η
. (15)

The limits are now performed successively applying the L’Hospital’s rule, the final result

for the second line in equation (14) being

lim
η1...ηM→0

1

∆{η}
det [g̃(ζi, ηj)]1≤i,j≤M =

(

M−1
∏

n=1

1

n!

)

det







g̃M−1(ζ1) . . . g̃0(ζ1)
...

. . .
...

g̃M−1(ζM) . . . g̃0(ζM)






, (16)

where we have defined

g̃n(ζ) =
∂n

∂ηn
g̃(ζ, η)

∣

∣

∣

∣

η=0

=
n
∑

l=0

n!

(n− l)!
[−iπ sgn(Im ζ)]n−lζ−l−1. (17)

Finally, by redefining gn(ζ) = eiπζ sgn(Im ζ)ζM g̃n(ζ)/n!, several factors in front of the

determinant can be absorbed into the determinant. After identifying ζc → iγxc/π we

arrive at (12). This completes our proof of Proposition 1. �

At the next step we observe that achieving our main goal is equivalent to verifying

that Fβ=2(X) is the characteristic function of a matrix Cauchy distribution.

Proposition 2

∫

e−iTrKX dK

det [γ2 + (K − γαE)2]M
=

πMM !

γM22M(M−1)
Fβ=2(X) , (18)

where the integral is over the set of all Hermitian M ×M matrices K.

Proof. A standard random matrix calculation which involves changing the variables of

integration in (18) to the eigenvalues and eigenvectors of K and then applying the

Itzykson-Zuber-Harish-Chandra (IZHC) formula, see e.g. [22], and the Andréief-de

Bruijn integration formula yields

∫

e−iTrKX dK

det[γ2 + (K − γαE)2]M
=

(

M
∏

n=1

n!

)

e−iγαE TrX

∆{X}
det











f(x1) . . . f(xM)

f ′(x1) . . . f ′(xM)
...

. . .
...

f (M−1)(x1) . . . f (M−1)(xM)











.

(19)

Here

f(x) =

∫ ∞

−∞

dk
e−ikx

(γ2 + k2)M
=
√

2
π
cγ |γx|

M− 1

2KM− 1

2

(|γx|), f (M)(x) =
dM

dxM
f(x), (20)

where Kν(x) is the modified Bessel (Macdonald) function and the constant is given by

cγ = π
γ2M−12M−1Γ(M)

. In particular, for M = 1 we have f(x) = cγe
−γ|x|, for higher M we

have

fM(x) = cγe
−γ|x|

M−1
∑

l=0

(M − 1 + l)!

l!(M − 1− l)!2l
|γx|M−1−l, (21)
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where we added a subscript to indicate the M-dependence. Using a recursive relation

for the derivative of the Macdonald function we can show that f ′
M(x) = −γxfM−1(x).

Inductively one gets for higher derivatives

f
(m)
M (x) =

⌊m/2⌋
∑

l=0

m!(−1)m−l

l!(m− 2l)!2l
(γx)m−2lfM−m+l(x), (22)

where ⌊·⌋ denotes the floor-function. This enables us to simplify the determinantal

structure of (19). By successively adding to the n-th row appropriate linear

combinations of all preceding rows 1, 2, . . . , n− 1, and exploiting yet another recursive

relation for the Macdonald function one can remove all terms in the equation (22) but

the one for l = 0, leading to

det











fM(x1) . . . fM(xM)

f ′
M(x1) . . . f ′

M(xM)
...

. . .
...

f
(M−1)
M (x1) . . . f

(M−1)
M (xM)











∝ det











fM(x1) . . . fM(xM )

x1fM−1(x1) . . . xMfM−1(xM )
...

. . .
...

xM−1
1 f1(x1) . . . xM−1

M f1(xM)











, (23)

where the proportionality constant is (−)M(M−1)/2
(

∏M
m=1

(M−1)!γM−12m−1

(2m−2)!

