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Abstract

This thesis presents weakly supervised learning approaches to di-
rectly exploit image-level tags (e.g. objects, attributes) for comprehensive
image understanding, including tasks such as object localisation, image
description, image retrieval, semantic segmentation, person re-identification
and person search, etc. Unlike the conventional approaches which tackle
weakly supervised problem by learning a discriminative model, a gener-
ative Bayesian framework is proposed which provides better mechanisms
to resolve the ambiguity problem. The proposed model significantly dif-
ferentiates from the existing approaches in that: (1) All foreground object
classes are modelled jointly in a single generative model that encodes mul-
tiple objects co-existence so that “explaining away” inference can resolve
ambiguity and lead to better learning. (2) Image backgrounds are shared
across classes to better learn varying surroundings and “push out” objects
of interest. (3) the Bayesian formulation enables the exploitation of var-
ious types of prior knowledge to compensate for the limited supervision
offered by weakly labelled data, as well as Bayesian domain adaptation
for transfer learning.

Detecting objects is the first and critical component in image un-
derstanding paradigm. Unlike conventional fully supervised object de-
tection approaches, the proposed model aims to train an object detector
from weakly labelled data. A novel framework based on Bayesian latent
topic model is proposed to address the problem of localisation of objects
as bounding boxes in images and videos with image level object labels.
The inferred object location can be then used as the annotation to train a
classic object detector with conventional approaches.

However, objects cannot tell the whole story in an image. Beyond de-
tecting objects, a general visual model should be able to describe objects



and segment them at a pixel level. Another limitation of the initial model is
that it still requires an additional object detector. To remedy the above two
drawbacks, a novel weakly supervised non-parametric Bayesian model is
presented to model objects, attributes and their associations automatically
from weakly labelled images. Once learned, given a new image, the pro-
posed model can describe the image with the combination of objects and
attributes, as well as their locations and segmentation.

Finally, this thesis further tackles the weakly supervised learning prob-
lem from a transfer learning perspective, by considering the fact that there
are always some fully labelled or weakly labelled data available in a re-
lated domain while only insufficient labelled data exist for training in the
target domain. A powerful semantic description is transferred from the ex-
isting fashion photography datasets to surveillance data to solve the person
re-identification problem.
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Chapter 1

Introduction

Humans are extremely good at perceiving and recognising objects [7, 8] in challenging
real-world scenes. A four-year-old child is a freshman of this diverse world and still
has a lot to learn in his life. However, he is already an expert at one very important task:
to make sense of what he sees. The child can generate the following descriptive text for
the given image as Figure 1.1: “This picture shows one person, one grass, one chair,

and one potted plant. The person is near the green grass, and in the chair. The green

grass is by the chair, and near the potted plant.” [1]. Over the last few decades, the
computer vision community has endeavoured to imitate humans’ ability to discover
and understand image content. An ideal visual system should recognise and under-
stand the complex visual word rapidly, accurately and comprehensively. Designing
an intelligent visual understanding model underpins a wide range of applications from
Robotics [9], consumer photography [10] to video surveillance [11], e-commerce [12].
Figure 1.2 illustrates how an ideal intelligent vision system understands a real world
image.

This thesis proposes a unified framework for automatic recognition, detection, and
segmentation of objects in an image. Precisely, given an image, the goal of my research
work is to answer the following questions: 1) what objects are in the image? 2) where
are they? 3) what do they look like? In other words, the system aims to generate a
text description containing objects, their associate attributes, together with the exact
location.
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1. Introduction

Figure 1.1: An example of real world images can be easily described by a young child.
[1].

1.1 Describing Images with Objects and Attributes

1.1.1 Object Recognition and Localisation

The contents of an image can be loosely categorised as belonging to Things or Stuff

[13]. Things can be described as individual objects which have a specific size and shape
(e.g., bird, car, bus, person, etc.). Stuff can be described as an amorphous material
which defined by a homogeneous or repetitive pattern of fine-scale properties, but has
no specific or distinctive spatial extent or shape (e.g., trees, water, grass, road, etc.).
Object recognition: Recognising object [14, 15] is the first step to describe the con-
tents of an image. The image annotation task aims to identify what objects are in the
image, but it does not care about the localisation of objects. When one single object
dominates the whole image, there is no need to localise object anymore. The problem
is then converted to image classification task. The only question people concern is
what object is in the image. However, in most natural images, objects usually occupy a
small portion of an image and many different objects co-exist in the same image. That
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Tree: green

Person:
female

A group of people.
They are talking.

A brown door

A blue bag next to 
the student.

This is Queen’s Building 
of Queen Mary, 
University of London

Figure 1.2: Visual understanding in real world scenes. Given a real-world image, an
ideal intelligent vision system can recognise the objects within an image, such as a
tree, a person. It can further describe these objects in detail by their characteristics.
For example, a green tree, a group of people who are talking with each other. More-
over, it is able to identify the landmark (i.e. This is Queen’s building of Queen Mary,
University of London).

is why the localising object is important.
Object detection: Object detection is one of the fundamental challenges in computer
vision [16]. It typically concerns the problem of detecting and localising objects from
images or videos [17]. Given an image, the ideal object detection system can automat-
ically localise objects in categories of interest. Figure 1.3 shows an example of object
detection [2]. The success of early detection methods starts from localising constrained
object categories, such as pedestrian or face. Recent approaches are moving the focus
to the detection of varying categories with large appearance variations, such as the
twenty categories of Pascal VOC [18] and one thousand categories of ImageNet [19].
Object segmentation: Object detection aims to localise and recognise every instance
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(a) (b)

Figure 1.3: An example of object detection results from trained detector [2].

marked by a bounding box. However, bounding boxes can only provide coarse posi-
tions of detected objects. On the other hand, object segmentation [20, 21] assigns a
category label to each pixel in an image, which provides more accurate locations of
objects. Figure 1.4 shows an example of object segmentation [3]. Object segmentation
can be considered as a pixel level classification problem. Given an image, the system
aims to find the region of the object from the background. Object segmentation is a
harder task. Obviously, if objects can be satisfactorily segmented, the object detection
problem is thus already solved.

1.1.2 Describing Objects with Attributes

Attributes: An object also has many other qualities apart from its category. A car can
be red; a shirt can be striped; a ball is round; a building is tall. These visual attributes
are important for understanding object appearance and for describing objects to other
people. Figure 1.5 shows some examples of attributes [4]. Most existing methods learn
visual attributes from manually annotated images. Farhadi et al. [22] learns a broad set
of complex attributes in a fully supervised manner, which assumes the bounding boxes
(i.e. object localisations) are provided. Hanwell and Mirmehdi [23] also demonstrate
that visual attributes can be learned in a weakly supervised setting, where training data
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Figure 1.4: An example of object segmentation results from trained model [3].

are directly collected from a web image search engine such as Google Image search.
Attributes prediction: Attributes play an significant role in object representation and
recognition. Thus predicting attributes accurately in given image or object is a crucial
task. Attribute prediction task can be considered in two perspectives. One is learning
a mapping between visual appearances and attributes. The attribute can be predicted
based on the learned mapping. The other is learning the association between objects
and attributes. Same objects usually contain the similar attributes. Attribute prediction
is also related to object recognition and localisation. With an accurate recognition and
localisation of an object, the model can predict attributes better by observing a clean
appearance. At the same time, the better attribute prediction can also help the system
to recognise and localise object. These two tasks are closely connected and help each
other.
Attribute as representation for other vision tasks: Attribute based approach allows
many related tasks which cannot be performed before. To effectively recognise ob-
ject categories is not the only benefit. The system can also describe unknown object
categories, report atypical attributes of known classes, and even learn models of new
object categories from a purely textual description. The attribute can further extend
object recognition into fine-grained or instance level. Different objects from the same
category may have a subtle difference. Describing objects by attributes can distinguish
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Figure 1.5: Examples of different kinds of attributes [4].

them more easily.
Describing images with objects and attributes: Vision research is moving beyond
simple classification, annotation and detection to encompass a more complete image
understanding task, such as generating more structured and semantic descriptions of
images. When humans describe images, using visual attributes is a semantically rich
way to distinguish objects in the world. More specifically, a sentence to describe im-
ages usually uses combinations of objects and their associated attributes. For example,
an image can be described as containing “a person in red clothes and a shiny car”. In
order to imitate this ability, a computer vision system needs to learn models of objects,
attributes, and their associations.

1.1.3 Applications

Describing an object with attributes facilitate a variety of vision tasks including recog-
nition, classification, image description and retrieval. Addressing these tasks will un-
derpin a wide range of applications from robotics [9], pilotless automobile [24], con-
sumer photography [10] to video surveillance [11], gaming [25], e-commerce [12].
The following gives a brief introduction of some applications that related to the pro-
posed approach. These applications are changing the way people live.
Image caption generator Visual understanding is the ability that humans use to dis-
cover and analyse the surroundings. Humans usually can point out and describe the
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Figure 1.6: An example of generating detailed description of images [5].

details of each part of an image with only a quick glance. Generating a detailed de-
scription [5, 26] for given images is a highly desired property of computer. This will
facilitate to efficient organising and indexing multimedia data, especially in the era of
data explosion recently. Figure 1.6 shows an example of generating detailed descrip-
tion of image [5].
Image search: Humans often have very specific visual content in mind about what
kind of objects they are searching for. The most natural way for people to communicate
their target object is to describe it in terms of its attributes [27]. For example, given
the query “young Asian woman wearing sunglasses”, the designed system aim to infer
that relevant images are likely to have all these attributes. Figure 1.7 shows an example
of image search given a multi-attribute query [6]. The ability of current search engines
to find images still heavily rely on text annotations attached to images. The interested
images are searched based on matching text descriptions. In fact, the annotations of
images are often inaccurate or confused as they may refer to other related content.
Video surveillance: Surveillance is generally used to monitor the behaviour, activities,
or other changing information. It is typically achieved by the observation from a dis-
tance using electronic equipment (such as CCTV cameras). The main target of cameras
is people, as well as the related behaviour including influencing, managing, directing,
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Figure 1.7: An example of image search given a multi-attribute query [6].

Figure 1.8: An illustration of person re-identification

or protecting them. Person Re-identification (Re-ID) and description-based search are
crucial tasks in visual surveillance. They underpin many fundamental applications in-
cluding multi-camera tracking, crowd analysis and forensic search. Both tasks aim
to retrieve images of a specific person but differ in the query used. Person Re-ID
(see Figure 1.8) queries using an image from a different view (e.g., in multi-camera
tracking), while person search (see Figure 1.9) uses a textual person description (e.g.,
eyewitness description).
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Figure 1.9: An illustration of person search

1.2 Challenges and Motivations

1.2.1 General Challenges for Object and Attribute Recognition

Object recognition is a challenging problem especially on a large scale. These chal-
lenges broadly fall into three categories: 1) Objects are easily occluded or confused by
background clutter. It is very common that backgrounds may share the same colour
or shape with the object of interest. It is difficult to separate foreground and back-
ground especially when objects exist in a noisy background. 2) The object itself can
appear with the great variabilities in object appearance, viewpoint, illumination and
pose [28, 29, 30]. The appearance of the same type of object or even exactly the
same object can easily change when the environmental condition varies. For example,
“blue” can be recognised to “purple” when the lighting condition change. 3) Objects
in different domains also cause an appearance variation. For example, typical object
detectors trained on images perform poorly on video, as there is a clear distinction in
the domain between the two types of data. This phenomenon is known as “domain
shift”. Specifically, simply applying the classifier learned in the source domain may
hurt the performance in the target domain. It is even harder to annotate data when the
surveillance scenario is considered. The data captured by low-resolution camera suf-
fer various poor condition including the variability of viewpoints, illumination, pose,
partial occlusion and motion-blur [31].
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1.2.2 Challenges Faced by Fully Supervised Learning based Ap-
proaches

In order to separate foreground object from background clutter, fully/strongly anno-
tated data are thus typically required to learn a generalisable model for tasks such as
object classification [32], detection [16, 33], and segmentation [30, 34, 35]. In fully
annotated images, such as those in the PASCAL VOC object classification or detection
challenges [18], not only the presence of objects, but also their locations are labelled,
typically in the form of bounding boxes. Most conventional methods for Weakly Su-
pervised Object Localisation (WSOL) learn a discriminative based model on these
fully labelled data. They typically treat different label/object category independently
during the learning process. A classic method is to learn a binary classifier to distin-
guish between the object of interest and all other object.

When moving from object to object with attributes, the annotation needs to be more
detailed. Specifically, in conventional pipeline images are strongly labelled with object
bounding boxes or segmentation masks, and associated attributes, from which object
detectors and attribute classifiers are trained. Given a new image, the learned object
detectors are first applied to find object locations, where the attribute classifiers are
then applied to produce the object descriptions.

However, the scalability issue prevents it being applied to large scale data. Consid-
ering there are over 30,000 object classes distinguishable to humans [36], the equally
large number of attributes to describe them [37], and much larger number of combina-
tions of objects and attributes, Fully Supervised Learning (FSL) is not scalable due to
the lack of fully labelled training data. Thus, it is clear to see that a larger difficulty of
obtaining sufficient and sufficiently detailed annotations to learn robust and accurate
object or attribute detectors.

1.2.3 Challenges Faced by Weakly Supervised Learning based Ap-
proaches

Manual annotation of hundreds of object categories is time-consuming, laborious, and
subjective to human bias. Media data are increasingly available with the prevalence
of sharing websites such as Flickr, however, the lack of annotated images, particularly
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strongly annotated ones, becomes the new barrier that prevents tasks such as object
detection from scaling to thousands of classes [38].

Weakly Supervised Learning (WSL) aim to model complex visual scenes from
weakly labelled images abundant on media sharing sites. These methods aim to learn
the appearance of objects and attribute classes as well as their associations. WSL
methods largely reduced extensive manual annotation compare with conventional FSL
methods on computer vision tasks. Although WSL solved the scalability issue, how-
ever, without accurate annotation, a new challenge has been introduced: ambiguity.

WSL method are a desired way to reduce the amount of manual annotation. One
natural image is typically attached with several tags, which are image-level labels (ei-
ther object or attributes) without their locations and associations. However, learning
strong semantics, i.e. explicit object-attribute association for each object instance from
weakly labelled images, is extremely challenging due to the label ambiguity: a real-
world image with the tags “dog, white, coat, furry” could contain a furry dog and a
white coat or a furry coat and a white dog. Furthermore, the tags/labels typically only
describe the foreground/objects. There could be a white building in the background
which is ignored by the annotator, and a computer vision model must infer that this is
not what the tag ‘white’ refers to. A desirable model thus needs to jointly learn multi-
ple objects, attributes and background clutter in a single framework in order to explain
away ambiguities in each by knowledge of the other. Moreover, there are a potentially
unlimited number of attributes co-existing on a single object (e.g. there are hundreds
of different ways to describe the appearance of a person) which are almost certainly
not labelled exhaustively in each training image. They also need to be modelled so
that they do not act as distractors that have a detrimental effect on the understanding of
objects and attributes of interest. For instance, if annotators only labelled a banana in
a training image but did not bother to label it as yellow. Even if yellow has never been
used as an attribute label for any object in the training set, the model should be able to
infer yellow as a latent attribute and associate it with the banana, so that other colours
would not be assigned wrongly.

1.2.4 Motivations

Based on above discussion, the work is motivated by three factors:
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1) Existing methods for recognition tasks excel by their capacity to take advantage
of massive amounts of fully supervised training data. This reliance on full supervision
is a major limitation on scalability with respect to the number of classes or tasks. In
order to solve the scalability issue, WSL is preferred. As motivated by other WS meth-
ods, the proposed approach aims to exploit limited weak label information. Weakly
labelled data are widely available in the era of data explosions compare to the man-
ually labelled strong annotation. Therefore, designing a framework to directly utilise
image level weak tags is the main motivation of this thesis.

2) WSL has to face the additional challenge of label ambiguity. This is difficult
to learn a clean model without annotation information of correspondence among ob-
ject labels, attributes and pixels, involving the relation such as which category label
correspond to which pixel, which attribute label correspond to which category label,
etc. Most existing WS approaches are based on Independent Learning (IL) manner.
They ignore the fact that many object categories share some common property. This
thesis argues that IL loses the information shared among classes. WSL should fully
use all the cues that available, because the information is already very limited. This
thesis aims to design a joint learning framework to model all classes together, so as to
explore the knowledge of each class and the shared properties among them. Beyond
the relation between each class, joint learning based approach can also model attributes
and background together with objects.

3) Most existing approaches for WSOL are based on a discriminative model. How-
ever, the generative based approach enables us to exploit a number of additional knowl-
edge including prior information and cues transferred from other auxiliary data. This
is important to help reducing the ambiguity of learning object appearance especially in
this WS scenario. The capacity of transfer learning is another advantage of generative
based approach. This allows us to learn reliable knowledge from existing auxiliary
dataset (sometimes even fully labelled data) and adapt it to help learning target weakly
labelled data.
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1.3 The Proposed Approach

1.3.1 A Joint Bayesian Approach for Weakly Supervised Learning

In this thesis, a generative approach is proposed to address the challenging of WSL.
There are mainly three general advantages of generative based approach to deal with
the ambiguity:
Joint vs. independent modelling By jointly modelling different classes of ob-
jects and background, the proposed approach is able to exploit multiple object co-
occurrence, so each object known to appear in an image can help disambiguate the
location of the others by accounting for some of the pixels. Meanwhile, a single set of
shared background topics is learned once for all object classes. This is due to the nature
of a generative model – every pixel in the image must be accounted for. Even though
learning background appearance can further disambiguate the location of objects, this
appears to be an extremely hard task given that no labels are provided regarding back-
ground (people tend to focus on the foreground when annotating an image). However,
by learning them jointly with the foreground objects and using all training images
available, this task can be fulfilled effectively by the proposed models.
Latent graphical model The proposed approach is based on a latent graphical model.
The key advantage of addressing WSL by a latent graphical model is that it can nat-
urally model the distribution of all objects and backgrounds together. It is unlike dis-
criminative based method which aims to learn the hard or soft boundary between ob-
jects as well as between the object and background individually. A latent graphical
based model can easily add the observed variable to learn the appearance of the object
of interest. Latent variable can also be introduced to discover the hidden information or
new things. This intuitive explanation ability is irreplaceable. Another motivation for
using latent graphical model is to utilise related prior knowledge flexibly. For example,
both external human or internal data-driven prior about typical object size, location and
appearance could be considered as a Bayesian prior. This is particularly important in
WS setting that only limited information available.
Bayesian domain adaptation Elaborate labelling of object and attributes for every
individual domain/dataset is time-consuming and expensive. In fact, some objects
and attributes are shared or related to a group of domains. It performs poorly if the
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learned model is directly applied to a different domain [39]. Thus, domain adaptation
is usually required to bridge the gap. A central challenge for building generally useful
recognition models is providing the capability to adapt models trained on one domain
or dataset to new domains or datasets [40]. This is important because any given domain
or dataset is intentionally or unintentionally biased [41], so transferring models directly
across domains generally performs poorly [41]. However, with appropriate adaptation,
source and target domain data can be combined to out-perform target domain data
alone [40]. The designed model’s Bayesian formulation enable it to provide domain
adaptation in computer vision tasks.

The proposed approach has been taken to develop the following three models:

1.3.2 Weakly Supervised Localisation of Objects

First, this thesis addresses the problem of localisation of objects as bounding boxes in
images and videos with weak labels (see Figure 1.10). This WSOL problem has been
tackled in the past using discriminative models where each object class is localised
independently from other classes. In this thesis, a novel framework based on Bayesian
joint topic modelling is proposed, which differs significantly from the existing ones in
that: (1) All foreground object classes are modelled jointly in a single generative model
that encodes multiple object co-existence so that “explaining away” inference can re-
solve ambiguity and lead to better learning and localisation. (2) Image backgrounds
are shared across classes to better learn varying surroundings and “push out” objects
of interest. (3) The proposed model can be learned with a mixture of weakly labelled
and unlabelled data, allowing the large volume of unlabelled images on the Internet to
be exploited for learning. Moreover, the Bayesian formulation enables the exploitation
of various types of prior knowledge to compensate for the limited supervision offered
by weakly labelled data, as well as Bayesian domain adaptation for transfer learning.
Extensive experiments on the PASCAL VOC, ImageNet and YouTube-Object (YTO)
videos datasets demonstrate the effectiveness of the proposed Bayesian joint model for
WSOL.

One approach to this challenge is WSOL: simultaneously locating objects in im-
ages and learning their appearance using only weak labels indicating presence/absence
of the objects of interest. The WSOL problem has been tackled using various ap-
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Weakly Supervised Learning

Figure 1.10: Weakly supervised object localisation

proaches [32, 38, 42, 43, 44, 45, 46]. Most of them address the task as a WSL problem,
particularly as a Multi-instance Learning (MIL) problem, where images are bags, and
potential object locations are instances. These methods are typically discriminative
in nature and attempt to localise each class of objects independently from the other
classes. However, localising objects of different classes independently has a number
of limitations: (1) It fails to exploit the knowledge that different objects often co-exist
within an image. For instance, knowing that some images have both a horse and a per-
son, in conjunction with a joint model for both classes – the person can be “explained
away” to reduce ambiguity about the horse’s appearance, and vice versa. Ignoring this
increases ambiguity for each class. (2) Although object classes vary in appearance,
the background appearance is relevant to them all (e.g. sky, tree, and grass are con-
stant features of an image regardless of the foreground object classes). When different
classes are modelled independently, the background must be re-learned repeatedly for
each class, when it would be more statistically robust [47] to share this common knowl-
edge.
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In this thesis, a novel framework based on Bayesian Latent Topic Model (LTM)
is proposed to overcome the mentioned limitations. In the presented framework, both
multiple object classes and background types are modelled jointly in a single genera-
tive model as latent topics, in order to explicitly exploit their co-existence relationship.
As Bag-of-Words (BoW) models, conventional LTMs have no notion of localisation.
The proposed model overcomes this problem by incorporating an explicit notion of
object location.

Apart from joint learning and domain transfer, the designed generative model based
framework has the following advantages over previous discriminative approaches:
Integration of prior knowledge Exploiting prior knowledge or top-down cues about
appearance or geometry (e.g., position, size, aspect ratio) should be supported if avail-
able to offset the weak labels. The proposed framework is able to incorporate, when
available, prior knowledge about appearances of objects in a more systematic way as
a Bayesian prior. Going beyond within-class priors, the designed method also shows
that cross-class appearance similarity can be exploited. For instance, the model can
exploit the fact that “bike” is more similar to “motorbike” than “aeroplane”.
Semi-supervised Learning (SSL) Since there are effectively unlimited quantity of
unlabelled data available on the Internet (compared to a limited quantity of manually
annotated data), a valuable capability is to exploit this existing unlabelled data in con-
junction with limited weakly labelled data to improve learning. As a generative model,
the proposed framework is naturally suited for SSL. Unlabelled data are included and
the label variables for these instances left unclamped (i.e. no supervision is enforced).
Importantly, unlike conventional SSL approaches [48], the presented model does not
require that all the unlabelled data are instances of known classes, making it more
applicable to realistic SSL applications.

1.3.3 Weakly Supervised Learning of Objects and Attributes

Second, this thesis proposes to model complex visual scenes using a non-parametric
Bayesian model learned from weakly labelled images abundant on media sharing sites
such as Flickr. Given weak image-level annotations of objects and attributes without
their locations and associations between them, the designed model aims to learn the
appearance of objects and attribute classes as well as their associations on each object
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instance. Once learned, given an image, the proposed model can be deployed to tackle
a number of vision problems in a joint and coherent manner, including recognising
various objects in the scene (object annotation), describing the objects using their at-
tributes (attribute prediction and association), and localising and delineating the objects
(object detection and semantic segmentation). This is achieved by developing a novel
Weakly Supervised Markov Random Field Stacked Indian Buffet Process (WS-MRF-
SIBP) that models object and attributes as latent factors and explicitly captures their
correlations at both image and superpixel levels. Extensive experiments on benchmark
datasets demonstrate that the proposed WS model significantly outperforms alternative
WS alternatives and is often comparably with existing strongly supervised models on a
variety of tasks including semantic segmentation, image annotation and retrieval based
on object-attribute associations.

Person Cloth Horse Furry

person ：cloth horse :  furry

person, horse, cloth, furry

Figure 1.11: Weakly supervised learning of objects and attributes

A novel unified framework is developed which capable of jointly learning objects,
attributes and their associations. Figure 1.11 shows an example of the input and output
of our system, where weak annotation in the form of a mixture of objects and attributes
is transformed into objects and attributes associations with object segmentation. Under
the framework, given a training image with image level labels of objects and attributes,
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the image is first over-segmented into superpixels; the joint object and attribute anno-
tation and segmentation problem thus becomes a superpixel multi-label classification
problem whereby each superpixel can only have one object label but an arbitrary num-
ber of attribute labels. Treating each label as a factor, this work develops a novel factor
analysis model by generalising the non-parametric Indian Buffet Process (IBP) [49].
The IBP is chosen because it is designed for explaining multiple factors that simul-
taneously co-exist to account for the appearance of a particular image or superpixel,
e.g., such factors can be an object and its particular texture and colour attributes. Im-
portantly, as an infinite factor model, it can automatically discover and model latent
factors not defined by the provided training data labels, corresponding to latent ob-
ject/attributes as well as structured background clusters (e.g. sky, road). However, the
conventional IBP is limited in that it is unsupervised and, as a flat model, applies to
either superpixels or images, not both; it thus cannot be directly applied to the current
problem. Furthermore, the standard IBP is unable to exploit cues critical for segmen-
tation and object-attribute association by modelling the correlation of factors within
and across superpixels in each image. Specifically, the within-superpixel correlation
captures the co-occurrence relations such as cars are typically metal and bananas are
typically yellow, whilst the across-superpixel correlation dictates that neighbouring
superpixels are likely to have similar labels. To overcome these limitations, a novel
variant of IBP, termed WS-MRF-SIBP is formulated in this thesis. It differs from
the conventional IBP in the following aspects: (1) By introducing hierarchy into IBP,
WS-MRF-SIBP is able to group data, thus allowing it to explain images as groups of
superpixels, each of which has an inferred multi-label description vector corresponding
to an object and its associated attributes. (2) It learns from weak image-level supervi-
sion, which is disambiguated into multi-label superpixel explanations. (3) Two types
of Markov Random Field (MRF) over the hidden factors of an image are introduced to
the model hierarchy: across-superpixel MRF to exploit spatial coherence among neigh-
bouring superpixels and within-superpixel MRF to exploit co-occurrence statistics of
different factors within a given superpixel.
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1.3.4 Transferring Learning of Objects and Attributes

Finally, this thesis tackles the WSL problem from a transfer learning perspective.
Learning semantic attributes for describing person search has gained increasing interest
due to attributes’ great potential as a pose and view-invariant representation. However,
existing attribute-centric approaches have thus far underperformed state-of-the-art con-
ventional low-level features based approaches. This is due to their non-scalable need
for an extensive domain (camera) specific annotation. This thesis presents a new se-
mantic attribute learning approach for describing a person. The proposed model is
trained on existing fashion photography datasets – either weakly or strongly labelled
(see Figure 1.12). It can then be transferred and adapted to provide a powerful se-
mantic description for surveillance person detections, without requiring any surveil-
lance domain supervision. The resulting representation is useful for both unsupervised
and supervised person Re-ID applications, achieving state-of-the-art and near state-of-
the-art performance respectively. Furthermore, as a semantic representation it allows
description-based person search to be integrated into the same framework.

