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Fairness of User Clustering in MIMO
Non-orthogonal Multiple Access Systems

Yuanwei Liu, Student Member, IEEE, Maged Elkashlan, Member, IEEE, Zhiguo Ding, Senior Member, IEEE, and
George K. Karagiannidis, Fellow, IEEE

Abstract—In this paper, a downlink multiple-input-multiple-
output (MIMO) non-orthogonal multiple access (NOMA) sce-
nario is considered. We investigate a dynamic user clustering
problem from a fairness perspective. In order to solve this
optimization problem, three sub-optimal algorithms, namely top-
down A, top-down B, and bottom up, are proposed to realize
different tradeoffs of complexity and throughput of the worst
user. In addition, for each given user clustering case, we optimize
the power allocation coefficients for the users in each cluster by
adopting a bisection search based algorithm. Numerical results
show that the proposed algorithms can lower the complexity
with an acceptable degradation on throughput compared with
the exhaustive search method. It is worth noting that top-down
B algorithm can achieve a good tradeoff between complexity and
throughput among the three proposed algorithms.

I. INTRODUCTION

Recently, non-orthogonal multiple access (NOMA) has at-
tracted much research interest as a promising candidate for
the fifth generation (5G) networks [1]. As an alternative from
the existing multiple access (MA) techniques, NOMA exploits
a new dimension—power domain to implement MA, which
means that a base station (BS) can serve multiple users at the
same time/frequency/code resource. In [2], the improvement
of spectral efficiency of NOMA was demonstrated, from the
perspective of system implementation, by using a two-user
case. A more general scenario which considers M randomly
deployed users was investigated in [3], by evaluating the
ergodic sum rate and outage performance. Considering the
fairness issue among single-antenna users, a power allocation
optimization problem was investigated under perfect channel
state information (CSI) and average CSI, in [4]. Furthermore,
from the perspective of energy efficiency and spectrum effi-
ciency, a cooperative simultaneously wireless information and
power transfer NOMA protocol was proposed in [5].

All of the aforementioned NOMA works focus on single-
antenna scenarios [2–5]. In order to further improve the perfor-
mance of NOMA by using the spacial domain, several works
assumed multiple-antenna techniques. Particularly, in [6], a
multiple-input single-output (MISO) NOMA scenario was in-
vestigated, with a proposed two-stage beamforming approach
to support multiple users. In [7], a multiple-input multiple-
output (MIMO) NOMA scenario was considered, where the
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ergodic system capacity of the considered MIMO-NOMA
systems was optimized using new power allocation schemes.
In [8], the authors proposed a new design of precoding
and detection matrices for a MIMO-NOMA system, and its
performance was analyzed and demonstrated to outperform
conventional MIMO orthogonal MA.

A key feature of NOMA is the balanced tradeoff between
throughput and user fairness. Different from [4] which consid-
ered the fairness issue in single-antenna scenarios, a dynamic
user allocation and power optimization problem is investigated
in this paper, by considering the fairness issue in cluster-
based MIMO-NOMA systems. Allocating users into differ-
ent clusters is a non-deterministic polynomial-time (NP)-hard
problem, where exhaustive search yields optimal performance
but with prohibitive complexity. The main contributions of this
paper are summarized in the following. From the standpoint
of fairness, we propose a two-step sub-optimal method for
solving the dynamic user allocation problem. In the first step,
we optimize the power allocation coefficients by invoking
a bisection search based algorithm in order to maximize
the signal-to-interference-and-noise-ratio (SINR) of the worst
user in each cluster. In the second step, we propose three
efficient user allocation algorithms to seek a tradeoff between
computational complexity and throughput of the worst user.

II. SYSTEM MODEL

A downlink MIMO NOMA scenario is considered, where a
BS is equipped with M antennas, while K users are equipped
with N antennas each. In order to implement NOMA in the
considered MIMO scenario, the K users are further grouped
into M clusters, where each cluster includes at least two users.
It is assumed that the number of users and clusters are fixed.
This assumption is motivated by the fact that these number
are predetermined by the load of the networks. The number of
users in each cluster is denoted as L = {Lm} ,m = 1, . . . ,M
with Lm ≥ 2, and K =

∑M
m=1 Lm. The signals transmitted

by the BS are given by

x = Ps̃, (1)

where P is a M×M identity precoding matrix and the M×1
vector s̃ is given by

s̃ =


√
α1,1s1,1 + · · ·+√

α1,L1s1,L1

...
√
αM,1sM,1 + · · ·+√

αM,LM
sM,LM

 ∆
=


s̃1
...

s̃M

 ,

(2)

where sm,k and αm,k are defined as the transmitted infor-
mation and the power allocation coefficient of the k-th user
({k = 1, . . . , Lm}) in the m-th cluster, respectively.
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The received signal at the k-th user in the m-th cluster is
given by

ym,k = Hm,kPs̃+ nm,k, (3)

where Hm,k is the N ×M channel gain matrix from the BS
to the k-th user in the m-th cluster, and nm,k is an additive
white Gaussian noise (AWGN) vector.