)

and the

combination involved in the n-th row in the right-hand side is given explicitly by

xn−1fM−n+1(x) = cγe
−γ|x|xn−1

M−n
∑

l=0

(2M − 2n− l)!

l!(M − n− l)!2M−n−l
|γx|l. (24)

The equations (13) and (24) have a very similar structure, though the coefficients of

the terms in the sum are still different. In fact this similarity can be further exploited

to show that the determinants in equations (12) and (19) (or equivalently (23)) are

proportional to each other, thus verifying the equation (18).

We start our demonstration of this fact with bringing the first row of the

determinant in equation (12) to the form coinciding with the first row of the determinant

in (23). Since the zeroth and the first order coefficients of gM−1(x) are both equal to

unity, and the two corresponding coefficients are also equal in the expression for fM(x)

(but are different from unity) we can safely change those coefficients in gM−1(x) to the

coefficients in fM(x) as such a change gives rise to a constant proportionality factor for

the determinant.

The main observation is that the adjustment of both the coefficients an and an+1,

given that all previous coefficients are already adjusted, can be done simultaneously by

adding the (2n+ 1)−th row multiplied with the factor

cn = (−1)n
(2M − 2n− 2)!

n!(M − n− 1)!2M−1
. (25)

For this procedure to work we need to verify, for any integer n, the following identity:

n
∑

l=0

(−1)l
(2M − 2l − 2)!

l!(M − l − 1)!2M−1

1

(2n+ δ − 2l)!
=

(2M − 2n− δ − 2)!

(2n+ δ)!(M − 2n− 1)!2M−2n−δ−1
, (26)
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with δ = 0 or δ = 1. The left-hand side of (26) is what becomes of the (n+ δ)-th order

coefficient of gM−1(x) after adding multiples of all odd rows up to 2n+ 1, choosing the

multiplication factors according to (25). The right-hand side equals to the corresponding

(n+ δ)-th order coefficient of fM(x). Both equations can be conveniently combined into

a single relation:
⌊m/2⌋
∑

l=0

(−1)l
(

2M− 2l

m− 2l

)(

M

l

)

= 2m
(

M

m

)

, (27)

where M = M − 1 and m = 2n or m = 2n+ 1. To verify (27) we first express the first

binomial on the left-hand side by a contour integral using its generating function and

the Cauchy’s residue theorem. The summation over l is then performed in the integrand

using the binomial theorem, and the resulting contour integral can be again evaluated

by the residues, yielding precisely the right-hand side of the relation (27).

We conclude that it is indeed possible to transform gM−1(x) into fM(x) by adding

multiples of all odd rows to the first row. Note that in each step two coefficients

get adjusted simultaneously, and this is precisely the mechanism ensuring the whole

procedure being functional. Had it not been for that property, we would be only able to

change half of the coefficients to the required form, since adding even rows to odd rows

or vice versa is meaningless due to their rather different structure. All remaining odd

rows as well as all even rows can be treated by exactly the same procedure, since the

coefficients involved are essentially the same as before. Note also that as the very last row

contains on both sides the function e−γ|x|xn−1 the coincidence is ensured automatically.

This completes our proof of Proposition 2 except for the proportionality constant. It

can be found by considering the X = 0 case. In that case we have Fβ=2(0) = 1 and the

integral on the left-hand side yields the given constant. �

Since the characteristic function uniquely determines the law of distribution, one

concludes from Propositions 1 and 2 that the distribution of the K-matrix (2) converges

in the limit N → ∞ to the matrix Cauchy distribution with density Pβ=2(K) (3) having

mean ǫ = γV ′(E)/2 and width λ = πγρ(E). This corresponds to the Poisson kernel

distribution (1) for the S-matrix with mean Sij =
1−πγρ(E)(1+iαE)
1+πγρ(E)(1+iαE)

δij . The case of perfect

coupling is then obtained for α(Emax) = 0 and πγρ(Emax) = 1, where Emax denotes the

point where ρ(E) has its maximum. Thus indeed, the Poisson kernel distribution for

the S-matrix is universal in the random amplitude model (5) in that it does not depend

on the choice of the random matrix ensemble for the underlying matrix H .