Person Re-ID and description-based search are crucial tasks in visual surveillance.
Although extensive research [50, 51] have been conducted for these tasks, it still re-
mains unsolved due to various challenges including the variability of viewpoints, illu-
mination, pose, partial occlusion, low-resolution and motion-blur [31].

Despite their hoped-for potentials, attribute-centric approaches to person Re-ID
have until now not achieved state-of-the-art performance compared to conventional
alternatives focused on learning effective low-level features and matching models [51].
This thesis argues that this is largely due to the difficulty of obtaining sufficient and
sufficiently detailed annotations to learn robust and accurate attribute detectors. In
particular, to achieve good attribute detection, per camera/dataset annotations need to
be obtained, since attribute models typically do not generalise well across cameras
(e.g. a blue shirt may look purple in a different camera view). This is exacerbated,
because unlike annotation of person identity used in learning a Re-ID matching model,
attributes require multiple labels per image. Moreover, since most human attributes
are associated with a specific body part, to learn accurate attribute detectors, ideally
annotation needs to be done at the patch-level rather than the image-level. In short, an
attribute-based approach is limited by the scale of its annotation requirements.
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Figure 1.12: Transferring a Semantic Representation

Although attribute-centric approaches to surveillance are limited by the lack of an-
notation, extensive person attribute annotations already exist in other domains, notably
fashion image analysis [52, 53, 54, 55, 56]. In this line of work, many high resolution
images have been annotated with clothing properties – sometimes strongly (per-pixel).
However, learning attribute detectors from the fashion domain, and applying them di-
rectly to person Re-ID and search will fail, due to the severe domain shift problem
– compared with surveillance data, the image characteristics are completely differ-
ent (see Figure 5.4). In particular, many of the challenges in surveillance are absent
(e.g. illumination variability, occlusion, low-resolution, motion blur). These large and
perfectly annotated person attribute datasets are thus useless, unless an attribute model
learned from them can be successfully adapted and transferred to the surveillance do-
main.

In this thesis, a new framework is contributed that is capable of learning a seman-
tic attribute model from existing fashion datasets, and adapting the resulting model
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to facilitate person Re-ID and search in the surveillance domain. In contrast to most
existing approaches to attribute detection [57, 58] which are based on discriminative
modelling, this thesis takes a generative modelling approach based on the IBP [49].
The generative formulation provides key advantages including: joint learning of all
attributes; ability to naturally exploit weakly-annotated (image-level) training data; as
well as unsupervised domain adaptation through Bayesian priors. Importantly an IBP-
based model [59, 60, 61] provides the favourable property of combining attributes fac-
torially in each local patch. This means that the presented model can differentiate po-
tentially ambiguous situations such as Red-Shirt+Blue-Jeans versus Red-Jeans+Blue-
Shirt. Moreover, with this representation, attribute combinations that were rare or
unseen at training time can be recognised at test time so long as they are individually
known (e.g. Shiny-Yellow-Jeans).

The proposed framework overcomes the significant problem of domain shift be-
tween fashion and surveillance data in an unsupervised way by Bayesian adaptation.
It can exploit both strongly and weakly annotated source data during training, but is
always able to produce a strong (patch-level) attribute prediction during testing. The
resulting representation is highly person variant while being view-invariant, making
it ideal for person Re-ID, where the proposed model obtains state-of-the-art results.
Moreover, as the representation is semantic (nameable or describable by a human),
the presented method is able to unify description based person search within the same
framework, where it also achieve state-of-the-art results.

1.4 Contributions

This thesis makes the following key contributions:

1. This thesis first formulates a novel Bayesian topic model suitable for WSOL,
which can use various types of prior knowledge including an inter-category ap-
pearance similarity prior. The Bayesian prior also enables the model to easily
borrow available domain knowledge from existing auxiliary datasets and adapt
it to a target domain.

2. This thesis further jointly learns all object, attribute and background appear-
ances, object-attribute association, and their locations from realistic weakly la-
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belled images including multiple objects with a cluttered background. To this
end, a novel WS non-parametric Bayesian model is formulated by generalising
the IBP to make it WS, hierarchical, and integrated with two types of MRFs
over hidden factors to both learn and exploit spatial coherence and factor co-
occurrence.

3. A generative framework is introduced for person attribute learning that can be
learned from strongly or weakly annotated data or a mix. The designed approach
shows how to perform domain adaptation from fashion to surveillance domain.

4. Once learned from weakly labelled data, the proposed models can be deployed
for various tasks including object localisation, semantic segmentation, image
description and image query, many of which rely on predicting strong object-
attribute association. Extensive experiments on benchmark datasets demonstrate
that on all tasks the presented model significantly outperforms a number of WS
baselines and in many cases is comparable to the strongly supervised alterna-
tives.

1.5 Outline

This thesis is organised into seven chapters:
Chapter 2 presents a review of various existing strategies and approaches for object
recognition and complex visual understanding, while providing further motivations for
the proposed approaches of this thesis.
Chapter 3 provides detailed explanations on the the proposed Bayesian LTM for
WSOL.
Chapter 4 presents the Weakly-supervised Stacked Indian Buffet Process (WS-SIBP)
for modelling objects and attributes to discover the associations between them.
Chapter 5 explains how the proposed model transfer semantic attributes to provide a
powerful representation for describing objects.
Chapter 6 provides conclusions and suggests a number of areas to be pursued as fur-
ther work.
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Chapter 2

Literature Review

The work presented in this thesis is related to a wide range of computer vision problems
including image classification, object recognition, attribute learning, and semantic seg-
mentation. In this chapter, some of most closely related topics are reviewed. First, this
review briefly looks at object detection and segmentation in Section 2.1 and Section 2.2
respectively. Both of them are discussed from Fully Supervised (FS) methods to WS
ones. Then, Section 2.3 focus on existing approaches to attribute learning, involving
attribute prediction and attribute representation for other vision tasks. Following that,
a summarisation of state-of-the-art methods on joint modelling objects and attributes is
provided in Section 2.4. Existing and related WSL techniques are described in Section
2.5. Finally, the review is summarised in Section 2.6.

2.1 Object Detection

2.1.1 Fully Supervised Object Detection

Over the past few years, researchers have made significant progress in object detec-
tion. Most of these efforts have generally followed two directions. One line of work
has focused on proposal generation techniques with the goal of efficient and accurate
localising candidate objects. These methods aim to achieve high detection recall with
as few proposals as possible. A second line of work has explored the use of learning
techniques for classifying proposals. The task is to assign a label of foreground class
or background to each possible proposals.
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Objects can appear at a variety of locations and sizes within an image. The dom-
inant approach to object detection tasks has been the sliding windows fashion. It is
an exhaustive search procedure for all different sizes placed at all locations. Sliding
window paradigm has been widely adopted by pioneer works in face detection [62]
and pedestrian detection [63]. To date, it is still a common strategy for recent state-of-
the-art pedestrian detection [64] and face detection [65]. The Deformable Part Model
(DPM) is a well-known champion systems of object detection in Pascal VOC 2007-
2011 challenge, which is also based on sliding window. The main drawback of the
sliding window is that the number of candidate proposals can be about O(106) for a
640×480 image. In the work of Yan et al. [66], a large number of windows are required
to be scored in a test image using a classifier. Heavy computational load severely limits
the applicability for real time detection due to the evaluation inefficiency.

To keep the computational cost manageable, object proposal gains attentions to re-
duce the number of evaluated windows. Previous works demonstrate that the proposal
algorithm can indeed significantly speed up the object detection task and improves its
performance. Object proposal has been proven to be very useful for object detection
[67]. It has been popularised recently [68, 69] as a powerful pre-processing approach
for computational efficiency and accuracy. Uijlings et al. [68] propose object proposals
by grouping low-level superpixels from [70] hierarchically. The number of proposals
can be about 2, 000 with a recall rate of 98% on PascalVOC and 92% on ImageNet.
This greatly reduce the number of evaluated windows with only minor loss in detection
performance. It gives object detection algorithm more flexibility to localise things of
interest by providing a smaller number of arbitrary scale and aspect ratio proposals.
These kinds of methods was subsequently adopted to achieve impressive object detec-
tion performance on Pascal VOC [71] and ImageNet [72]. Object proposal has been
continuously improving in recent methods by generating more compact and efficient
proposals. Most methods are trained by means of supervised learning [69, 73, 74, 75],
while some others are based on unsupervised approach [67, 68, 76]. Hosang et al. [77]
provide an in depth analysis of ten recent object proposal methods and discuss their
common weakness as well as the insights to choose the most adequate method for
different settings.

Actually, object detection is essentially a classification problem for each proposal,
when the proposals are produced on testing images. The proposals are typically repre-
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sented as a feature vector and then feed them into a designed classifier to distinguish
the foreground object and background clutter with representation. The impressive per-
formance has been achieved thanks to discriminative learning and carefully crafted
features. The feature representation becomes more sophisticated over time with the
enormous amount of efforts on analysing of color, shape, texture and motion. Re-
cent representative methods include, but are not limited to, hand-crafted Haar [62] and
HOG [78] to learning based CNN [71]. A carefully designed discriminative models
is typically trained on top of these feature representations. One of the most heavily
studied paradigms for object detection is the deformable part-based model [16]. Be-
yond low-level features, there are some works on encoding scheme, such as the BoW
[79] and high order feature vectors [80, 81]. A broad number of variants of classical
discriminative classifier (including Boosting [82], SVM [83] ) have been proposed to
improve object recognition performance. Structural SVM [84, 85] is one of the most
noticeable generalisation to address the complementary issue of problems involving
complex outputs such as multiple dependent output variables and structured output
spaces. It has been further refined to a latent version [86] to discover the dependencies
on a set of unobserved latent variables. More recently, the Convolutional Neural Net-
work (CNN) is being widely used in object detection systems since it enjoyed a great
success in large-scale visual recognition challenge [87]. One key advantage of using
CNN is that it can learn features directly from the images. The automatically extracted
CNN features turn out to be highly versatile and can be more effective than traditional
hand-crafted features on visual computing tasks. A recent work [88] also shows that
the DPM can be interpreted as a CNN. The CNN based representation has shown great
potentials and has been adopted by most of the leading methods in ImageNet challenge
[89].

All existing object detectors take a FSL approach, in which all the training images
are manually annotated with the object location. However, manual annotation of hun-
dreds of object categories is time-consuming, laborious, and subjective to human bias.
To reduce the amount of manual annotation, WSL approach is desired.
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2.1.2 Weakly Supervised Object Detection

In WSL, the training set is only annotated with a binary label indicating the presence
or absence of the object of interest, not the location or extent of the object. WSL
approaches first locate the object of interest in the training images and then the location
information is used to train a detector in a FS fashion.

WSL has attracted increasing attention as the volume of data which interested in
learning from grows much faster than available annotations. WSOL is of particular
interest [32, 42, 43, 44, 46, 90, 91, 92, 93], due to the onerous demands of annotating
object location information. Many studies [32, 42] have approached this task as a MIL
[94, 95] problem. However, only relatively recently have localisation models capable
of learning from challenging data such as the PASCAL VOC 2007 dataset been pro-
posed [42, 43, 44, 90, 91]. Such data are especially challenging because objects may
occupy only a small proportion of an image, and multiple objects may occur in each
image: corresponding to a Multi-instance Multi-label (MIML) problem [96]. Three
types of cues are exploited in existing WSOL approaches: (1) saliency – a region con-
taining an object should look different from the majority of (background) regions. The
object saliency model in [69] is widely used in most recent work [38, 40, 42, 43, 90]
as a preprocessing step to propose a set of candidate object locations so that the subse-
quent computation is reduced to a tractable level, (2) intra-class – a region containing
an object should look similar to the regions containing the same class of objects in other
images [90], and (3) inter-class – the region should look dissimilar to any regions that
are known to not contain the object of interest [42, 43, 44]. One of the first studies to
combine the three cues for WSOL was [42] which employed a Conditional Random
Field (CRF) and generic prior object knowledge learned from a fully annotated dataset.
Later, Pandey and Lazebnik [44] presented a solution exploiting latent SVMs. Recent
studies have explicitly examined the role of intra- and inter-class cues [43, 90], as well
as transfer learning [38, 91], for this task. Similar to the above approaches for weakly
labelled images, [40, 97] proposed video based frameworks to deal with motion seg-
mented tubes instead of bounding-boxes. In contrast to these studies, which are all
based on discriminative models, this thesis introduces a generative topic model based
approach that exploits all three cues, as well as joint multi-label, semi-supervised and
cross-domain adaptive learning.
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From another perspective, early works on WS annotation mainly focused on saliency
based approaches [98, 99, 100]. While these methods provided a set of potential salient
object location, they were shown to perform poorly for automatic annotation of objects
in challenging cluttered images [101]. Recently many methods [32, 90, 101] re-cast
the WS problem as a MIL problem. In a MIL formulation, each image with the object
of interest is treated as a positive bag with many instances (potential object locations)
of which at least one is positive and the images without the object of interest are treated
as negative bags with only negative instances. The MIL based algorithms iteratively
select the positive instances in each positive bag using inter-class and/or intra-class in-
formation. The approach by Nguyen et al. [32] is an inter-class method that defines the
entire positive image as the initial positive instance and then trains a Support Vector
Machine (SVM) to separate these initial positive instances and the negative images.
The trained SVM is then used as a detector on the positive training images to refine
the object location. However, the initial assumption is that the entire image is a good
representation of the object, which is not always true. Pandey and Lazenbnilk [44]
relaxed this assumption by using a latent SVM that treats the actual location of the
object as a latent variable which is a constraint to be at least 40% overlapped with the
entire image. Unlike the inter-class information based methods [32, 44], Deselaers et

al. [101] and Siva and Xiang [90] use saliency [98] to define the initial instances in
each image. Then the positive instances are iteratively selected by optimising a cost
function based on both inter-class and intra-class information.

2.2 Object Segmentation

2.2.1 Fully Supervised Segmentation

One of the earliest image segmentation approaches, published more than 40 years ago
by Muerle and Allen [102], aimed to compute object regions by iteratively merging
similar small patches, where color and texture [103] provide important information
cues. Object segmentation [21, 104, 105, 106] have witnessed tremendous progress
over the last decades. Arbelaez et al. [105] convert the problem of image segmenta-
tion to contour detection. The output of any detected contour map can be transformed
to a hierarchical region tree by its segmentation algorithm using generic machinery.
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Carreira and Sminchisescu [21] present a novel framework to generate and rank plau-
sible hypotheses for the spatial extent of objects in images using bottom-up computa-
tional processes and mid-level selection cues. The generated segmentation hypotheses
can be successfully used in a segmentation-based visual object category recognition
pipeline [107]. Kim and Grauman [104] introduce a category-independent shape prior
for object segmentation, where shared shape knowledge is discovered between objects
of different categories. Weiss and Taskar [106] propose a flexible method for object
segmentation that integrates rich region-merging cues with mid- and high-level infor-
mation about the object layout, class, and scale into the segmentation process.

All the above methods focus on segmenting foreground objects from the back-
ground. They are not interested in the different types of backgrounds. Semantic seg-
mentation [108] aims to assign a category label to each pixel of images, where back-
ground is also associated with various “stuff” such as sky, road, trees, etc. The prior
approaches on semantic segmentation can be broadly classified into two categories:
learning-based and non-parametric models.

The conventional learning-based models observe the appearance of semantic classes
under various transformations. A joint parametric model is usually adopted to relate
different types of information cues. Semantic segmentation using CRF based models
[109, 110, 111, 112] consistently gain improvement recently. One major advantage
of CRF is that it can jointly model the structure and appearance of an image. More
specifically, CRF based formulation provides a natural mechanism to combine unary
potentials obtained from the visual features of super-pixels with the neighborhood con-
straints. Unlike these flat CRF based approaches, Lempitsky et al. [113] represent an
image by a hierarchical segmentation tree. A joint CRF is optimised using graph cut
with all the benefits of global optimality and efficiency, where the main advantage
is come from the utilisation of higher order contextual information. More recently,
Farabet et al. [114] present a multiscale convolutional network trained from raw pix-
els to extract dense feature vectors that encode regions of multiple sizes centred on
each pixel. The method alleviates the need for engineered features, and produces a
powerful representation that captures the texture, shape, and contextual information.
Pinheiro and Collobert [115] has further extended it by considering a recurrent convo-
lutional neural network which can take into account long range label dependencies in
the scenes while controlling the capacity of the network.
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On the other hand, non-parametric approaches have received increasing attention
[116, 117, 118, 119, 120, 121] for semantic segmentation (also known as natural scene
parsing). They typically guides the segmentation through a sophisticated template
matching method to retrieve images with similar visual appearance to test image, from
a large database containing fully annotated images. A structured prediction model is
usually trained (e.g. CRF) to jointly model the unary potentials with plausible image
models. Nearest-neighbour retrieval strategy is normally adopted in these approaches.
It thus leads an intriguing trade-off between computational efficiency and accuracy.
In theory, segmentation accuracy can be continuously improved by the use of ever
increasing amounts of data. However, these methods have to sacrifice speed in retrieval
when utilise a large database, which limits their practical applicability.

All these conventional methods tend to work well, given a sufficient amount of
fully labelled data. Unfortunately, such pixel-wise labelings are very expensive and
challenging to obtain.

2.2.2 Weakly Supervised Segmentation

Most existing semantic segmentation models are FS requiring pixel-level labels [118,
121, 122, 123]. A few WS semantic segmentation methods have been presented re-
cently, exploring a variety of models such as CRF [124, 125], label propagation [126]
and clustering [127]. Hanwell and Mirmehdi [23] have proposed a model for learn-
ing colour attributes from noisy, WS training data. Another closely related problem
is two-class or multi-class co-segmentation [128], where the task is to segment shared
objects from a set of images. Although co-segmentation does not require image labels
per-se, they indeed assume common objects across multiple training images. Like pre-
vious semantic segmentation methods, this thesis focusses on how to learn a model to
segment unseen and unlabelled test images, rather than solely segmenting the training
images as in co-segmentation. Importantly, most of these previous methods only fo-
cus on object labels (nouns) or attributes (adjectives) alone. The proposed IBP based
model in Chapter 4 provides a mechanism to jointly learn objects, attributes and their
association (adjective-noun pairs). This thesis shows that attribute labels provide valu-
able complementary information via inter-label correlation, especially under this more
ambitious WS setting.
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It is worth noting that the proposed work is not the first one to exploit the benefit
of joint modelling object and attributes for segmentation. Recently, Zheng et al. [123]
formulated the problem of joint attribute-object image segmentation as a multi-label
problem. A fully connected CRF is proposed to simultaneously segment objects and
attributes. Similarly, Li et al. [129] proposed a novel algorithm to extract and learn
attributes from segmented objects, which notably improves object classification accu-
racy. However, both of these methods are FS, requiring pixel-level ground truth for
training. In contrast, the proposed approach can cope with weakly labelled data to
alleviate the burden of strong annotation.

2.3 Attribute Learning

2.3.1 Attribute Predication and Localisation

Early work on attribute learning [22, 130] mainly focused on learning attribute pre-
dictor to describe image or objects. A supervised discriminative learning pipeline
has been widely adopted to train attribute classifier in the one-vs-all fashion. These
attributes are independently learned with the attribute label of the training image or
objects. Learning attributes independently ignore the correlation information among
them. In order to capture this cue, some recent works attempt to jointly learn all at-
tributes [131, 132, 133, 134]. Wang et al. [132] and Song et al. [135] propose to con-
struct a graph encoding all attributes in the attribute domain. It has been considered
it as latent variables in latent SVM for categorisation. Exploiting attribute has widely
proven to be effective for improving class prediction. All these works demonstrated
that attribute as mid-level concepts is very useful for describing semantic entities like
objects, scenes, activities, etc. Unlike these binary attributes, other work focuses on
the merits of the relative attributes [136], which mine pairwise relationships between
attributes of different images.

A few papers have studied how to discover local attributes [137, 138] (i.e. attribute
localisation). Local attribute discovery is similar to seeking distinctive image regions.
Some regions containing semantic meaning are very common and shared across cate-
gories. With local attributes, the proposed approaches can describe objects more pre-
cisely. For example, “a bird with black beak” provide more valid information than “a
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black bird”. Duan et al. [137] propose an interactive approach to discover local at-
tributes that are both discriminative and semantically meaningful from image datasets
annotated with fine-grained category labels and object bounding boxes.

2.3.2 Attribute as Representation for Vision Tasks

Attribute learning is also the preliminary step for many other visual tasks.
image search Related to attribute-based person Re-ID is description-based person
search [57, 139, 140, 141, 142]. In this case detectors for aspects of person descrip-
tion (e.g., clothes, soft-biometrics) are trained. Person images are then queried by
description rather than by another image as in re-id. Most methods however have lim-
ited accuracy due to: (i) training on, and producing weak (image-level) annotations;
and (ii) training and testing each attribute detector independently rather than jointly.
For these reasons, they are also limited in being able to make complex attribute-object
queries such as “Black-Jeans + Blue-Shirt”, which requires a strong joint segmentation
and attribute model to disambiguate the associations between attributes.

Similar notions of attribute-based search have been exploited in a face image con-
text [143]; and in a fashion/e-commerce context, where users search for clothing by
description [52, 55, 144, 145]. Face image search however, is easier due to being
more constrained and well aligned than surveillance images. Meanwhile in the fash-
ion context, clean high resolution images are assumed; and crucially strong pixel-level
annotations are typically used, which would be prohibitively costly to obtain for indi-
vidual surveillance camera views. In this thesis, the proposed method bridge the gap
between the clean and richly annotated fashion domain, and the noisy and scarcely an-
notated surveillance domain, to produce a powerful semantic representation for person
re-id and search.
person Re-ID Person Re-ID is now a very well studied topic, with [50, 51] pro-
viding good reviews. Existing approaches can be broadly grouped according to two
sets of criteria: supervision and representation/matching. Unsupervised approaches
[146, 147, 148] are more practical in that they do not require the use of per-target cam-
era annotation (labelling people into matching pairs), while supervised approaches
[149, 150, 151, 152, 153, 154] that use this information tend to perform better. Studies
also either focus on building a good representation [146, 147, 148, 149, 155, 156, 157],
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or building a strong matching model [151, 152, 153, 158, 159, 160]. In this thesis, the
presented approach focusses on learning mid-level semantic representations for both
unsupervised and unsupervised re-id. Zhao et al. [161] also attempted to learn mid-
level representations. However their method does not learn a semantic representation,
so it cannot be used for description-based person search; and it relies on supervised
learning. Ours can be used with or without supervision, but provides the biggest bene-
fit in the unsupervised context. A few studies [162, 163] address person re-id based on
transfer learning. However, they transfer matching models rather than representations,
and between different surveillance datasets rather different domains.

Semantic attribute-based representations have also been studied for person rei-
dentification. A key motivation is that it is hard for low-level representations (e.g.,
colour/texture histograms) to provide both view-invariance and person-variance. Early
studies train individual attribute detectors independently on images weakly-annotated
with multi-label attributes [57, 164, 165], followed by using the estimated attribute
vector of a test image as its representation for matching. More recent studies have con-
sidered joint learning of attributes and inter-attribute correlation [58, 166, 167]. Nev-
ertheless, these approaches do not reach state-of-the-art performance. This is partly
due to the drawbacks of (1) requiring ample target domain attribute annotations, which
are hard to obtain at scale for learning robust detectors; and (2) producing coarse/weak
(image-level) rather than strong (patch-level) annotations – due to the lack of strongly
annotated training data that is even harder to obtain. In contrast, by transferring an
attribute representation learned on existing large annotated fashion datasets, the pro-
posed transfer learning based model of Chapter 5 overcomes these issues.
Attribute Learning for Describing Person Beyond person re-id and search, semantic
attribute learning [4, 168] is well studied in computer vision, which is too broad to
review here. However, it is worth to note that most attribute-learning studies have one
or more simplifications compared to the problem this thesis considered here: They
consider within-domain rather than cross-domain attributes; or produce coarse image-
level attributes rather than segmenting the region of an attribute; or they do not address
representing multiple attributes simultaneously on a single patch (important for e.g. a
detailed clothing representation including, e.g., category + texture + colour).

Most other semantic attribute detection studies take a discriminative approach to
learning for maximum detection accuracy [52, 53, 57, 139, 142, 143, 144, 169]. In con-
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trast, the presented generative approach provides advantages in more naturally support-
ing weakly-supervised learning, and domain transfer through Bayesian priors. Related
generative models include the work of Wang et al. [148], which used unsupervised
topic models to estimate saliency for re-id, and the work of Feng et al. [59] which
addressed data driven attribute discovery and learning.