If we denote wm,k as the detection vector at the receiver,
then the signal model can be expressed as

wH
m,kym,k = wH

m,kHm,kPs̃+ wH
m,knm,k. (4)

Denote the i-th column of P by pi. The signal model in (4)
can be written as

wH
m,kym,k =

M∑
i=1,i̸=m

wH
m,kHm,kpis̃i + wH

m,knm,k

+wH
m,kHm,kpm

(√
αm,1sm,1 + · · ·+√

αm,Lmsm,Lm

)
.
(5)

In NOMA systems, the ordering of channel conditions is
important for canceling interference between users in the same
cluster using successive interference cancellation (SIC). With-
out loss of generality, when implementing NOMA, channel
gains and power allocation coefficients for the m-th cluster
are assumed to be ordered as∣∣wH

m,1Hm,1

∣∣2 ≥ · · · ≥
∣∣wH

m,Lm
Hm,Lm

∣∣2. (6)

To completely remove the inter-cluster interference, the
detection matrices need to satisfy wH

i,kHi,kpm = 0, where
i ∈ {1, . . . ,M, i ̸= m}, as described in [8]. As such, for the k-
th user in the i-th cluster, we rewrite the constraints as follows:

wH
i,k

[
h1,ik · · · hi−1,ik hi+1,ik · · · hM,ik

]
︸ ︷︷ ︸

H̃i,k

= 0,

(7)

where hi,ik is the m-th column of Hi,k, which has been
removed. It is noted that H̃i,k is a submatrix of Hi,k by
removing column hi,ik. Consequently, wi,k can be obtained
from the null space of H̃i,k, i.e., wi,k = Ui,kzi,k, where Ui,k

contains all the left singular vectors of H̃i,k corresponding to
zero singular values, and zi,k is a (N −M + 1)×1 normalized
vector1. The choice of zi,k, when the maximal radio combining

(MRC) is used can be given by zi,k =
UH

i,khi,ik

|UH
i,khi,ik| .

By adopting the detection vector wm,k at the receiver, the
inter-cluster interference can be removed. Note that the identity
precoding scheme in this work does not require the users to
feedback their channel matrices to the base station. Instead,
each user only needs to feedback one effective channel gain
which is a scalar value, and therefore the amount of the
required CSI feedback can be significantly reduced. As such,
in the m-th cluster, the SINR for the k-th user (1 ≤ k ≤ Lm)
to detect the j-th user (k ≤ j ≤ Lm) is given by

SINRj
m,k =

∣∣∣wH
m,khm,mk

∣∣∣2αm,j∑j−1
l=1

∣∣∣wH
m,khm,mk

∣∣∣2αm,l + |wm,k|2 1
ρ

, (8)

1It is assumed that N ≥ M to ensure the existence of wi,k .

where ρ denotes the transmit signal-to-noise-ratio (SNR). For
the special case k = j = 1, the SINR can be simplified as

SINR1
m,1 = ρ

∣∣wH
m,1hm,m1

∣∣2αm,1

|wm,1|2
. (9)

III. PROBLEM FORMULATION AND PROPOSED
OPTIMIZATION METHODS

A. Problem Formulation

The objective of this work is to maximize the throughput of
the worst user among all K users, by dynamically allocating
users into different clusters. For each given combination of
user allocation, in order to further improve the performance
of MIMO-NOMA within each cluster, the power allocation
coefficients are optimized according to instantaneous channel
conditions in each cluster. In addition, as aforementioned in
Section II, each cluster accommodates at least two users.
Taking into account above, the throughput of the system can
be optimized by solving the following problem:

max
Ω

min
∀m

(
log2

(
1 + max

αm

min
∀k,∀j

(
SINRj

m,k

)))
, (10a)

s.t.
Lm∑
j=1

αm,j ≤ Lm

K ,

αm,j ≥ 0, j ∈ Lm.