Finally, we would like to demonstrate that the fixed amplitude model (4) yields

the same universal behaviour of the K−matrix in the limit N → ∞. Let us again

consider the characteristic function Fβ=2,N(X) =
〈

exp[−iTr( 1
πρ(E)

XW †RW )]
〉

H
=

〈

exp(−iTrΓxURΛU
†)
〉

H
, with Γx = WXW † and RΛ = [πρ(E)(E − Λ)]−1. Here U

is the unitary matrix of eigenvectors of H and Λ = diag{λ1, . . . , λN} stands for the

diagonal matrix of the corresponding eigenvalues. The averaging over H then can be

performed in two steps, the first step being the averaging over the Haar measure on
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the unitary group U(N). As this is again a special case of the IZHC integral it can

be done explicitly. The important new feature however is that the N × N matrix Γx

is of a reduced rank, with its M ≪ N nonzero eigenvalues coinciding with eigenvalues

γxc, c = 1, . . . ,M of the matrix XW †W = γX , the rest of N − M eigenvalues being

exactly zero. At the same time the resolvent matrix RΛ is of the full rank N . The

problem of performing the IZHC integral for two matrices of different rank can be most

efficiently done by employing equation (A4) of the Appendix A in the paper [23] (which

is in fact closely related to the so-called duality IZHC relation, see equation (17.3.8) in

[22]). In our case it takes the form:

〈

exp
(

−iTr ΓxURΛU
†
)〉

U
∝

detXM−N

∆{X}

∫

CΓ

∆{Y }
M
∏

c=1

e−iγxcyc

det (yc −RΛ)
dy1 . . . yM (28)

where the integration goes over the complex variables y1, . . . , yM along contours parallel

to the real axis such that sgn(Im yc) = − sgn(xc). The proportionality constant is

given by
∏M

c=1(−2πi)(−iγ)N−c/(N − c)!. Now we should perform the next step of the

ensemble average over the eigenvalues Λ of H entering via the resolvent RΛ. After

rescaling yc → Nyc and a simple rearranging in the integrand we can see that the

eigenvalue-averaged right-hand side of (28) is proportional to

detXM−N

∆{X}

∫

CΓ

∆{Y }e−N
∑

c(iγxcyc+ln yc)

〈

M
∏

c=1

det (E − Λ)

det
(

E − 1
πNρ(E)yc

− Λ
)

〉

Λ

dy1 . . . yM (29)

In the limit N → ∞ the integrals over yc can be straightforwardly evaluated by the

saddle-point method, with the saddle-point values being given by y
(s.p)
c = i

γxc
. This

is justified as equation (10) ensures that the expected value in the integrand tends for

N → ∞ to a well-defined limit of the order of unity along contours in the vicinity of

the chosen saddle point. Moreover, one can show that the saddle-point can be reached

by deforming the original contours without crossing any singularities of the integrand.

Furthermore, ∆{Y (s.p)} ∝ ∆{X} detX−(M−1) and the Gaussian fluctuations around the

saddle-point value yield the factor detXN−1. Taking all these facts together we see that

(29) indeed reproduces the expression for Fβ=2(X) from (8), and hence in the fixed

amplitude model (4) the K-matrix in the limit N → ∞ has the Cauchy distribution

with density (3). This result has an interesting corollary. If wc are chosen to be the first

M columns of the N × N identity matrix, then W †(E −H)−1W is nothing else as the

M×M block of the resolvent (E−H)−1. Therefore for invariant ensembles of Hermitian

random matrices H , finite blocks of the resolvent of H are Cauchy-distributed in the

limit of large matrix dimension.
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