2.4 Joint Learning of Object and Attributes.

Attributes have been used to describe objects [22, 170], people [171], clothing [144],
scenes [138], faces [6], and video events [169]. However, most previous studies learn
and infer object and attribute models separately, e.g., by independently training binary
classifiers, and require strong annotations/labels indicating object/attribute locations
and/or associations if the image is not dominated by a single object. A few recent
studies have learned object-attribute association explicitly [1, 131, 132, 138, 172, 173,
174]. Different from the proposed approach, [131, 132, 172, 174] only train and test on
unambiguous data, i.e. images containing a single dominant object, assuming object-
attribute association is known at training; moreover, they allocate exactly one attribute
per object. Kulkarni et al. [1] model the more challenging PASCAL VOC type of data
with multiple objects and attributes coexisting. However, their model is pre-trained
on object and attribute detectors learned using strongly annotated images with ob-
ject bounding boxes provided. The work in [138] also does object segmentation and
object-attribute prediction. But its model is learned from strongly labelled images in
that object-attribute associations are given during training; and importantly prediction
is restricted to object-attribute pairs seen during training. In summary none of the exist-
ing work learns object-attribute association from weakly labelled data as the proposed
approach does in this thesis.

Some existing works aim to perform attribute-based query [6, 27, 175, 176]. In
particular, recent studies have considered how to calibrate [176] and fuse [27] multi-
ple attribute scores in a single query. This thesis go beyond these studies in supporting
conjunction of object+multi-attribute query. Moreover, existing methods either require
bounding boxes or assume simple data with single dominant objects, and do not rea-
son jointly about multiple attribute-object association. This means that they would
be intrinsically challenged in reasoning about (multi)-attribute-object queries on chal-
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lenging data with multiple objects and multiple attributes in each image (e.g., querying
furry brown horse, in a dataset with black horses and furry dogs in the same image).
In other words, they cannot be directly extended to solve query by object-attribute
association.

2.5 Related Work in Weakly Supervised Learning

The works discussed in previous sections are reviewed according to the related com-
puter vision tasks. In this section, the thesis provides a detailed comparison between
the proposed approach and related WSL based approaches.

2.5.1 Discriminative Models

Discriminative methods underpin many high performance recognition and annotation
studies [1, 22, 138, 171, 177, 178]. Similarly existing WSL methods are also dom-
inated by discriminative models. Apart from the above mentioned CRF [124, 125],
label propagation [126] and clustering [127] models, some discriminative MIL models
were also adopted [42, 96]. the designed model is a probabilistic generative model.
Compared to a discriminative model, the main strength of a generative model under
the WS setting is that it is able to infer latent factors corresponding to background
clutter and un-annotated object/attributes and modelling them jointly in a single model
so as to explain away the ambiguity existing in the weak image-level labels. Very re-
cently deep learning based automated image captioning has started to attract attention
[5, 26]. Generating a natural sentence to describing the content of image obviously is a
harder task as apart from nouns and adjective, other words including verb (action) and
preposition (where) need to inferred and language syntax needs to be followed in the
generated text description. However, these neural network models are essentially still
discriminative models and have the same drawbacks as other discriminative models for
WSL.

34



2. Literature Review

2.5.2 Probabilistic Generative Models

LTM were originally developed for unsupervised text analysis [179], and have been
successfully adapted to both unsupervised [79, 180] and supervised image understand-
ing problems [181, 182, 183, 184, 185]. Most studies have addressed the simpler tasks
of classification [184, 185] and annotation [184, 186]. The proposed joint localisation
model of Chapter 3 differs from the existing ones in two main aspects: (i) Conventional
topic models have no explicit notion of the spatial location and extent of an object in
an image. This is addressed in the proposed model by modelling the spatial distribu-
tion of each topic. Note that some topic model based methods [182, 183] can also be
applied to WSOL. However, the spatial location is obtained from a pre-segmentation
step rather than being explicitly modelled. (ii) The other difference is more subtle –
existing supervised topic models such as CorrLDA [186], SLDA [184] and derivatives
[183] only weakly influence the learned topics. This is because the objective is the sum
of visual words and label likelihoods, and visual words vastly outnumber annotations,
thus dominating the result [185]. The limitation is serious for WSOL as the labels
are already weak and they must be used to their full strength. In this thesis, a learn-
ing algorithm with topic constraints similarly to [29] is formulated to provide stronger
supervision which is demonstrated to be much more effective than the conventional
supervised topic models in various experiments (see Appendix A). With these limita-
tions addressed, the presented method can exploit the potential of a generative model
for domain adaptation, joint-learning of multiple objects and SSL.

The flexibility of generative probabilistic models and their suitability particularly
for WSL has seen them successfully applied to a variety of WSL tasks [169, 183,
187, 188]. These studies often generalise Probabilistic Topic Model (PTM) [179].
However PTMs are limited for explaining objects and attributes in that latent topics
are competitive - the fundamental assumption is that an object is a horse or brown
or furry. They intrinsically do not account for the reality that it is all at once. In
contrast, The proposed model in Chapter 4 generalises IBP [49, 189]. The IBP is
a latent feature model that can independently activate each latent factor, explaining
imagery as a weighted sum of active factor appearances.

As mentioned earlier, the presented WS-MRF-SIBP differs significantly from the
standard flat and unsupervised IBP in that it is hierarchical to model grouped data (im-
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ages composed of superpixels) and WS. This allows us to exploit image-level weak
supervision, but disambiguate it to determine the best explanation in terms of which
superpixels correspond to un-annotated background, which superpixels corresponds to
which annotated objects, and which objects has which attributes. In addition, a MRF
is integrated into the IBP to model correlations of factors both within and across super-
pixels. A few previous studies [190, 191, 192] generalise the classic Latent Dirichlet
Allocation (LDA) topic model [179] by integrating a MRF to enforce the spatial coher-
ence across topic labels of neighbouring regions. Unlike these methods, the proposed
approach generalises the IBP by defining the MRF over hidden factors. Furthermore,
beyond encoding spatial coherence the designed method also defines a factorial MRF
to capture attribute-attribute and attribute-object co-occurrences within superpixels.

An approach similar in spirit to ours in the sense of jointly learning a model for all
classes is that of Cabral et al. [193]. This study formulates multi-label image classifi-
cation as a matrix completion problem, which is also related to the presented factoring
images into a mixture of topics. However the proposed joint localisation model of
Chapter 3 add two key components of (i) a stronger notion of the spatial location and
extent of each object, and (ii) the ability to encode human knowledge or transferred
knowledge through a Bayesian prior. As a result, the proposed model is able to ad-
dress more challenging data than [193] such PASCAL VOC. MIML [96] approaches
provide a mechanism to jointly learn a model for all classes [194, 195]. However,
because these methods must search for a discrete space (of positive instance subsets),
their optimisation problem is harder than the smooth probabilistic optimisation here.
Finally, while more elaborate joint generative learning methods [183, 196] exist, they
are more complicated than necessary for WSOL and do not scale to the size of data
required here.

2.5.3 Exploiting Prior Knowledge

Prior knowledge has been exploited in existing WSOL works [42, 43, 44]. Recog-
nition or detection priors can be broadly broken down into appearance and geometry
(location, size, aspect) cues, and can be provided manually, or estimated from data.
The most common use has been crude: to generate candidate object locations based on
a pre-trained model for generic objectness [98], i.e. the previously mentioned saliency
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cue. This reduces the search space for discriminative models. Beyond this, geometry
priors have also been estimated during learning [42]. The proposed joint localisation
model of Chapter 3 not only can exploit such simple appearance and geometry cues as
model priors, but also go beyond to exploit a richer object hierarchy, which has been
widely exploited in classification [47, 197, 198, 199] and to a less extent detection
[34, 38]. More specifically, the proposed joint localisation model of Chapter 3 lever-
ages WordNet, a large lexical database based on linguistics [200]. WordNet provides a
measure of prior appearance similarity/correlation between classes, and the proposed
method uses this prior to regularise appearance learning. Such cross-class appearance
correlation information is harder to use in previous WSOL approaches because differ-
ent classes are trained separately. Interestingly, the proposed model uniquely shows
positive results for WordNet-based appearance correlation, in contrast to some recent
studies [47, 199] that found no or limited benefit from exploiting WordNet based cross-
class appearance correlation for recognition. Compared to the classification task, this
inter-class correlation information is more valuable for WSOL because the task is more
ambiguous. Specifically, the interdependent localisation and appearance learning as-
pects of the task adds an extra layer of ambiguity – the model might be able to learn
the appearance if it knew the location, but it will never find the location without know-
ing appearance. The proposed joint localisation model of Chapter 3 is also related to
[38] where hierarchical cross-class appearance similarity is used to help WSOL in Im-
ageNet by transfer learning. However, a source dataset of fully annotated images are
required in their work, whilst the designed model exploits the correlation directly for
the target data which is only weakly labelled.

2.5.4 Cross Domain Learning

Domain adaptation [201] methods aim to exploit prior knowledge from a source do-
main/dataset to improve the performance and/or reduce the amount of annotation re-
quired in a target domain/dataset (see [202] for a review). Many conventional ap-
proaches are based on SVMs for which the target domain can be considered a perturbed
version of the source domain, and thus learning proceeds in the target domain by reg-
ularising it toward the source [39]. More recently, transductive SVM [203], Multiple
Kernel Learning (MKL) [204], and instance constraints [205] have been exploited. In
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contrast to these discriminative approaches, the proposed joint localisation model of
Chapter 3 exploits a simple and efficient Bayesian adaptation approach similar in spirit
to [201, 206]. Posterior parameters from the source domain are transferred as priors for
the target, which are then adapted based on observed target domain data via Bayesian
learning. Going beyond simple within-modality dataset bias, recent studies [40, 97]
have adapted object detectors from video to image or reverse. This thesis shows that
the proposed joint localisation model of Chapter 3 can achieve the image-video domain
transfer within a single framework.

A key challenge for the proposed transfer learning based model of Chapter 5 is the
domain-shift between the fashion and surveillance domains. Addressing a change of
domains with domain adaptation is well studied in computer vision [207, 208, 209] and
beyond [202]. To avoid necessitating target domain annotation, this task requires un-
supervised adaptation which is harder. Some off-the-shelf solutions exist [207, 210],
but these under-perform due to working blindly in the low-level feature space, dis-
connected to the semantics being modelled, i.e. attributes. In contrast, in the style of
[201, 209, 211], the proposed method achieves domain adaptation by transferring the
source domain attribute model as a prior when the target domain model is learned.
This enables adaptation to the target domain, while exploiting the constraints provided
by semantic attribute model.

2.5.5 Exploiting Unlabelled Data

SSL [48] methods aim to reduce labelling requirements and/or improve results com-
pared to only using labelled data. Most existing SSL approaches assume a training
set with a mix of fully labelled and weak or unlabelled [38, 212] data, while the pre-
sented method uses weak and unlabelled data alone. The existing (discriminative) line
of work focusing on WSOL [42, 44, 213, 214] has not generally exploited unlabelled
data, and cannot straightforwardly do so.

2.5.6 Feature Fusion

Combining multiple complementary cues has been shown to improve classification
performance in object recognition [204, 215, 216, 217]. Two simple feature fusion

38



2. Literature Review

methods have been widely used in existing work: early fusion which combines low-
level features [218] early (feature concatenation) and late (score level) fusion [42, 90].
MKL approaches have attracted attention as a principled mid-level approach to com-
bining features [216, 217]. Similarly to MKL, the proposed joint localisation model of
Chapter 3 provides a principled and jointly-learned mid-level probabilistic fusion via
its generative process.

2.6 Summary

A FSL strategy is typically required by most existing approaches for object recog-
nition, attribute learning and other image understanding related tasks. The detailed
annotation reduces the visual ambiguity by disentangles object instances from a noisy
and cluttered background. Nevertheless, it puts a heavy burden on the user to provide
sufficient examples of the object of interest, with manual annotation of object loca-
tion in all images. Recently there has been an increasing interest in WS approaches
to learning object appearance which does not require manual annotation of object lo-
cations. WSL provides a more scalable solution for understanding images with the
prevalence of media sharing websites, such as Flickr, where a large number of social
images with user provided image-level labels are available from the Internet.

Existing WSL methods have shown promising results in various image understand-
ing tasks. Nevertheless, there are several open problems and limitations that need to be
solved. Firstly, most existing WSL approaches are dominated by discriminative mod-
els. These algorithms are inspired by the success of discriminative methods in many
FS computer vision tasks. These methods are hard to integrate prior knowledge and
multiple related cues. This is particularly important in WSL setting where very limited
information is available. Secondly, most previous WS tend to model each category
independently (e.g. object detector and attribute classifier have been trained separately
for every class). In fact, object categories in real work do not follow a flat structure. A
more complex and hierarchical relation exists in a large number of object categories.
For example, the class “motorbike” is more similar to “bike” than “boat”, meanwhile
“motorbike” and “bike” belong to the “wheeled vehicle”. Learning all these cate-
gories independently ignore this rich information embedded in the data. A joint learn-
ing framework enables us to sufficiently leverage various cues and contexts including
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feature-label association, inter-label correlation, spatial neighbourhood cues, and label
consistency. Thirdly, there are some generative based studies devoted to jointly learn-
ing all categories. However, explicitly modelling and explaining complex semantics
is still non-trivial and has remained unexplored. It is extremely challenging to under-
stand images for each object instance from the image-level weak label due to the label
ambiguity. One instance/object can be described by many (potentially unlimited num-
ber of) attributes concurrently (e.g. a car could be “red”, “metal” and “wheeled”, as
well as “shiny”). It is the key to systematically and effectively incorporate all types of
relation and cues for achieving a significant improvement.

In the subsequent chapters of this thesis, a number of models are formulated to
address these limitations following the three key concepts below:

1. Localising object jointly - Existing WS object detection approaches are domi-
nated by discriminative model, where a decision boundary is learned indepen-
dently for each object category. The proposed joint localisation model of Chap-
ter 3 jointly models all object categories together to leverage various information
cues and meanwhile the discriminative power is still maintained to outperform
previous approaches.

2. Learning object and attribute jointly - Learning object and attribute jointly has
been attempted by previous studies. Most of them rely on FS training data to
learn object-attribute correlation explicitly. Few prior works aim to model object
and attributes from weakly labelled data. However, complex visual semantics in
images make them ill-suited for holistically capturing and retaining all informa-
tion. The proposed IBP based model in Chapter 4 jointly learn multiple objects,
attributes and background clutter in a single framework and ambiguity in each is
explained away by knowledge of the other.

3. Transferring object and attribute jointly - WSL can be tackled in a transfer learn-
ing angle. There are always some fully labelled or weakly labelled data avail-
able in a related domain when insufficient labelled data from the target domain.
Unlike previous approach, which learn each factor (objects, attributes, other an-
notations) individually and adapted to target domain data, the proposed transfer
learning based model of Chapter 5 further provide a solution to transfer a power-
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ful semantic description including object, attribute and other automatically dis-
covered latent factors for various computer vision tasks on weakly labelled data.
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Chapter 3

Bayesian Joint Modelling for Object
Localisation

3.1 Overview

Object detection is the first and essential step to understanding the content of image.
This chapter considers the problem of detecting and localising objects of a generic
category, such as people or cars, in an static images or video. Large scale object
recognition has received increasing interest in the past five years [28, 29, 30]. Due to
the prevalence of online media sharing websites such as Flickr, a lack of images for
learning is no longer the barrier. A new bottleneck appears instead: the lack of anno-
tated images, particularly strongly annotated ones. For example, for many vision tasks
such as object classification [32], detection [16], and segmentation [30, 34] hundreds
or even thousands of object samples must be annotated from images for each object
class. This annotation includes both the presence of objects and their locations, typ-
ically in the form of bounding boxes. This is a tedious and time-consuming process
that prevents tasks such as object detection from scaling to thousands of classes [38].

To this end, this chapter proposes a WSOL approach, which simultaneously lo-
cates objects in images and learns their appearance using weak labels indicating only
the presence/absence of the object of interest. Specifically, both multiple object classes
and different types of backgrounds are modelled jointly in a single generative model
as latent topics, in order to explicitly exploit their correlations (see Figure 3.1). As
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BoW models, conventional LTMs have no notion of localisation. The proposed model
overcomes this problem by incorporating an explicit notion of object location, along-
side the ability to incorporate prior knowledge about the object appearance in a fully
Bayesian approach. Importantly, as a joint generative model, unlabelled data can now
be easily used to compensate for sparse training annotations, simply by allowing the
model to also infer both which unknown objects are present in those images and where
they are. WSOL approaches first locate the object of interest in the training images
and then the location information is used to train a detector in a FS fashion.

This chapter is structured as follows: the proposed framework is explained in Sec-
tion 3.2. Section 3.4 described the core inference process including label-topic con-
straints and probabilistic fusion. Section 3.5 demonstrates that how the learned model
can be applied to localise object in images and videos. The various prior knowledge
that embedded in the proposed model are discussed in Section 3.6. In Section 3.7, a
solution of utilising additional data is further provided to transfer the knowledge from
the other domain. Extensive results are reported and discussed in Section 3.8. Finally,
conclusions are drawn in Section 3.9.

3.2 Joint Topic Model for Objects and Background

In this section, a new LTM [179] approach is introduced to the WSOL task. Applied
to images, conventional LTMs factor images into combinations of latent topics [79,
180]. Without supervision, these topics may or may not correspond to anything of
semantic relevance to humans. To address the WSOL task, the ideal model needs
to learn what is unique to all images sharing a particular label (object class), while
explaining away both the pixels corresponding to other annotated objects as well as
other shared visual aspects (background) which are irrelevant to the annotations of
interest. The presented method will achieve this in a LTM framework by applying weak
supervision to partially constrain the available topics for each image. This constraint
is enforced by label/topic clamping to ensure that each foreground topic corresponds
to an object class of interest.

More specifically, to address the WSOL task, the proposed approach will factor
images into unique combinations of K shared topics. If there are C classes of ob-
jects to be localised, Kfg=C of these will represent the (foreground) classes, and
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Horse Horse No Horse

Person Person No Person

Horse Person Person Horse

Our Joint Learning Approach

Previous Independent Learning Approaches
Person

Horse

unlabelled

Figure 3.1: Different types of objects often co-exist in a single image. The proposed
joint learning approach differs from previous approaches which localise each object
class independently.

Kbg=K−Kfg topics will model background data to be explained away. Each topic
thus corresponds to one object class or one type of background. Let T fg and T bg in-
dex foreground and background topics respectively. An image is represented using a
Bag-of-Words (BoW) representation for each of f= 1 . . . F different types of features
(see Section 3.8.1 for the specific appearance features used). After learning, each la-
tent topic will encode both a distribution over the Vf sized appearance vocabulary of
each feature f and also over the spatial location of these words within each image.
Formally, given a set of J training images, each labelled with any number of the C
foreground classes, and represented as bags of words xjf , the generative process of the
proposed model (Figure 3.3) is as follows :

For each topic k∈ 1 . . . K:

1. For each feature representation f∈ 1 . . . F :
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Figure 3.2: Graphical model for the proposed WSOL joint topic model. Shaded nodes
are observed.

(a) Draw an appearance distribution πkf∼Dir(π0
kf ) following the Dirichlet

distribution

For each image j∈ 1 . . . J :

1. Draw foreground and background topic distribution θj∼Dir(αj),αj= [αfgj ,αbgj ]

where the Dirichlet distribution parameter αj reflects prior knowledge of the
presence of each object class or background in the image j. Both θj and αj are
K dimensional.

2. For each foreground topic k∈T fg draw a location distribution:
{µkj ,Λkj} ∼NW(µ0

k,Λ0
k,W 0

k ,ξ0
k)

3. For each observation (visual word) i∈ 1 . . . Nj:

(a) Draw topic yij∼Multi(θj)

(b) Draw a location:
lij∼N(µyijj,Λ

−1
yijj

) if yij∈T fg or
lij∼Uniform if yij∈T bg

(c) For each feature representation f∈ 1 . . . F :
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i. Draw visual word xijf ∼Multi(πyijf )

where Multi, Dir, N, NW and Uniform respectively indicate Multinomial, Dirich-
let, Normal, Normal-Wishart and uniform distributions with the specified parame-
ters. These prior distributions are chosen mainly because they are conjugate to the
word, topic and location distributions, and hence enable efficient inference. For the
visual word spatial location, the foreground and background distributions are of dif-
ferent forms – normal for foreground and uniform for background. This is to re-
flect the intuition that foreground objects tend to be compact and background much
less so. The joint distribution of all observed O = {xjf , lj}J,Fj,f=1 and latent H =

{{πkf}K,Fk,f=1, {yj,µkj,Λkj,θj}K,Jk,j=1} variables given parameters Π = {{π0
kf}K,Fk,f=1,

{µ0
k,Λ

0
k,W

0
k , ξ

0
k}Kk=1, {αj}Jj=1} in the proposed model is therefore:

p(O,H|Π) =
K∏
k

F∏
f

p(πkf |π0
kf ) (3.1)

·
J∏
j

p(θj|αj)
[

K∏
k

p(µjk,Λjk|µ0
k,Λ

0
k,W

0
k , ξ

0
k) Nj∏

i

p(lij|µjk,Λ−1
jk )

F∏
f

p(xijf |yij,πyijf )p(yij|θj)

 . (3.2)

3.3 Relationship with Latent Dirichlet Allocation

In this section we compare the proposed model with LDA [179] to highlight the key
differences and similarities. The LDA model is represented as a probabilistic graph-
ical model in Figure . Similar to ours, there are three levels to the LDA represen-
tation. In order to address the WSOL problem, this work introduces the following
features/improvements in terms of both model structure and learning algorithm:

1. Effective supervision: The problem of how to achieve scalable and accurate
supervision in topic models is addressed. Unlike the unsupervised LDA that
adopts the empirical Bayes approach to estimating parameter α, the proposed
model use α to encode the supervision from weak labels.
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Figure 3.3: Graphical model for the classic latent dirchlet allocation. Shaded nodes are
observed.

2. Two sets of topics: this work learned with different levels of supervision - one
sets are weakly supervised by the weak labels, and the other discovered un-
supervised. Used together in this way they can jointly learn foreground and
background.

3. Initialisation of model priors: effective establishment of informative priors
(π0

kf ) is important especially for this weakly supervised problem (multiple ob-
jects co-existing with cluttered background), where location ambiguity would
otherwise make it very easy for the model to converge to inappropriate local
minima in learning.

4. Spatial object location: (µkj,Λ−1
kj ) represents object location explicitly (which

is not natural in topic models), which enables objects to be well learned even
when their appearance is non-uniform or they are of ambiguous appearance.

3.4 Model Learning

Inference via variational message passing Learning the presented model involves
inferring the following quantities: the appearance of each object class for each fea-
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ture type, πkf , k ∈ T fg and each background type, πkf , k ∈ T bg for each feature
type f ; the word-topic distribution (soft segmentation) of each image yj , the pro-
portion of visual words (related to the proportion of pixels) in each image corre-
sponding to each class or background θj , and the location of each object µjk,Λjk

in each image (mean and covariance of a Gaussian). To learn the model and localise
all the weakly annotated objects, the model wish to infer the posterior p(H|O,Π) =

p({yj,µjk,Λjk,θj}K,Jk,j , {πkf}K,Fk,f |
{xjf , lj}J,Fj=1,f=1,Π). This is intractable to solve directly; however a Variational Mes-
sage Passing (VMP) [219] strategy can be used to obtain a factored approximation
q(H|O,Π) to the posterior:

q(H|O,Π) =∏
k,f

q(πkf )
∏
j

q(θj)q(µjk,Λjk)
∏
i

q(yij). (3.3)

Under this approximation a VMP solution is obtained by deriving integrals of the form
ln q(h) = EH\h [ln p(H,O)] +K for each group of hidden variables h, thus obtaining
the following updates for the sufficient statistics (indicated by tilde) of each variable:

θ̃jk = αjk +
∑
i

ỹijk, (3.4)

ỹijk ∝
∫
µjk,Λjk

N(lij|µjk,Λ−1
jk )q(µjk,Λjk)

·
F∏
f

exp

(
Ψ(π̃xijfyijf )−Ψ(

∑
v

π̃vyijf )

)
· exp

(
Ψ(θ̃jyijk)

)
, (3.5)

π̃vkf = π0
vkf +

∑
ij

I(xijf = v)ỹijk, (3.6)

where Ψ is the digamma function, v = 1 . . . Vf ranges over the BoW appearance vo-
cabulary, I is the indicator function which returns 1 if its argument is true, and the inte-
gral in second line returns the student-t distribution over lij , S(lij|µ̃jk, Λ̃−1

jk , W̃jk, ξ̃jk).
Within each image j, standard updates [220] apply for the sufficient statistics {µ̃jk, Λ̃jk,
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W̃jk, ξ̃jk} of Normal-Wishart parameter posterior q(µjk,Λjk). The update in Eq. (3.5)
(estimating the object explaining each pixel) is the most non-standard for LTMs; this is
because it contains a top-down contribution (the third term), and two bottom-up con-
tributions from the location and appearance (the first and second terms respectively).
The model is learned by iterating the updates of Eqs. (3.4)-(3.6) for all images j, words
i, topics k and vocabulary v.
Supervision via label-topic constraints In conventional topic models, the α param-
eter encodes the expected proportion of words for each topic. In the proposed WS topic
model, the designed model uses α to encode the supervision from weak labels. In par-
ticular, αfgj is set to a binary vector with αfgjk = 1 if class k is present in image j and
αfgjk = 0 otherwise. αbg is always set to 1 to reflect the fact that background of different
types can be shared across different images. That is, the foreground topics are clamped
with the weak labels indicating the presence/absence of foreground object classes in
each image, whilst all background types are assumed to be present a priori. With these
partial constraints, iterating the updates in Eqs. (3.4)-(3.6) has the effect of factoring
images into combinations of latent topics, where Kbg background topics are always
available to explain away backgrounds, and Kfg foreground topics are only available
to images with annotated classes. Note that this set-up assumes a 1:1 correspondence
between object classes and topics. More topics can trivially be assigned to each object
class (1:N correspondence), which has the effect of modelling multi-modality in object
appearance, for a linear increase in computational cost.
Probabilistic feature fusion The proposed method combines multiple features prob-
abilistically. A single topic distribution (y) is estimated given different low-level fea-
tures (f ) in Eq. (3.5). the proposed fusion strategy keeps the original low-level feature
representations rather than increasing ambiguity by concatenating them before they
provide complementary information about the location (early fusion). The shared topic
(y) and Gaussian location distribution (µ,Λ−1) correlate the multiple features, which
avoids domination by a single one. The appearance model in each modality is updated
based on the consensus estimate of location; it thus learns a good appearance in each
view even if the particular category is hard to detect in that view (as a result could drift
if used alone). Its advantage over early (feature concatenation) or late (score level)
fusion is demonstrated experimentally in Section A.1 of the Appendix A.
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3.5 Object Localisation

After learning, the designed method extracts the location of the objects in each image
from the model, which can then be used to learn an object detector. Depending on
whether the images are treated as individual images or consecutive video frames, the
proposed localisation method differs slightly.
Individual images There are two possible strategies to localise objects in individ-
ual images, which will be compared later in Section 3.8. In the first strategy (Our-

Gaussian), a bounding box for class k in image j can be obtained directly from the
Gaussian mean of the parameter posterior q(µjk,Λjk), via aligning a bounding box to
the two standard deviation ellipse. This has the advantage of being clean and highly
efficient. However, since there is only one Gaussian per class (which will grow to
cover all instances of the class in an image), this is not ideal for images with more
than one object per class. In the second strategy (Our-Sampling) a heat-map is drawn
for class k by projecting q(yijk) (Eq. (3.5)) back onto the image plane, using the grid
coordinates where visual words are computed. This heat-map is analogous to those
produced by many other approaches such as Hough transforms [221]. Thereafter, any
strategy for heat-map based localisation may be used. A Non-maximum Suppression
(NMS) strategy of [16] is adopted here.
Video frames Here we provide two ways to extend the proposed method on video
data.