(10b)

where Ω is defined as the set of all user allocation combi-
nations, αm = {αm,1, · · · , αm,Lm}, is the power allocation
coefficient vector.
B. Proposed Optimization Methods

In order to solve the above non-convex optimization prob-
lem, we use the alternating optimization strategy, which splits
the throughput over j, k, αm, m, and Ω into two steps:

1) Step 1: Fixing one combination of user allocation in
Ω, and updating j, k, and αm, we can solve the following
sub-optimal problem:

max
αm

min
∀k,∀j

(SINRm (αm)) s.t. (10b), (11)

where SINRm denotes all possible values of SINRj
m,k,

∀k, ∀j in the m-th cluster. Note that the max-min problem
in (11) is not convex, which motives us to seek good equiv-
alent transformations to make it tractable. We define the set
Q∆ = {SINRm (αm) ≥ ∆,∆ ∈ R} as the set of αm when
the objective function is not smaller than ∆. Using the similar
approach in [4], we can prove problem (11) is quasi-concave.
As such, we can transform (11) equivalently as

Find αm

s.t. (10b) and
∣∣wH

m,khm,mk

∣∣2αm,j ≥ ∆J, (12)

where J =
∑j−1

l=1

∣∣∣wH
m,khm,mk

∣∣∣2αm,l + |wm,k|2 1
ρ . It is im-

plied that with the aid of appropriately bounding ∆, a bisection
search based method can be effectively used to reduce the
searching scope of possible SINRs for obtaining αm. Note
that (12) is linear programs can be solved with standard
optimization solvers. In this work, the cvx tool is invoked to
find the optimal αm by utilizing the Mosek solver. The details
of solving (12) are illustrated in Algorithm 1. Here SINRmin
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is the minimum of SINRm, ∆UB and ∆LB are initialized as
the upper bound and lower bound for SINRm, respectively,
and ε is the tolerance. After obtaining the minimum value of
SINRm for the m-th cluster, we can calculate the throughput
of the worst user ∀m using (10a).

2) Step 2: The second step is to traverse all the combina-
tions, which is a NP-hard problem. In order to lower the com-
putational complexity, we propose three efficient algorithms,
named Top-down A, Top-down B, and Bottom-up.

Top-down A: As shown in Algorithm 2, we begin from the
cluster with largest number (denoted by L̄1) of users, where L̄1

users are randomly allocated to this cluster. Then we continue
random user allocation for the cluster with the second maximal
user number, until the calculated combinations is less than
Cth. The advantage of this algorithm is that it can reduce the
complexity with the least decision times. This algorithm is
suitable for the case when all the clusters have similar number
of users.

Top-down B: As shown in Algorithm 3, initially, n users
are randomly allocated to the cluster with the maximum
number of users. Consequently, the number of combinations,
C1, is calculated, and compared with Cth. If C1 < Cth,
exhaustive search is performed among the rest of the clusters
and the maximal throughput is obtained as the return value.
Otherwise, we allocate n random users to the second sorted
cluster. If C2 < Cth, the obtained maximal throughput is
returned. Otherwise, we update n = n + 1 and perform the
above user allocation scheme until the calculated combinations
is less than Cth. Finally, the corresponding throughput and the
related user allocation scheme are output as return values. The
advantage of this algorithm is that its complexity is the most
controllable among the three.

Bottom-up: As shown in Algorithm 4, each cluster is
randomly allocated with two users, as the starting point.
Then, the cluster with the minimum user number is filled up
randomly. After that we calculate the possible combination C1

and compare it with Cth. If C1 < Cth, exhaustive search is
used to allocate the remaining users to the remaining clusters
in order to achieve maximal throughput for the worst users.
Otherwise, we continue the user allocation for the following
clusters until the calculated combinations is less than Cth. The
advantage of this algorithm is to guarantee that all clusters
have some random search, and this is suitable for the case
where the size of each cluster is significantly different.
C. Complexity of the proposed algorithms

Note that the complexity of this formulated problem con-
tains two parts: 1) It can be easily observed that the complexity
of solving (12) in step 1 is linear to the number of users [4].
As a consequence, the computational complexity is O (Lm).
2) The complexity of solving (10a) in step 2 is given by Table I
at the top of the next page, where r is the number of cluster
which includes random search.

IV. NUMERICAL RESULTS

In the simulations, it is assumed that the total number of
users is K = 9, the number of clusters is M = 3, the number
of antennas at the BS and the receiver are assumed to be the
same as M = N = 3, and each cluster contains L = {4, 3, 2}
users. For simplicity, large scale path loss is not considered

Algorithm 1 Optimization Algorithm for Solving (12)
Input:

∆LB , ∆UB , ε.
1: while ∆UB −∆LB ≥ ε do
2: Update ∆ = (∆UB +∆LB) /2;
3: Calculate αm with the constraints in (12), by solving

the convex problem;
4: if feasible then
5: α∗

m = αm; SINRmin = ∆;
6: Update ∆LB = ∆;
7: else
8: Update ∆UB = ∆;
9: end if

10: end while
Return: Output SINRmin and α∗

m.