1. One video is composed of multiple frames. When we treat each frame separately,
this is exactly the same form as individual images. Thus, the two strategies used
on individual images are directly applicable to video data.

2. However, the temporal information of objects is useful in continuous videos to
smooth the noise of individual frames. To this end, this model apply a simple
state space model for video segments to post-process object locations, smooth-
ing them in time. Two diagonal points are sufficient to encode object loca-
tion (bounding-box), and these are estimated from q(µjk,Λjk) above at every
frame/time t as ct. Assuming a four-dimensional state latent state vector zTt =

(zxt zyt żxt żyt), denoting the (hidden) true coordinate of an object of interest
(two diagonal corners of the bounding box). A Kalman smoother is then adopted
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to smooth the observation noise σt in the system:

zt = Azt−1 + εt, ct = Ozt + σt, (3.7)

where A is the temporal transition between true locations z in video, and O is
the observation function for each frame.

3.6 Bayesian Priors

An important capability of the proposed Bayesian approach is that top-down cues from
human expertise, or estimated from data can be encoded. Various types of human
knowledge about objects and their relationships with background are encoded in the
proposed model. As discussed earlier, prior cues can potentially cover appearance and
geometry information.
Encoding geometry prior For geometry, the proposed approach already models the
most general intuition that objects are compact relative to background by assigning
them Gaussian and uniform distributions respectively (Section 3.2). Beyond this, prior
knowledge about typical image location and size of each class can be included via prior
parameters µ0

k,Λ
0
k, however this thesis found this did not actually noticeably improve

results in the presented experiments so the proposed method did not exploit it. This
makes sense, because in challenging datasets like PASCAL VOC, objects appear in
highly variable scales and locations, so there is little regularity to learn.
Encoding appearance prior If prior information is available about object category
appearance, it can be included by setting π0

kf . (The presented method will exploit this
later for cross-domain adaptation in Section 3.7.1). For within-domain learning, the
proposed approach can obtain an initial data-driven estimate of object appearance to
use as a prior by exploiting the observation that, when aggregated across all images,
the background is more dominant than any single object class in terms of size (hence
the amount of visual words). Exploiting this intuition, for each object class k, the
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appearance prior π0
kf is set as:

π0
kf =

∣∣∣∣∣∣ 1

C

∑
j,cj=k

h(xjf )−
1

J

∑
j

h(xjf )

∣∣∣∣∣∣
+

+ ε, (3.8)

where h(·) indicates histogram and ε is a small constant. That is, set the appearance
prior for each class to the mean of those images containing the object class minus the
average over all images. This results in a prior which reflects what is consistently
unique about each particular class. This is related to the notion of saliency, not within
an image, but across all images. Saliency has been exploited in previous MIL based
approaches to generate the instances/candidate object locations [42, 43, 44, 90, 91].
However, in the presented model it is cleanly integrated as a prior.
Encoding appearance similarity prior Going beyond the direct unary appearance
prior discussed above, the presented method next considers exploiting the notion of
prior inter-class appearance similarity, rather than prior appearance per-se. The prior
similarity between each object category can be estimated by computing inter-category
category distance based on WordNet structure [200]. The proposed model computes a
similarity matrix M where elements Mm,n indicates the relatedness between class m
and n. The similarity matrix is then used to define how much appearance information
from class m contributes to class n a priori.

The presented method exploits this matrix by introducing an M-step into the pro-
posed learning algorithm process (Eqs. (3.4)-(3.6)). Previously the appearance prior
π0
kf was considered fixed (e.g., from Eq. (3.8)). As with any parameter learning in

the presence of latent variables, π0
kf could potentially be optimised by a maximum-

likelihood M-step interleaved with E-step latent variable inference. However, rather
than the conventional approach of optimising π0

kf solely given the data of class k, the
presented approach defines an update that exploits cross-class similarity by updating
π0
kf using all the data, but weighted by its similarity to the target class k.

Denoting π̂0
vkf as the new appearance prior to be learned, the proposed method

introduces a new regularised M-step to learn π̂0
vkf . Specifically, the update for each
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class k ∈ T fg is as follows:

π̂0
vkf = π0

vkf︸︷︷︸
fixed data driven prior

+
∑
ij

∑
k′∈T fg

Mk,k′ · I(xijf = v)ỹijk′︸ ︷︷ ︸
inter-class similarity prior

(3.9)

The first term π0
vkf is the original unary prior from Eq. (3.8). The second term is a

data-driven update given the results of the E-step (ỹ, Eqs. (3.4)-(3.6)). It includes a
contribution from all images of all classes k′, weighted by the similarity of k′ to the
target class k – given by Mk,k′ . The updated π̂0

kf then replaces π0
kf in Eq. (3.6) of the

E-step.

3.7 Learning from Additional Data

This section discusses learning from additional data beyond the data for the WSOL
task. This includes partially relevant data from other domains or datasets, and any
additional but un-annotated data from the same domain.

3.7.1 Bayesian Domain Adaptation

Across different datasets or domains (such as images and video), the appearance of
each object category will exhibit similarity, but vary sufficiently that directly using
an appearance model learned in a source domain s for inference in a target domain
t will perform poorly [41]. In this case it would correspond to directly applying a
learned source appearance model πsk to a new target domain t, πtk := πsk. However,
one hopes to be able to exploit similarities between the domains to learn a better model
than using only the target domain alone [39, 97, 203, 206]. In this case, the Bayesian
(Multinomial-Dirichlet conjugate) form of the proposed model is able to achieve this
for WSOL by simply learning πsk for a source domain s (Eq. (3.6)), and applying it as
the prior π0

k
t

:= πsk in the target t – which is then adapted to reflect the target domain
statistics (Eq. (3.6)).
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3.7.2 Semi-supervised Learning

Beyond learning from annotated data in different but related domains, the proposed
framework can also be applied in a SSL context to learn from unlabelled data in the
same domain to improve performance and/or reduce annotation requirement. Specifi-
cally, images j with known annotations are encoded as described in Section 3.4, while
those without annotation are set to αfgj = 0.1 ∀j, meaning that all topics/classes may
potentially occur, but it expects few simultaneously within one image. Unknown im-
ages can include those from the same pool of classes but without annotation (for which
the posterior q(θ) will pick out the present classes), or those from a completely disjoint
pool of classes (for which q(θ) will encode only background).

3.8 Experiments

3.8.1 Datasets, Features and Settings

Datasets This section evaluates the proposed model on three datasets, PASCAL
VOC [18], ImageNet [19] and YTO video [40]. The challenging PASCAL VOC 2007
dataset is now widely used for WSOL. A number of variants are used: VOC07-20 con-
tains all 20 classes from VOC 2007 training set as defined in [90] and was used in
[43, 90, 91]; VOC07-6×2 contains 6 classes with Left and Right poses considered as
separate giving 12 classes in total and was used in [42, 43, 44, 46, 90, 91]. The former
obviously is more challenging than the latter. Note that VOC07-20 is different to the
Pascal07-all defined in [42] which actually contains 14 classes and uses the other 6 as
fully annotated auxiliary data. It is called VOC07-14 for consistency, but does not use
the other 6 auxiliary classes.

To evaluate the proposed method in a larger-scale setting, this thesis selects all
images with bounding box annotation in the ImageNet dataset containing 3624 object
categories as in [46].

This section also evaluates the proposed model on videos although it is designed
primarily for individual images and does not exploit motion information during learn-
ing. Only a simple temporal smoothing post-processing step is introduced (see Sec-
tion 3.5).YTO dataset [40] is a weakly annotated dataset composed of 10 object classes
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in videos from YouTube. These 10 classes are a subset of the 20 VOC classes, which
facilitate domain transfer experiments.

Features By default, the proposed method uses only a single appearance feature,
namely SIFT to compare directly with most prior WSOL work which uses the same
feature. Given an image j, the proposed model computesNj 128-bin SIFT descriptors,
regularly sampled every 5 pixels along both directions, and quantises them into a 2000-
word codebook using K-means clustering. Differently to other bag-of-words (BoW)
approaches [183, 184] which then discard spatial information entirely, the presented
method then represents each image j by the list of Nj visual words and corresponding
locations {xi, lai, lbi}Nj

i=1 where {lai, lbi} are the coordinates of each word.
This thesis additionally extracts two more BoW features at the same regular grid

locations to test the feature fusion performance. They are: (1) Colour-LAB: Colour
provides complementary information to SIFT gradients. The proposed method quan-
tises colour histograms into three channels (8,16,16) of LAB space and concatenate
them to produce a 40 dimensional feature vector. Visual words are then obtained by
quantising the feature space using K-means with K=500. (2) Local Binary Pattern
(LBP) [222]: 52 bin LBP feature vectors are computed and quantised into a 500-bin
histogram.
Settings and implementation details For the proposed model, the model set the
foreground topic number Kfg to be equal to the number of classes, and Kbg = 20 for
background topics. α is set to 0 or 1 as discussed in Section 3.4. and π0 is initialised
by Eq. 3.8 as described in Section 3.6. µ0 is initialised with the central of the image
area. Λ0 is initialised from the half size of the image area. This thesis run Eqs. (3.4)-
(3.6) for a fixed 100 VMP iterations. The localisation performance is measured using
CorLoc [40, 46]: an object is considered to be correctly localised in a given image if the
overlap between the localisation box and the ground-truth (any instance of the target
class) is greater than 50%. The CorLoc accuracy is then computed as the percentage
of correctly localised images for each target class. The same measure has been used in
all methods compared in conducted experiments.
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3.8.2 Comparison with State-of-the-art

3.8.2.1 Results on VOC Dataset

Competitors This thesis compare the proposed joint modelling approach to the fol-
lowing state-of-the-art competitors:

Deselaers et al. [42] A CRF-based multi-instance approach that localises object in-
stances while learning object appearance. They report performance both with
a single feature (GIST) and four appearance features (GIST, colour histogram,
BoW of SURF, and HOG).

Pandey and Lazebnik [44] They adapt the FS deformable part-based models to address
the WS localisation problem.

Siva and Xiang [90] A greedy search method based on Genetic Algorithm to localise
the optimal object bounding box location against a costing function combining
the object saliency, intra-class and inter-class cues.

Siva et al. NM [43] A simple Negative Mining (NM) approach which shows that inter-
class is a stronger cue than the intra-class one when used properly.

Siva et al. OS [218] The NM approach above is extended to mine Objective Saliency
(OS) information from a large corpus of unlabelled image. This can be considered
as a hybrid of the object saliency approach in [69] and the NM work in [43].

Shi et al. [91] A ranking based transfer learning approach using an auxiliary dataset to
score each candidate bounding box location in an image according to the degree
of overlap with the unknown true location.

Zhu et al. [223] An unsupervised saliency guided approach to localise an object in a
weakly labelled image in a multiple instance learning framework.

Tang et al. [46] An optimisation-centric approach that uses a convex relaxation of the
MIL formulation.

Note that a number of the competitors [42, 43, 46, 90, 91] used an additional auxil-
iary dataset that the proposed model does not use. Objectness trained on auxiliary data
was required by [42, 43, 46, 90, 91]. Although Shi et al. [91] evaluated all 20 classes,
a randomly selected 10 were used as auxiliary data with bounding-boxes annotation.
Pandey and Lazebnik [44] set aspect ratio manually and/or performed cropping on the
obtained bounding-boxes. Note that Cabral et al. [193] also provides a mechanism for
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recovering the location of objects in images by decoupling appearance descriptions of
co-occurring classes. Unlike [193], which focus on the task of multi-label image clas-
sification, this work proposes an elaborately designed model for weakly supervised
object localisation task.

Method
Initialisation Refined by detector

6×2 14 20 6×2 14 20

Deselaers et al. [42]
a. single feature 35 21 - 40 24 -
b. all four features 39 22 - 50 28 -

Pandey and Lazebnik [44] ∗

a. before cropping 36.7 20.0 - 59.3 29.0 -
b. after cropping 43.7 23.0 - 61.1 30.3 -

Siva and Xiang [90] 40 - 28.9 49 - 30.4
Siva et al. NM [43] 37.1 - 29.0 46 - -
Siva et al. OS [218] 42.4 - 31.1 55 - 32.0
Shi et al. [91] + 39.7 - 32.1 - - -
Zhu et al. [223] - - - - 31 -
Tang et al. [46] 39 - - - - -
Cinbis et al. [224] - - - - 38.8
Our-Sampling 50.8 32.2 34.1 65.5 33.8 36.2
Our-Gaussian 51.5 30.5 31.2 66.1 32.5 33.4
Our-Sampling+prior 51.2 33.4 36.1 65.9 35.4 38.3
Our-Gaussian+prior 51.8 31.1 33.5 66.7 33.0 35.8

Table 3.1: Comparison with state-of-the-art competitors on the three variations of the
PASCAL VOC 2007 dataset. ∗ Requires aspect ratio to be set manually. + Require 10 out of the
20 classes fully annotated with bounding-boxes and used as auxiliary data.

Initial localisation Table 3.1 shows that for the initial annotation accuracy the pro-
posed model consistently outperforms all competitors over all three VOC variants,
sometimes by big margins. This is mainly due to the unique joint modelling approach
taken by the proposed method, and its ability to integrate prior spatial and appearance
knowledge in a principled way. Note that the prior knowledge is either based on first
principle (spatial and appearance) or computed from the data without any additional
human intervention (appearance). The proposed two object localisation methods (Our-
Sampling and Our-Gaussian) vary in performance over different-sized datasets. Our-
Gaussian performs better in the relatively simple datasets (6×2) where most images
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contain only one object, because the proposed Gaussian location model can compact
objects easily in this case. In contrast, Our-Sampling is better in the more complicated
situation (20 classes) where many objects co-existing in one image is more common.
Refined by detector After the initial annotation of the weakly labelled images, a
conventional strong object detector can be trained using these annotations as ground
truth. The trained detector can then be used to iteratively refine the object location.
This thesis follows [44, 90] in exploiting a deformable part-based model (DPM) de-
tector1 [16] for one iteration to refine the initial annotation. Table 3.1 shows that again
the proposed model outperforms almost all competitors by a clear margin for all three
datasets (see the appendix A for more detailed per-class comparisons). Very recently,
[224] achieved similar performance by training a multi-instance SVM with a more
powerful fisher vector based representation.
With appearance similarity prior As described before, the proposed framework
can exploit the appearance similarity prior across classes. Although the actual ap-
pearance similarity between classes is hard to calculate, the proposed model can ap-
proximate it by computing the relatedness using WordNet semantic tree [225]. Figure
3.4 shows the pairwise relatedness among 20 classes, which is generated using the
Lin distance of [200]. The diagonal of the matrix verifies that classes are most sim-
ilar to themselves. Leaf nodes (blue) correspond to the classes of VOC-20. Classes
that inherit from the same subtree should show more similar appearance. A pairwise
similarity matrix is then calculated from the tree structure and used to correlate their
appearance as explained in Section 3.6. The bottom two rows of Table 3.1 show the
localisation accuracy with the appearance similarity prior. It clearly shows that the
prior improves the performance of both variants of the proposed model for all experi-
ments. It is interesting to note that the performance is improved more on VOC-20 than
VOC-6×2. This is because there is more opportunity to share related appearance as
the number of classes increases. Categories in 6×2 are generally more dissimilar, so
there is less benefit to the correlation.
What has been learned Figure 3.5 gives examples of the localisation results and
illustrates what has been learned for the foreground object classes. For the latter, this
section shows the response of each learned object topic (i.e. the posterior probability

1Version 3.0 is used for fair comparison against most published results obtained using the same
version.
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Figure 3.4: (a) A hierarchical structure of the 20 PASCAL VOC classes using Word-
Net. (b) The class similarity matrix.

of the topic given the visual word) as a gray-level image, or heat map (the brighter,
the higher probability that the object is present at each image location). These ex-
amples show that the foreground topics indeed capture what each object class looks
like and can distinguish it from the background and between different object classes.
For instance, Figure 3.5(c) shows that the motorbike heat map is quite accurately se-
lective, with minimal response obtained on the other vehicular clutter. Figure 3.5(e)
indicates how the Gaussian can sometimes give a better bounding box. The opposite
is observed in Figure 3.5(f) where the single Gaussian assumption is not ideal when
the foreground topic has less a compact response. Selectivity is illustrated by Fig-
ure 3.5(c,d), Figure 3.5(h,i) and Figure 3.5(g,k), which show the same images, but
with detection results for different co-occurring objects. In each case, the relevant ob-
ject has been successfully selected while “explaining away” the potentially distracting
alternative. The presented method may fail if the background clutter or objects of no
interest dominates the image (Figure 4(l,m,u)). For example, in Figure 3.5(l), a bridge
structure resembles the boat in Figure 3.5(a) resulting strong response from the boat
topic, whilst the actual boat, although picked up, is small and overwhelmed by the false
response.

A key strength of the proposed framework is explicit modelling of background
without any supervision. This allows background pixels to be explained, reducing
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Figure 3.5: Top row in each subfigure: examples of object localisation using our-
sampling and our-Gaussian. Bottom row: illustration of what is learned by the object
(foreground) topics via heat map (brighter means object is more likely). The first
four rows show some examples of PASCAL VOC and last two rows are selected from
ImageNet.

confusion with foreground objects and hence improving localisation accuracy. This
is illustrated in Figure 3.6 via plots of the background topic response (heat map). It
illustrates qualitatively that some background topics are often correlated with common
semantic background components such as sky, grass, road and water, despite none of
these being annotated.
Weakly supervised detector The ultimate goal of WSOL is to learn a WS detector.
This is achieved by feeding the localised objects into an off-the-shelf detector training
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model. The deformable part based model (DPM) in [16] is used and this WS detector
is compared against a FS one with the same DPM model (version 3.0). Specifically,
Table 3.2 compares the mean average precision (mAP) of detection performance on
both VOC-6×2 and VOC-20 test datasets among previous reported WS detector re-
sults, ours and the FS detector [16]. Due to the better localisation performance on the
WS training images, the proposed approach is able to reduce the gap between the WS
detector and the FS detector. The detailed per-class result is included in the appendix
A and it shows that for classes with high localisation accuracy (e.g. bicycle, car, mo-
torbike, train), the WS detector is often as good as the the FS one, whilst for those
with very low localisation accuracy (e.g. bottle and pottedplant), the WS detector fails
completely.
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Figure 3.6: Illustration of the learned background topics.

Data Deselaers [42] Pandey [44] Siva [90] Ours Fully Supervised [16]

6×2 21 20.8 - 26.1 33.0

20 - - 13.9 17.2 26.3

Table 3.2: Performance of strong detectors trained using annotations obtained by dif-
ferent WSOL methods
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3.8.2.2 Results on ImageNet Dataset

Method Initialisation

Alexe et al. [69] 37.4

Tang et al. [46] 53.2

Our-Sampling 57.6

Table 3.3: Initial annotation accuracy on ImageNet dataset

Table 3.3 shows the initial annotation accuracy of different methods for the much larger
3624-class ImageNet dataset. Note that the result of Alexe et al. [69] is taken from
the Table 4 in [46]. Although the annotation accuracy could be further improved by
training an object detector to refine the annotation as shown in Table 2, this step is
omitted in current experiment as none of the competitors attempted it. For such a large
scale learning problem, loading all the image features into the memory is a challenge
for the proposed joint learning method. A standard solution is taken, that is, to process
in batches of 100 classes. Joint learning is performed within each batch but not across
batches; the proposed model is thus not used to its full potential. Table 3.3 shows that
the proposed method achieves the best result (57.6%). Note that [69] is a very simple
baseline as it simply takes the top-scoring objectness box. Recently more sophisticated
transfer-based techniques [38] and [226] were evaluated on ImageNet. But their results
were obtained on a different subset of ImageNet, thus not directly comparable here.

To investigate the effect of the similarity prior in this larger dataset, the presented
method randomly chooses 500 small (containing around 100 images each) leaf-node
classes from ImageNet for joint-learning with an inter-class similarity prior. This was
the largest dataset size that could simultaneously fit in the memory of the used plat-
form1. Performing joint learning with inter-class correlation on this ImageNet subset,
the proposed model achieves 58.8% annotation accuracy on the 500 classes compared
to 55.4% without using the similarity prior.

1The proposed learning algorithm could potentially be modified to process all 3624 classes in
batches.
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3.8.2.3 Results on YouTube-object Dataset

The main competitors on YTO are [40] and [93]. Prest et al. [40] first performed spatio-
temporal segmentation of video into a set of 3D tubes, and subsequently searched for
the best object location. Very recently, [93] simultaneously localised objects of the
same class across a set of video clips (co-localisation) with the Frank-Wolfe Algo-
rithm. Note that there are some recently published studies on WS object segmentation
from video [213]. This is not directly comparable as they did not report results based
on the standard YTO bounding-box annotations. Two variants of the proposed model
are compared here: Our-sampling is the method evaluated above for individual im-
ages. Used here, it ignores the temporal continuity of the video frames in a video.
Our-smooth is the simple extension of Our-sampling for video object localisation. As
described in Section 3.5, temporal information is used to enforce a smooth change of
object location over consecutive frames. The way temporal information is exploited is
thus much less elaborative than that in [40]. For all methods compared, this section
evaluates localisation performance on the key frames which are provided with ground
truth labels by [40].

Table 3.4 shows that even without using any temporal information and operating on
key frames only, Our-sampling outperforms the method in [40]. Our-Smooth further
improves the performance and the localisation accuracy of 32.2% is very close to the
upper bound result (34.8%) suggested by [40], which is the best possible result from
oracle tube extraction. Figure 3.7 shows some examples of video object localisation
using Our-Smooth. It is worth to note that all these results have been exceeded (50.1%
accuracy) recently by a model purposefully designed for video segmentation [227],
which performed much more intensive spatio-temporal modelling and used superpixel
segmentation within each frame and motion segmentation across frames.
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Categories [40] [93] Our-Sampling Our-Smooth [227]

aeroplane 51.7 27.5 40.6 45.9 65.4

bird 17.5 33.3 39.8 40.6 67.3

boat 34.4 27.8 33.3 36.4 38.9

car 34.7 34.1 34.1 33.9 65.2

cat 22.3 42.0 35.3 35.3 46.3

cow 17.9 28.4 18.9 22.1 40.2

dog 13.5 35.7 27.0 27.2 65.3

horse 26.7 35.6 21.9 25.2 48.4

motorbike 41.2 22.0 17.6 20.0 39.0

train 25.0 25.0 32.6 35.8 25.0

Average 28.5 31.1 30.1 32.2 50.1

Table 3.4: Performance comparison on YouTube-object

Figure 3.7: Examples of video object localisation
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3.8.3 Bayesian Domain Adaptation

This thesis next evaluates the potential of the proposed model for WS cross-domain
transfer learning using the YTO and VOC07-10 as the two domains (the designed
method chooses the same 10 classes from the VOC07-20 as in YTO). One domain
contains continuous and highly varying video data, and the other contains high res-
olution but cluttered still images. This thesis considers following two non-transfer
baselines:

YTO, VOC The first baseline is the original performance on YTO and VOC07-10
classes, solely using target domain data. YTO is exactly the same as Our-Sampling
described in Section 3.8.2.3, while VOC is trained with 10 classes from VOC07-
20 using the same setting described in Section 3.8.2.1.

All→YTO, All→VOC The second baseline simply combines the training data of
YouTubeObject and VOC. One model trained with these two domains’ data is
used to localise object on YouTubeObject (A→Y) and VOC07-10 (A→V).

The proposed model considers two directions of knowledge transfer between YTO
and VOC07-10, and compare the above baselines with the presented domain adapta-
tion method: V→Y is initialised with an appearance prior transferred from VOC07-10,
and adapted on the YTO data. On the contrary, Y→V adapts the YTO appearance prior
to VOC07-10. Table 3.5 shows that the proposed Bayesian domain adaption method
performs better than the baselines on both YTO and VOC07-10. In contrast, the stan-
dard combination (A→Y and A→V) shows little advantage over solely using target
domain data. Note that unlike prior studies of video→image [40] or image→video
[97] that adapt detectors with fully labelled data, the interested task is to adapt weakly
labelled data.

This thesis also varies the amount of target domain data and evaluate its effect on
the domain transfer performance. Figure 3.8 shows that the presented model provides
a bigger margin of benefit given less target domain data. This can be easily under-
stood because with a small quantity of training examples there is insufficient data to
learn the object appearance well and the impact of the knowledge transfer is thus more
significant.
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Categories
YTO VOC

Y A→Y V→Y V A→V Y→V

aeroplane 40.6 40.8 45.8 57.5 58.1 58.7
bird 39.8 40.3 38.8 29.8 30.5 33.7
boat 33.3 33.4 38.8 28.0 27.9 29.0
car 34.1 33.9 33.6 39.1 39.1 44.4
cat 35.3 35.3 38.8 59.0 59.3 58.6

cow 18.9 19.0 27.7 36.7 36.9 38.9
dog 27.0 27.1 26.7 46.5 47.4 48.3
horse 21.9 22.1 26.1 53.2 53.5 55.5
motorbike 17.6 17.9 17.5 55.6 55.2 58.1
train 32.6 32.6 36.2 54.7 54.5 56.3

Average 30.1 30.2 33.0 46.0 46.2 48.1

Table 3.5: Cross-domain transfer learning results. The proposed transfer learning strat-
egy (V→Y and Y→V) shows substantial improvements over the standard combina-
tions (A→Y and A→V) and the baselines (Y and V).
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Figure 3.8: Domain adaptation provides more benefit with fewer target domain sam-
ples. Specifically, the presented model (V→Y and Y→V) provides a bigger margin of
benefit given less target domain data.
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3.8.4 Semi-supervised Learning

One important advantage of the proposed model is the ability to utilise unlabelled data
to further reduce the manual annotation requirements. To demonstrate this the pro-
posed model randomly selects 10% of the VOC07-6×2 data as weakly labelled train-
ing data, and then varies the additional unlabelled data used. Note that 10% labelled
data corresponds to around only 5 weakly labelled images per class for the VOC07-

6×2 dataset, which is significantly less than what any previous method has exploited.
Two evaluation procedures are considered: (i) Evaluating localisation performance on
the initially annotated 10% (standard WSOL task); and (ii) WSOL performance on the
held out VOC07-6×2 test set1. The latter corresponds to an online application scenario
where the localisation model is trained on one database and needs to be applied online
to localise objects in incoming weakly labelled images. This thesis varies the addi-
tional data across a combination of four conditions: (1) 6R: add the remaining 90% of
data for the 6 target classes but without labels, (2) 100U : add all images from 100 un-
related ImageNet classes without labels, (3) 6R+ 100U : add both of the above. There
are two questions to answer: Whether the model can exploit the related data when it
comes without labels (6R), and whether it can avoid being confused by a vast quantity
of unrelated data (100U).

The results are shown in Table 3.8, where the ratio of relevant to irrelevant data in
the additional unlabelled samples is shown in the second column. From the results, this
thesis can draw the following conclusions: (1) As expected, the model performs poorly
with little data (10%L). However it improves significantly with some relevant but unla-
belled data (the standard SSL setting, 10%L+6R). Moreover, this SSL result is almost
as good as when all the data are labelled (100%L). (2) If only irrelevant data are added
to the small labelled seed, not only does the performance not degrade, but it increases
noticeably (10%L vs. 10%L+100U). (3) If both relevant and irrelevant data are added
– corresponding to the realistic scenario where an automatic process gathers a pool of
potentially relevant data which, without any screening, will be a mix of relevant and
irrelevant data to the target problem. In this case the performance improves to not far
off the fully annotated case (10%L vs. 10%L+6R+100U vs. 100%L). As expected,

1To localise objects in a test image, the proposed model only needs to iterate Eqs. (3.4)-(3.5) instead
of (3.4)-(3.6). That is, the object appearance is considered fixed and does not need to be updated. This
both reduces the cost of each iteration and also makes convergence more rapid.
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the performance of 10%L+6R+100U is weaker than 10%L+6R – if one manually goes
through the unlabelled data and removes the irrelevant ones and leave only the relevant
ones, it would certainly benefit the model. But it is noted that the decrease in perfor-
mance is small (47.1% to 43.5%). (4) If the irrelevant data are added to the fully an-
notated dataset, the performance improves slightly (100%L vs. 100%L+100U), which
shows that the proposed model is robust to this potential distraction from the large
amount of unlabelled and irrelevant data. This is expected in SSL, which typically
benefits only when the amount of labelled data are small. These results show that the
proposed approach has good promise for effective use in realistic scenarios of learning
from only few weak annotations and a large volume of only partially relevant unla-
belled data. This is illustrated visually in Figure 3.9, where unlabelled data helps to
learn a better object model. Finally, the similarly good results on the held-out test
set verify that the proposed model is indeed learning a good generalisable localisation
mechanism and is not over-fitted to the training data.

VOC07-6× 2 Data for Localisation

Data for Training ratio of R:U 10%L Test set

10%L - 27.1 28.0

10%L+6R 1 47.1 42.3

10%L+100U 0 35.8 32.4

10%L+6R+100U 0.04 43.5 38.1

100%L - 50.3 46.2

100%L+100U 0 50.7 47.5

Table 3.6: Localisation performance of semi-supervised learning. Unlabelled data
helps to learn a better object model.

3.8.5 Computational Cost

The proposed model is efficient both in learning and inference, with a complexity
O(NMK) for N images, M observations (visual words) per image, and K classes.
The experiments were done on a 2.6GHz PC with a single-threaded Matlab implemen-
tation. Training the model on all 5,011 VOC07 images required 3 hours and a peak
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10%L 10%L+90%U 10%L+AllU 100%L

Figure 3.9: Unlabelled data improves foreground heat maps.

of 6 GB of memory to learn a joint model for 20 classes. The proposed Bayesian
topic inference process not only enables prior knowledge to be used, but also achieves
10-fold improvements in convergence time compared to EM inference used by most
conventional topic models with point-estimated Dirichlet topics. Online inference of a
new test image took about 0.5 seconds. After model learning, for object localisation in
training images, direct Gaussian localisation is effectively free and heat-map sampling
took around 0.6 seconds per image. These statistics compare favourably to alterna-
tives: [42] reported 2 hours to train 100 images; while the Matlab implementations of
[43], [90] and [186] took 10, 15 and 20 hours respectively to localise objects for all
5,011 images.

3.9 Summary

This chapter has presented an effective and efficient model for WSOL. The proposed
approach surpasses the performance of all prior methods and obtains state-of-the-art
results thanks to three key properties: 1) jointly learning a model for all classes, 2)
a Bayesian formulation, and 3) an explicit notion of the spatial location of an object.
Moreover, it is also possible to perform SSL to obtain an effective localiser with only a
fraction of the annotated training data. Moreover, the unlabelled data need not even be
sanitised for relevance to the target classes. In this study the proposed model only used
simple top-down cues via the proposed Bayesian priors; however this formulation has
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great potential to enable more scalable learning through cross-class and cross-domain
transfer via priors [34, 38, 91]. These contributions bring us significantly closer to
the goal of scalable learning of strong models from weakly-annotated non-purpose
collected data on the Internet.

However, detecting objects cannot tell us the whole story in the image content. One
real world image is more than “what objects are in the image”, but also “how do they
look like”. Object detection itself is not sufficient to describe image contents. Explor-
ing attribute is hence desired to provide rich descriptive explanations for visual content.
In addition, this framework is not ready for modelling complex visual scenes relation
from the weak label. For example, an unlimited number of attributes can co-exist on
one object. These are not considered in this chapter. The next chapter addresses these
limitations by formulating a non-parametric Bayesian model. The proposed approach
aims to model and learn the appearance of object and attribute classes as well as their
association, where only given weak image-level annotations of objects and attributes
without locations or associations between them. The new method also allows an in-
finite number of factors to model the complex relation among objects, attributes and
background clutters.
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Chapter 4

Weakly Supervised Learning of
Objects, Attributes and their
Associations

4.1 Overview

As discussed in Section 1.1, a real world image contains complex information such
as objects, attributes and object-attribute associations. The preceding chapter has de-
scribed a Bayesian joint topic model to jointly learn all object classes and image back-
grounds for object detection. This approach faces three main limitations: First, object
detection only provides partial information of image contents. To describe the ob-
ject appearance more semantically, visual attribute is a powerful cue for representing
generic objects. The previous chapter mainly focused on detecting objects in given im-
ages. Second, the approach described in chapter 3 addresses WS object detection prob-
lem by solving two sub-problems simultaneously: 1) locating the objects of interest in
each training image, 2) training an object detector based on the annotation results from
1). It indicates that a separate classic object detection model is required to perform the
whole process. Therefore, a holistic approach is preferred to deal with a new test im-
age directly. Third, it is non-trivial to model complicated visual relation by chapter 3’s
approach directly, especially when considering objects and attributes simultaneously.
This is because the parametric model is hard to explain a large number of factors (e.g.
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objects, attributes, and infinite latent factors) from image-level annotations. The fact
that a unlimited number of attributes can describe the same instance (e.g. one object or
background region) is contrary to the assumption of prior distribution in the previous
chapter. These limitations prevent the previous model from generalising to discover
complex semantics and understand image content comprehensively.

In order to overcome these limitations, a new approach is proposed in this chapter
to model object, attribute, and their associations from weakly labelled images. In par-
ticular, when humans describe images they tend to use combinations of nouns and ad-
jectives, corresponding to objects and their associated attributes respectively. To gen-
erate such a description automatically, one needs to model objects, attributes and their
associations. Conventional methods require strong annotations of object/attribute loca-
tions, making them less scalable. The proposed model aims to exploit weakly labelled
images, such as those widely available on media sharing sites (e.g. Flickr), where only
image-level labels (either object or attributes) are given, without their locations and
associations. This is achieved by introducing a novel WS non-parametric Bayesian
model. Once learned, given a new image, the proposed model can describe the image,
including objects, attributes and their associations, as well as their locations and seg-
mentation (see Figure 4.1). Extensive experiments on benchmark datasets demonstrate
that the proposed WS model performs at par with strongly supervised models on tasks
such as image description and retrieval based on object-attribute associations.

Modelling weakly labelled images using the proposed framework provides a num-
ber of benefits: (i) By jointly learning multiple objects, attributes and background
clutter in a single framework, ambiguity in each is explained away by knowledge of
the other. (ii) The infinite number of factors provided by the non-parametric Bayesian
framework allows structured background clutter of unbounded complexity to be ex-
plained away. (iii) A sparse binary latent representation of each patch allows an un-
limited number of attributes to co-exist on one object. The aims and capabilities of
the proposed approach are illustrated schematically in Figure 4.1, where weak annota-
tion in the form of a mixture of objects and attributes is transformed into objects and
attributes associations with locations.

The remainder of this chapter is organised as follows: Section 4.2 presents the
proposed WS-SIBP. This includes the explanation of model learning and inference
for test data. The various applications of the learned model are also discussed in this
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section. Experimental results are reported in Section 4.3. Finally, a summary is given
in Section 4.4.
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Figure 4.1: Comparing the proposed WS approach to object-attribute association learn-
ing to the conventional strongly supervised approach.

4.2 Weakly Supervised Stacked Indian Buffet Process

4.2.1 Image Representation

Given a set of images labelled with image-level object and attribute labels without ex-
plicit specifying which attribute is associated with which object, the presented method
aims to learn a model that, given a unseen new image, segments each object in an im-
age and assign both object and attribute labels to it. As in most previous semantic seg-
mentation works, the proposed approach first decomposes each image into superpixels
which are over-segmented image patches that typically contain object parts. The prob-
lem of joint object and attribute annotation and segmentation thus boils down to multi-
label classification of each superpixel, from which various tasks such as image-level
annotation, object-attribute association, and object segmentation can be performed.

Each image j in a training set is decomposed into Nj super-pixels using a recent
hierarchical image segmentation algorithm [105]1. Each segmented superpixel is rep-

1The proposed model set the segmentation threshold in the algorithm to 0.1 to obtain a single over-
segmentation from the hierarchical segmentations for each image
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resented using two types of normalised histogram features: SIFT and Color. (1) SIFT:
the feature is extracted by regular grid (every 5 pixels) colorSIFT [228] at four scales.
A 256 component GMM model is constructed on the collection of ColourSIFTs from
all images. The presented method computes Fisher Vector + PCA for all regular points
in each superpixel following [229]. The resulting reduced descriptor is 512-D for every
segmented region. (2) Colour: the image is converted to quantised LAB space 8×8×8.
A 512-D color histogram is then computed for each patch. The final normalised 1024-
D feature vector concatenates SIFT and Colour features together.
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Figure 4.2: The probabilistic graphical model representing the proposed WS-MRF-
SIBP. Shaded nodes are observed.

4.2.2 Model Formulation

This chapter proposes a non-parametric Bayesian model that learns to describe images
composed of super-pixels from weak image-level object and attribute annotation. In
the proposed model, each superpixel is associated with an infinite latent factor vec-
tor indicating if it corresponds to (an unlimited variety of) unannotated background
clutter, or an object of interest, and what set of attributes are possessed by the object.
Given a set of images with weak labels and segmented into super-pixels, the proposed
model needs to learn: (i) which are the unique superpixels shared by all images with a
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particular label, (ii) which superpixels correspond to unannotated background, and (iii)
what is the appearance of each object, attribute and background type. Moreover, since
multiple labels (attribute and object) can apply to a single superpixel, the model needs
to disambiguate which aspects of the appearance of the superpixel are due to each
of the (unknown) associated object and attribute labels. To address the WSL tasks
the presented method builds on the IBP [189] and first introduce in Section 4.2.2.1 a
WS-SIBP to model data represented as bags (images) of instances (superpixels) with
bag-level labels (image annotations). This is analogous to the notion of documents in
topic models [179]. Furthermore, to fully exploit spatial and inter-factor correlation,
two types of MRFs are integrated (see Section 4.2.2.2), resulting in the full model
termed WS-MRF-SIBP as illustrated in Figure 4.2.

4.2.2.1 WS-SIBP

This model aims to associate each image/superpixel with a latent factor vector whose
elements will correspond to objects, attributes and/or unannotated attribute/background
present in that image/superpixel. Let each image j represented as bags of superpixels
X(j) = {X(j)

i· }, where the notation Xi· means the vector of row i in matrix X , i.e. the
1024-D feature vector representing the i-th superpixel, and i ∈ 1 . . . Nj . Assuming
there are Ko object categories and Ka attributes in the provided image-level annota-
tions, they are represented by the first Koa = Ko + Ka latent factors. In addition, an
unbounded number of further factors are available to explain away background clutter
in the data, as well as discover undefined latent attributes. At training time, the model
assumes a binary label vectorα(j) for objects and attributes is provided for each image
i. So α(j)

k = 1 if attribute/object k is present, and zero otherwise. Also α(j)
k = 1 for

all k > Koa. That is, without any labels, it assumes all background/latent attribute
types can be present. With these assumptions, the generative process (illustrated in
Figure 4.2) for the image i is as follows:

For each latent factor k ∈ 1 . . .∞:

1. Draw an appearance distribution mean Ak· ∼ N (0,σ2
AI).

For each image j∈ 1 . . . J :
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1. Draw a sequence of i.i.d. random variables b(j)
1 , b

(j)
2 · · · ∼Beta(ϑ, 1),

2. Construct an image prior θ(j)
k =

k∏
t=1

b
(j)
t ,

3. Input weak annotation α(i)
k ∈ {0, 1},

4. For each superpixel i ∈ 1 . . . Nj:

(a) Sample state of each latent factor k: y(j)
ik ∼Bern(θ

(i)
k α

(i)
k ),

(b) Sample superpixel appearance: X(i)
j· ∼ N(Y

(i)
j· A, σ

2I).

where N, Bern and Beta respectively correspond to Normal, Bernoulli and Beta distri-
butions with the specified parameters. The Beta-Bernoulli and Normal-Normal conju-
gacy are chosen because they allow more efficient inference. ϑ is the prior expected
sparsity of annotations and σ2 is the prior variance in appearance for each factor.

This generative process encodes the assumptions that the available factors for each
superpixel are determined by the image level labels if given (generative model for Y);
and that multiple factors come together to explain each superpixel (generative model
for X given Y).
Joint probability: Denote hidden variables byH = {θ(1), . . . ,θ(J),Y (1), . . . ,Y (J),

A}, J images in a training set by X = {X(1), . . . ,X(J)}, and parameters by Π =

{ϑ, σA, σ,α}. Then the joint probability of the variables and data given the parameters
is:

p(H ,X|Π) =

J∏
i=1

( ∞∏
k=1

(
p(π

(j)
k |ϑ)

Nj∏
i=1

p(y
(j)
ik |π

(j)
k , α

(j)
k )
)

·
Nj∏
i=1

p(X
(j)
i· |Z(j)

i· ,A, σ)

)
·
∞∏
k=1

p(Ak·|σ2
A). (4.1)
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Learning in the presented model (detailed in Section 4.2.3) aims to compute the
posterior that p(H|X,Π) for: disambiguating and localising all the annotated (α(j))
objects and attributes among the superpixels (inferring Y (j)

i· ), inferring the attribute
and background prior for each image (inferring θ(j)), and learning the appearance of
each factor (inferring Ak·).

4.2.2.2 WS-MRF-SIBP

Now the presented method generalises the i.i.d. model WS-SIBP to WS-MRF-SIBP
by introducing two types of factor correlation.
Spatial MRF for smoothing factor assignments across superpixels: As mentioned
above, each superpixel’s latent factors are so far drawn from the image prior θjk –
independently of their neighbours (Eq. (4.1)). Thus spatial structure is ignored in WS-
SIBP, although adjacent superpixels are known to be strongly correlated in real images
[190]. Inspired by the successful use of random fields for capturing the spatial coher-
ence of image region labels [190, 191, 192], the presented approach introduces a MRF
with connections between spatially adjacent nodes (superpixels). Specifically, the fol-
lowing MRF potential Φ [190, 220] is introduced to the generative process for Y to
correlate the superpixel factors drawn in image j spatially:

Φ(Y
(j)
·k ) = exp

∑
i,m∈Nj

βI(y
(j)
ik = y

(j)
mk), (4.2)

where i,m ∈ Nj enumerates node pairs i,m that are spatial neighbours in image j.
The indicator function I returns 1 when its argument is true, i.e., when neighbouring
superpixels have the same assignment for factor k. β is the coupling strength parameter
of the MRF, which controls how likely they have the same label a priori. The initial
WS-SIBP formulation can be obtained by setting β = 0. Spatial MRF is encoded for
all given Koa and newly discovered factors.
Factorial MRF within superpixel: Although individual factors are now correlated
spatially, the current method does not yet model any inter-factor co-occurrence statis-
tics within a single superpixel (as in most other MRF applications [190, 191]). How-
ever, exploiting this information (e.g., person superpixels more likely to share attribute
clothing, than metallic) is important, especially in the ambiguous WSL setting. To
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represent these inter-factor correlations, the proposed approach introduces a factorial
MRF Θ via the following potential on the generative process for Y:

Θ(Y
(j)
i· ) = exp

∞∏
k,l

Θ(y
(j)
ik , y

(j)
il ) (4.3)

Θ(y
(j)
ik , y

(j)
il ) =

{
0 if k = l

ρM(k, l) otherwise,
(4.4)

where ρ controls the importance of the factorial MRF, and matrix M encodes inter-
factor correlations. In the traditional strongly-supervised scenario, M can be trivially
learnt from the fully labelled annotations. In the WSL scenario, M cannot be deter-
mined directly. It will be discussed about how to learn M in Section 4.2.3.
WS-MRF-IBP Prior: Overall, combining the two MRFs, the latent factor prior

p(Y (j)|θ(j), α(j)) =
∞∏
k=1

Nj∏
i=1

p(y
(j)
ik |θ

(j)
k , α

(j)
k )

used by Eq. (4.1), is now replaced by:

p(Y (j)|θ(j), α(j), β, ρ) ∝ exp
( ∞∑
k=1

Nj∑
i=1

log p(y
(j)
ik |θ

(j)
k , α

(j)
k )

+
∞∑
k=1

log Φ(Y
(j)
·k ) +

Nj∑
i=1

log Θ(Y
(j)
i· )
)
.

and the list of model parameters Π is extended to Π = {ϑ, σA, σ,α, ρ, β,M}.

4.2.2.3 Comparison with Joint Topic Model

In this section, we highlight the key differences and similarities between WS-MRF-
SIBP and the work of chapter 3.

1. Finite vs. Infinite Image prior θ is drawn from a Dirichlet distribution in the
work of chapter 3. It has a fixed dimensions K, because the dimensionality k
of the Dirichlet distribution is assumed known and fixed. In contrast, WS-MRF-
SIBP generates θ by following the infinite stick-breaking process [189], where
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each of independent random variables is drawn from Beta distribution.

2. Topic allocation In chapter 3, θ is the random parameter of a multinomial over
topics y. This assumption does not hold in the presence of both objects and
attributes. Each path is dominated by either an object or attribute topic, since
object and attributes topics compete for the same patch. In contrast, WS-MRF-
SIBP samples each y as an independent Bernoulli distribution given θ. The
object factors and attribute factors can co-exist happily.

3. Spatial structure Two spatial smoothing term are specifically designed for dif-
ferent tasks. In chapter 3, we encode the spatial location of each observation
with Normal distribution, which is to reflect the intuition that fore ground objects
tend to be compact. Thus, this is very efficient for localising objects in an im-
age. In contrast, WS-MRF-SIBP integrates MRFs to enforce spatial coherence.
We choose this because it can be further extended to capture the correlations of
factors (e.g. objects and attributes).

4.2.3 Model Learning

Exact inference for p(H|X,Π) in the proposed stacked IBP is intractable, so an ap-
proximate inference algorithm in the spirit of [189] is developed. The mean field vari-
ational approximation to the desired posterior p(H|X,Π) is:

q(H) =
J∏
j=1

(
qτ (b(j))qν(Y (j))

)
qϕ(A) (4.5)

where qτ (b
(j)
k ) = Beta(b

(j)
k ; τ

(j)
k1 τ

(j)
k2 ), qν(y

(j)
ik ) = Bernoulli(y(j)

ik ; ν
(j)
ik ), qϕ(Ak·) = N(Ak·;

ϕk,ϕk) and τ , ν, ϕ are variational parameters for b, y, A respectively. The infinite
stick-breaking process for latent factors is truncated at Kmax, so θk = 0 for k > Kmax.
A variational message passing (VMP) strategy [189] can be used to minimise the KL
divergence of Eq. (4.5) to the true posterior. Updates are obtained by deriving integrals
of the form ln q(h) = EH\h [ln p(H,X)] + C for each group of hidden variables h.
These result in the series of iterative updates given in Algorithm 1, where Ψ (·) is the
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digamma function; and q(j)
ms and Eb[log(1−

k∏
t=1

b
(j)
t )] are given in [189].

Algorithm 1: Variational Inference for WS-MRF-SIBP
1 while not converge do
2 for k = 1 to Kmax do
3

ϕk =(
1

σ2

J∑
j=1

Nj∑
i=1

ν
(j)
ik (X

(j)
i· −

∑
l:l 6=k

ν
(j)
il ϕl)) · (

1

σ2
A

+
1

σ2

J∑
j=1

Nj∑
i=1

ν
(j)
ik )−1 (4.6)

ϕk =
( 1

σ2
A

+
1

σ2

J∑
j=1

Nj∑
i=1

ν
(j)
ik

)−1
I . Update appearance term including mean and covariance.

(4.7)

4 end
5 for j = 1 to J do
6 for k = 1 to Kmax do
7

τ
(j)
k1 =ϑ+

Kmax∑
m=k

Nj∑
i=1

ν
(j)
im +

Kmax∑
m=k+1

(Nj −
Nj∑
i=1

ν
(j)
im)(

m∑
s=k+1

q
(j)
ms) (4.8)

τ
(j)
k2 =1 +

Kmax∑
m=k

(Nj −
Nj∑
i=1

ν
(j)
im)q

(j)
mk . Update image prior for every factor k. (4.9)

8 for i = 1 to Nj do
9

η =
k∑

t=1

(Ψ(τ
(j)
t1 )−Ψ(τ

(j)
t2 ))− Eb[log(1−

k∏
t=1

b
(j)
t )]−

1

2σ2
(tr(ϕk) + ϕkϕ

T
k

− 2ϕk(X
(j)
i· −

∑
l:l 6=k

ν
(j)
il ϕl)

T ) . Update each latent factor (4.10)

η′ =η +
∑

m∈N(i)

βη
(j)
mk +

∑
n:n 6=k

ρMknηin . Inferred with two types of MRF terms

(4.11)

ν
(j)
ik =

α
(j)
k

1 + exp [−η′]
. The final output indicate the sample state of each latent factor.

(4.12)
10 end
11 end
12 end
13 for j = 1 to J do
14 for i = 1 to Nj do
15

M = M + (ηji·)
T ηji· . The intra-superpixel correlation is disambiguated inferred factors (4.13)

16 end
17 end
18 end

Like [190, 191], the MRF influence is via Eqs. (4.11) and (4.12). However, while
the work of [190, 191] only considers spatial coherence, this work further models the
inter-factor correlation, which is clearly to see that it is very important for the presented
WS tasks, especially in image annotation.
Factor correlation learning: The correlation matrix M is non-trivial to estimate
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accurately in the WSL case, in contrast to the fully-supervised case where it is easy to
obtain via computing the correlation of patch-annotation. In the WSL case, it can only
be estimated a priori from image-level tags. However, this is a very noisy estimate.
For example, an image with tags furry, horse, metal, car will erroneously suggest
horse-car, furry-metal, horse-meta, etc correlations.

To address this, the approach initialises M coarsely with image-level labels as
M =

∑J
i=j(α

(j)
k )T (α

(j)
k ), and refine it with an EM process. During learning, the model

e-estimates M at each iteration using the disambiguated patch-level factors inferred by
the model, as in Eq. (4.13). Thus as the correlation estimate improves, the estimated
factors become more accurate, and vice-versa. The effectiveness of this iterative learn-
ing procedure is demonstrated in Section 4.3.3.
Efficiency: In practice, the truncation approximation means that the proposed WS-
MRF-SIBP runs with a finite number of factors Kmax which can be freely set so long
as it is bigger than the number of factors needed by both annotations and background
clutter (Kbg), i.e., Kmax � Ko + Ka + Kbg. Despite the combinatorial nature of the
object-attribute association and localisation problem, the proposed model is of com-
plexity O(JNDKmax+K2

max) for J images with N patches, D feature dimension and
Kmax truncated factors.