Algorithm 2 Top-down A Algorithm
Input:

K, L, L̄ = sort (L, descend), Cth, C0, m = 1.
1: while Cm−1 > Cth do
2: Allocate L̄m users randomly from K−

∑m−1
p=1 Lp users

to the cluster with m-th maximal number of users;
3: Update m = m+ 1;
4: if Cm < Cth then
5: Exhaustive search among the rest clusters;
6: Record the user allocation scheme, break;
7: end if
8: end while

Return: The corresponding user allocation scheme.

Algorithm 3 Top-down B Algorithm
Input:

K, L, L̄ = sort (L, descend), Cth, C0, m = 1, 0 < n <
min (L).

1: while Cm−1 > Cth do
2: for m = 1 toM do
3: Allocate n users randomly to the cluster with m-th

maximal users number from K − (m− 1)× n users;
4: Update m = m+ 1;
5: if Cm < Cth then
6: Exhaustive search among the rest clusters;
7: Record the user allocation scheme, break;
8: end if
9: end for

10: Update n = n+ 1;
11: end while
Return: The corresponding user allocation scheme.

in this work and all the channel gains between the BS and
users are assumed to be independent and identically complex
Gaussian distributed, which is valid for many indoor scenarios.
The initial values in Algorithm 1 are, ∆LB = 0, ∆UB = 1000,
ε = 10−4, and Cth= 200. The initial value of n is set as, n = 1,
in Algorithm 3.

Fig. 1 shows the comparison of throughput for the worst
case user among the three proposed algorithms and the exhaus-
tive search with different transmit SNR. The solid curves rep-
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TABLE I
COMPLEXITY OF THE PROPOSED ALGORITHMS

Algorithm Exhaustive Search Top-down A Top-down B Bottom-up

Complexity O

 K!
M∏

m=1
Lm!

 O


(
K−

r∑
m=1

L̄m

)
!

M∏
m=r+1

L̄m!

 O

 (K−r×n)!
r∏

m=1
(L̄m−n)!

M∏
m=r+1

L̄m!

 O


(
K−

r∑
m=1

L̃m−2(M−r)

)
!

M∏
m=r+1

L̃m!



Algorithm 4 Bottom-up Algorithm
Input:

K, L, L̃ = sort (L, ascend), Cth, C0, m = 1.
1: while Cm−1 > Cth do
2: Allocate every two users into each cluster randomly.
3: Allocate L̃m − 2 users randomly from K −

∑m−1
p=1 Lp

users to the cluster with m-th minimal number of users;
4: Update m = m+ 1;
5: if Cm < Cth then
6: Exhaustive search among the rest clusters;
7: Record the user allocation scheme, break;
8: end if
9: end while

Return: The corresponding user allocation scheme.
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Fig. 1. Optimized throughput of the worst user with different algorithms for
user allocations under different transmit SNR.
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Fig. 2. Comparison between NOMA and OMA of the proposed algorithms.

resent the case with the optimal power allocation for each user
within the cluster, while the dashed curves represent random
power allocation which follows increasing order for each user.
One can observe that the optimal power allocation achieves
much better performance than random power allocation, which
demonstrates the effectiveness of the proposed Algorithm 1.

Fig. 2 shows the fairness comparison between NOMA
and orthogonal multiple access (OMA) for the exhaustive
search and the three proposed algorithms. The solid curves
represent NOMA, while the dashed curves represent OMA.
It is observed that the exhaustive search and Top down B
algorithms with NOMA outperform the corresponding ones
with OMA, while the Bottom up and Top down B algorithms
with OMA outperforms the corresponding ones with NOMA.
This behavior can be explained as follows: the fairness in
NOMA is more sensitive to the times of searching and system
parameters. However, for the OMA scheme, since all the users
are with the same power, reducing the time of searching will
not affect much of the fairness performance. Therefore, we can
conclude that by carefully designing the system parameters
and choosing appropriate algorithm, NOMA can outperform
OMA in term of fairness.

V. CONCLUSION

In this paper, a dynamic clustering optimization problem
considering the fairness in MIMO-NOMA systems, was inves-
tigated. In order to solve this non-convex problem, a two-step
optimization method was proposed. Three efficient suboptimal
algorithms were proposed to reduce the computational com-
plexity. To further improve the performance of the worst user
in each cluster, power allocation coefficients were optimized
by using bi-section search. Numerical results demonstrated
that the proposed algorithms can achieve a good tradeoff
between throughput and system complexity.
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