4.2.4 Inference for Test Data

At testing time, the appearance of each factor k, now modelled by sufficient statistics
N(Ak·;ϕ,ϕk), is assumed to be known (learned from the training data), while annota-
tions for each test image α(j)

k will need to be inferred. Thus Algorithm 1 still applies,
but without the appearance update terms (Eqs. (4.6) and (4.7)) and with α(j)

k = 1 ∀k,
to reflect the fact that all the learned object, attribute, and background types could be
present.

4.2.5 Applications of the Model

Given the learned model applied to test data, it can perform the following tasks.
Free image annotation: This is to describe an image using a list of nouns and ad-
jectives corresponding to objects and their associated attributes, as well as locating
them. To infer what objects are present in image j, the first Ko latent factors of the
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inferred θ(j) are thresholded or ranked to obtain a list of objects. This is followed by
locating them via searching for the superpixels i∗ maximising Y

(j)
ik , then thresholding

or ranking the Ka attribute latent factors in Z
(i)
j∗k to describe them. This corresponds to

a “describe this image” task.
Annotation given object names: This is a more constrained variant of the free anno-
tation task above. Given a named (but not located) object k, its associated attributes
can be estimated by first finding the location as i∗ = arg max

i
Y

(j)
ik , then the associ-

ated attributes by Y (j)
i∗k for Ko < k ≤ Ko + Ka. This corresponds to a “describe this

(named) object in an image” task.
Object+Attribute Query: Images can be queried for a specified object-attribute
conjunction< ko, ka > by searching for i∗, j∗ = arg max

i
Y

(j)
iko
·Y (j)

ika
. This corresponds

to a “find images with a particular kind of object” task.
Semantic segmentation: In this application, the presented model aims to label each
superpixel i with one of Ko learned object factors. The label of superpixel i can be
obtained by searching k∗ = arg max

k
Y

(j)
ik , where k ∈ Ko. Note that although the

annotation search space is solely objects, inference of the additional k > Ko factors
(including unannotated background or attribute annotation) can help detect objects k ∈
Ko via disambiguation. Note that unlike most WS semantic segmentation work [124,
127], the proposed model can operate with access to the whole test set. It can also
operate under an the transductive setting as those models do. Under this setting, the
appearance distribution N(Ak·;ϕk,ϕk) will be further updated by Eqs. (4.6) and (4.7)
based on the test images. The image-level label of testing data is then assigned by
the inferred factors of the proposed model or alternatively by an image classifier (see
Section 4.3.2.3).

4.3 Experiments

Extensive experiments were carried out to demonstrate the effectiveness of the pro-
posed model on three real-world applications: image annotation (see Section 4.3.1.2),
object-attribute query (see Section 4.3.1.3) and semantic segmentation (see Section 4.3.2).
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Person 1

Person 2
Aeroplane

Person 1 :  head, cloth, arm

Bounding-Box-level:

Object-level:
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Aeroplane :  metal, wing

Person :  head, cloth, arm

Aeroplane :  metal, wing

Image-level:

person, head, cloth, arm, 
aeroplane, metal, wing

Figure 4.3: Strong bounding-box-level annotation
and weak image-level annotations for aPascal are
used for learning strongly supervised models and
WS models respectively.

Person 1 Person 2Aeroplane

Person 1 :  head, cloth, arm

BoundingBox-level:

Object-level:

Image-levelA:

Person 2 :  head, cloth

Aeroplane :  metal, wing
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mutt courser hound

basset beagle bloodhound

bluetick coonhound dachshund

Entry-level: dogFigure 4.4: 43 subordinate
classes of dog are converted
into a single entry-level class
‘dog’.

4.3.1 Image Annotation and Query

4.3.1.1 Datasets and Settings

For the image annotation and query tasks, various object and attribute datasets are
available such as aPascal [22], ImageNet [177], SUN [230] and AwA [36]. This work
chooses aPascal because it has multiple objects per image; and ImageNet because
attributes are shared widely across categories.
aPascal: This dataset [22] is an attribute labelled version of PASCAL VOC 2008.
There are 4340 images of 20 object categories. Each object is annotated with a list
of 64 attributes that describe them by shape (e.g., isBoxy), parts (e.g., hasHead) and
material (e.g., isFurry). In the original aPascal, attributes are strongly labelled for
12695 object bounding boxes, i.e. the object-attribute association are given. To test
the proposed WS approach, this work merges the object-level category annotations
and attribute annotations into a single annotation vector of length 84 for the entire
image. This image-level annotation is much weaker than the original bounding-box-
level annotation, as shown in Figure 4.3. In all experiments, the proposed model uses
the same train/test splits provided by [22].
ImageNet Attribute: This dataset [177] contains 9600 images from 384 ImageNet
synsets/categories. To study WSL, this work ignores the provided bounding box an-
notation. Attributes for each bounding box are labelled as 1 (presence), -1 (absence)
or 0 (ambiguous). This work uses the same 20 of 25 attributes as [177] and consider
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1 and 0 as positive examples. Many of the 384 categories are subordinate categories,
e.g. dog breeds. However, distinguishing fine-grained subordinate categories is be-
yond the scope of this study. That is, the presented method is interested in finding a
‘black-dog’ or ‘white-car’, rather than ‘black-mutt’ or ‘white-ford-focus’. This work
thus converts the 384 ImageNet categories to 172 entry-level categories using [231]
(see Figure 4.4). This work evenly splits each class to create the training and testing
sets.

This work compares the proposed WS-MRF-SIBP to two strongly supervised mod-
els and four WS alternatives:
Strongly supervised models: A strongly supervised model uses bounding-box-level
annotation. Two variants are considered for the two datasets respectively. DPM+s-
SVM: for aPascal, both object detector and attribute classifier are trained from FS data
(i.e. Bounding-Box-level annotation in Figure 4.3). Specifically, this work uses the
20 pre-trained DPM detectors from [16] and 64 attribute classifiers from [22]. GT+s-
SVM: for ImageNet attributes, there is not enough data to learn 172 strong DPM detec-
tors as in aPascal. So the ground truth bounding box is used instead assuming perfect
object detectors is available, giving a significant advantage to this strongly supervised
model. This work trains attribute classifiers using the presented feature and liblinear
SVM [232]. These strongly supervised models are similar in spirit to the models used
in [1, 138, 172] and can be considered to provide an upper bound for the performance
of the WS models.
Weakly supervised models: w-SVM [22, 177]: In this weakly-supervised baseline,
both object detectors and attribute classifiers are trained on the weak image-level labels
as for the proposed model (see Figure 4.3). For aPascal, this baseline trains object and
attribute classifiers using the feature extraction and model training codes (which is also
based on [232]) provided by the authors of [22]. For ImageNet, the presented features
are used, without segmentation. MIML [233]: This is the MIML learning method
in [233]. In a way, the presented model can also be considered as a MIML method
with each image a bag and each superpixel an instance. The MIML model provides
a mechanism to use the same super-pixel/patch based representation for images as
the proposed model, thus providing the object/attribute localisation capability as the
proposed model does. w-LDA: Weakly-supervised LDA approaches [185, 188] have
been used for WSOL. A generalisation of LDA [179, 188] is implemented that accepts
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Figure 4.5: Qualitative results on free annotation. False positives are shown in red. If
the object prediction is wrong, the corresponding attribute box is shaded.

continuous feature vectors (instead of BoW). Like MIML this method can also accept
superpixel based representation, but w-LDA is more related to the proposed WS-SIBP
than MIML since it is also a generative model. WSDC [127]: WS dual clustering is a
state-of-the-art method for semantic segmentation that estimates pixel-level annotation
given only image-level labels. This semantic segmentation method can be re-purposed
to the presented image annotation setting by considering the same input (superpixel
representation + image-level label) followed by the same method as in the proposed
framework to first infer superpixel level labels and then congregate them to compute
image-level annotations (see Section 4.2.5).

4.3.1.2 Image Annotation

An image description (annotation) can be automatically generated by predicting ob-
jects and their associated attributes. To comprehensively cover all aspects of perfor-
mance of the proposed method and competitors, this model performs three annotation
tasks with different amount of constraints on test images: (1) free annotation, where no
constraint is given to a test image, (2) annotation given object names, where named but
not located objects are known for each test image, and (3) annotation given locations,
where objects locations are given in the form of bounding boxes, where the attributes
can be predicted.
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aPascal [22] ImageNet [177]

AP@2 AP@5 AP@8 AP@2 AP@5 AP@8

w-SVM [22] 24.8 21.2 20.3 46.3 41.1 37.5

MIML [233] 28.7 22.4 21.0 46.6 43.2 38.3

w-LDA [188] 30.7 24.0 21.5 48.4 43.1 38.4

WSDC [127] 29.8 25.1 21.3 48.0 42.7 36.5

WS-MRF-SIBP 40.1 29.7 25.0 60.7 54.2 50.0

DPM+s-SVM 40.6 30.3 23.8 65.9 60.7 53.2

Table 4.1: Free annotation performance evaluated on t attributes per object.

Free annotation: For WS-MRF-SIBP, w-LDA and MIML the procedure in Sec-
tion 4.2.5 is used to detect objects and then describe them using the top t attributes. For
the strongly supervised model on aPascal (DPM+s-SVM), this work uses DPM object
detectors to find the most confident objects and their bounding boxes in each test im-
age. Then the 64 attribute classifiers is used to predict top t attributes in each bounding
box. In contrast, w-SVM trains attributes and objects independently, and cannot asso-
ciate objects and attributes. This work thus uses it to predict only one attribute vector
per image regardless of which object label it predicts.

Since there are variable number of objects per image in aPascal, quantitatively
evaluating free annotation is not straightforward. Therefore, this work evaluates only
the most confident object and its associated top t attributes in each image, although
more could be described. For ImageNet, there is only one object per image. This work
follows [234, 235] in evaluating annotation accuracy by Average Precision (AP), given
varying numbers (t) of predicted attributes per object. Note that if the predicted object
is wrong, all associated attributes are considered wrong.

Table 4.1 compares the free annotation performance of the compared models. This
work has the following observations: (1) the proposed WS-MRF-SIBP, despite learned
with the weak image-level annotation, yields comparable performance to the strongly
supervised model (DPM/GT+s-SVM). The gap is particularly small for the more chal-
lenging aPascal dataset, whist for ImageNet, the gap is bigger as the strongly super-
vised GT+s-SVM has an unfair advantage by using the ground truth bounding boxes
during testing. (2) WS-MRF-SIBP consistently outperforms the four WS alternatives.
The margin is especially large for t = 2 attributes per object, which is closest to the
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true number of attributes per object. For bigger t, all models must generate some irrele-
vant attributes thus narrowing the gaps. (3) As expected, the w-SVM model obtains the
weakest results, suggesting that the ability to locate objects is important for modelling
object-attribute association. (4) Compared to the two generative models (ours and w-
LDA), MIML has worse performance because a generative model is more capable of
utilising weak labels [188]. The other discriminative model WSDC fares better than
MIML due to the ability to exploit superpixel appearance similarity to disambiguate
the image-level labels, but it is still much inferior to the proposed model. (5) Between
the two generative models, the advantage of the proposed framework over w-LDA is
clear; due to the ability of IBP to explain each superpixel with multiple non-competing
factors1.

Figure 4.5 shows some qualitative results on aPascal via the two most confident ob-
jects and their associated attributes. This is a challenging dataset – even the strongly su-
pervised DPM+s-SVM makes mistakes for both attribute and object prediction. Com-
pared to the WS models, WS-MRF-SIBP has more accurate prediction – it jointly and
non-competitively models objects and their attributes so object detection benefits from
attribute detection and vice versa. Other WS models are also more likely to mismatch
attributes with objects, e.g. MIML detects a shiny person rather than the correct shiny
motorbike.

To gain some insight into what has been learned by the proposed model and why it
is better than the WS alternatives, Figure 4.6 visualises the attribute and object factors
learned by WS-SIBP model and MIML and w-LDA which also use superpixels as
input. It is evident that without explicit background modelling, MIML suffers greatly
by trying to explain the background superpixel using the weak labels. In contrast,
both w-LDA and WS-SIBP have good segmentation of foreground objects, showing
that both the learned foreground and background topics are meaningful. However,
for w-LDA, since object and attributes topics compete for the same superpixel, each
superpixel is dominated by either an object or attribute topic. In contrast, the object
factors and attribute factors co-exist happily in WS-SIBP as they should do, e.g. most
person superpixels have the clothing attribute as well.
Annotation given object names (GN): In this experiment, it assumes that object la-

1Training two independent w-LDA models for objects and attributes respectively is not a solution:
the problem would re-occur for multiple competing attributes.
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Figure 4.6: Illustrating the inferred patch-annotation. Object and attributes are
coloured, and multi-label annotation blends colours. The bottom two groups each
have two rows corresponding to the two most confident objects detected.

bels are given and the approaches aim to describe each object by attributes, corre-
sponding to tasks such as: “Describe the car in this image”. For the strongly super-
vised model on aPascal, the object’s DPM detector is used to find the most confident
bounding box. Then attributes are predicted for that box. Here, annotation accuracy
is the same as attribute accuracy, so the performance of different models is evaluated
following [236] by Mean Average Precision (MAP) under the Precision Recall (PR)
curve. Note that for aPascal, w-SVM reports the same list of attributes for all co-
existing objects, without being able to localise and distinguish them. Its result is thus
not meaningful and is excluded. The same set of conclusions can be drawn from Ta-
ble 4.2 as in the free annotation task: the proposed WS-MRF-SIBP at par with the
supervised models and outperforming the WS ones.

w-SVM MIML w-LDA WSDC Ours SS

G
N aPascal – 32.1 35.5 36.3 39.3 41.8

ImageNet 32.4 33.5 39.6 44.2 52.8 56.8

G
L aPascal 33.2 35.1 35.8 38.4 43.6 42.1

ImageNet 37.7 39.1 46.8 48.2 53.9 56.8

Table 4.2: Results on annotation given object names (GN) or locations (GL). SS stands
for Strongly Supervised.
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Figure 4.7: Object-attribute query results as precision-average recall curve.

Given object location (GL): If the bounding box of an object is further known in a
test image, it can simply predict attributes inside each bounding box. This becomes
the conventional attribute prediction task [22, 177] for describing an object. Table 4.2
shows the results, where similar observations can be made as in the other two tasks
above. Note that in this case the strongly supervised model is the method used in
[22]. The mAP obtained using the proposed WS model is even higher than the strongly
supervised model (though the presented area-under-ROC-curve value of 81.5 is slightly
lower than the 83.4 reported in [22]).

4.3.1.3 Object-attribute Query

In this task object-attribute association is used for image retrieval. Following work
on multi-attribute queries [27], this section uses Mean Average Recall (MAR) over
all precisions (MAR) as the evaluation metric. Note that unlike [27] which requires
each queried combination to have enough (100) training examples to train conjunc-
tion classifiers, the proposed method can query novel never-previously-seen combi-
nations. Three experiments are conducted. This experiment generates 300 random
object-attribute combinations for aPascal and ImageNet respectively and 300 object-
attribute-attribute queries for ImageNet. For the strongly supervised model, the model
normalises and multiplies object detector with attribute classifier scores. No object
detector is trained for ImageNet so no result is reported there. For w-SVM, this exper-
iment uses [176] to calibrate the SVM scores for objects and attributes as in [27]. For
the three WS models, the procedure in Section 4.2.5 is used to compute the retrieval
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Figure 4.8: Object-attribute query: qualitative comparison

ranking.
Quantitative results are shown in Figure 4.7 and some qualitative examples in Fig-

ure 4.8. The proposed WS-SIBP has a very similar MAR values to the strongly su-
pervised DPM+s-SVM, while outperforming all the other models. w-SVM calibration
[176] helps it outperform MIML and w-LDA. However, the lack of object-attribute
association and background modelling still causes problems for w-SVM. This is illus-
trated in the ‘dog-black-white’ example shown in Figure 4.8 where a white background
caused an image with a black dog retrieved at Rank 2 by w-SVM.

4.3.2 Semantic Segmentation

4.3.2.1 Datasets and Settings

This section evaluates the semantic segmentation performance of the presented model
on aPascal Segmentation dataset (Section 4.3.2.2) and LabelMe Outdoor dataset (Sec-
tion 4.3.2.3) under the WS setting.
aPascal Segmentation: This dataset [123] is a subset of PASCAL VOC 2008 [22]
where both pixel-level segmentation and attributes annotation are available. It contains
639 images from 20 classes. The 64 attribute annotation for each image is same with
the aPascal dataset used in the annotation experiments. This section uses the training
(326 images) and testing (313 images) split provided by [123].
LabelMe Outdoor Segmentation: Also knowns as the SIFT Flow dataset [117], this
widely used dataset contains 2688 images densely labelled with 33 object classes at
pixel-level using the LabelMe online annotation tool. Every pixel in each image is
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assigned a label meaning that background ‘stuffs’ such as sky, sea, street are also
labelled as objects. Most images contain outdoor scenes. This experiment uses the
standard training (2488 images) and testing (200 images) split provided in [117]. Note
that no attribute label is available for this dataset.
Evaluation metrics: The evaluation metrics used for semantic segmentation are often
dataset dependent. Past results on the LabelMe dataset typically report results in both
total per-pixel accuracy, which measures the percentage of correctly labelled pixels in
the test images, and per-class accuracy, which is the percentage of correctly labelled
pixels for a class and then averaged over all object classes. Both metrics are necessary
because for any model, some model parameters can typically be tuned so that one
metric gets higher at the price of lowing the other metric. The VOC images have
very different characteristics compared with LabelMe. In particular, the images often
contain large portions of unannotated background (stuffs) and the 20 objects of interest
are relatively small. The Intersection-over-union (IOU) score is thus typically used for
semantic segmentation performance evaluation on the Pascal VOC dataset [123, 127,
237] and adopted here on aPascal.

4.3.2.2 Results on aPascal

To the best of our knowledge, no previous work models objects and attributes jointly
for semantic segmentation under the WS setting. Note the methods proposed in [35]
and [238] aim to discover and recognize basic entities from image collections in a
fully unsupervised manner. The key insight to their methods is to discover the ob-
jects present in the images by analysing unlabelled data and searching for re-occurring
patterns. Differently, this work focuses on segmenting out specific objects under the
weakly supervised setting.

This work therefore applies the state-of-the-art WS (object only) segmentation
method WSDC [127] as an alternative (see Section 4.3.1.1). With the proposed WS-
MRF-SIBP, the association of objects and available attributes can be leveraged to im-
prove performance. the presented method explores three different potential sets of at-
tribute annotations: (1) 8 attributes: the 8 material-type of attributes selected by [123]
for joint object-attribute segmentation. (2) 64 attributes: the original attributes pro-
vided by [22]. (3) 74 attributes: this experiment adds 10 more color attributes based
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on aPascal sentence descriptions [1, 239].

Method Avg. IOU (%)

St
r. Zheng et al. [123] 37.1

Krähenbühl et al. [240] 36.9
W

ea
k

WSDC [127] 18.2

Ours 0attribute 23.6

Ours 8attributes 27.3

Ours 64attributes 28.9

Ours 74attributes 29.4

Table 4.3: Quantitative semantic segmentation comparison versus state-of-the-art on
the aPascal dataset.

The performance of the proposed model is compared with one WS [127] and two
fully-supervised alternative models [123, 240] in Table 4.3. It can be observed that the
proposed method outperforms the alternative weakly-supervised model WSDC [127],
even without attribute annotation. Moreover, it gradually improves as more attribute
annotation becomes available, and eventually its performance with 74 attributes is not
far off compared to the two fully-supervised models. Note that Li et al. [129] shares a
similar spirit to ours in the sense of exploiting attributes relations. However, they focus
on the task of segmentation-based classification, which makes it difficult to directly
compare with our segmentation results.

Some qualitative results are depicted in Figure 4.9. In each example, this section
shows the color-coded segmentation output of Ours 0attribute, Ours 64attribute and
ground truth segmentation. Coloured regions are identified as the same foreground
objects. It can be noticed that large intra-class appearance variability can confuse
Ours 0attribute as shown in the horse example (the third row of Figure 4.9). How-
ever, by exploiting the additional (weak) attribute annotation, the segmentation perfor-
mance is greatly improved (Our 64attribute) through disambiguation, and by capturing
object-attribute co-occurrence.
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Original Image Ours_0attribute Ours_64attributes Ground Truth Original Image Our Our+64 attribute Ground Truth

bus

person horse boat bicyclechair bird

motorbike diningtable

Figure 4.9: Qualitative illustration of (attribute-enhanced) semantic segmentation re-
sults on aPascal.
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4.3.2.3 Results on LabelMe

Method Per-pixel (%) Per-class (%)
St

ro
ng

Tighe et al. [241] 77.0 30.1

Tighe et al. [122] 78.6 39.2

Sigh and Kosecka [118] 79.2 33.8

Yang et al. [121] 79.8 48.7

Gould et al. [242] 78.4 25.7

W
ea

k

Vezhnevets et al. [243] - 14

Vezhnevets et al. [125] - 21

Xu et al. [124] 21.9 27.9

WSDC [127] 19.3 25.0

Ours 46.2 23.8

Ours predict 48.1 26.7

Ours transductive 52.5 31.2

Table 4.4: Quantitative comparison of semantic segmentation performance on the La-
belMe dataset.

Table 4.4 compares the performance of the proposed model with a number of state-
of-the-art FS [118, 121, 122, 241, 242] and WS [124, 125, 127] models. Three vari-
ants of the proposed models has been evaluated: Ours and Ours transductive differ
in whether the test set images are used for model update (see Section 4.2.5), whilst
for Ours predict, this experiment follows [124] and use a pre-trained multi-label im-
age classifier (Linear SVM with ImageNet-trained CNN features as input) to predict
image-level object labels and use the labels for transductive learning.

The results show that the proposed model outperforms the alternative WS mod-
els in [124, 125, 127] by a large margin in both per-pixel and per-class accuracy but
particularly in the per-pixel accuracy which reflects more on the performance on the
large classes such as sky and sea. Note that most WSL methods are transductive.
But the proposed model, even without accessing the whole test set (Ours), can beat
the alternative WS models. When the proposed model operates in the transductive
mode (Ours transductive), the margin over the other transductive models including
[124, 127] gets even bigger. It is worth mentioning that the result of Xu et al. [124]
is obtained using the predicted image-level labels for transductive learning on the test
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set. The presented result (Ours transductive vs. Ours predictive) suggests that this
additional step is not necessary using the proposed model – as demonstrated in the
image annotation experiments earlier, the proposed model itself can predict image-
level labels and does not require assistance from another model. Table 4.4 also shows
the performance of a number of state-of-the-art strongly supervised learning models
[118, 121, 122, 241, 242] which require pixel-level annotation of the training images.
As can be seen, there is still a fairly big gap between the best result achieved by the
proposed model (Ours transductive) and theirs, although on the per-class metric, it is
close. The main reason is that in LabelMe, background stuffs such as sky and road are
labelled as objects. This limits the scope for the proposed WS-MRF-SIBP to learn la-
tent factors for the background as in the aPascal dataset, thus losing some of the power
for disambiguating the weak labels.
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Original Image Xu et al [26] (Weak) Ours (Weak) Tighe et al[62] (Full) Ground Truth

sky mountain road tree fence building void

car window person field sign awning pole

Figure 4.10: Qualitative comparison of the proposed semantic segmentation versus
alternatives on the LabelMe dataset.

Figure 4.10 qualitatively compares two WS methods ([124] and Ours) and one FS
method ([241]). It is noted that the advantage of the proposed model over that in [124]
is particularly pronounced in the cluttered street scene (second row of Figure 4.10).
For a scene like this, the ability of inferring latent factors which correspond to latent
attributes for describing object appearance is critical. For example, the proposed model
seems to be able to capture the fact that sky can have different types of appearance:
clear and blue in the first row, overcast in the second, and cloudy in the bottom. With-
out accounting for these variations of appearance, the model in [124] struggled and
assigned wrong labels to sky in the second and bottom row images.
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4.3.3 Further Evaluations

Free annotation Segmentation

aPascal ImageNet LabelMe aPascal

WS-SIBP 38.6 58.5 22.4 16.6

WS-SIBP+MRF1 38.8 58.6 43.1 22.8

WS-SIBP+MRF2 39.2 59.2 28.4 19.5

WS-SIBP+MRF2+ 39.7 60.3 32.6 20.1

WS-MRF-SIBP 40.1 60.7 46.2 27.3

Table 4.5: Evaluation of individual components of the proposed model. This table
reports AP@2 for free annotation on aPascal and ImageNet dataset. For segmentation,
per-pixel results are reported for LabelMe and IOU for aPascal. For segmentation
result on aPascal 8 attribute annotations are used.

Contributions of individual model components: To evaluate the impact of each com-
ponent of the proposed model, the presented method performs experiments with sev-
eral stripped-down versions of the proposed model: a) WS-SIBP: The basic model
without any MRF assumption. b) WS-SIBP+MRF1: This enables the spatial MRF
to smooth neighbouring superpixels. c) WS-SIBP+MRF2: This enables the factorial
MRF to model the correlation of factors, but using only the initial image label prior. d)
WS-SIBP+MRF2+: Same as c) except the correlation matrix is further updated with
Eq. (4.13). e) WS-MRF-SIBP: The presented full model with all components (b+d).

The results in Table 4.5 show that each component contributes to the good per-
formance of the presented method. As expected, the factorial MRF is more helpful
(38.6→39.7, 58.5→ 60.3) for free annotation compared to spatial MRF (38.6→38.8,
58.5→58.6). In contrast, the spatial MRF significantly improves the semantic segmen-
tation performance (22.4→43.1, 17.9→24.5) while less improvement on performance
is obtained by factorial MRF (22.4→32.6, 17.9→21.8). This is expected as the spa-
tial smoothness of the superpixel labels is perhaps the strongest cue exploited by all
existing segmentation models.
Iterative learning of factorial correlation: As mentioned in Section 4.2.3, the within-
superpixel factorial correlation matrix M is initialised using image-level co-occurrence
statistics and iteratively estimated at the superpixel-level using an EM algorithm. This
process is illustrated in Figure ?? for the aPascal dataset, where the initial coarsely

98



4. Weakly Supervised Learning of Objects, Attributes and their Associations

estimated correlation (Figure 4.11a) is refined (Figure 4.11b) to become cleaner and
closer to the ground-truth pixel-level correlation (Figure 4.11c).
Running cost: The unoptimised single-core implementation of the proposed model
requires around 2 seconds for 100 images per iteration on a PC with Intel 3.47 GHz
CPU and 16GB RAM. The running time is also affected by the number of segments
and latent factors Kmax.

4.4 Summary

This chapter has presented an effective model for WSL of objects, attributes, their lo-
cation and associations. Learning object-attribute association from weak supervision
is non-trivial but critical for learning from natural data, and scaling to many classes and
attributes. This work achieves this for the first time through a novel weakly-supervised
stacked IBP model that simultaneously disambiguates patch-annotation correspon-
dence, as well as learning the appearance of each annotation. The results show that
the proposed model performs comparably with a strongly supervised alternative that is
significantly more costly to supervise.

Nevertheless, another notable fact is that there are numerous domains in the exist-
ing natural datasets, where some domains are irrelevant and others are closely related.
Obviously, transferring knowledge from a source domain is very useful for discovering
target domain. In addition, it can help to reduce the amount of manual annotation by
utilising the existing labels from a source domain. All these information is not consid-
ered in this chapter. To overcome these limitations, the following chapter extends the
current model to a transfer learning framework. The proposed model is trained on an
auxiliary dataset, which are either weakly or strongly labelled. The learned model can
then be transferred and adapted to provide a powerful semantic description for various
vision applications.
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(a) Initial estimation
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(b) The proposed model’s refinement
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(c) Ground-truth

Figure 4.11: Object-attribute query results as precision-average recall curve.
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Chapter 5

Transferring a Semantic
Representation for Person
Re-identification and Search

5.1 Overview

The preceding chapter has demonstrated the effectiveness of the proposed model for
the understanding of objects, attributes and their associations from weakly labelled
data. Nevertheless, the proposed method only focuses on the target domain data. There
are still some limitations that need to be solved: a) It is worth to note that enormous
amounts of visual data are easily available today, especially for WS data. These images
are collected from different domains, such as high quality images from a photographer
or noisy images surveillance cameras. It is interesting to see that if we can transfer
knowledge from a source domain to a related target domain. This is how human visual
system understands a new image with learned knowledge. b) Transferring knowledge
from an existing domain provides a new perspective to address the WSL problem. It
can further reduce the manual labelling effort, without requiring any annotations of
the target domain data. This is especially true when we learned a reliable model using
an auxiliary dataset. c) Another advantage of transferring knowledge from a source
domain is that it can further exploit the rich information from a fully labelled source,
which can provide more explicit and reliable cues.
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Auxiliary Set

Person Re-Id
Person Search

CCTV Video

Database

“Suspect had blue
jeans, brown jacket, 
and blonde hair”

Figure 5.1: Transferring knowledge from fashion data to surveillance

In this chapter, we extended the model proposed in chapter 4 to a transfer learning
framework. This framework aims to learn a semantic representation from an auxiliary
dataset for various vision applications (see Figure 5.1). Specifically, this chapter gen-
eralises the proposed model to learn a semantic attribute representation. The model is
trained on existing fashion photography datasets either weakly or strongly labelled.
It can then be transferred and adapted to provide a powerful semantic description of
surveillance person detections, without requiring any surveillance domain supervision.
The resulting representation is useful for both unsupervised and supervised person Re-
ID, achieving state-of-the-art and near state-of-the-art performance respectively. Fur-
thermore, as a semantic representation it allows description-based person search to be
integrated within the same framework (see Figure 5.2).

Learning semantic attributes for person Re-ID and description-based person search
has gained increasing interest due to attributes great potential as a pose and view-
invariant representation. However, existing attributecentric approaches have thus far
underperformed state-of-the-art conventional approaches. This is due to their nonscal-
able need for an extensive domain (camera) specific annotation. In contrast to most
existing approaches to attribute detection [57, 58] which are based on discriminative
modelling, we take a generative modelling approach based on the IBP[49]. The gen-
erative formulation provides key advantages including: joint learning of all attributes;
ability to naturally exploit weakly-annotated (image-level) training data; as well as
unsupervised domain adaptation through Bayesian priors. Importantly an IBP-based
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model [59, 60, 61] provides the favourable property of combining attributes factorially
in each local patch. This means that the proposed model can differentiate potentially
ambiguous situations such as Red-Shirt+Blue-Jeans versus Red-Jeans+Blue-Shirt (See
Figure 5.5). Moreover, with this representation, attribute combinations that were rare
or unseen at training time can be recognised at test time so long as they are individually
known (e.g. Shiny-Yellow-Jeans).

Auxiliary Set

Person Re-Id
Person Search

CCTV Video

Database

“Suspect had blue
jeans, brown jacket, 
and blonde hair”

Figure 5.2: Illustration of surveillance person search procedure

The remainder of this chapter is organised as follows: Section 5.2 presents the
proposed semantic representation learning framework. This includes the explanation
of model learning and inference for test data. The various applications of the learned
model are also discussed in Section 5.3. Experimental results are reported in Sec-
tion 5.4. Finally, a summary is given in Section 5.5.

5.2 Semantic Representation Learning

The proposed model, generalised from the previous proposed WS-MRF-IBP, works
with super-pixel segmented person images. Each super-pixel is associated with a K
dimensional latent binary vector whose elements (factors) indicate what set of attribute
properties are possessed by that patch, and which of a potentially infinite set of back-
ground clutter types are present. The first Ks factors are associated with known an-
notations, while the subsequent entries are free to model unannotated aspects of the
images. The presented pipeline exploits two datasets: an annotated auxiliary dataset,
and an unannotated target dataset (see Figure 5.3):
Auxiliary Training: First this model trains on the auxiliary/source dataset using weak
(image-level) or strong (patch-level) supervision. The supervision is a binary vector
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describing which attributes appear in the image/patch. For strong supervision anno-
tations α(j)

i are given for the first Ks factors of patches i in image j, and the model
learns from this each of the Ks factors’ appearance. The Ks supervised factors also
include foreground versus Background Patch (BGP) annotation. For weak supervision,
annotations α(j) are given for the first Ks factors of each image, and the model solves
the (more challenging task) of learning both factor appearance and infer which image-
level factors occur in which patches.
Target Adaptation: This model then uses the learned parameters from the auxiliary
set as a prior, and adapt it to the target dataset without any supervision. The represen-
tation learned here is then used for Re-ID and person-search.

5.2.1 Model Formulation
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Figure 5.3: The transfer learning framework.

Each image j is represented as a bag of patches X(j) = {X(j)
i· }, where Xi· means the

vector of row i in matrixX and corresponds to aD-dimensional feature representation
of each patch. Without supervision, the generative process for each image is as follows:

For each latent factor k ∈ 1 . . .∞:

1. Draw an appearance distribution mean Ak· ∼ N(µk,Σk).

For each image j ∈ 1 . . . J :
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1. Draw the binary indicator matrix Z describing the factor activation for every
patch:

p(Y(j)|ϑ, β) ∝ ϑK+∏Nj

i=1K
i
1!
· exp−ϑ

Nj∑
i=1

1

i

·
K+∏
k=1

(
Nj −m(j)

k

)
!(m

(j)
k − 1)!

Nj!

·
K+∏
k=1

exp

 Nj∑
i=1

β
∑
i′∈N(i)

I(y
(j)
ik = y

(j)
i′k )

 (5.1)

2. For each super-pixel patch i ∈ 1 . . . Nj: Sample patch appearance: X(j)
i· ∼

N(Y
(j)
i· A, σ

2
XI).

Notations: N corresponds to Normal distribution with the specified parameters; ϑ is
the prior expected sparsity of annotations; β is the coupling strength of the inter-patch
MRF; µk and σA are the prior mean and covariance of each factor. p(Y (j)) in Eq. (5.1)
corresponds to the prior of the proposed framework. It expresses the IBP sampling
of an unbounded number of factors in each patch (first two lines), which are spatially
correlated across patches by a Potts model MRF (last line) like [190]. Here K+ ≥ Ks

refers to the (inferred) number of active factors in the image, Ki
1 is the factor history

[49], and m(j)
k is the number of times each factor k is active.

Denote the set of hidden variables byH = {Y (1), . . . ,Y (J),A}, observed images
by X = {X(1), . . . ,X(J)}, and model parameters by Π = {ϑ, β, σX ,Σk,µk}. Then
the joint probability of the variables and data given the parameters is:

p(H ,X|Π) =
∞∏
k=1

p(Ak·|µk,Σk)

·
J∏
j=1

p(Y(j);ϑ, β)

Nj∏
i=1

p(X
(j)
i· |Y(j)

i· ,A, σX) (5.2)

Learning in the proposed model aims to compute the posterior p(H|X,Π) for:
discovering which factors (object/attributes) are active on each patch (inferring Y (j)),
and learning the appearance of each factor (inferring Ak·).
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5.2.2 Model Learning from the Auxiliary Set

To learn the proposed model, this chapter exploits Gibbs sampling for approximate
inference inspired by [192]. For Gibbs sampling, it is needed to derive an update for
each hidden variable conditional on the observations and all the other hidden variables.
Unsupervised Factor Updates: For all initialised factors k, the presented method
can sample the state of each latent factor y(j)

ik via:

p(y
(j)
ik = 1|Y (j)

−ik,X
(j)
i· ) ∝ p(X

(j)
i· |Y (j))P (y

(j)
ik = 1|Y (j)

−ik)

=
m

(j)
k − y

(j)
ik

Nj

· exp
∑
i′∈N(i)

βI(y
(j)
ik = y

(j)
i′k )

· exp(− 1

2σ2
X

tr(X
(j)
i. − Y (j)

i. A)T (X
(j)
i. − Y (j)

i. A)) (5.3)

where Y (j)
−ik denotes the entries of Y (j) other than Y (j)

ik . To sample new latent factors,
Poisson( ϑ

Nj
) is used as the expected number of new classes [49].

Supervised Factor Updates: Eq. (5.3) describes inference in the case where no su-
pervision is available. If strong supervision α

(j)
ik is available, Eq. (5.3) is replaced

with y
(j)
ik = α

(j)
ik . If weak supervision α

(j)
k is available Eq. (5.3) is replaced with

p(y
(j)
ik = 1|Y (j)

−ik,X
(j)
i· ) ∝ p(X

(j)
i· |Y (j))P (y

(j)
ik = 1|Y (j)

−ik) · α
(j)
k

Appearance Updates: In order to sample factor appearance A, its Gaussian poste-
rior p(A|X,Y ) is computed:

µS = (Ỹ T Ỹ +
σ2
X

σ2
A

I)−1Ỹ TX̃

ΣS = σ2
X(Ỹ T Ỹ +

σ2
X

σ2
A

I)−1 (5.4)

where Ỹ and X̃ are the matrices that vertically concatenate the factor matrix and
patch feature matrix for all images. Here µS is the K+ ×D matrix of appearance for
each factor, and ΣS is the K+ × K+ matrix of variance parameters for each factor
appearance. Since this is the auxiliary set, this thesis has assumed an uninformative
prior, i.e.,Ak ∼ N(0, σA).
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5.2.3 Model Adaptation to the Target Set

In the target set, there is no supervision, so Eq. (5.3) is used to update the latent factors.
The appearance updates however are changed to reflect the top-down influence from
the learned auxiliary domain. Thus the target appearance µT is updated using the
sufficient statistics from the source ΣS and µS (Eq. (5.4)) as the prior:

µT = ΣT (σ−2
X Ỹ

TX̃ + Σ−1
S µS)

ΣT = σ2
X(Ỹ T Ỹ + σ2

XΣ−1
S )−1 (5.5)

5.3 Semantic Representation Applications

After the semantic representation learning described previously, each target image i
is now described by a binary factor matrix Y j containing the inferred factor vector
{yi}Nj

i=1 for each superpixel i. This representation could be used directly, but find
it convenient to convert it into a fixed-size representation per image. This model thus
generates multiple heat-maps T k per image representing the kth factor activation. Sim-
ilar to [151], the presented method divides each image into 14 overlapping patches
sampled on a 2×7 regular grid with a 32×32 window.1 Each grid-patch is now repre-
sented by a K-dimensional attribute vector obtained by summing yi for very pixel.

5.3.1 Person Re-identification

The proposed semantic person representation can be used for both unsupervised or
supervised Re-ID, according to whether a matching model is learned from the identity
annotation of a given person Re-ID dataset.
Unsupervised Matching: Each image is represented by 14 patches each with a K
dimensional descriptor. The person match is now converted to a semantic patch match-
ing problem. This method adopts a patch matching algorithm TreeCANN [244] to
efficiently compute the distance between images.

1Note that the overlapping area between two neighbouring patches depends on the size of the image.
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Supervised Matching: The 14 patch descriptors are concatenated to obtain an image-
level descriptor. This is used as input to a recent metric learning algorithm kLFDA
[151].

5.3.2 Person Search

Recall that K heat maps T k are generated from the K factors. The probability of factor
k appearing in an image can be obtained by max(Tk). When querying two or more
factors, there are two possible query semantics: To query the probability of two factors
both appearing anywhere in an image without preference for co-location (e.g., Coat
+ Bag), this method uses max(Tk) · max(Tk′). In contrast, to query two factors that
should simultaneously appear in the same place (e.g., Blue-Jeans), max(Tk · Tk′) is
used.

5.4 Experiments

5.4.1 Datasets and Settings

Auxiliary Datasets: Two datasets are used as auxiliary sources. Colourful-Fashion
[52] includes 2682 images. Pixel-level annotation is provided with 13 colour labels
(e.g., brown, red) and 23 category labels (e.g., bag, T-shirt). Most of the images con-
tain a single person with a relatively simple pose, against relatively clean background
(see Figure 5.4). Clothing-Attribute [144] includes 1,856 person images from social
media sites, annotated with 26 attributes. Only image-level annotations are provided.
However, it includes 6 texture attributes not included in Colourful-Fashion, so this
method includes this auxiliary dataset mainly to enrich the representation with the 6
texture attributes.
Target Datasets: Four surveillance pedestrian datasets are used as target data. VIPeR
[245] contains two views of 632 pedestrians. All images are normalised to 128×48.
All images are also manually labelled by [142] with 22 attributes, named VIPeR-Tag
dataset [142]. CUHK01 [246] is captured with two camera views in a campus envi-
ronment. It contains 971 persons, with two images each. Images are normalised to 160
× 60. PRID450S [247] is a recent and more realistic dataset, built on PRID 2011. It
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Method VIPeR CUHK01 PRID450S
r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

si
ng

le

SDC [146] 25.1 44.9 56.3 70.9 15.1 25.4 31.8 40.9 23.7 38.4 46.1 58.5
GTS [148] 25.2 50.0 62.5 75.6 - - - - - - - -
SDALF [147] 19.9 38.9 49.4 65.7 9.9 22.6 30.3 41.0 17.4 30.9 40.8 55.2
Our unsupervised 27.7 55.3 68.3 79.7 23.3 35.8 46.6 60.7 28.5 48.9 59.6 71.3

fu
se

d SDC Final (eSDC) [146] 26.7 50.7 62.4 76.4 19.7 32.7 40.3 50.6 25.5 40.6 48.4 61.4
Our unsupervised Final 29.3 52.7 66.8 79.7 22.4 35.9 47.9 64.5 29.0 49.4 58.4 69.8

Table 5.1: Matching accuracy @ rank r (%): unsupervised learning approaches. ‘-’
indicates no result was reported and no code is available for implementation. The best
results for single-cue and fused-cue methods are highlighted in bold separately.

consists of 450 image pairs recorded from two static surveillance cameras. All images
are normalised to 168 × 80. PETA [248] is a large-scale surveillance person attribute
datatset that consists of 19000 images. Each image is labelled with 61 binary and 4
multi-class attributes, including colour, style etc.
Features: This method divides the image into super-pixels using a recent segmentation
algorithm [105]. This method represents each super-pixel as a vector using following
features: (1) Colour: 3 dimensional colour descriptors are extracted from each pixel
in both RGB and LAB colour space [15, 149]. k-means is applied to obtain 150 code
words for each colour space. Pixels are quantised to the nearest centres in the visual
vocabulary. The resulting descriptor for each super-pixel is the normalised histogram
over visual words. (2) SIFT: This method computes 128 dimensional dense SIFT over
a regular grid (4×4 step size). Similar to Colour, a vocabulary of 300 words [52] is
build . A histogram is built from quantised local words within each super-pixel. (3) Lo-
cation: Following [52, 249], this method considers a 2 dimensional coordinate of each
super-pixel centroid as an absolute location feature. A relative location feature is de-
fined by the distances between the centroid and each of 26 human key points generated
by human pose estimation [249], giving a 106 dimensional location features. The fi-
nal feature vector (706D) of each super-pixel is formed by concatenation of Colour
(300D), SIFT (300D) and Location (106D). To compensate for the noise in the surveil-
lance images, this method also applies a rolling guidance filter [250] before generating
super-pixels.
Settings: For training on the auxiliary datasets, the presented model uses 60 super-
vised factors: 34 from Colourful-Fashion (12 colour + 22 category attributes), 6 (tex-
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ture) from Clothing-Attribute, and 20 background factors (always off for Foreground
Patch (FGP)). Thus the proposed model activates at least K+ ≥ Ks = 60 factors,
although more may be used to explain un-annotated aspects of the data due to the use
of IBP. The proposed model trains by iterating Eqs. (5.3) and (5.4) for 2000 iterations.
The supervision used varies across the strongly and weakly annotated auxiliary sets.
Please see appendix B for details. For transferring to the Re-ID datasets, the presented
approach transfers the 60 auxiliary domain factors, and use K+ ≥ 80 by initialising a
further 20 free factors randomly to accommodate new factors in the new domain. Any
previously unseen unique aspects of the target domain can be modelled by these 20
factors. This model adapts the learned model to the target data by iterating Eqs. (5.3)
and (5.5) for 100 iterations. The presented method then takes the first K = 80 learned
factors to produce an 80-dimensional patch representation (see Section 5.3) to be used
in person Re-ID.
Baselines: In addition to comparing with state-of-the-art in person Re-ID and person
search methods, this chapter also considers alternative transfer methods that could po-
tentially generate an analogous representation to the proposed framework: SVM/MI-
SVM: SVM (as in [57, 142]) and Multi-Instance SVM [95] are used to train patch-level
attribute classifiers for strongly and weakly-labelled auxiliary data respectively. The
learned SVMs can then be applied to estimate feature vectors for each target image
patch similarly to the proposed model. DASA [207]: An unsupervised domain adap-
tation methods to address domain shift by aligning the source and target subspaces.
Computational Cost: The complexity of the proposed algorithm is O(JN(K3 +

KD)) for J images with N superpixels, K factors, and D-dimensional patch features.
This model run the proposed algorithm on a PC with Intel 3.47 GHz CPU and 12GB
RAM. In practice this corresponds to 1 to 2 minutes for 1000 images per iteration,
depending on the number of super-pixels.
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Figure 5.4: Visualisation of the proposed model output. Each patch is colour-coded to
show the inferred dominant attribute of two types.

5.4.2 Person Re-identification

This work first evaluates person Re-ID performance against start-of-the-arts [151, 152,
155]. This experiment randomly divides the dataset into two equal, non-overlapping
subsets for training and testing. This work uses the widely used accuracy at rank
k of Cumulative Match Characteristic (CMC) curves to quantify performance. The
results are obtained on VIPeR, CUHK01 and PRID450S datasets by averaging over 10
random splits. This work distinguishes using the suffix Final the common practice of
use of an ensemble of methods or features with score or feature level fusion.
Unsupervised Matching: This thesis compares the proposed model to recent state-
of-the-art approaches under an unsupervised setting (i.e. no identity labels are used)
including SDALF [147], eSDC [146], and GTS [148]. As shown in Table 5.1, the
presented representation on its own significantly outperforms all other methods in all
three datasets, and is not far off the most competitive supervised methods (Table 5.2).
When fused with SDALF as in [146], performance improves further. See supplemen-
tary material for CMC curves and more comparisons.
Supervised Matching: Table 5.2 compares the proposed method in a supervised
matching context against recent state-of-the-art including: MLF [161], KML [151],
KISSME [152], SCNCD [149], FUSIA [165]. It shows that the proposed approach
achieves comparable or better performance to state-of-the-art, especially at higher rank
(i.e. r=5,10,20). In this setting the presented final result is obtained by fusing with
kLFDA [151].
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Method VIPeR CUHK01 PRID450S
r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

si
ng

le

MLF [161] 29.1 52.3 65.9 79.9 34.3 55.1 65.0 74.9 - - - -
KML [151] 32.3 65.8 79.7 90.9 24.0 38.9 46.7 55.4 32.4 54.4 62.4 69.6
KISSME [152] 19.6 48.0 62.2 77.0 8.4 25.1 38.7 50.2 26.5 47.8 57.6 68.5
SCNCD [149] 33.7 62.7 74.8 85.0 - - - - 41.5 66.6 75.9 84.4
FUSIA [165] 19.1 55.3 73.5 84.8 9.8 32.4 49.8 60.1 - - - -
Our supervised 31.1 68.6 82.8 94.9 32.7 51.2 64.4 76.3 43.1 70.5 78.2 86.3

fu
se

d

KML Final [151] 36.1 68.7 80.1 85.6 - - - - - - - -
SCNCD Final [149] 37.8 68.6 81.0 90.5 - - - - 41.6 68.9 79.4 87.8
MLF Final [161] 43.4 73.0 84.9 93.7 - - - - - - - -
Our supervised Final 41.6 71.9 86.2 95.1 31.5 52.5 65.8 77.6 44.9 71.7 77.5 86.7

Table 5.2: Matching accuracy @ rank r (%): supervised learning approaches on re-
identification.

Auxiliary Data: Here this thesis evaluates the effects of various auxiliary data sources
and annotations. The proposed full framework is learned with fully-supervised (f-F)
Colourful-Fashion and weakly-supervised (w-C) Clothing-Attribute datasets. Table
5.3 (on ViPeR) shows that: (i) the different annotations in the two auxiliary datasets
are combined synergistically, and weakly-annotated data can be used effectively (f-
F+w-C > f-F); and (ii) while capable of exploiting strong supervision where available,
the proposed framework does not critically rely on it (w-F+w-C close to f-F+w-C; w-F
close to f-F).

Auxiliary Data
Unsupervised Supervised

r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

w-F 18.3 38.3 49.5 62.9 26.2 58.2 71.1 83.4

f-F 25.4 51.4 63.9 75.3 29.4 64.9 78.8 91.7

w-F + w-C 22.4 43.6 57.1 67.3 28.3 62.2 75.8 88.5

f-F + w-C 27.7 55.3 68.3 79.7 31.1 68.6 82.8 94.9

Table 5.3: Effects of auxiliary data source and annotation.

Contributions of Components: To evaluate the contributions of each component of
the proposed framework, Table 5.4 summarises the presented model performance on
ViPeR in 4 conditions: (1) Without MRF (NoMRF); (2) Direct transfer without adapta-
tion (Eq. 5.5) (NoAdapt); (3) (1) & (2); (4) Solely unsupervised target domain learning
(NoTransfer). The results show that each component (MRF modelling, transfer and
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adaptation) contributes to the final performance.

Method
Unsupervised Supervised

r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

NoMRF 23.3 47.4 59.1 70.9 28.0 62.1 75.2 87.2

NoAdapt 19.2 39.6 50.2 61.9 21.8 49.2 60.9 73.8

NoMrfAdapt 17.7 36.2 45.5 54.8 20.2 46.0 57.6 70.9

NoTransfer 9.5 20.5 26.9 35.6 14.3 32.9 41.7 52.5

Ours 27.7 55.3 68.3 79.7 31.1 68.6 82.8 94.9

Table 5.4: Contribution of each model component

Alternative Transfer Approaches: The proposed model is compared against alter-
native SVM-based approaches. Table 5.5 reveals that: (i) While (MI)SVMs can in
principle deal with weakly or strongly supervised representation learning, it clearly
under-performs the proposed approach, and (ii) Although conventional feature-level
domain adaptation (DASA [207]) can improve the SVM performance, it is much less
effective than the proposed model-level adaptation.

Method
Unsupervised Supervised

r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

w
-F

MI-SVM 8.0 17.8 24.4 34.4 15.6 36.2 46.5 59.9

DASA [207] 12.2 25.8 33.9 43.7 17.1 39.2 49.4 61.5

Ours 18.3 38.3 49.5 62.9 26.2 58.2 71.1 83.4

f-
F

SVM 13.2 29.6 40.3 55.4 17.4 40.5 51.9 66.8

DASA [207] 16.0 33.5 42.8 53.2 20.8 47.7 60.2 75.4

Ours 25.4 51.4 63.9 75.3 29.4 64.9 78.8 91.7

Table 5.5: Comparing different transfer learning approaches

What is learned: Figure 5.4 visualises after model learning how attributes are detected
given a new image. This work visualises the top 5 most confident colour and category
factors/attributes for each image in the test set of Colourful-Fashion. The proposed
model can almost perfectly recognise and localise the attributes (top row). As expected,
the inferred attributes are much more noisy for the Re-ID data (bottom row). However,
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5. Transferring a Semantic Representation

overall they are accurate (e.g. bags of different colours are detected), and crucially
provide a much stronger representation than the even noisier low-level features.

Red-Shirt      Blue-Trousers Red-Shirt + Blue-Trousers

O
ur

SV
M

lowerbodyblue

lowerbodyred

Figure 5.5: Person search qualitative results. The top ranked images for each query are
shown. Red boxes are false detections.

5.4.3 Person Search

Although attribute-based query is a widely studied problem, there are few studies on
person search [139, 140] in surveillance. To evaluate description-based surveillance
person search, this work conducts experiments on VIPeR-Tag [142] and PETA [248].
For both datasets, following [142], this experiment randomly chose 50% of the data for
training (not used in the proposed transfer framework, but used in other baselines) and
the remaining for testing, and repeat this procedure 10 times to obtain average results.
Person Search is a retrieval task, so this work evaluates the performance of each query
with a PR curve like [142, 251, 252].
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Figure 5.6: Person search: comparison with state-of-the-art.
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5. Transferring a Semantic Representation

In VIPeR-Tag, all 15 queries used in [142] are contained in the source data attribute
list. This thesis can thus directly compare with the results in [142]. The 15 queries are
composed of a combination of an adjective (A) and a noun (N) (e.g. Red-Shirt). To
ensure two query terms co-exist in the same patch, this thesis uses max(Mk ·Mk′) to
compute the score (see Section 5.3.2). Figure 5.6a shows the average PR curves over
all annotated queries, and it is clear that the proposed method outperforms MCD [142]
1, SVM [57] and an unsupervised domain adaptation-based method DASA [207], even
though no annotated VIPeR-Tag data are used for learning the proposed model. Similar
to [27], SVM scores have been calibrated by [176] before being fused to generate
probability estimates of queries. More detailed results (including query-specific PR
curves) are available in supplementary material.

In PETA, this thesis considers a more challenging search task. Each query contains
4 terms of the form A-N+A-N (e.g. Red-Shirt+Blue-Trousers). This experiment selects
all multi-class attribute labels of PETA [248], including 11 colour (A) and 4 categories
(N). In total 44 A-N combinations are generated and any two of them can form a 4-
term query. Like [27], the presented approach randomly generates 200 4-term queries
to evaluate the methods. Note that as the query form is A-N+A-N, the two query
strategies in Section 5.3.2 need to be combined to compute a score. Figure 5.6b shows
that the proposed method outperforms alternatives by a larger margin in this more
difficult query setting.

The proposed model has two important advantages over the compared existing
methods: (1) In order to better detect conjunctive person attributes such as “Red-Shirt”,
many existing methods [142] train a single attribute classifier for each combination of
interest. This is not scalable because there will always be rare combinations that have
too few instances to train a reliable classifier for; or at test time a combination may be
required that no classifier has been trained for. By representing person attributes fac-
torially, the proposed model has no problem searching for combinations of attributes
unseen at train time. (2) Because attributes are represented conjunctively at the patch-
level, this method can make complex queries such as (Black-Jeans + Blue-Shirt). An
existing method such as the SVM-based one in [57], which uses image-level predic-
tions for each attribute independently, may be confused by “Blue-Jeans + Black-Shirt”

1Various MCD versions are evaluated in [142]. This method compares with MCD1 which gives the
best MAP.
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5. Transferring a Semantic Representation

as an alternative. This explains the larger performance margin on PETA. Figure 5.5
gives some qualitative illustration of these advantages. For example, Figure 5.5 shows
that the SVM-based model in [57], learned on each attribute separately at the image
level, wrongly detects a person with blue top when blue trousers is queried. This lim-
itation is more apparent for the more challenging “Red-Shirt+Blue-Trousers” query.
In contrast, with patch-based joint attribute modelling, the proposed model achieves
much better results.

5.5 Summary

This chapter has introduced a framework to generate semantic attribute representations
of surveillance person images for Re-ID and search. The proposed framework exploits
weakly and/or strongly annotated source data from other domains and transfers it with
adaptation to obtain a good representation without any target domain annotation. The
resulting patch-level semantic representation obtains competitive performance for su-
pervised Re-ID, and state-of-the-art performance for unsupervised Re-ID – which is
the more practically relevant problem contexts since camera specific identity annota-
tion is not scalable. Moreover, as a semantic representation it allows unification of
Re-ID and person search within the same model.
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Chapter 6

Conclusion and Future Work

This thesis has set out to explore the possibility of learning and modelling image con-
tent (including object, attributes, their locations and associations) directly from image-
level weakly labelled nature images for various image understanding tasks, such as
recognition, classification, image description and retrieval. In particular, the thesis
is geared towards solving two problems: (1) it attempts to learn useful and reliable
knowledge with minimal human annotation cost. (2) it aims to jointly model all kinds
of image content (from objects to attributes) as much as possible.

To tackle this problem, Chapter 3 first presented an effective and efficient model
for WSOL). The proposed model surpasses the performance of prior methods and ob-
tains state-of-the-art results on PASCAL VOC 2007 and ImageNet datasets. It can
also be applied to the YouTube-Object dataset, and to domain transfer between these
image and video datasets. With joint multi-label modelling, instead of independent
learning in previous work, the proposed model enables: (1) exploiting multiple object
co-existence within images, (2) learning a single background shared across classes and
(3) dealing with large scale data more efficiently than prior approaches. The proposed
generative Bayesian formulation, enables a number of novel features: (1) integrating
appearance and geometry priors, (2) exploiting inter-category appearance similarity
and (3) exploiting different but related datasets via domain adaptation. Furthermore, it
is able to use (potentially easier to obtain) unlabelled data with a challenging mix of
relevant and irrelevant images to obtain a reasonable localiser when labelled data are
in short supply for the target classes.

In order to describe objects with attributes, which is ignored in Chapter 3, an ef-
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6. Conclusion and Future Work

fective model for weakly-supervised learning of objects, attributes, and their locations
and associations have been presented in Chapter 4. Learning object-attribute associa-
tion from weak image-level labels is non-trivial but critical for learning from ‘natural’
data, and scaling to many classes and attributes. This thesis achieves this for the first
time through a novel weakly-supervised stacked IBP model that simultaneously dis-
ambiguates superpixel annotation correspondence, and learns the appearance of each
annotation and superpixel-level annotation correlation. The presented results show that
on a variety of tasks, the proposed model often performs comparably to strongly su-
pervised alternatives that are significantly more costly to supervise, and is consistently
better than WS alternatives.

Finally, in order to utilise available cheap dataset comprehensively, chapter 5 ad-
dress the WSL problem from a transfer learning perspective. It introduced a framework
to generate semantic attribute representations of surveillance person images for Re-ID
and search. The proposed framework exploits weakly and/or strongly annotated source
data from other domains and transfers it with adaptation to obtain a good representa-
tion without any target domain annotation. The resulting patch-level semantic repre-
sentation obtains competitive performance for supervised Re-ID, and state-of-the-art
performance for unsupervised Re-ID – which is the more practically relevant problem
contexts since camera specific identity annotation is not scalable. Moreover, as a se-
mantic representation it allows unification of Re-ID and person search within the same
model.

In summary, this thesis makes three main contributions:

1. This thesis proposes the novel concept of joint modelling of all object classes and
backgrounds for WSOL. The Bayesian formulation allows it to utilise various
types of prior knowledge. It also provides a solution for exploiting unlabelled
data for WSOL.

2. This thesis proposes to jointly learn all object, attribute and their associations
from realistic weakly labelled images. The effectiveness of the proposed WS-
MRF-SIBP has been demonstrated in various image description and query tasks.

3. A transfer learning approach is proposed to learn an attribute representation from
strongly or weakly annotated data or a mix. The resulting representation is useful
for various surveillance applications, such as person search.
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6. Conclusion and Future Work

In general, this thesis showed the usefulness of top-down, cross-class and domain
transfer priors – demonstrating the model’s potential to scale learning through transfer
[34, 38, 91]. These contributions bring us significantly closer to the goal of scalable
learning of strong models from weakly-annotated non-purpose collected data on the
Internet.

Based on the work presented in this thesis, several avenues of research are possible,
not only for improving the use of prior knowledge and cues of related classes, but also
to tackle the problems with improved models. Possible extensions are listed below:

1. Automatically discover - Pre-allocated parameters or variables are always come
with an assumption for expecting data distribution. These settings may be only
suitable for a certain data, which is hard generalised to all types of data. Au-
tomatically determining [196] the optimal setting of parameters and variables is
desired, especially for the proposed model in Chapter 3. Although the number
of latent factors can be automatically discovered, there are many free parameters
and variables which can be learned such as feature dimension, the number of
superpixels, learning iterations, etc.

2. Multiple layered structure - A more hierarchical model could be developed which
contain deeper multiple layer [196] to exploit parts [92, 196] and attributes [169].
These models can be applied to a specifically structured problem. For example,
learning a human structure explains a human body with multiple parts, where
each part show different appearance and sub-structure (head, hand). The pro-
posed model in this thesis focuses on the daily general objects with a relatively
flat model, which ignored the detailed structure of objects.

3. Learning prior knowledge - Prior knowledge is widely used by the proposed
model in this thesis. However, most of the prior knowledge are based on the
human common sense or fixed pre-defined setting such as the object-appearance
similarity from pre-defined WordNet. These prior knowledge may not be suit-
able for different type of data. Learning prior [47] is also the interesting direction
to explore.

4. Learning from noisy data - Although the proposed model model image content
with weakly labelled natural data, it is still unclear how the proposed model deal
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with noisy data. This thesis did not provide a systematically analysis on learning
noisy data. In a real world, the non-purpose collected label is likely to contain
realistically noisy information. It is desirable to investigate the robust capacity
[169] of the proposed model or related extended models.

5. Structure MRF - Although the two MRFs integrated into the proposed model to
capture the spatial label coherence and within-superpixel factorial correlation,
another type of correlation is ignored, that is, the image-level factorial correla-
tion which captures the global context in each image. For example, car and road
typically co-exist in a street scene. Modelling such correlation provides addi-
tional constraints to learn better superpixel-level label by further disambiguating
the weak image-level labels. Modelling such correlation in the current model
is non-trivial and a new inference and learning algorithm needs to be devel-
oped. Another prior knowledge the current model fails to explore is the fact
that each superpixel should only be explained by a single object label. Although
the within-superpixel MRF can implicitly model that, the current model can be
extended to suppress the co-occurrence of multiple object labels explicitly.

6. Image language with a deep framework - More recently, the study of automated
scene understanding has moved from a single object, multiple objects, multi-
ple objects+attributes, towards automated image captioning with full sentences
[5, 26]. Most recently proposed models are hybrid of deep Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN); they are thus discrimi-
native in nature. One of the future research directions is to integrate to the pro-
posed model with deep learning based language models such as RNN to tackle
a more challenging image captioning task whilst keeping the advantage of the
introduced generative non-parametric Bayesian model for WSL.
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Appendix A

Detailed Results for Object

Localisation

A.1 Further Evaluations

Probabilistic feature fusion The results reported in the Chapter 3 are obtained with
only SIFT features, for direct comparison with prior work. The proposed model can
also exploit multiple feature fusion as additional information to further improve per-
formance. Compared to traditional feature fusion method, the proposed probabilistic
fusion (see Section 3.5 of the Chapter 3) combines multiple features at a middle level
with a negligible additional computational cost. The presented method compares with
two baselines:
Early fusion Arguably the simplest method is to combine features is to concatenate

low-level descriptors (f ) directly. The combined descriptors are then quantised
into a single vocabulary. The subsequent training process is the same as using a
single feature.

Late fusion This is to train completely independent models using each feature. Score
level fusion (multiplication) is then applied to the different heat maps to generate
the final heat map.
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Figure A.1: Comparing different feature fusion methods.

This section evaluated the results on the VOC07-6×2 dataset. In Figure A.1 it
summarises the performance of multi-feature fusion and compared with the results
obtained by using each single feature alone. It can be seen that colour (LAB) is a
relatively weaker compared to texture based SIFT and LBP. The reason is that the
colour of objects is very diverse in the challenging VOC dataset. It is noted that the
simple baselines fail to combine the features constructively, with the final result worse
than the best (SIFT) feature alone. In contrast, the proposed mid-level probabilistic
fusion robustly and constructively combines multiple features and achieves the best
performance (54%) on VOC6×2.
Evaluations of individual model components Table A.1 shows how the perfor-
mance of the proposed model is reduced without each of several key components, thus
validating the usefulness of each of them. Specifically, IL is an analogue of the strategy
of IL of each class used in existing approaches. This method trains, e.g., 12 models in-
dependently for VOC07-6×2, each with only one foreground topic. These models are
trained on all the data, but all instances without the target object are used as negative
instances. Table A.1 verifies that this is sub-optimal compared to joint learning: each
object model no longer has the benefit of utilising the other object models to explain
away other foreground objects in multi-label images, thus leading to more confusion
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A. Detailed Results for Object Localisation

within each image.
Without spatially aware representation (NoSpatial): The Gaussian representation

of the location within each image enforces spatial compactness, and hence helps to
disambiguate object appearance from background appearance. Without learning spa-
tial extent, BGP of similar appearance to objects in the feature space cannot be properly
disambiguated, leading to poorer learning and reduced localisation accuracy. Finally
performance is also reduced without using topic-down appearance prior π0 (NoApp-

Prior) because the model is less likely to converge to a good local minimal.

Method VOC07-6×2 VOC07-20

Our-Sampling

with:

IL 42.5 29.8

NoSpatial 44.6 32.1

NoAppPrior 41.7 30.4

Alternative

joint learning

MIML [194] 33.8 23.6

CorrLDA [186] 34.3 27.2

Our-Sampling 50.8 34.1

Table A.1: Evaluation of individual components of the proposed model and compari-
son with alternative joint learning approaches.

Alternative joint learning approaches In this experiment, the proposed model com-
pares other joint multi-instance/weakly-supervised multi-label learning methods, and
show that none is effective for WSOL. One alternative joint learning approach is to cast
WSOL as a MIML learning problem [194, 195, 253]. Most existing MIML studies
consider classification. The proposed method utilises the model in [194] and reformu-
late it for localisation. Specifically, this method follows [42] to use the what-is-object
boxes to generate bags for each image before applying MIML for localisation. Table
A.1 shows that the MIML method underperforms, due to the harder discrete optimi-
sation. This, together with being unable to integrate Bayesian prior knowledge as in
the proposed model, explains its much poorer result. The presented method also com-
pares with CorrLDA, which was designed for image annotation [186]. However its
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performance is much weaker because it lacks an explicit spatial model and only ad-
mits indirect supervision of topics [185]. The proposed approach directly constrains
topics via label-topic clamping, enabling more effective WS multi-label learning.

A.2 Per-Class Object Localisation Results

In Section 3.8 of the Chapter 3, it evaluated object localisation from weakly labelled
data. Specifically, Table 3.1 (Chapter 3) compared the proposed methods (Our Sam-
pling and Our Gaussian) with the state-of-the-art competitors [42, 43, 44, 91] on the
three variants of the PASCAL VOC 2007 dataset: V OC07− 6× 2, V OC07− 14 and
V OC07−20. Due to the space limitation, only the results averaged over all the classes
in each dataset were shown. In this supplementary section, it provides more detailed
per-class object localisation results for the three VOC variants in Tables A.2, A.3, and
A.4 respectively. Note that few previous studies report their per-class results. Those
reported per-class results are included in the tables for comparison.

As mentioned in the Chapter 3, refining the localisation by a strong detector [16,
42] brings overall improvements on the localisation accuracy. However, the improve-
ment can be very limited or even negative for some classes when the initialisation
performance is poor. For instance, Table A.4 shows that for the challenging bottle

class, the initial WSOL accuracy is weak (6.3% for Our-Sampling+prior). After re-
finement using a strong detector, the localisation accuracy becomes even worse (4.2%
for Our-Sampling+prior). This is understandable: with poor localisation, only a poor
detector will be learned, which will not help refine the localisation.
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Initialisation Refined by detector

Our-Sampling+prior Our-Gaussian+prior [43] Our-Sampling+prior Our-Gaussian+prior [42]

aeroplane left 58.7 55.3 39.1 72.0 72.0 58

aeroplane right 64.2 72.6 50.0 71.0 71.9 59

bicycle left 29.0 34.4 28.4 60.2 58.8 46

bicycle right 36.3 38.0 30.6 48.5 48.3 40

boat left 20.7 27.8 15.1 44.4 44.2 9

boat right 27.8 19.5 20.7 46.1 48.2 16

bus left 38.1 32.8 31.0 49.7 46.0 38

bus right 52.8 47.3 35.1 61.7 54.2 74

horse left 71.4 67.1 48.5 89.8 90.1 58

horse right 69.6 77.7 45.2 85.6 88.5 52

Motorbike left 68.4 68.9 46.3 79.3 83.8 67

motorbike right 77.9 80.3 55.3 82.8 94.7 76

Average 51.2 51.8 37.1 65.9 66.7 50

Table A.2: Per-class localisation accuracy for the VOC07-6×2 dataset

Initialisation Refined by detector

Our-Sampling+prior Our-Gaussian+prior Our-Sampling+prior Our-Gaussian+prior

aeroplane 58.8 54.1 61.0 57.2

bicycle 32.8 27.7 34.8 27.8

boat 25.8 23.4 28.5 24.9

bottle 06.8 05.7 07.3 06.4

bus 42.7 45.3 47.5 48.3

chair 06.8 06.0 09.9 07.6

diningtable 33.6 30.5 36.6 31.9

horse 57.8 48.9 58.1 54.3

motorbike 59.5 59.6 61.2 60.5

person 28.6 24.1 30.6 28.2

pottedplant 14.2 10.2 14.8 11.0

sofa 37.4 36.8 39.1 39.2

train 56.8 56.0 58.1 57.0

tvmonitor 06.5 07.4 08.4 08.3

Average 33.4 31.1 35.4 33.0

Table A.3: Per-class localisation accuracy for the VOC07-14 dataset
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Initialisation Refined by detector

Our-Sampling+prior Our-Gaussian+prior [43] [90] [91] Our-Sampling+prior Our-Gaussian+prior [90]

aeroplane 62.0 53.1 38.7 45.4 54.7 68.3 63.0 42.4

bicycle 33.8 33.0 22.2 20.6 22.7 56.8 54.9 46.5

bird 32.9 20.9 27.6 29.7 33.7 37.5 24.7 18.2

boat 30.8 26.2 21.0 12.2 24.5 20.2 17.5 08.8

bottle 06.3 08.0 06.6 04.1 04.6 04.2 05.1 02.9

bus 36.5 37.8 33.3 37.1 33.9 48.8 53.7 40.9

car 42.7 41.8 39.4 41.0 42.5 63.3 42.6 73.2

cat 60.5 53.5 46.0 53.4 57.0 71.7 60.6 44.8

chair 07.4 07.6 08.1 06.5 07.3 61.0 04.6 05.4

cow 39.0 34.7 34.8 31.9 39.1 33.7 31.1 30.5

diningtable 30.4 31.7 31.5 20.5 24.1 16.2 26.4 19.0

dog 50.1 43.3 38.0 40.9 43.3 61.5 56.5 34.0

horse 57.7 51.9 37.6 37.3 41.3 55.5 54.7 48.8

motorbike 56.9 56.8 43.3 46.5 51.5 65.4 67.5 65.3

person 30.3 26.2 23.0 22.3 25.3 21.2 17.5 08.2

pottedplant 12.1 14.1 11.4 10.2 13.3 03.6 07.3 09.4

sheep 35.6 32.8 28.1 27.1 28.0 24.4 25.8 16.7

sofa 30.6 32.8 34.5 32.3 29.5 37.3 35.3 32.3

train 58.1 56.8 43.7 49.0 54.6 63.5 62.1 54.8

tvmonitor 08.2 07.0 10.5 09.8 11.8 07.8 05.7 05.5

Average 36.1 33.5 29.0 28.9 32.1 38.3 35.8 30.4

Table A.4: Per-class localisation accuracy for the VOC07-20 dataset

A.3 Per-Class Object Detection Results

In the Chapter 3, it further evaluated object detection performance on test data given
detectors trained from WS images. Table 3 (Chapter 3) reports the mAP of detection
performance on both VOC-6×2 and VOC-20. Here the section provides the per-class
AP for VOC-6×2 and VOC-20 in Table A.5 and Table A.6 respectively. It is clearly
to see that for some classes (e.g. bicycle right, motorbike left in Table A.5; Bicycle,
bus, car, motorbike, train in Table A.6) the proposed approach achieves comparable
performance to the FS detector. This is a very encouraging result. It shows that with
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our framework, automatic localisation can replace manual location annotation to train
detectors for these classes. However, for those with very low localisation accuracy
(e.g. bottle and pottedplant), the WS detector fails completely.

[44] [42] Ours FSL

aeroplane left 7.5 5 12.4 23

aeroplane right 21.1 18 26.2 32

bicycle left 38.5 49 48.4 59

bicycle right 44.8 62 63.6 64

boat left 0.3 0 0.2 0

boat right 0.5 0 0.5 1

bus left 0 0 0.8 21

bus right 3 16 18.2 20

horse left 45.9 29 39.3 45

horse right 17.3 14 28.5 39

Motorbike left 43.8 48 53.3 55

motorbike right 27.2 16 22.3 42

Average 20.8 21.4 26.1 33.4

Table A.5: Per-class average precision for object detection on VOC07-6×2 dataset
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[90] Ours FSL

aeroplane 13.4 25.5 29.0

bicycle 44 50.0 53.6

bird 3.1 0.4 0.6

boat 3.1 9.0 13.4

bottle 0 0 26.2

bus 31.2 35.6 39.4

car 43.9 45.6 46.4

cat 7.1 14.4 16.1

chair 0.1 1.1 16.3

cow 9.3 13.4 16.5

diningtable 9.9 8.2 24.5

dog 1.5 3.2 5.0

horse 29.4 38.4 43.6

motorbike 38.3 37.3 37.8

person 4.6 16.5 35.0

pottedplant 0.1 0 8.8

sheep 0.4 2 17.3

sofa 3.8 10.0 21.6

train 34.2 34.0 34.0

tvmonitor 0 0.2 39.0

Average 13.9 17.2 26.3

Table A.6: Per-class average precision for object detection on VOC07-20 dataset
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Appendix B

Detailed Results for Re-identification

and Search

B.1 Details on Supervision

In Section 5.4 of the thesis, under the heading “Settings”, it has briefly mentioned that
the supervision used for the proposed model varies across the strongly and weakly
annotated auxiliary sets. This section now gives the details on the different types of
annotations and corresponding supervision used in the presented experiments in Ta-
ble B.1.

Full / Fashion [52] Weak / Clothing [144]

Factor Color Category BG Texture BG

FGP Strong Strong Lk = 0
Weak None

BGP None Lk = 0 None

Table B.1: Different types of supervision used by the proposed models depend on how
different attributes of each auxiliary dataset are annotated.

In the auxiliary datasets, there are various types of attributes (modelled as factors
in the proposed model) and each can be annotated in different ways (denoted as Lk, see
Section 5.4 of the thesis). More specifically, there are three factor types: Colour (12
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B. Detailed Results for Re-identification and Search

factors), Category (22), Texture (6) and Background (BG) (20). The number of factors
depend on the actual annotation from [52, 144]. These factors may be supervised
strongly (Lk given by pixel level annotation), weakly (Lk image level annotation) or
not at all (All Lk = 1).
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Figure B.1: CMC comparison of unsupervised learning based approaches.
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Figure B.2: CMC comparison of supervised learning based approaches.

Given strongly supervised data (Colourful-Fashion [52]), all superpixels/patches
can be categorised into FGP and BGP (Table B.1 rows). FGP cannot contain back-
ground factors (Lk = 0). Colour and category data are strongly annotated so the
learning of these factors are strongly supervised for the foreground (Strong). Colour
factors can also occur on the background, so these are not supervised (None). Mean-
while, Category factors (e.g., shirt) cannot occur on the background, so Lk = 0 here.
Finally, any background factors are free to be used on any BGP (None).

Given a WS dataset (Clothing-Attribute [144]), the proposed method does not
know the location of foreground background pixels, so there is no patch-type break-
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down. Therefore the texture factors are WS (Weak); meanwhile the background factors
are not supervised.

B.2 Re-identification Performance Measured by CMC

In Table 5.1 and Table 5.2 (Section 5.4) of the thesis, the proposed methods are com-
pared with existing unsupervised and supervised learning approaches respectively. Due
to space limitation, only the matching accuracy @ rank [1, 5, 10, 20] are reported. In
this supplementary material, it provides the CMC curves over rank 1 to 25 obtained
by different compared methods on the three datasets. Figure B.1 shows the CMC
curves of the compared unsupervised learning based methods, including SDC [146],
GTS [148], SDALF [147] and SDC Final (eSDC) [146]. Figure B.2 compares the su-
pervised learning based methods, including MLF [161], KISSME [152], LADF [160],
LF [156], SCNCD Final [149], PatMatch [153], SalMatch [153], KML [151] and
MLF Final [161]. Note that the CMC curves of some compared existing methods
(i.e. KISSME [152], KML [151], SDC [146] and SDALF [147]) on some datasets are
obtained based on our own implementation when their CMC curves were not reported
in previous works. In addition, the CMC curves for some methods are not included in
these plots if previous work provides neither the CMC curves nor the code for us to
implement.

B.3 Per-query Person Search Results

In Figure 5.6 of the thesis, it reported the average PR curves of all queries for various
person search methods. Here it provides more details on their person search perfor-
mance on the VIPeR-Tag [142] dataset in the form of the precision-recall (PR) curve
of each query. There are 200 random queries used on the PETA [248] dataset; it is thus
not possible to present the per-query PR curves on PETA here.

These per-query PR curves on VIPeR-Tag are shown in Figure B.3. Note that the
queries used on this dataset as defined in [142] have different attribute names as those in
the auxiliary Colourful-Fashion dataset. For examples, the attributes ‘UpperGarment’
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Figure B.3: Person search performance on each object-attribute query
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and ‘LowerGarment’ appear in 13 out of the 15 queries. However, much finer-grained
attributes are used in the Colourful-Fashion dataset; for instance, for ‘UpperGarment’,
it has ‘blazer’, ‘T-shirt’, ‘blouse’, and ‘sweater’. These finer-grained attributes are thus
merged to form the two coarser-grained attributes on VIPeR-Tag before person search.
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